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A B S T R A C T   

The impact of climate change and the dynamic nature of environmental conditions underscore the critical need 
to enhance resilience of systems and process safety considerations. The efficacy of such efforts primarily depends 
on how resilience is measured. Among the myriad efforts to quantify resilience, composite indicators have 
emerged as promising tools. However, these indicators typically employ statistical methods to derive weights for 
aggregation and rely on statistical homogeneity among indicators which can limit their scope and fidelity. In this 
study, we propose an alternative novel resilience index derived from a system’s structure and the essential 
conditions for safe operation during and after disruptions. The proposed measure reflects the systems’ ability to 
resist and respond to failures by addressing possibilities of impact propagation to other infrastructure systems. 
Moreover, it eliminates the need for weights and allows for compensability among its leading indicators. Using a 
case study based on the on-site wastewater treatment and disposal systems (OSTDS) in South Florida that faces 
increasing risks due to rising sea levels, we investigate the validity of the proposed index and perform a 
comparative analysis with statistically-driven measures. Furthermore, we demonstrate the adaptation of the 
proposed index for decision making within a generalized optimization framework.   

1. Introduction and Background 

The exacerbating risks due to climate change have increased interest 
in integrating resilience into adapting urban and rural infrastructure 
systems. These systems typically consist of critical utilities that fulfill the 
communities’ basic needs by providing vital services such as supplying 
food, water, and energy, managing waste, and enabling mobility. Since 
such systems are usually highly complex and interconnected, their 
disruption may result in debilitating and cascading ramifications that 
extend over larger areas (Huang and Ling, 2018). To effectively adapt to 
and safely operate under the adverse effects of climate change, consid
erable attention has been given to enhancing the resilience of those 
infrastructure systems. This has proven to be a nontrivial goal that 
cannot be achieved without understanding how resilience can be 
assessed and measured. 

Resilience measures can be instrumental in setting thresholds and 
priorities for adaptation decisions. They guide assessing and monitoring 
the resilience of systems across time and space, thus, helping commu
nities make adaptation decisions at the right time and with proper scope. 
In this regard, their integration into decision-making can be direct and 

indirect. Indirectly, they can help evaluate and validate adaptation so
lutions. They are particularly beneficial for running “what-if” analyses 
to explore and analyze decisions under multiple future climate sce
narios. Thus, they guide evaluating potential future impacts, identifying 
risks and opportunities to enhance systems’ resilience, and determining 
the best courses of action (Molinos-Senante et al., 2012). In a more 
comprehensive and practical approach, resilience metrics can be 
directly incorporated into decision models as variables. Through 
assessing potential resilience gains or losses as a result of a set of actions, 
these variables can be utilized to form “resilience functions” that can 
serve as objectives or constraints under a structured decision-making 
model. 

The identification of relevant resilience indicators for a given risk is 
the first critical step in measuring resilience. Basically, an indicator is a 
quantitative or a qualitative measure derived from a series of observed 
facts that can reveal the status of a system in a given instance. When 
evaluated at regular intervals, an indicator can point out the direction of 
change across different units and through time. In the context of resil
ience assessment, resilience indicators are specific and measurable 
characteristics or properties of a system that can be used to indicate its 
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level of resilience. The second critical step in this process is to compile 
the resilience indicators identified in the previous step into a single 
composite indicator, which is referred to as the resilience index. For 
complex infrastructure systems, resilience embodies multi-dimensional 
facets that might be driven by varying perspectives of diverse stake
holders, which can be subjective and compounded. Integrating resil
ience indicators that represent these multiple perspectives and factors 
into a multi-dimensional resilience index has been proposed as an 
effective approach (Beccari, 2016). 

The construction of composite indices poses various challenges that 
affect their validity, including the selection of underlying factors, their 
measurement, and the operations used to combine them (National 
Research Council, 2012). Typically, building a composite index follows 
a systematic process, including identifying the underlying resilience 
indicators, scaling them, allocating weights, and aggregating them into a 
single index. The quality and functionality of the composite index 
depend on the combination of weighting and aggregation schemes. 
Usually, weights are determined by statistical methods which rely on 
statistical homogeneity and correlations among indicators. Such ap
proaches can be limiting in capturing the indicators’ actual contribution 
to the composite index representing the phenomenon under study 
(Nardo et al., 2005). More importantly, the absence of a proper under
lying theory can result in misleading conclusions (OECD, 2008). 

