Process Safety and Environmental Protection 177 (2023) 1085-1102

Contents lists available at ScienceDirect

Process Safety and Environmental Protection

FI. SEVIER

journal homepage: www.journals.elsevier.com/process-safety-and-environmental-protection

Check for

Operationalizing resilience: A deductive fault-driven resilience index for e
enabling adaptation

Lamis Amer *, Murat Erkoc®, Nurcin Celik ?, Esber Andiroglu”

2 Department of Industrial & Systems Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL, USA
Y Department of Civil & Architectural Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL, USA

ARTICLE INFO ABSTRACT

Keywords:

Resilience metric

Composite index

Leading indicators

Sea-level rise

Adaptation

Decentralized wastewater treatment systems

The impact of climate change and the dynamic nature of environmental conditions underscore the critical need
to enhance resilience of systems and process safety considerations. The efficacy of such efforts primarily depends
on how resilience is measured. Among the myriad efforts to quantify resilience, composite indicators have
emerged as promising tools. However, these indicators typically employ statistical methods to derive weights for
aggregation and rely on statistical homogeneity among indicators which can limit their scope and fidelity. In this
study, we propose an alternative novel resilience index derived from a system’s structure and the essential
conditions for safe operation during and after disruptions. The proposed measure reflects the systems’ ability to
resist and respond to failures by addressing possibilities of impact propagation to other infrastructure systems.
Moreover, it eliminates the need for weights and allows for compensability among its leading indicators. Using a
case study based on the on-site wastewater treatment and disposal systems (OSTDS) in South Florida that faces
increasing risks due to rising sea levels, we investigate the validity of the proposed index and perform a
comparative analysis with statistically-driven measures. Furthermore, we demonstrate the adaptation of the

proposed index for decision making within a generalized optimization framework.

1. Introduction and Background

The exacerbating risks due to climate change have increased interest
in integrating resilience into adapting urban and rural infrastructure
systems. These systems typically consist of critical utilities that fulfill the
communities’ basic needs by providing vital services such as supplying
food, water, and energy, managing waste, and enabling mobility. Since
such systems are usually highly complex and interconnected, their
disruption may result in debilitating and cascading ramifications that
extend over larger areas (Huang and Ling, 2018). To effectively adapt to
and safely operate under the adverse effects of climate change, consid-
erable attention has been given to enhancing the resilience of those
infrastructure systems. This has proven to be a nontrivial goal that
cannot be achieved without understanding how resilience can be
assessed and measured.

Resilience measures can be instrumental in setting thresholds and
priorities for adaptation decisions. They guide assessing and monitoring
the resilience of systems across time and space, thus, helping commu-
nities make adaptation decisions at the right time and with proper scope.
In this regard, their integration into decision-making can be direct and
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indirect. Indirectly, they can help evaluate and validate adaptation so-
lutions. They are particularly beneficial for running “what-if” analyses
to explore and analyze decisions under multiple future climate sce-
narios. Thus, they guide evaluating potential future impacts, identifying
risks and opportunities to enhance systems’ resilience, and determining
the best courses of action (Molinos-Senante et al., 2012). In a more
comprehensive and practical approach, resilience metrics can be
directly incorporated into decision models as variables. Through
assessing potential resilience gains or losses as a result of a set of actions,
these variables can be utilized to form “resilience functions” that can
serve as objectives or constraints under a structured decision-making
model.

The identification of relevant resilience indicators for a given risk is
the first critical step in measuring resilience. Basically, an indicator is a
quantitative or a qualitative measure derived from a series of observed
facts that can reveal the status of a system in a given instance. When
evaluated at regular intervals, an indicator can point out the direction of
change across different units and through time. In the context of resil-
ience assessment, resilience indicators are specific and measurable
characteristics or properties of a system that can be used to indicate its
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level of resilience. The second critical step in this process is to compile
the resilience indicators identified in the previous step into a single
composite indicator, which is referred to as the resilience index. For
complex infrastructure systems, resilience embodies multi-dimensional
facets that might be driven by varying perspectives of diverse stake-
holders, which can be subjective and compounded. Integrating resil-
ience indicators that represent these multiple perspectives and factors
into a multi-dimensional resilience index has been proposed as an
effective approach (Beccari, 2016).

The construction of composite indices poses various challenges that
affect their validity, including the selection of underlying factors, their
measurement, and the operations used to combine them (National
Research Council, 2012). Typically, building a composite index follows
a systematic process, including identifying the underlying resilience
indicators, scaling them, allocating weights, and aggregating them into a
single index. The quality and functionality of the composite index
depend on the combination of weighting and aggregation schemes.
Usually, weights are determined by statistical methods which rely on
statistical homogeneity and correlations among indicators. Such ap-
proaches can be limiting in capturing the indicators’ actual contribution
to the composite index representing the phenomenon under study
(Nardo et al., 2005). More importantly, the absence of a proper under-
lying theory can result in misleading conclusions (OECD, 2008).

With this understanding, we propose a novel resilience index that is:
i) derived from leading indicators that are precursors of systems’ sur-
vivability and safe operation post disruptions, ii) designed to fuse these
indicators into a multidimensional composite index, and iii) tailored to
support a mathematical functional form that can be employed to
construct objectives and constraints in decision-making models. In
contrast to the traditional approaches that utilize lagging indicators to
characterize the so-called resilience trapezoid ex-post, we propose a
resilience index that integrates leading resilience indicators. These in-
dicators can predict potential system failure modes (or survival) ex-ante,
based on the system structure and its relationship with the surroundings,
therefore integrating the fault-tolerance dimension of resilience (Azadeh
et al., 2014). The primary motivation of this alternative approach is to
detect early signals of systems’ failure and thus guide making the right
actions for adaptation.

Accordingly, we identify a set of system-related indicators critical to
shaping its resilience and develop a set of axioms to establish the re-
lationships among these indicators using a deductive fault analysis
(DFA) approach. These axioms are designed to depict the logical
sequence of events that enable systems to survive and operate safely,
incorporating both operational and environmental failures into a resil-
ience index. In light of the conceptualization of resilience in seminal
works by Holling (1973), Gunderson et al. (1995), and Hollnagel et al.
(2006), we adopt the resilience definition that encompasses a system’s
ability to resist disruption, maintain operations during disruption, and
recover to full operational capacity after disruption. This definition has
also been adopted by several researchers in recent years (Shandiz et al.,
2020; Yarveisy et al., 2020; Pawar et al., 2022), particularly in the fields
of process safety and environmental protection. Under this view, we
propose a resilience index that can capture the system’s ability to
operate safely and, at the same time, limit the negative environmental
impacts of its processes. We design and propose mechanisms for trans-
forming the identified leading indicators to a normalized scale based on
preset indicator-specific thresholds and reference points that indicate
conditions for safe system operations. By employing the axioms, we
devise an aggregation methodology that does not rely on statistical or
participatory techniques. This novel approach allows us to assess the
criticality of indicators from the outset, eliminating the need for sub-
jective weighting and the associated subjectivity.

We demonstrate the performance of our proposed approach in the
context of the on-site wastewater treatment and disposal systems (OSTDS)
using a real-life case study from South Florida that faces increasing
operational and environmental risks due to rising sea levels. The
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contributions of the study presented in this paper include i) a novel
composite aggregation approach designed for resilience-leading in-
dicators using a deductive fault analysis framework, ii) a novel trans-
formation method that accounts for minimum operating requirements
for each indicator and the relative importance between the indicators,
iii) a comparative analysis using statistical models that demonstrates the
practicality of the proposed fault-driven approach for measuring resil-
ience, and iv) a framework that integrates the proposed resilience index
into adaptation decision-making is introduced. Moreover, to the best of
our knowledge, this study is the first to provide a method that quanti-
tatively assesses the resilience of OSTDS in the context of sea-level rise.
Next, we provide a brief review of the relevant literature, before we
discuss the details of the proposed approach.

1.1. Resilience indicators

Various taxonomies are introduced in the literature to review and
classify quantitative resilience measures by researchers such as Beccari
(2016), Hosseini et al. (2016), Asadzadeh et al. (2017), and Chen et al.,
2023. In general, the proposed measures in this context can be grouped
under two approaches: performance data-driven and structural data--
driven. While the former approach typically employs “lagging in-
dicators”, which assess the resilience of systems based on their past
performance and observed operational data, the latter approach utilizes
“leading indicators”, which proactively assess systems’ responses to
current and future disturbances based on their inherent design and
structure. Lagging indicators provide quantitative measures for resil-
ience of a system based on its historical performance, which are also
referred to as reactive resilience measures in the literature (Patriarca
et al., 2019; Ba-Alawi et al., 2020; Nunez-Lopez et al., 2021). They
capture the time-dependent performance measure(s) during a system’s
degradation and recovery phases post disruptions resulting in a
multi-phase curvature known as the resilience trapezoid. When suffi-
cient historical data is available, simulation can generate the resilience
trapezoid associated with a system subject to specific threats (Pawar
et al., 2022). It can also be predicted based on pre-determined proba-
bilistic damage and fragility curves, loss functions, and recovery curves.
Lagging indicators are criticized regarding their use as future predictors
of systems’ response to incidents (Grabowski et al., 2007; Mengolini and
Debarberis, 2008). They may provide limited insight into what consti-
tutes a resilient system as they fail to capture its capacities and de-
pendencies within the system components and between the system and
its surrounding environment. Moreover, in many cases, data may not be
available to model or predict the shape of the resilience trapezoid.
Therefore, structure-based measures are proposed as effective alterna-
tives to assess the resilience of dynamic processes and systems (Penaloza
et al., 2020).