With this understanding, we propose a novel resilience index that is: 
i) derived from leading indicators that are precursors of systems’ sur
vivability and safe operation post disruptions, ii) designed to fuse these 
indicators into a multidimensional composite index, and iii) tailored to 
support a mathematical functional form that can be employed to 
construct objectives and constraints in decision-making models. In 
contrast to the traditional approaches that utilize lagging indicators to 
characterize the so-called resilience trapezoid ex-post, we propose a 
resilience index that integrates leading resilience indicators. These in
dicators can predict potential system failure modes (or survival) ex-ante, 
based on the system structure and its relationship with the surroundings, 
therefore integrating the fault-tolerance dimension of resilience (Azadeh 
et al., 2014). The primary motivation of this alternative approach is to 
detect early signals of systems’ failure and thus guide making the right 
actions for adaptation. 

Accordingly, we identify a set of system-related indicators critical to 
shaping its resilience and develop a set of axioms to establish the re
lationships among these indicators using a deductive fault analysis 
(DFA) approach. These axioms are designed to depict the logical 
sequence of events that enable systems to survive and operate safely, 
incorporating both operational and environmental failures into a resil
ience index. In light of the conceptualization of resilience in seminal 
works by Holling (1973), Gunderson et al. (1995), and Hollnagel et al. 
(2006), we adopt the resilience definition that encompasses a system’s 
ability to resist disruption, maintain operations during disruption, and 
recover to full operational capacity after disruption. This definition has 
also been adopted by several researchers in recent years (Shandiz et al., 
2020; Yarveisy et al., 2020; Pawar et al., 2022), particularly in the fields 
of process safety and environmental protection. Under this view, we 
propose a resilience index that can capture the system’s ability to 
operate safely and, at the same time, limit the negative environmental 
impacts of its processes. We design and propose mechanisms for trans
forming the identified leading indicators to a normalized scale based on 
preset indicator-specific thresholds and reference points that indicate 
conditions for safe system operations. By employing the axioms, we 
devise an aggregation methodology that does not rely on statistical or 
participatory techniques. This novel approach allows us to assess the 
criticality of indicators from the outset, eliminating the need for sub
jective weighting and the associated subjectivity. 

We demonstrate the performance of our proposed approach in the 
context of the on-site wastewater treatment and disposal systems (OSTDS) 
using a real-life case study from South Florida that faces increasing 
operational and environmental risks due to rising sea levels. The 

contributions of the study presented in this paper include i) a novel 
composite aggregation approach designed for resilience-leading in
dicators using a deductive fault analysis framework, ii) a novel trans
formation method that accounts for minimum operating requirements 
for each indicator and the relative importance between the indicators, 
iii) a comparative analysis using statistical models that demonstrates the 
practicality of the proposed fault-driven approach for measuring resil
ience, and iv) a framework that integrates the proposed resilience index 
into adaptation decision-making is introduced. Moreover, to the best of 
our knowledge, this study is the first to provide a method that quanti
tatively assesses the resilience of OSTDS in the context of sea-level rise. 
Next, we provide a brief review of the relevant literature, before we 
discuss the details of the proposed approach. 

1.1. Resilience indicators 

Various taxonomies are introduced in the literature to review and 
classify quantitative resilience measures by researchers such as Beccari 
(2016), Hosseini et al. (2016), Asadzadeh et al. (2017), and Chen et al., 
2023. In general, the proposed measures in this context can be grouped 
under two approaches: performance data-driven and structural data-
driven. While the former approach typically employs “lagging in
dicators”, which assess the resilience of systems based on their past 
performance and observed operational data, the latter approach utilizes 
“leading indicators”, which proactively assess systems’ responses to 
current and future disturbances based on their inherent design and 
structure. Lagging indicators provide quantitative measures for resil
ience of a system based on its historical performance, which are also 
referred to as reactive resilience measures in the literature (Patriarca 
et al., 2019; Ba-Alawi et al., 2020; Núñez-López et al., 2021). They 
capture the time-dependent performance measure(s) during a system’s 
degradation and recovery phases post disruptions resulting in a 
multi-phase curvature known as the resilience trapezoid. When suffi
cient historical data is available, simulation can generate the resilience 
trapezoid associated with a system subject to specific threats (Pawar 
et al., 2022). It can also be predicted based on pre-determined proba
bilistic damage and fragility curves, loss functions, and recovery curves. 
Lagging indicators are criticized regarding their use as future predictors 
of systems’ response to incidents (Grabowski et al., 2007; Mengolini and 
Debarberis, 2008). They may provide limited insight into what consti
tutes a resilient system as they fail to capture its capacities and de
pendencies within the system components and between the system and 
its surrounding environment. Moreover, in many cases, data may not be 
available to model or predict the shape of the resilience trapezoid. 
Therefore, structure-based measures are proposed as effective alterna
tives to assess the resilience of dynamic processes and systems (Penaloza 
et al., 2020). 

As an alternative approach, leading indicators, also known as 
structure-based indicators, rely on a system’s intrinsic characteristics, 
structure, and spatial relationships with its surroundings. These in
dicators can act as early warning signals for performance issues and are 
considered proactive resilience measures (Patriarca et al., 2019). It is 
important to note that we do not imply that leading indicators cannot be 
derived from performance-based measures. If periodically collected data 
is available to monitor a system’s well-being and assess its performance 
resilience in day-to-day operations, performance-based measures can 
serve that purpose (Hollnagel, 2017). However, they may prove inef
fective for evaluating the resilience of systems during large-scale 
disruptive events when historical data is limited or unavailable. 
Recent literature has proposed structure-based resilience indicators 
primarily for network-based infrastructure systems, such as trans
portation networks (Demirel et al., 2015) and power generation and 
transmission networks (Panteli and Mancarella, 2015). Amer et al. 
(2023) provide a comprehensive review of leading indicators proposed 
in the extant literature for a selected group of critical infrastructure 
systems in the context of resilience to sea-level rise. Such indicators, 
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which include connectivity, criticality, and accessibility, are used to 
evaluate the adaptive capacity of a network in the face of potential 
disruptions to links and/or nodes (Tachaudomdach et al., 2021). They 
go beyond capturing solely physical operational parameters and can also 
incorporate socioeconomic factors related to process safety and envi
ronmental impacts. To obtain an overall measure of resilience, the 
leading indicators need to be systematically aggregated or mapped to a 
resilience function. This critical task is often accomplished using com
posite indicators as a medium. 

1.2. Composite indicators 

Composite indicators have been designed in the context of a diverse 
range of areas, including socioeconomic status, sustainability, and 
disaster resilience. The typical process for developing a composite in
dicator consists of seven main steps: (1) establishing the theoretical 
framework, (2) data selection, (3) imputation of missing data, (4) 
multivariate analysis, (5) normalization, (6) weighting and aggregation, 
and (7) validation for robustness and sensitivity against the established 
theory (OECD, 2008). 

Despite the increased research output on disaster resilience in recent 
years, the application of composite indicators in this context remains in 
its infancy (Asadzadeh et al., 2017). The majority of the applications are 
limited to high-level measures of social and community resilience 
(Orencio and Fujii, 2013), ecological resilience (Kotzee and Reyers, 
2016) and agro-ecosystem resilience (Rao et al., 2019). In many cases, 
global composite metrics are often deployed to compare regions or 
countries based on Environmental, Social, and Governance (ESG) out
looks (Global, 2020). Few papers have emerged recently focusing on 
building composite resilience indicators for engineering systems such as 
energy systems (Lindén et al., 2021), wastewater management systems 
(Sun et al., 2020), and transportation infrastructure (Vajjarapu and 
Verma, 2021). 

The quality of the resulting composite indicator usually depends on 
the methodologies used in normalizing, weighting, and aggregating the 
individual indicators at different levels and the appropriateness and 
soundness of the underlying theory and the input data. While the 
appropriateness of the laid-out approach is subject to the judgment of 
the modeler and expert opinions, the suitability of the data is often 
assessed by employing multivariate analysis techniques. Typically, the 
efficacy of a composite depends on the statistical ability to group mul
tiple indicators into a single proxy, which is often governed by the de
gree of correlations between the indicators. Higher correlation between 
the indicators implies fewer statistical dimensions resulting in higher 
suitability of grouping data to form a composite indicator (Nardo et al., 
2005). Although this assumption might be valid for some constructs, we 
contend that it should not be treated as a compulsory precondition for all 
composite indicators, especially in the context of the resilience of 
complex systems. 

In essence, building composite metrics is analogous to modeling 
latent variables in the presence of some observed variables (Otoiu et al., 
2021). In these models, the direction of the hypothesized causal rela
tionship between the latent construct and its measurable indicators 
governs the statistical homogeneity of the data. These causal relation
ships are either reflective or formative. In a reflective relationship, the 
latent variable is considered to be the determinant (i.e., the cause) of the 
observed variables, whereas, in the formative relationship, the latter 
causes the former. Because reflective indicators map to the same un
derlying latent variable, they need to have substantial mutual associa
tions (Sanchez, 2013). Unlike reflective indicators, formative indicators 
do not necessarily measure the same underlying constructs; that is, they 
do not need to be correlated (Blalock, 1982; Becker et al., 2012). 
Therefore, assessing the suitability of the data must not be irrespective of 
the established causation theory. This is a fundamental issue that is often 
overlooked and mistreated in the literature on the formation of com
posite indicators (Otoiu et al., 2021). 