As an alternative approach, leading indicators, also known as
structure-based indicators, rely on a system’s intrinsic characteristics,
structure, and spatial relationships with its surroundings. These in-
dicators can act as early warning signals for performance issues and are
considered proactive resilience measures (Patriarca et al., 2019). It is
important to note that we do not imply that leading indicators cannot be
derived from performance-based measures. If periodically collected data
is available to monitor a system’s well-being and assess its performance
resilience in day-to-day operations, performance-based measures can
serve that purpose (Hollnagel, 2017). However, they may prove inef-
fective for evaluating the resilience of systems during large-scale
disruptive events when historical data is limited or unavailable.
Recent literature has proposed structure-based resilience indicators
primarily for network-based infrastructure systems, such as trans-
portation networks (Demirel et al., 2015) and power generation and
transmission networks (Panteli and Mancarella, 2015). Amer et al.
(2023) provide a comprehensive review of leading indicators proposed
in the extant literature for a selected group of critical infrastructure
systems in the context of resilience to sea-level rise. Such indicators,
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which include connectivity, criticality, and accessibility, are used to
evaluate the adaptive capacity of a network in the face of potential
disruptions to links and/or nodes (Tachaudomdach et al., 2021). They
go beyond capturing solely physical operational parameters and can also
incorporate socioeconomic factors related to process safety and envi-
ronmental impacts. To obtain an overall measure of resilience, the
leading indicators need to be systematically aggregated or mapped to a
resilience function. This critical task is often accomplished using com-
posite indicators as a medium.

1.2. Composite indicators

Composite indicators have been designed in the context of a diverse
range of areas, including socioeconomic status, sustainability, and
disaster resilience. The typical process for developing a composite in-
dicator consists of seven main steps: (1) establishing the theoretical
framework, (2) data selection, (3) imputation of missing data, (4)
multivariate analysis, (5) normalization, (6) weighting and aggregation,
and (7) validation for robustness and sensitivity against the established
theory (OECD, 2008).

Despite the increased research output on disaster resilience in recent
years, the application of composite indicators in this context remains in
its infancy (Asadzadeh et al., 2017). The majority of the applications are
limited to high-level measures of social and community resilience
(Orencio and Fujii, 2013), ecological resilience (Kotzee and Reyers,
2016) and agro-ecosystem resilience (Rao et al., 2019). In many cases,
global composite metrics are often deployed to compare regions or
countries based on Environmental, Social, and Governance (ESG) out-
looks (Global, 2020). Few papers have emerged recently focusing on
building composite resilience indicators for engineering systems such as
energy systems (Lindén et al., 2021), wastewater management systems
(Sun et al., 2020), and transportation infrastructure (Vajjarapu and
Verma, 2021).

The quality of the resulting composite indicator usually depends on
the methodologies used in normalizing, weighting, and aggregating the
individual indicators at different levels and the appropriateness and
soundness of the underlying theory and the input data. While the
appropriateness of the laid-out approach is subject to the judgment of
the modeler and expert opinions, the suitability of the data is often
assessed by employing multivariate analysis techniques. Typically, the
efficacy of a composite depends on the statistical ability to group mul-
tiple indicators into a single proxy, which is often governed by the de-
gree of correlations between the indicators. Higher correlation between
the indicators implies fewer statistical dimensions resulting in higher
suitability of grouping data to form a composite indicator (Nardo et al.,
2005). Although this assumption might be valid for some constructs, we
contend that it should not be treated as a compulsory precondition for all
composite indicators, especially in the context of the resilience of
complex systems.

In essence, building composite metrics is analogous to modeling
latent variables in the presence of some observed variables (Otoiu et al.,
2021). In these models, the direction of the hypothesized causal rela-
tionship between the latent construct and its measurable indicators
governs the statistical homogeneity of the data. These causal relation-
ships are either reflective or formative. In a reflective relationship, the
latent variable is considered to be the determinant (i.e., the cause) of the
observed variables, whereas, in the formative relationship, the latter
causes the former. Because reflective indicators map to the same un-
derlying latent variable, they need to have substantial mutual associa-
tions (Sanchez, 2013). Unlike reflective indicators, formative indicators
do not necessarily measure the same underlying constructs; that is, they
do not need to be correlated (Blalock, 1982; Becker et al., 2012).
Therefore, assessing the suitability of the data must not be irrespective of
the established causation theory. This is a fundamental issue that is often
overlooked and mistreated in the literature on the formation of com-
posite indicators (Otoiu et al., 2021).
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A critical stage in constructing composite metrics is the normaliza-
tion of data. Because indicators often reflect different dimensions of the
phenomena under study, they are measured on different units or scales.
As such, normalization is needed to establish a standard basis for com-
parison and aggregation. Several normalization methods are introduced
in the relevant literature, such as ranking, z-score standardization, Min-
Max standardization, distance to a reference subject, scaling to the
mean, etc. (OECD, 2008). Although these methods are instrumental and
widely utilized, they might fail to meet the composite’s objectives when
developed primarily for measuring engineering systems’ resilience. For
engineered systems, we argue that the ideal resilience measure must
incorporate the operating requirements to ensure the survivability and
safety of a system during and after disruptions. In this context, resilience
is not merely an indicator of a system’s weaknesses or vulnerabilities, as
in the case of risk analysis, but it encompasses the system’s capacity to
resist and respond effectively. Since minimum operating conditions
must be satisfied to maintain the functionality and survivability of a
system, they must be the central focus and driver in identifying and
normalizing the indicators. The transformation methodology in our
proposed metric design explicitly employs this view by accounting for
the system’s operational requirements and the relativity among the
leading indicators representing the properties contributing to the sys-
tem’s resilience.

Another crucial step in developing composite metrics is weighting
and aggregating the underlying indicators into a unified index. These
techniques critically influence the soundness and validity of the com-
posite metrics. Several weighting and aggregation techniques are
reviewed in detail in OECD (2008). Weighting techniques generally rely
on either statistical or participatory models to inform weights. Statistical
models, such as Factor Analysis (FA), Principal Component Analysis
(PCA), and Data Envelopment Analysis (DEA), typically group indicators
based on the degree of correlation among them. Whereas participatory
models, such as Budget Allocation Processes (BAP), Analytic Hierarchy
Processes (AHP), and Conjoint Analysis (CA), rely on stakeholders’ and
experts’ opinions to derive weights. While the former approach is inef-
fectual when no correlations exist among the indicators, the latter might
result in a composite biased by the experts’ subjective sentiments. They
rely on pair-wise comparisons between indicators, making them
computationally expensive with a relatively large number of indicators.

Aggregation techniques following the weighting stage are classified
according to how they translate weights. Weights can either represent (i)
a trade-off, as in the compensatory aggregation methods such as linear
and geometric aggregation, or (ii) a measure of importance, as in the
non-compensatory methods demonstrated by the Multi-criteria analysis
(MCA) techniques. In the compensatory methods, the poor performance
of one indicator can be compensated for by high performance in some
other indicators, resulting in a moderate-to-high performance for the
aggregated measure. In contrast, in non-compensatory methods, the
impact of each indicator on the composite measure is exclusive (Bani-
habib et al., 2017). Incorporating compensability relations in the com-
posite metric is a pertinent requisite in modeling the resilience of
complex systems. For instance, a system’s low ability to resist disrup-
tions can be counterbalanced by its ability to adapt and recover, even-
tually resulting in moderate-to-high system resilience.

2. Methodology

The proposed resilience index employs formative and compensatory
relationships. It is formative in the sense that the observed variables are
assumed to shape resilience. In this case, correlations among the indi-
vidual indicators are not required, thus eliminating the need to assess
the statistical homogeneity of the data. Moreover, high-performing in-
dicators can balance other underperforming ones; thus, the compensa-
bility effect is incorporated. The proposed aggregation method maps the
logically constructed relationships between the individual indicators
into a mathematical baseline function for resilience based on a deductive
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Fig. 1. A hierarchical diagram showing the causal relationships between the identified leading indicators and resilience.

fault-driven analysis. Since the established logical relationships account
for the indicators’ relative importance from the outset, the proposed
methodology rules out the need for weighting the individual indicators.

Capturing resilience effectively in this context necessitates a clear
understanding of what factors make up a resilient system and how these
factors coalesce into the state and functioning of the system. To
construct the theoretical foundation and axioms on how the system
behaves under current and future sea levels, we start by exploring all
direct and indirect relationships between various failure modes
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triggered when systems are subject to risks due to sea-level rise. Sub-
sequently, a set of system-related indicators are identified. These in-
dicators are critical in shaping the system’s ability to respond, adapt and
recover post disruptions. As such, we refer to them as the resilience-
critical or resilience leading indicators. After shortlisting these indicators,
we introduce a deductive fault analysis-based methodology for building
the composite resilience index. The rationale and mechanisms of the
proposed approach are elaborated in the following subsections.
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2.1. Theoretical framework

As mentioned earlier, our framework is built in the context of OSTDS,
also known as septic systems, that treat and dispose waste from indi-
vidual properties. In such systems, wastewater is partially treated in the
septic tank, where solid waste rests at the bottom of the tank, and the
effluent flows from the septic tank to a drain field. The drain field is a set
of perforated pipes that discharge effluent to the ground. The discharged
waste undergoes final treatment as it percolates through unsaturated
soils to the groundwater. For septic systems to function effectively and
ensure complete treatment of the effluent before it reaches the
groundwater, the soil underneath and surrounding the drain field must
be unsaturated, and a minimum vertical separation distance (VSD) be-
tween the bottom of the drain field and the high wet season groundwater
level must be satisfied. In Florida, the minimum VSD ranges from 12 to
42 in. (2-4 ft)( = 60-120 cm), depending on the soil percolation
characteristics.

With the rising sea levels, septic systems face increasing risks of
surface and in-land flooding, both of which may disrupt their proper
functioning or cause complete failure. Failed septic systems result in
financial burdens to homeowners due to substantial investments in re-
pairs or degraded property values. In addition to their economic im-
pacts, environmental and subsequent public health hazards are of
significant concern due to the increased likelihood of contamination of
freshwater resources. Contamination occurs when partially treated
wastewater containing human-caused Nitrogen (N) mixes with fresh-
water resources, including groundwater and surface water.

In order to identify the factors shaping the septic system response to
sea-level rise risks, we refer to the standards and minimum requirements
for safely siting, managing, and operating septic systems as outlined in
the EPA 625/1-80-012, Florida Administrative Code (rule chapter 64E-
6 +: Standards for OSTDS), and the septic vulnerability report by the
Miami-Dade County Department of Regulatory and Economic Re-
sources. We also conducted interviews with officials from the Miami-
Dade Water and Sewer Department and the Florida Department of
Health, responsible for septic system approval and management. This
information was then mapped to a Causal Loop Diagram (CLD) to link
various risks (surface flooding and in-land flooding) to septic systems’
environmental and hydraulic failure modes (see Appendix A for the CLD
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utilized in this study). CLDs visually represent the hypothesized causal
relationships between variables or factors in a complex system. Based on
this exploratory study, we have identified the root causes of system
failure along with other influential factors that contribute to the sys-
tem’s recovery capacity. Overall, we have identified 12 critical in-
dicators that significantly shape the resilience of the OSTDS systems.
Since we categorize resilience into three main phases, namely, preven-
tion (resistive or absorption capacity), damage propagation (adaptive
capacity), and recovery (restorative capacity), the identified leading
indicators are grouped under these categories as listed in Fig. 1 and
elaborated in what follows.

2.1.1. Resistive capacity

When exposed to risks, systems with high resistive capacity can
withstand failures and sustain their structural and functional integrity.
Under sea-level rise, septic systems may experience hydraulic failures
due to surface or inland flooding of the drain field. While surface
flooding is very likely to occur for systems located within high-risk flood
zones, where the base-flood elevation (BFE) is greater than zero, inland
flooding may follow rising groundwater levels associated with the rising
seas. As the groundwater levels rise above a certain threshold, the ver-
tical separation distance (VSD) is reduced, which may result in inland
flooding of the drain field. In addition to hydraulic failures, environ-
mental failures may arise due to a compromised VSD or saturation of
soils beneath the drain field caused by excessive precipitation and
frequent flooding events. Hence, the distance to hydric soils zones is
considered to be a critical factor, along with VSD and Base Flood
Elevation (BFE), in determining the system’s resistive capacity. The
further the site is from an area with hydric soils, the better its ability to
resist treatment failures. The factors that influence the resistive capacity
of a given septic system i are presented in Fig. 1 and represented by x;;
through x;s.

2.1.2. Adaptive capacity

Another component of resilience, the ability of septic systems to
adapt to disruptions, is associated with the likelihood and extent of
impact propagation to other critical infrastructure systems. This is
typically the result of the so-called “domino effect.” Domino effect is an
undesirable event that emerges in one system and spreads to other
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Fig. 2. Data Processing.
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Fig. 3. Transformation curves for the VSD (left) and the distance to sewer lines (right).

systems through escalation vectors. Thus, it causes secondary or high-
order events leading to more severe consequences compared to the
initial event itself (Tong and Gernay, 2023). In the context of septic
systems, a failing system can lead to freshwater contamination through
two main streams: i) groundwater contamination and ii) surface water
contamination. As discussed earlier, groundwater contamination occurs
if the VSD (x;3) is below a minimum threshold or if the soil underneath
the drain field is saturated (x;;). In addition, groundwater contamination
occurs if a system at risk of surface flooding is proximal to groundwater
recharge wells (also known as injection wells) (x;g). These wells are
generally utilized to artificially recharge aquifers by surface waters and
waters coming from other sources. Surface water contamination is more
likely to occur when systems at risk are located in a dense watershed
areas, i.e., have dense concentration of surface drainage lines (also
known as watersheds) (x;5). These surface drainage lines function as
transfer channels for the untreated wastewater to nearby surface water
bodies, including canals (x;5) and basins (x;7).

Besides the environmental risks, public health risks are expected
when potable water resources are contaminated. In this regard, systems
close to or within well-field protection zones (x;4) are deemed critical. In
the event of groundwater contamination, polluted waters within these
zones are more likely to be drawn into potable water wells. Similar
relation also applies to proximity to private water wells (x;9). According
to the Florida Department of Health 2020 statistics, nearly 12% of the
state population relies on private wells for drinking water consumption.
These private wells are not regulated under the federal Safe Drinking
Water Act, and as such, the unobserved failures of septic systems close to
these private wells pose health risks.

2.1.3. Restorative capacity

In the context of a system’s ability to recover, the leading indicators
must relate to the technical or socio-economic abilities to recuperate
from potential disruptions. On the one hand, the technical factors cap-
ture the systems’ ability to fully transform into a new state by connecting
to alternate wastewater management systems. On the other hand, the
socio-economic indicators reflect the household’s economic ability to
support the recovery of their failed systems. While the former is assessed
through proximity to sewer lines (x;10) and existing stresses to the sewer
network through observing the sewer overflow locations (x;j1 ), the latter
is evaluated based on the median household income (x;11). We consider
these indicators to be instrumental in expressing the system’s potential
for resuming regular wastewater disposal and treatment operations after
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a disruption, either by recovering the existing system or transforming its
structure.

2.2. Data collection and processing

The input geospatial datasets used in our analysis were obtained
from open data sources, including Miami-Dade Open Data Hub, the U.S.
Geological Survey (USGS) LiDAR Digital Elevation Model (DEM) at 5 ft (
~ 1.5 m) resolution, Groundwater Levels Data at 250 m resolution, and
the Wastewater Management Methods embedded in the Florida Water
Management Inventory dataset. The input data was processed in two
phases, as illustrated in Fig. 2. Three data sets were generated in the
initial phase: the vertical separation distance raster layer, surface
drainage lines (watersheds) vector layer, and parcels with active septic
systems vector data. For septic system (i), given the average ground
elevation per parcel (GL;), the maximum groundwater level (GWL™),
and the average standard drain field depth (d), we compute the VSD (x;j3)
using the following equation:

@

Watersheds (or surface drainage lines) were generated from the DEM
according to the direction of flow accumulating from each grid cell to its
steepest down-slope neighbor. Next, data pertaining to parcels with
active septic systems was compiled by querying the “wastewater man-
agement methods” database for active septic systems. Subsequently, the
final data was processed to compute the identified leading indicators for
each OSTDS. For this purpose, distances from the center of each parcel
with an active OSTDS to the nearest relevant components, such as sewer
lines, basins, and potable water wells, were calculated. The resulting
data set is an n x m matrix which we denote by X, where x;; represent the
raw value of indicator j for system i, such thati € .7/, and j € .#, where
A" ={1,2,...n} is the set of active septic systems, and .2 = {1,2,...m} is
the set of indicators.