A critical stage in constructing composite metrics is the normaliza
tion of data. Because indicators often reflect different dimensions of the 
phenomena under study, they are measured on different units or scales. 
As such, normalization is needed to establish a standard basis for com
parison and aggregation. Several normalization methods are introduced 
in the relevant literature, such as ranking, z-score standardization, Min- 
Max standardization, distance to a reference subject, scaling to the 
mean, etc. (OECD, 2008). Although these methods are instrumental and 
widely utilized, they might fail to meet the composite’s objectives when 
developed primarily for measuring engineering systems’ resilience. For 
engineered systems, we argue that the ideal resilience measure must 
incorporate the operating requirements to ensure the survivability and 
safety of a system during and after disruptions. In this context, resilience 
is not merely an indicator of a system’s weaknesses or vulnerabilities, as 
in the case of risk analysis, but it encompasses the system’s capacity to 
resist and respond effectively. Since minimum operating conditions 
must be satisfied to maintain the functionality and survivability of a 
system, they must be the central focus and driver in identifying and 
normalizing the indicators. The transformation methodology in our 
proposed metric design explicitly employs this view by accounting for 
the system’s operational requirements and the relativity among the 
leading indicators representing the properties contributing to the sys
tem’s resilience. 

Another crucial step in developing composite metrics is weighting 
and aggregating the underlying indicators into a unified index. These 
techniques critically influence the soundness and validity of the com
posite metrics. Several weighting and aggregation techniques are 
reviewed in detail in OECD (2008). Weighting techniques generally rely 
on either statistical or participatory models to inform weights. Statistical 
models, such as Factor Analysis (FA), Principal Component Analysis 
(PCA), and Data Envelopment Analysis (DEA), typically group indicators 
based on the degree of correlation among them. Whereas participatory 
models, such as Budget Allocation Processes (BAP), Analytic Hierarchy 
Processes (AHP), and Conjoint Analysis (CA), rely on stakeholders’ and 
experts’ opinions to derive weights. While the former approach is inef
fectual when no correlations exist among the indicators, the latter might 
result in a composite biased by the experts’ subjective sentiments. They 
rely on pair-wise comparisons between indicators, making them 
computationally expensive with a relatively large number of indicators. 

Aggregation techniques following the weighting stage are classified 
according to how they translate weights. Weights can either represent (i) 
a trade-off, as in the compensatory aggregation methods such as linear 
and geometric aggregation, or (ii) a measure of importance, as in the 
non-compensatory methods demonstrated by the Multi-criteria analysis 
(MCA) techniques. In the compensatory methods, the poor performance 
of one indicator can be compensated for by high performance in some 
other indicators, resulting in a moderate-to-high performance for the 
aggregated measure. In contrast, in non-compensatory methods, the 
impact of each indicator on the composite measure is exclusive (Bani
habib et al., 2017). Incorporating compensability relations in the com
posite metric is a pertinent requisite in modeling the resilience of 
complex systems. For instance, a system’s low ability to resist disrup
tions can be counterbalanced by its ability to adapt and recover, even
tually resulting in moderate-to-high system resilience. 

2. Methodology 

The proposed resilience index employs formative and compensatory 
relationships. It is formative in the sense that the observed variables are 
assumed to shape resilience. In this case, correlations among the indi
vidual indicators are not required, thus eliminating the need to assess 
the statistical homogeneity of the data. Moreover, high-performing in
dicators can balance other underperforming ones; thus, the compensa
bility effect is incorporated. The proposed aggregation method maps the 
logically constructed relationships between the individual indicators 
into a mathematical baseline function for resilience based on a deductive 
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fault-driven analysis. Since the established logical relationships account 
for the indicators’ relative importance from the outset, the proposed 
methodology rules out the need for weighting the individual indicators. 

Capturing resilience effectively in this context necessitates a clear 
understanding of what factors make up a resilient system and how these 
factors coalesce into the state and functioning of the system. To 
construct the theoretical foundation and axioms on how the system 
behaves under current and future sea levels, we start by exploring all 
direct and indirect relationships between various failure modes 

triggered when systems are subject to risks due to sea-level rise. Sub
sequently, a set of system-related indicators are identified. These in
dicators are critical in shaping the system’s ability to respond, adapt and 
recover post disruptions. As such, we refer to them as the resilience- 
critical or resilience leading indicators. After shortlisting these indicators, 
we introduce a deductive fault analysis-based methodology for building 
the composite resilience index. The rationale and mechanisms of the 
proposed approach are elaborated in the following subsections. 

Fig. 1. A hierarchical diagram showing the causal relationships between the identified leading indicators and resilience.  
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2.1. Theoretical framework 

As mentioned earlier, our framework is built in the context of OSTDS, 
also known as septic systems, that treat and dispose waste from indi
vidual properties. In such systems, wastewater is partially treated in the 
septic tank, where solid waste rests at the bottom of the tank, and the 
effluent flows from the septic tank to a drain field. The drain field is a set 
of perforated pipes that discharge effluent to the ground. The discharged 
waste undergoes final treatment as it percolates through unsaturated 
soils to the groundwater. For septic systems to function effectively and 
ensure complete treatment of the effluent before it reaches the 
groundwater, the soil underneath and surrounding the drain field must 
be unsaturated, and a minimum vertical separation distance (VSD) be
tween the bottom of the drain field and the high wet season groundwater 
level must be satisfied. In Florida, the minimum VSD ranges from 12 to 
42 in. (2–4 ft)( ≈ 60–120 cm), depending on the soil percolation 
characteristics. 

With the rising sea levels, septic systems face increasing risks of 
surface and in-land flooding, both of which may disrupt their proper 
functioning or cause complete failure. Failed septic systems result in 
financial burdens to homeowners due to substantial investments in re
pairs or degraded property values. In addition to their economic im
pacts, environmental and subsequent public health hazards are of 
significant concern due to the increased likelihood of contamination of 
freshwater resources. Contamination occurs when partially treated 
wastewater containing human-caused Nitrogen (N) mixes with fresh
water resources, including groundwater and surface water. 

In order to identify the factors shaping the septic system response to 
sea-level rise risks, we refer to the standards and minimum requirements 
for safely siting, managing, and operating septic systems as outlined in 
the EPA 625/1–80–012, Florida Administrative Code (rule chapter 64E- 
6 +: Standards for OSTDS), and the septic vulnerability report by the 
Miami-Dade County Department of Regulatory and Economic Re
sources. We also conducted interviews with officials from the Miami- 
Dade Water and Sewer Department and the Florida Department of 
Health, responsible for septic system approval and management. This 
information was then mapped to a Causal Loop Diagram (CLD) to link 
various risks (surface flooding and in-land flooding) to septic systems’ 
environmental and hydraulic failure modes (see Appendix A for the CLD 

utilized in this study). CLDs visually represent the hypothesized causal 
relationships between variables or factors in a complex system. Based on 
this exploratory study, we have identified the root causes of system 
failure along with other influential factors that contribute to the sys
tem’s recovery capacity. Overall, we have identified 12 critical in
dicators that significantly shape the resilience of the OSTDS systems. 
Since we categorize resilience into three main phases, namely, preven
tion (resistive or absorption capacity), damage propagation (adaptive 
capacity), and recovery (restorative capacity), the identified leading 
indicators are grouped under these categories as listed in Fig. 1 and 
elaborated in what follows. 

2.1.1. Resistive capacity 
When exposed to risks, systems with high resistive capacity can 

withstand failures and sustain their structural and functional integrity. 
Under sea-level rise, septic systems may experience hydraulic failures 
due to surface or inland flooding of the drain field. While surface 
flooding is very likely to occur for systems located within high-risk flood 
zones, where the base-flood elevation (BFE) is greater than zero, inland 
flooding may follow rising groundwater levels associated with the rising 
seas. As the groundwater levels rise above a certain threshold, the ver
tical separation distance (VSD) is reduced, which may result in inland 
flooding of the drain field. In addition to hydraulic failures, environ
mental failures may arise due to a compromised VSD or saturation of 
soils beneath the drain field caused by excessive precipitation and 
frequent flooding events. Hence, the distance to hydric soils zones is 
considered to be a critical factor, along with VSD and Base Flood 
Elevation (BFE), in determining the system’s resistive capacity. The 
further the site is from an area with hydric soils, the better its ability to 
resist treatment failures. The factors that influence the resistive capacity 
of a given septic system i are presented in Fig. 1 and represented by xi1 
through xi3. 

2.1.2. Adaptive capacity 
Another component of resilience, the ability of septic systems to 

adapt to disruptions, is associated with the likelihood and extent of 
impact propagation to other critical infrastructure systems. This is 
typically the result of the so-called “domino effect.” Domino effect is an 
undesirable event that emerges in one system and spreads to other 

Fig. 2. Data Processing.  
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systems through escalation vectors. Thus, it causes secondary or high- 
order events leading to more severe consequences compared to the 
initial event itself (Tong and Gernay, 2023). In the context of septic 
systems, a failing system can lead to freshwater contamination through 
two main streams: i) groundwater contamination and ii) surface water 
contamination. As discussed earlier, groundwater contamination occurs 
if the VSD (xi3) is below a minimum threshold or if the soil underneath 
the drain field is saturated (xi1). In addition, groundwater contamination 
occurs if a system at risk of surface flooding is proximal to groundwater 
recharge wells (also known as injection wells) (xi8). These wells are 
generally utilized to artificially recharge aquifers by surface waters and 
waters coming from other sources. Surface water contamination is more 
likely to occur when systems at risk are located in a dense watershed 
areas, i.e., have dense concentration of surface drainage lines (also 
known as watersheds) (xi6). These surface drainage lines function as 
transfer channels for the untreated wastewater to nearby surface water 
bodies, including canals (xi5) and basins (xi7). 