x5 = GL; —d — GWL™

2.3. Transformation

Since it is often challenging to quantify the absolute value of resil-
ience without any reference or benchmark (Schneiderbauer and Ehrlich,
2006), indicators are typically tailored to assess relative resilience.
Relative resilience measures help compare systems and analyze resil-
ience trends over time (Cutter et al., 2008). With this regard, we
developed a transformation methodology that standardizes raw
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Fig. 4. Transformation curves for several resilient-critical indicators.

indicator values relative to one another to inform and prioritize adap-
tation decisions. The resilience-critical indicators have positive and
negative polarities in the context of the respective system response ca-
pacities. In the case of positive polarities, larger values indicate higher
resilience. For example, as the VSD at a septic site increases, the system’s
ability to resist failures caused by inland flooding increases. On the other
hand, larger values imply lower resilience for indicators with negative
polarities, such as Base Flood Elevation (BFE), where septic systems
become more prone to failures resulting from surface flooding as the
base flood elevation increases. To account for these positive and nega-
tive relations, we employ sigmoid (eq. (2)) and inverse logistic (eq. (3))
transformation functions as given below:

) 1
()
) 1
— 3)

1
()

where x; denotes the raw value of indicator j for system i, fj1 is the
parameter to control the shape of the curve, and sz is the reference value
(e.g., 4 ft ( = 120 cm) for the VSD case). The resulting transformed
values range between O and 1, where a higher value implies a better
ability to respond, hence, a more significant contribution to resilience.
Fig. 3 shows the transformation curves for the VSD and the distance to
sewer lines as examples.

Reference values and thresholds (sz) signify the “operating vari-
ables” that reflect the conditions for safe operation of the system. In a
recent study, Pawar et al. (2022) employ a similar approach and map a
system’s operating variables to resilience indicators. In the context of
septic systems, the operating variables are determined based on the
recommendations dictated by the OSTDS design, siting, and manage-
ment manuals published by the U.S. Environmental Protection Agency
(EPA 625/1-80-012) and the Florida Administrative Code (rule chapter
64E-6: Standards for OSTDS). In this configuration, values slightly below
or almost equal to the minimum threshold (reference value) return a
transformed value of 0.5. For instance, the transformation produces a
value of 0.5 for a VSD of 4 ft ( ~ 120 cm). In the absence of regulated
feasible distances, such as distance to sewer lines and sewer overflow, a
min-max normalization is performed in the range of [0,1]. An example
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of such a case is the distance to sewer lines.

In addition to the minimum operating conditions, the shape pa-
rameters (fjl) in the transformation functions are tuned to account for
the relativity between the indicators. For instance, a septic system
located 100 ft ( &~ 30 m) from hydric soils is considered more resilient
than another system located at an equivalent distance from a potable
water wellhead, provided that all other indicators remain the same.
Although the system in the former case is close to hydric soils, it still
meets the required operating conditions as long as the soil underneath
the drain field is suitable for treatment, i.e., the distance to hydric soils is
greater than 0. However, for the latter case, the 100 ft distance from
potable water wellheads does not meet the minimum required feasible
distance, which is 200 ft ( ~ 60 m) in Florida. Consequently, the shape
parameters for the relevant indicators are selected in a way to satisfy the
following ordering:

F1>F6>F5ZF7ZF3>F9>F4, (4)

where;

T =/ {m (;;)] Vje.){2,3,10,12},Yie /" 5)
j

The resultant transformation functions are illustrated in Fig. 4. In
cases where relative transformations are irrelevant, such as in trans-
forming the VSD, where no other indicators are referenced to this
measure, the shape of the transformation function is adjusted to ensure
that the transformed value converges to 1 under a zero-risk condition.
This is achieved by accounting for the current and expected future sea
levels and the associated rise in the groundwater table.

According to the IPCC 6th Assessment Report, under the intermedi-
ate greenhouse gas emission scenarios, global sea levels are projected to
rise by 0.56 m + 0.2 (1.837 ft + 0.656) by 2100. In addition, according
to USGS and other studies that assess SLR-induced groundwater rise,
such as Knott et al. (2019), the projected mean groundwater rise relative
to sea-level rise is expected to be 31-35% depending on the distance
from the shoreline and other hydraulic characteristics. This means that
by 2100, under the worst-case scenario, the rise in the groundwater
table will be approximately 0.87 ft ( ~ 26 cm). Under this scenario,
systems with vertical separation distance nearly greater than or equal to
5 ft ( ~ 152 cm) are anticipated to function effectively by 2100, pro-
vided that all other conditions are ideal. Based on this inference, the
vertical separation distance transformation is adjusted to converge to 1
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between 5 and 6 ft ( ~ 152-182 cm), as demonstrated in Fig. 3.
2.4. The composite resilience function

We propose a logical aggregation strategy for the indicators founded
on failure analysis and systems engineering principles. Systems engi-
neering views systems as complex structures composed of connected
multiple elements and modules whose mutual dependencies influence
the resultant system reliability. Based on this rationale, we view a septic
system as an apparatus whose performance depends on the functionality
of multiple other systems or components represented by the leading
resilience indicators. These indicators are employed to aggregate a
system’s resistive capacity (RC), adaptive capacity (AC), and restorative
capacity (SC) into a baseline function to define its overall survivability
and, thus, resilience based on the hierarchical causal relationship
structure illustrated in Fig. 1. These causal relations help us establish a
system of axioms that provide the blueprint for the said aggregation. In
what follows, we detail these axioms:

Axiom 1. An OSTDS system is said to be highly resistive if it can resist
both surface and inland flooding. This occurs only if it maintains a high
VSD (i.e., large x), high distance to hydric soils (i.e., large x') and low
base-flood elevation (i.e., large x). If the system fails to achieve at least
one of these conditions, it fails to resist disruptions. Mathematically, the
system’s resistivity is calculated as the product of these factors as rep-
resented by the following equation:
RC; = Pr(x¥ V¥ vx)= Hx'

j=13

©

Axiom 2. A septic system is considered to be adaptive if, in the
event of failure, impacts can be contained and do not propagate to other
infrastructure systems such as drinking water and freshwater resources,
groundwater, and surface water. We let IP;;, IPj5, and IP;3 represent the
likelihood of impact propagation to groundwater, surface water, and
drinking water, respectively. Subsequently, the adaptive capacity of
septic tank i is abstracted by the following expression:

AC; =1—[IP;y NIPy N IP3) @
These Impact propagation components are derived based on the
following postulations:

Axiom 2.1. (Groundwater contamination). The likelihood of the septic
site impacting groundwater increases as partially treated wastewater
seeps into the groundwater resources. One major cause for this is the
percolation of partially treated waste through soil due to either prox-
imity to hydric soil or compromised VSD. As such, the likelihood of
groundwater contamination via soil (GWCs,y;s) is a function of x' and x’
and captured by the following equation:

GWCyiy = 1= Pr(x V) = 1— |;Hx':| ®

=13
Another condition causing groundwater contamination is the likeli-
hood of partially treated waste flowing through surface runoff to nearby
watersheds or injection wells, which are mapped by x;s and x;s. Conse-
quently, the following function can be used to assess the likelihood of
groundwater contamination via surface runoff (GWCynof):

GWCriungy = 1 —Pr(¥ AX) = LH (1 x')} (C)]

j=6,8

Subsequently, the impact propagation of septic tank i on ground-
water can be computed by the following equation:
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IP; = Pr(GWC;us A GWCrunog)
= 1- [(1 - GWC.\UU.\)(I - GWCRurmff)]
) (10)
= 1—|J[¥X|[1- H(lx')}
j=13 Jj=6.8
Axiom 2.2. (Surface Water contamination). The likelihood of the

septic site impacting the surface water (IP;2) increases if it gets closer to
surface water bodies. Distance to surface water bodies is assessed by the
indicators representing proximity to canals (x') and basins (x'). Hence,
the impact propagation of septic tank i on surface water can be framed
by the following equation:

Py =1-Pr(x¥vy)=1-][«

=57

(1)

Axiom 2.3. (Drinking Water contamination). The likelihood of the
septic site impacting the drinking water resources increases if it gets
closer to the water wellheads. Distance to drinking water resources is
assessed by the indicators representing proximity to public potable
water wells (x') and private potable water wells (x). In addition,
drinking water resources can be indirectly impacted by impact propa-
gation on groundwater. As such, indicators used in Axiom 2.1 are also
relevant here. Consequently, the impact propagation of septic tank i on
drinking water resources can be modeled by the following equation:

1- Hx/}

Jj=4.9

IP; = (IPy) |: 12)

Given IP;, IPj5, and IP;3, we can rewrite eq (7) and get the system’s
ability to adapt to disruptions as follows:

AC =[] (1-1Py)

=13

13

Axiom 3. A system is said to have a high restorative capacity if it has
the technical or the financial abilities to recover or both. The feasibility
of sewer extension decisions governs the technical abilities of systems to
transfer into a new state and thus recover. This is governed by the pump
station basin status, whether it is on moratorium or can accept new
connections. On the other hand, the financial ability of communities to
recover is guided by the median household income and economies of
sewer extensions. This relation can be mathematically abstracted as the
following:

SCi=Pr((¥ vX)anx)=1-(1-x xx))(1-x) 14)

Axiom 4. Finally, a system is said to be resilient if it has the ability
to resist failure and respond to disruptions. The system’s overall
response capacity is determined by its adaptive or restorative capacities
or both. Consequently, using equations (6), (13), and (14), we model the
overall resilience of a system using the following mathematical
expression:

R: = Pr(RC; A (AC; V SC)) = 1 — [(1 = RC))(1 —AC; x SC;)] (15)

Although this aggregated function is specific to septic systems under
study, the presented axioms and the resulting framework can be
generalized for applications of other infrastructure systems. An essential
requirement is the clear delineation of factors, their impact on the sys-
tem’s failure risk, and how these factors link together to shape the sys-
tem’s overall resilience. In what follows, we demonstrate our approach
with application to a real-life septic system network.

3. Case study

We present a case study concerning the septic systems in Miami-Dade
County (MDC) in Florida to demonstrate the application of the proposed
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Table 1
The leading indicators and transformed values (distances are given in feet
(meters)).

Leading Indicator Raw Value Ref. Value Transformed
Value

Vertical Separation 33(~=1) 2-4 (=~ 0.6
Distance (VSD) 0.6-1.2)

Dist to Hydric Soils 9484.74 (~ 75 (=~ 22) 1
(HydSoils) 2890)

Base Flood Elevation (BFE) 7 (= 2) 0 0.4

Dist to Surface Drainage 21.9(~6) 50-75 (~ 0.0369
(Dist_SD) 15-22)

Dist to Basins (Dist_Basin) 37251 (=~ 75-100 ( ~ 1

11354) 22-30)

Dist to Canals (Dist_Canal) 300.4 (=~ 91) 75 (=~ 22) 0.98

Dist to Injection Wells 82.9 (~ 25) 75-100 ( ~ 0.526
(Dist_Injw) 22-30)

Dist to Public Wells 10537 (~ 100-200 ( =~ 0.98
(Dist_ PubW) 3211) 30-60)

Dist to Private Wells 5657.22 (~ 75-100 ( ~ 0.98
(Dist_PrivW) 1724) 22-30)

Dist to Sewer Lines 66.78 (=~ 20) * 0.96
(Dist_Sewer)

Dist to Overflow 3939.2 (~ 0.8
(Dist_Overflow) 1200)

Median Household Income 97500 0.7

(Income)

DFA resilience assessment methodology. Septic systems are common-
place in Florida, where an estimated 2.6 million onsite sewage treatment
and disposal systems (OSTDS) serve 30% of the state’s residents and
visitors. These systems discharge over 426 million gallons of treated
effluent daily into the subsurface soil (Lusk et al., 2020). At the county
level, according to the Florida Water Management Inventory dataset for
parcel-level wastewater management methods, Miami-Dade County has
approximately 107,000 active septic systems. In a recent OSTDS
vulnerability assessment report, MDC officials reported that, out of these
107,000 septic systems, nearly 56% might be periodically compromised
during storms or wet years. With the rising sea levels within the next 25
years, the County expects this number to significantly increase to more
than 64% by 2040 (Elmir, 2018).

Using the proposed DFA model, we derive the resilience levels of the
107,526 septic sites located in MDC. The geographical distributions of
the sites and their computed resilience values are depicted in Fig. 5.
Considering the current sea levels and flood-risk zoning, our assessment
indicates that nearly 32% of the existing sites have a resilience index
below 0.5, indicating that at least one of the minimum operating re-
quirements is not met for these sites, and around 18% of them have a
resilience index less than 0.1. Geographically, Fig. 5 shows clusters of
low-moderate resilience sites located in the northern and southern re-
gions of the County. In addition to providing the overall system resil-
ience measures, the DFA framework offers the ability to assess the
resilience capacities at sub-aggregate levels, namely, resistive, adaptive,
and restorative capacities.

We examine three different septic systems selected from the case
study to further illustrate our methodology. These septic sites exemplify
three distinct operational and environmental settings and how they
impact a system’s overall resilience. The first case involves a septic site
with low resistive capacity yet high overall resilience. Whereas the
second case exemplifies a system with moderate response capacity (low
adaptive and high restorative capacities) and high overall resilience.
Lastly, we present a system with moderate resistive and response ca-
pacities, and overall moderate system resilience. Fig. 6 exhibits how the
overall resilience measures for these systems are broken down into their
building blocks, namely, the transformed leading indicators, these are:
vertical separation distance (VSD_Tr), distance to hydric (saturated)
soils (HydSoils_Tr), base flood elevation (BFE_Tr), distance to canals
(Dist_Canal_Tr), distance to surface drainage lines (Dist_SD_Tr),
distance to basins (Dist_Basin_Tr), distance to public potable water
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Table 2
Aggregating the transformed indicators into the
response capacities and Resilience.

Level Value
Resist (eq. (6)) 0.24
GWC_soils (eq. (8)) 0.39
GWC_Runoff (eq. (9)) 0.45
1P1 (eq. (10)) 0.66
IP2 (eq. (11)) 0.01
1P3 (eq. (12)) 0
Adapt (eq. (13)) 0.32
Recover (eq. (14)) 0.93
Resilience (eq. (15)) 0.47

well head (D_PubW_Tr), distance to private potable water well head
(D_Priv_Tr), distance to injection wells (Dist_Injw_Tr), distance to
the nearest sewer line (D_Sewer_Tr), distance to the nearest sewer
overflow point (D_Overflow_Tr), and median household income
(Income_Tr).

We use the site represented in Fig. 6¢ as an example to demonstrate
the computation process of the composite resilience index. As listed in
Table 1, we first identify the measured values of the leading indicators.
We normalize these values for the first nine indicators listed in the table
using the reference values and the transformation process discussed and
illustrated in Section 2.3. Since there are no exogenous reference values
for the remaining four indicators, median values are used in obtaining
the transformed values in these cases. These transformed values are then
plugged into the aggregation functions as detailed in Section 2.4 and the
components of the resilience index are obtained as presented in Table 2.
Finally, using (15), we compute the resilience index value of 0.48 for this
site.

In the first case (Fig. 6a), the base flood elevation is very low (nearly
zero), implying a higher likelihood of surface flooding and, therefore, a
low ability to resist disruptions. Despite that, since all the other
resilience-critical indicators representing the site’s response capacity are
reasonably high, the system maintains a relatively high resilience level
of 0.79. The intuition is that no impacts are anticipated to propagate
from this site since the system is not proximal to any drinking water
resources or surface water bodies. Moreover, no groundwater contami-
nation is expected due to the relatively large vertical separation distance
and unsaturated soil conditions. In the second case (Fig. 6b), a system
with low adaptive capacity but high resistive and recovery abilities can
still achieve a high overall resilience measure of 0.86. For this system,
although impact propagation is a potential risk in the event of failure,
the system’s high resistivity substantially diminishes the possibility of
failure, resulting in a high degree of resilience. In other words, the
former capacity is compensated by the latter. Finally, in the third case
(Fig. 6¢), as expected, the system has a moderate degree of resilience due
to its moderate abilities to both resist and respond to disruptions.

These examples demonstrate the effectiveness of the proposed DFA
aggregation strategy in aligning with the widely accepted definition of
resilience, which accounts not only for risk and vulnerability but also for
the system’s ability to respond to disruptions through modeling its
resistive, adaptive, and restorative capacities. The proposed aggregation
method also incorporates the compensatory relationships between the
system capacities in the sense that it is possible to observe cases in which
a system with low resistance (resp. respond) capacity but high response
(resp. resistance) capacity maintains a moderate-to-high resilience level.

A bivariate statistical analysis is performed to generalize the obser-
vations made in the aforementioned example and the relationship be-
tween the measured resilience index and the response capacities across
all sites. The DFA model output was smoothed using kernel density
estimation, as illustrated in Fig. 7, to handle the large dataset and pro-
vide a more informative visualization. The analysis indicates that both
the resistive and adaptive capacities have a strong positive relationship
with the resilience index. The relationship between the restorative
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Fig. 7. The relation between resilience and the system’s three response capacities.

capacity and overall resilience is more ambiguous. For systems with very
poor resistive capacity (less than 0.2), resilience is observed to be strictly
low (less than 0.2). Whereas systems with low adaptive capacity (less
than 0.2) could possess moderate or high overall resilience. On the
contrary, for high resistive and high adaptive capacities, the system’s
resilience is usually high (greater than 0.8) or moderately high (greater
than 0.6), respectively. The computed restorative capacities are gener-
ally moderate-to-high (greater than 0.5), with larger values corre-
sponding to slightly higher resilience measures. These observations
reflect the compensatory relations between the indicators established by
the axioms of the proposed DFA approach.