Besides the environmental risks, public health risks are expected 
when potable water resources are contaminated. In this regard, systems 
close to or within well-field protection zones (xi4) are deemed critical. In 
the event of groundwater contamination, polluted waters within these 
zones are more likely to be drawn into potable water wells. Similar 
relation also applies to proximity to private water wells (xi9). According 
to the Florida Department of Health 2020 statistics, nearly 12% of the 
state population relies on private wells for drinking water consumption. 
These private wells are not regulated under the federal Safe Drinking 
Water Act, and as such, the unobserved failures of septic systems close to 
these private wells pose health risks. 

2.1.3. Restorative capacity 
In the context of a system’s ability to recover, the leading indicators 

must relate to the technical or socio-economic abilities to recuperate 
from potential disruptions. On the one hand, the technical factors cap
ture the systems’ ability to fully transform into a new state by connecting 
to alternate wastewater management systems. On the other hand, the 
socio-economic indicators reflect the household’s economic ability to 
support the recovery of their failed systems. While the former is assessed 
through proximity to sewer lines (xi10) and existing stresses to the sewer 
network through observing the sewer overflow locations (xi12), the latter 
is evaluated based on the median household income (xi11). We consider 
these indicators to be instrumental in expressing the system’s potential 
for resuming regular wastewater disposal and treatment operations after 

a disruption, either by recovering the existing system or transforming its 
structure. 

2.2. Data collection and processing 

The input geospatial datasets used in our analysis were obtained 
from open data sources, including Miami-Dade Open Data Hub, the U.S. 
Geological Survey (USGS) LiDAR Digital Elevation Model (DEM) at 5 ft ( 
≈ 1.5 m) resolution, Groundwater Levels Data at 250 m resolution, and 
the Wastewater Management Methods embedded in the Florida Water 
Management Inventory dataset. The input data was processed in two 
phases, as illustrated in Fig. 2. Three data sets were generated in the 
initial phase: the vertical separation distance raster layer, surface 
drainage lines (watersheds) vector layer, and parcels with active septic 
systems vector data. For septic system (i), given the average ground 
elevation per parcel (GLi), the maximum groundwater level (GWLmax

i ), 
and the average standard drain field depth (d), we compute the VSD (xi3) 
using the following equation: 

xi3 = GLi − d − GWLmax
i (1) 

Watersheds (or surface drainage lines) were generated from the DEM 
according to the direction of flow accumulating from each grid cell to its 
steepest down-slope neighbor. Next, data pertaining to parcels with 
active septic systems was compiled by querying the “wastewater man
agement methods” database for active septic systems. Subsequently, the 
final data was processed to compute the identified leading indicators for 
each OSTDS. For this purpose, distances from the center of each parcel 
with an active OSTDS to the nearest relevant components, such as sewer 
lines, basins, and potable water wells, were calculated. The resulting 
data set is an n × m matrix which we denote by X, where xij represent the 
raw value of indicator j for system i, such that i ∈ N , and j ∈ M , where 
N = {1, 2, …n} is the set of active septic systems, and M = {1, 2, …m} is 
the set of indicators. 

2.3. Transformation 

Since it is often challenging to quantify the absolute value of resil
ience without any reference or benchmark (Schneiderbauer and Ehrlich, 
2006), indicators are typically tailored to assess relative resilience. 
Relative resilience measures help compare systems and analyze resil
ience trends over time (Cutter et al., 2008). With this regard, we 
developed a transformation methodology that standardizes raw 