4. DFA approach vs statistical-driven methods

As detailed in Section 2 and illustrated by the case study in Section 3,
the proposed DFA models system resilience as a multidimensional index
that explicitly reflects compensability between the associated indicators.
To provide a more cogent analysis of the proposed method, we compare
the proposed methodology against other statistically-driven models
adopted in the context of composite indicators building. The main goal
of this discussion is to identify the similarities and gaps between the
DFA-based resilience metric and the latter group of models. We aim to
derive insights from such a comparison concerning the connotation of
resilience implied by different assessment methods. Two statistical
models that differ in their weighting strategy are selected for the anal-
ysis. The first model is the Partial-Least Squares - Path Model (PLS-PM)
for latent variables, which can be viewed as an extension of factor
analysis and path analysis. The second model uses Principal Component
Analysis (PCA) to derive weights and compute the aggregate scores.

4.1. Partial-least squares path model (PLS-PM)

The variance-based Partial-Least Squares Path Model (PLS-PM) fits a
composite model to given data by maximizing the amount of variance
explained. Thus, it enables the estimation of complex cause-effect re-
lationships in path models with latent variable(s) that directly or indi-
rectly causes, or is caused by, a group of measured indicators. In this
sense, PLS-PM quantifies the hypothesized relations among a hierarchy
of manifest (measured) and latent variable(s) using a system of multiple
interconnected linear regressions (Sanchez, 2013). Consequently, the
model estimates factor loadings representing the correlation between
the latent variable(s) and the underlying manifest variables. As such, it
provides a measure of the adequacy and significance of the latter in
reflecting the latent construct(s) (Kline, 2015). Although the PLS-PM is
widely addressed in management, marketing, and psychology (Latan
et al., 2017), it has recently been utilized to construct composite in-
dicators, such as in Cataldo et al. (2017), Lauro et al. (2018), and
Tomaselli et al. (2021).
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Table 3

The Measurement Model Loadings.
Measured Indicator Latent Construct Loadings
Vertical Separation Distance Resist 0.41
Distance to hydric Soils 0.25
Base-flood Elevation 0.33
Distance to surface Drainage 1P1 0.06
Distance to injection Wells 0.16
GW Cont = f(VSD, Soils) 0.70
Distance to basins P2 0.58
Distance to canals 0.42
Distance to public wells 1P3 0.09
Distance to Private Wells 0.15
GW Cont = f(VSD, Soils) 0.76
Distance to sewer lines Recover 0.36
Distance to sewer overflow 0.35
Median Income 0.29

The PLS-PM tests the theoretically hypothesized causal relationships
by developing two sub-models: the measurement model and the struc-
tural model. While the measurement model captures the relations be-
tween each latent variable and its corresponding measured variables,
the structural model formulates the relations among the latent variables.
In the context of the axiomatic framework introduced in Section 2.4, the
measurement model specifies the relation between the leading resilience
indicators and their corresponding latent variables representing the
system’s response capacities. Because these measurable indicators are
perceived as the cause for the latent constructs, formative relations are
considered in this analysis. In this case, the latent variables are defined
as a linear combination of their corresponding measurable variables.
This measurement model is expressed mathematically as follows:
£, = :;(upqx,,q +6, YgeQ (16)
where & is the score of the latent variable (q), x,q are the values for the
variables measuring the construct g, w4 are the coefficients linking each
measured variable p to the corresponding latent variable g, and & is the
error term representing the fraction of the corresponding latent variable
g not accounted by the considered measured variables P. The structural
model among the latent variables, on the other hand, is expressed as
follows:

& =P+ D Pubi+?

q<Q

a7

where &jis the generic latent variable, e.g. resilience, fy; is the generic
path coefficient interrelating the latent variable q to the generic latent
variable j, and ¢; is the error term for latent variable j.

We note that an additional intermediate model is needed in our
context to map the adaptive capacity constructing blocks, namely IP;,
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Table 4
The Structural Model Metrics.
Metric Latent Endogenous Variable Value
R? Coefficient of Determination Adapt 0.96
Resilience 0.98
Redundancy Adapt 0.58
Resilience 0.66
Goodness of Fit Index (GOF) 0.66
Table 5
The Structural Model Path Coefficients.
2nd Order 1st Order Latent Path Significance
Latent Coefficient
Adapt IP1 (Cont. Groundwater 0.24 xRk
Resources)
IP2 (Cont. Surface water 0.31 ok
resources)
1P3 (Cont. Drinking Water 0.45 il
Resources)
Resilience Resist 0.30
Adapt 0.36
Recover 0.34 ok

IP,, and IP3 as defined in Axiom 2. In that respect, our setting exploits a
higher-order PLS-PM model where the parameters are estimated using a
two-step approach. In the first step, the first-order latent variables’
scores are computed using Principal Component Analysis (PCA). Sub-
sequently, in the second step, the PLS-PM analysis is performed using the
computed scores as indicators for the 2nd order constructs, which are
adaptive capacity and resilience.

The results for the measurement model are summarized in Table 3. In
general, for models assuming formative relations, the loadings of in-
dicators are investigated to determine their absolute contribution to the
latent construct. As highlighted in the table, the PLS-PM model identifies
the vertical separation distance, the groundwater contamination, and
the distance to sewer lines as the primal contributors in shaping the
system’s resistive, adaptive and restorative capacities, respectively.
Since the compromised vertical separation distance is a primal cause of
groundwater contamination, the results indicate that the vertical sepa-
ration distance is pivotal in shaping not only the resistive capacities of
the systems but also their adaptive capacities. In this sense, the model’s
conclusions support the underlying causal theory employed by the
proposed DFA approach.

The structural model is applied by analyzing the determination co-
efficients R? and the redundancy index. In addition, path coefficients’
significance level (t-test) and magnitude are also assessed. Results are
summarized in Table 4. In this case, endogenous latent variables
represent adaptive capacity as defined in (13) and resilience as defined
in (15). While the former is shaped by the three impact propagation
latent constructs, namely, IPy, IP,, and IP3, the latter is determined by
the latent resistive, adaptive, and restorative constructs. R? values of
0.96 and 0.98 for the adaptive and resilience constructs evince the sig-
nificance of the proposed hierarchical structure in mapping the
resilience-critical indicators to the system’s response capacities and
overall resilience.

The Redundancy Index measures the performance of predicting the
structural model given the measurement model. As shown in Table 4,
redundancies of 0.58 and 0.66 are obtained for the adaptive capacity
and resilience, respectively. These results imply that the resilience
construct’s adaptive, resistive, and restorative capacities can predict
66% of variability within the resilience indicators. According to
research, these values indicate a satisfactory level of explanation in the
context of the PLS-PM model (Sanchez, 2013).

Path Coefficients capture the causal relations between variables,
specifically the direct effect of a variable in causing another variable. In
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Table 6
Results of the Principal Component Analysis.

PCA- Proxies (Latent Indicators Loadings %

Stage Vars) Variance

Stage 1 Resist Base-Flood Elev. 0.31 91.99%
Vertical Sep. Dist. 0.31
Dist. to Hydric Soils 0.37

Adapt GW Cont = f(VSD, 0.11 94.34%
Soils)
Dist. to Injection 0.16
Wells
Dist. to Watersheds 0.07
Dist. to Canals 0.16
Dist. to Basins 0.16
Dist. to Public Wells 0.17
Dist. to Private Wells 0.17
Recover Dist. to Sewer Lines 0.34 87.6%

Dist. to Sewer 0.31
Overflows
Median Income 0.35

Stage 2 Resilience Resist 0.30 98.6%
Adapt 0.51
Recover 0.19

the context of the structural model, these variables are the latent con-
structs of their underlying latent or manifest variables. Path coefficients
produced by the PLS-PM approach are presented in Table 5. These re-
sults indicate that despite their significance, the path coefficients do not
seem to be entirely compatible with the premise of the proposed DFA
approach, particularly the relations posited in equations (13) and (15).
The results imply that impact propagation to drinking water resources
has the highest path coefficient and, therefore, the highest influence in
shaping the system’s ability to adapt, followed by surface water and
groundwater contamination according to the PLS-PM approach. How-
ever, as previously discussed in Axiom 4, impacts can’t propagate to the
potable water wells prior to contaminating the groundwater or fresh-
water resources first. Axioms of the DFA approach explicitly establish
this relation resulting in high criticality in its context. In addition, all
system response capacities are nearly equally important in shaping
resilience, with slightly higher path coefficient values corresponding to
the adaptive and recovery abilities. These findings contradict the orig-
inal theory under which the resistive and adaptive capacities are ex-
pected to have a higher effect than the ability to recover, as implied by
Axiom 4 and the results presented in Fig. 7.

The results of the PLS-PM indicate that although the fitness metrics
obtained by this approach are statistically acceptable, the extent of the
individual indicators’ impact on the system response capacities and
overall resilience does not entirely align with the proposed DFA
approach. As expected, this gap emerges due to the differences in the
formative and deductive views of the PLS-PM and DFA approaches.
Before discussing the intuitions behind these observations in detail, we
first examine the application of the Principal Component Analysis
(PCA).

4.2. Principal component analysis (PCA)

The effectiveness of PCA in mapping high-dimensional data to fewer
proxies has made this approach and its extensions, such as the spatially
dependent PCA (Saib et al., 2015), an appealing tool to construct com-
posite indicators (OECD, 2008; Li et al., 2012; Kotzee and Reyers, 2016).
PCA is primarily utilized to identify how different variables are associ-
ated. This is achieved by transforming the originally correlated variables
into a new set of uncorrelated variables, known as Principal Components
(PCs). The latter variables are calculated by combining their respective
indicators using optimized weights, ensuring that the retained principal
components (PCs) capture the maximum variance in the data. The
evaluation of these results typically involves assessing the proportion of
variance captured within the data and examining the loadings between
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Fig. 8. Comparing Resilience Index across the DFA, PLS-PM and PCA models.

the original variables and the retained PCs.

Following the methodology adopted in constructing the Environ-
mental Sustainability Index (Li et al., 2012, we employ a PCA-based
framework for constructing the resilience composite for the OSDS case
study. In this approach, similar to the DFA model, the leading indicators
are grouped according to the hypothesized relations depicted in Fig. 1.
The analysis is performed in two stages. In the first stage, the first set of
PCs, each representing a respective system response capacity, and their
factor loadings are computed. These PC scores are then used to compute
the loading and the final PC score for the overall system resilience in the
second stage.

The PCA results for the case study are summarized in Table 6. The
results indicate that all the retained principal components representing
resilience and the underlying system response capacities capture most of
the variance within the data. In the first aggregation stage, we observe
that indicators projecting the respective system response capacities are
weighed almost equally, with a few exceptions. For the resistive ca-
pacity, the weight of distance to hydric soils, represented by the load-
ings, is slightly higher than the BFE and the VSD. Whereas for the
adaptive capacity, the contribution of the distance to watersheds and
groundwater contamination is considerably lower than other indicators.
These results are not entirely aligned with the findings of the PLS-PM
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and the proposed DFA approaches. While both adaptive and resistive
capacities strongly influence resilience in the second stage analysis, the
approaches disagree on the primary contributor to resilience. DFA em-
phasizes the resistive capacity, while the PCA-based approach highlights
the adaptive capacity. In that respoect, the latter approach aligns more
with the statistically-driven PLS-PM.

4.3. Comparative analysis

For the most part, the gaps between the DFA approach and the
statistically-driven methods such as PLS-PM and PCA can be explained
by the fact that the latter methods rely on correlations among variables
for calculating the factor loadings and hence, the factor scores. Such
reliance can be a consequential limitation since these implicitly assumed
correlations do not necessarily represent the sub-indicators’ actual in-
fluence on the phenomenon being assessed (Nardo et al., 2005), espe-
cially when formative relationships are considered. As such, when the
indicators are aggregated to form the composite index, they fail to
accurately reflect the underlying phenomenon.

We analyze and contrast how each index converts the site-related
conditions into a measure of resilience using three different examples
taken from the case study in order to further develop and explain this



L. Amer et al.

Process Safety and Environmental Protection 177 (2023) 1085-1102

. Proportion of systems with Resilience I

5 <= 0.5: 29.96% H

I

4 i

2 1

g 3 '

1

4 2 i

1

1

1 1

O I
0.0 0.2 04 0.6 0.8 1.0

Resilience_DFA

o Proportion of systems with Resilience i

5 <= 0.5:20.15% :

I

1

4 1

2 1

23 i

3 1

2 i

1 i

]

0 I
0.0 0.2 04 0.6 0.8 1.0

Resilience_PLSPM

- Proportion of systems with Resilience :

5 <=0.5:0.02% '

i

4 i

g :

g3 i

I

4 2 i

1

1 i

]

o 1
0.0 0.2 04 0.6 0.8 1.0

Resilience_PCA

Fig. 9. Distribution of the Resilience Index computed by the proposed DFA approach, the PLS-PM, and the PCA-based model.

result. These comparisons are summarized in Fig. 8. The selected in-
stances possess varying levels of resilience, namely, low, moderate, and
high. For the system with high resilience (Sys03), the three models yield
consistent resilience values with varying estimates for the system ca-
pacities. However, unlike the PLS-PM (Fig. 8c) and the PCA-based
models (Fig. 8d), the proposed DFA approach results in a relatively
low adaptive capacity (Fig. 8b) due to the likelihood of impact propa-
gation to surface waters in the event of system failure. This relationship
is not captured fully by the statistically-driven methods. For the system
with moderate resilience (Sys02), both the resistive and adaptive ca-
pacities are low-to-moderate with high ability to recover, resulting in an
overall moderate system resilience of 0.48 according to the proposed
DFA model. These results do not align with the other two models, where
the PLSPM and the PCA result in considerably high resilience of 0.7 and
0.78, respectively. Similarly, for the low resilience system (Sys01), the
two statistically-driven models result in moderate-to-high resilience
levels despite the system’s low resistive, adaptive, and recovery capac-
ities. The DFA approach, however, identifies this system’s resilience to
be considerably low. The differences in the obtained resilience measures
can be explained by the lower weights assigned to resistivity and the
linear aggregation adopted in the former approaches.
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To capture the factors leading to the observed gaps in resilience
measures, we generate the distributions of the resilience indices ob-
tained by the three approaches across the entire dataset of 107,000
septic systems, as depicted in Fig. 9. It can be observed from the graph
that the statistically-driven methods tend to produce moderate-to-high
resilience values, with the PCA-based model yielding considerably
higher values. The DFA measures, on the other hand, extend across the
entire range in [0,1]. Notably, in terms of resilience, septic sites tend to
cluster around low (below 0.20) and high (above 0.8) values with a
nearly uniform distribution in between.

The findings highlight that the three models can yield varying levels
of resilience. The approaches that rely on linear aggregation and
statistically-computed weights may lead to an over-reduction of
dimensionality, which can obscure the adequate representation of an
indicator’s importance and result in measures with “truncated domain”
as illustrated in Fig. 9. In this regard, we conclude that the proposed DFA
approach can be utilized to address the above-mentioned challenges and
develop a composite index that; (i) aptly accounts for compensatory
relations between indicators, (ii) is not prone to statistical homogeneity
of data, (iii) accounts for indicators’ relative importance and thus,
eliminates the need for weights, and most importantly, (iv) maps the
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system capacities to resilience consistently and accurately. Hence, is
able to capture systems with very poor resilience (below 0.5) that need
to be prioritized for adaptations.

To sum up, we reiterate that all three approaches employed in our
analysis consistently agree on the significance of the selected indicators.
However, they differ considerably in measuring the extent of these in-
dicators’ impact on the overall resilience of a system. While the first
conclusion is relevant and essential, the second is especially critical in
decision-making pertaining to resilience improvement and adaptation.
Clearly, effective adaptation decisions cannot be made without correctly
incorporating their impact on the objectives or criteria related to resil-
ience. In the next section, we introduce a general framework to
demonstrate how DFA-based metrics can actuate decision-making
models in the context of adaptation for resilience.

5. Resilience-based decision making

While building consistent and effective metrics for resilience is a
critical stage, the loop in resilience enhancement cannot be closed until
these metrics are utilized to build decision models that result in effective
adaptation solutions. Previous work due to Weiss et al. (2008), Moli-
nos-Senante et al. (2012), and Abdalla et al. (2021) refer to four main
strategies for adapting a septic systems to rising sea levels: (i) aban-
doning the existing system and connecting the site to the sewer network,
(ii) considering a mound septic system by elevating the drain field, (iii)
considering a non-conventional advanced treatment system, and (iv)
abandoning the existing system and connecting the site to a micro (or
community) sewer network with a decentralized treatment facility (also
known as package plant). Each of these strategies is subject to con-
straints that set the limits for feasible solutions. For instance, according
to the septic design and siting manual, a mound system cannot be
installed if the vertical separation distance is less than 1 ft ( &~ 30 cm).
Also, connection to the sewer network cannot be considered when the
pump station basin to which the site belongs is in moratorium condition.
Moreover, financial limitations pose additional constraints when mak-
ing adaptation decisions. Moreover, the decision-making framework
should determine not only the “optimal” actions but also the sequence in
which these actions should be implemented. This sequence can be
influenced by a variety of factors, such as the resilience of the site,
financial limitations, and equity.