Fig. 3. Transformation curves for the VSD (left) and the distance to sewer lines (right).  
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indicator values relative to one another to inform and prioritize adap
tation decisions. The resilience-critical indicators have positive and 
negative polarities in the context of the respective system response ca
pacities. In the case of positive polarities, larger values indicate higher 
resilience. For example, as the VSD at a septic site increases, the system’s 
ability to resist failures caused by inland flooding increases. On the other 
hand, larger values imply lower resilience for indicators with negative 
polarities, such as Base Flood Elevation (BFE), where septic systems 
become more prone to failures resulting from surface flooding as the 
base flood elevation increases. To account for these positive and nega
tive relations, we employ sigmoid (eq. (2)) and inverse logistic (eq. (3)) 
transformation functions as given below: 

x′ =
1

1 +

(
xij
f 2

j

)−f 1
j

(2)  

x′ =
1

1 +

(
xij
f 2

j

)f 1
j

(3)  

where xij denotes the raw value of indicator j for system i, f1
j is the 

parameter to control the shape of the curve, and f2
j is the reference value 

(e.g., 4 ft ( ≈ 120 cm) for the VSD case). The resulting transformed 
values range between 0 and 1, where a higher value implies a better 
ability to respond, hence, a more significant contribution to resilience.  
Fig. 3 shows the transformation curves for the VSD and the distance to 
sewer lines as examples. 

Reference values and thresholds (f2
j ) signify the “operating vari

ables” that reflect the conditions for safe operation of the system. In a 
recent study, Pawar et al. (2022) employ a similar approach and map a 
system’s operating variables to resilience indicators. In the context of 
septic systems, the operating variables are determined based on the 
recommendations dictated by the OSTDS design, siting, and manage
ment manuals published by the U.S. Environmental Protection Agency 
(EPA 625/1–80–012) and the Florida Administrative Code (rule chapter 
64E-6: Standards for OSTDS). In this configuration, values slightly below 
or almost equal to the minimum threshold (reference value) return a 
transformed value of 0.5. For instance, the transformation produces a 
value of 0.5 for a VSD of 4 ft ( ≈ 120 cm). In the absence of regulated 
feasible distances, such as distance to sewer lines and sewer overflow, a 
min-max normalization is performed in the range of [0,1]. An example 

of such a case is the distance to sewer lines. 
In addition to the minimum operating conditions, the shape pa

rameters (f1
j ) in the transformation functions are tuned to account for 

the relativity between the indicators. For instance, a septic system 
located 100 ft ( ≈ 30 m) from hydric soils is considered more resilient 
than another system located at an equivalent distance from a potable 
water wellhead, provided that all other indicators remain the same. 
Although the system in the former case is close to hydric soils, it still 
meets the required operating conditions as long as the soil underneath 
the drain field is suitable for treatment, i.e., the distance to hydric soils is 
greater than 0. However, for the latter case, the 100 ft distance from 
potable water wellheads does not meet the minimum required feasible 
distance, which is 200 ft ( ≈ 60 m) in Florida. Consequently, the shape 
parameters for the relevant indicators are selected in a way to satisfy the 
following ordering: 

Γ1 > Γ6 > Γ5 ≥ Γ7 ≥ Γ8 > Γ9 > Γ4, (4)  

where; 

Γj = f 1
j

[

ln

(
xij

f 2
j

)]

∀j ∈ M ∕{2, 3, 10, 12}, ∀i ∈ N (5) 

The resultant transformation functions are illustrated in Fig. 4. In 
cases where relative transformations are irrelevant, such as in trans
forming the VSD, where no other indicators are referenced to this 
measure, the shape of the transformation function is adjusted to ensure 
that the transformed value converges to 1 under a zero-risk condition. 
This is achieved by accounting for the current and expected future sea 
levels and the associated rise in the groundwater table. 

According to the IPCC 6th Assessment Report, under the intermedi
ate greenhouse gas emission scenarios, global sea levels are projected to 
rise by 0.56 m ± 0.2 (1.837 ft ± 0.656) by 2100. In addition, according 
to USGS and other studies that assess SLR-induced groundwater rise, 
such as Knott et al. (2019), the projected mean groundwater rise relative 
to sea-level rise is expected to be 31–35% depending on the distance 
from the shoreline and other hydraulic characteristics. This means that 
by 2100, under the worst-case scenario, the rise in the groundwater 
table will be approximately 0.87 ft ( ≈ 26 cm). Under this scenario, 
systems with vertical separation distance nearly greater than or equal to 
5 ft ( ≈ 152 cm) are anticipated to function effectively by 2100, pro
vided that all other conditions are ideal. Based on this inference, the 
vertical separation distance transformation is adjusted to converge to 1 

Fig. 4. Transformation curves for several resilient-critical indicators.  
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between 5 and 6 ft ( ≈ 152–182 cm), as demonstrated in Fig. 3. 