The baseline function for resilience given in (15) can be incorporated
into a decision model in several ways. It can be used to form the model’s
objective function, where maximization of resilience bears on the goal of
the decision-making. In this context, it can also serve as one of the ob-
jectives under a multi-objective decision-making setting. Alternatively,
it can be incorporated into the set of constraints to establish lower
bounds on resilience under various objectives (e.g., cost minimization,
equity maximization, etc.). The resilience function influences decision-
making by responding to changes in the adaptation decision variables.
For example, if the sewer extension solution is adopted, most of the
resilience-critical indicators initially identified for shaping the septic
system’s resilience no longer constitute a threat to the functionality of
the sewage collection and disposal from the site. These include distance
to saturated soil, proximity to drinking water wells, and proximity to the
sewer lines, given that a site is already connected. Moreover, after
merging the OSTDS with the sewer system, the significance of vertical
separation distance measure changes in that it now reflects the clearance
between the buried components of the infrastructure, such as pipes, and
the groundwater level. On the other hand, proximity to sewer overflow
points may become a significant indicator as the site may coincide with a
stressed section of the sewer network, making it less resistant to future
stresses. Consequently, the resilience function must be updated to reflect
the system’s response under alternative adaptation options.

To set up the mathematical model, we let L denote the set of all
possible adaptation actions, and [ € L represents a particular action in
this set, where I = 0 corresponds to “Do nothing.” We let R; denote the
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resilience function for site i under adaptation action l. For example, if we
let I = 1 indicate the sewer line connection option, the resilience func-
tion under this option will be:

Ri1—1—|:<1—Hx/><l— x’>:| Vi=1
f=xp) =351

Similarly, if we let | = 2 represent the option of elevating the drain
field (i.e., mounding the septic system), the resilience function under
this option can be rewritten as

18)

Ry =1—[1—RC)1—AC; x SC))] VI=2 19)
where, both; AC; and SC; follow equations (13) and (14), whereas RC' is

updated using the new vertical separation distance, xj;, expressed by:

Xjy =X + i (20)
where y; is the drain field mounding height for septic site i.

Consequently, we can develop a general adaptation decision-making
framework by integrating the estimated current resilience levels and the
proposed post-adaptation resilience relations. A sample framework,
where resilience is incorporated as a constraint, is given by the following
generic integer programming formulation:

MinZ ZZC”}’” 21)
ieN leL

> R > b VieN (22)

leL

dra=1 VieN (23)

leL

va€[0,1] VieN,leL @4

In this generic formulation, N is the set of septic sites, c; is the cost of
adopting adaptation strategy [ for septic site i, and y; is the binary var-
iable that indicates whether a strategy is selected (y; = 1) or not (y; = 0).
The overall objective of the model is to minimize the total investment in
adaptation under a constraint set that stipulates a minimum preset level
of resilience for site i denoted by b; (22). Constraint (23) ensures that
exactly one adaptation strategy is selected for each site, including the
do-nothing option.

The generic formulation presented here is for illustrative purposes. A
more comprehensive and context-specific version would include addi-
tional operational, technological, and socio-ethical constraints, along
with associated decision variables. Our aim is to demonstrate the inte-
gration of the proposed composite resilience measure into decision-
making and suggest potential research directions for adaptation
decision-making while explicitly considering resilience. The resilience
function can be incorporated into the decision model in different ways,
depending on the context. For example, it can be reconfigured to
maximize resilience within budget constraints. In a broader context, the
model can be customized for goal programming and multi-objective
optimization, considering multiple stakeholders’ perspectives. This al-
lows the decision model to provide a range of non-dominated solutions,
enabling decision-makers to evaluate alternative plans that meet various
goals and stakeholder perspectives.

In real-world applications, adaptation actions are often conducted in
multiple stages and periods to address budget constraints and changing
environmental conditions over time, such as sea level rise projections.
The proposed modeling framework can be tailored to accommodate
such settings by adopting multi-stage, multi-period structures. Incor-
porating stochastic programming and robust optimization techniques
can capture the dynamic and uncertain nature of climate change-related
parameters. Integrating the proposed resilience measure into decision-
making frameworks opens avenues for future research in developing
large-scale mathematical programming models for regional adaptation
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Fig. Al. CLD illustrating the mapping between OSTD system failure modes and the potential root causes.

problems. These models can address diverse objectives, constraints, and
decision variables across time, space, and domain.

It is important to highlight that the DFA-based methodology pro-
posed in this paper does not aim to completely replace traditional
models such as simulations and table exercises with stakeholders.
Simulation remains a valuable tool for assessing the robustness of so-
lutions derived from index-based mathematical models and for refining
the transformation functions. Additionally, the analytical structure
outlined in Section 2 can be incorporated into table exercises to quantify
indicators and reduce subjectivity in mapping indicators to the proposed
resilience index. Thus, our proposed methodology is complementary to
these approaches and can be utilized to enhance their efficacy.

6. Conclusions

Extreme stresses caused by climate change, such as the rising seas,
are growing more severe, threatening different aspects of society
including the infrastructure systems. To meet the gravest threats, plan-
ners and communities have been devising solutions to climate adapta-
tion by enhancing systems’ resilience. The effectiveness of the
adaptation decision framework depends on how well it models resilience
and incorporates it into a holistic decision-making process. Although
there has been growing literature on integrating resilience into adap-
tation policy-making, several challenges are yet to be addressed. First,
developing a multidimensional resilience index that reflects the signif-
icance of the underlying resilience-critical indicators consistently and
accurately with the proper scope is challenging. Second, the failure to
capture the relationship between resilience and adaptation and
adequately integrate it into decision-making might lead to maladaptive
outcomes.

To tackle these challenges, in this paper, we propose a framework for
a composite resilience metric that can be incorporated into adaptation
decision-making. In our approach, we follow the general principles of
risk engineering that include hazard identification, risk analysis, risk
evaluation and risk treatment. In the context of the on-site wastewater
treatment and disposal systems (OSTDS), we first identify the hazards
for these systems caused by the rising sea levels. We then develop a
framework that employs a deductive (formative) construct based on the
conditions essential for systems’ survival during and after disruptions.
The proposed deductive fault analysis (DFA) framework is founded on a
set of axioms that map the individual resilience leading measures into a
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multidimensional composite resilience index. These axioms address
compensatory and non-compensatory relations between indicators.
Moreover, they do not require the assumption of statistical homogeneity
of data and do not resort to weights to map the system capacities to
resilience. We contextualize the proposed approach using a case study
based on the on-site wastewater treatment and disposal systems
(OSTDS) located in Miami-Dade County in Florida.

Using the case study, we compare and contrast the proposed DFA
with two statistically-driven models: the Partial-Least Squares Path
Model (PLS-PM) and the Principal Component Analysis (PCA). Although
all three approaches are primarily in accord with each other concerning
the significance of the selected indicators, we observe that they differ
considerably in measuring the extent of these indicators’ impact on the
overall resilience of a system. On one hand, the reliance of the
statistically-driven models on the statistical homogeneity of the data and
correlations among the indicators to inform weights limit their extent
and spread. On the other hand, the DFA approach provides higher de-
grees of freedom and does not synthesize any correlations across the
data set. Moreover, the latitude of incorporating compensatory relations
in this approach provides an additional advantage to establishing more
accurate mapping across indicators.

Although the proposed approach is demonstrated in the context of
OSTDS, it can be generalized to other infrastructure systems subject to
varying risks. An essential precondition is a clear understanding of the
system, its various failure modes, and operating requirements. Such
knowledge will help establish the premise on which the resilience-
critical indicators are identified and the potential causality relations
between the indicators and resilience. As a limitation, this methodology
could become intricate with extensively complex systems. Under such
settings, more aggregation layers may be needed to capture the complex
structure, resulting in tractability challenges.

The proposed metric integrates system characteristics, environ-
mental factors, and social factors to assess the system’s resilience in
resisting, adapting to, and recovering from disruptions. As a multi-
dimensional measure, our resilience index can be a practical tool for
decision-making, as it maps the relationships between adaptation de-
cisions and the factors that contribute to resilience. Our transformation
and modeling approaches address the challenge of incorporating resil-
ience into quantitative and systematic decision-making processes. For
future work, we intend to utilize our framework to develop compre-
hensive decision-making models and solution algorithms. These models
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will consider a multi-period planning horizon and account for uncer-
tainty in sea-level projections while maintaining a focus on the OSTDS.
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Appendix A. Causal Loorp Diagram (CLD) for The Exploratory
Analysis

Figure Al depicts the CLD utilized in our deductive fault analysis.
The arrows in the diagram denote the direction of influence and + /
— signs indicate whether the influence is upward or downward respec-
tively. The deduced key root causes are identified and highlighted in red.
These root causes serve as the basis for deriving leading indicators,
which are utilized in the development of the proposed resilience index.
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