2.4. The composite resilience function 

We propose a logical aggregation strategy for the indicators founded 
on failure analysis and systems engineering principles. Systems engi
neering views systems as complex structures composed of connected 
multiple elements and modules whose mutual dependencies influence 
the resultant system reliability. Based on this rationale, we view a septic 
system as an apparatus whose performance depends on the functionality 
of multiple other systems or components represented by the leading 
resilience indicators. These indicators are employed to aggregate a 
system’s resistive capacity (RC), adaptive capacity (AC), and restorative 
capacity (SC) into a baseline function to define its overall survivability 
and, thus, resilience based on the hierarchical causal relationship 
structure illustrated in Fig. 1. These causal relations help us establish a 
system of axioms that provide the blueprint for the said aggregation. In 
what follows, we detail these axioms: 

Axiom 1. An OSTDS system is said to be highly resistive if it can resist 
both surface and inland flooding. This occurs only if it maintains a high 
VSD (i.e., large x′), high distance to hydric soils (i.e., large x′) and low 
base-flood elevation (i.e., large x′). If the system fails to achieve at least 
one of these conditions, it fails to resist disruptions. Mathematically, the 
system’s resistivity is calculated as the product of these factors as rep
resented by the following equation: 

RCi = Pr(x′ ∨ x′ ∨ x′) =
∏

j=1:3
x′ (6)  

Axiom 2. A septic system is considered to be adaptive if, in the 
event of failure, impacts can be contained and do not propagate to other 
infrastructure systems such as drinking water and freshwater resources, 
groundwater, and surface water. We let IPi1, IPi2, and IPi3 represent the 
likelihood of impact propagation to groundwater, surface water, and 
drinking water, respectively. Subsequently, the adaptive capacity of 
septic tank i is abstracted by the following expression: 

ACi = 1 − [IPi1 ∧ IPi2 ∧ IPi3] (7)  

These Impact propagation components are derived based on the 
following postulations: 

Axiom 2.1. (Groundwater contamination). The likelihood of the septic 
site impacting groundwater increases as partially treated wastewater 
seeps into the groundwater resources. One major cause for this is the 
percolation of partially treated waste through soil due to either prox
imity to hydric soil or compromised VSD. As such, the likelihood of 
groundwater contamination via soil (GWCsoils) is a function of x′ and x′ 
and captured by the following equation: 

GWCsoils = 1 − Pr(x′ ∨ x′) = 1 −

[
∏

j=1,3
x′

]

(8) 

Another condition causing groundwater contamination is the likeli
hood of partially treated waste flowing through surface runoff to nearby 
watersheds or injection wells, which are mapped by xi6 and xi8. Conse
quently, the following function can be used to assess the likelihood of 
groundwater contamination via surface runoff (GWCrunoff): 

GWCRunoff = 1 − Pr(x′ ∧ x′) =

[
∏

j=6,8
(1 − x′)

]

(9) 

Subsequently, the impact propagation of septic tank i on ground
water can be computed by the following equation: 

IPi1 = Pr(GWCsoils ∧ GWCRunoff )

= 1 − [(1 − GWCsoils)(1 − GWCRunoff )]

= 1 −

[
∏

j=1,3
x′

][

1 −
∏

j=6,8
(1 − x′)

] (10)  

Axiom 2.2. (Surface Water contamination). The likelihood of the 
septic site impacting the surface water (IPi2) increases if it gets closer to 
surface water bodies. Distance to surface water bodies is assessed by the 
indicators representing proximity to canals (x′) and basins (x′). Hence, 
the impact propagation of septic tank i on surface water can be framed 
by the following equation: 

IPi2 = 1 − Pr(x′ ∨ x′) = 1 −
∏

j=5,7
x′ (11)  

Axiom 2.3. (Drinking Water contamination). The likelihood of the 
septic site impacting the drinking water resources increases if it gets 
closer to the water wellheads. Distance to drinking water resources is 
assessed by the indicators representing proximity to public potable 
water wells (x′) and private potable water wells (x′). In addition, 
drinking water resources can be indirectly impacted by impact propa
gation on groundwater. As such, indicators used in Axiom 2.1 are also 
relevant here. Consequently, the impact propagation of septic tank i on 
drinking water resources can be modeled by the following equation: 

IPi3 = (IPi1)

[

1 −
∏

j=4,9
x′

]

(12) 

Given IPi1, IPi2, and IPi3, we can rewrite eq (7) and get the system’s 
ability to adapt to disruptions as follows: 

ACi =
∏

z=1:3
(1 − IPiz) (13)  

Axiom 3. A system is said to have a high restorative capacity if it has 
the technical or the financial abilities to recover or both. The feasibility 
of sewer extension decisions governs the technical abilities of systems to 
transfer into a new state and thus recover. This is governed by the pump 
station basin status, whether it is on moratorium or can accept new 
connections. On the other hand, the financial ability of communities to 
recover is guided by the median household income and economies of 
sewer extensions. This relation can be mathematically abstracted as the 
following: 

SCi = Pr((x′ ∨ x′) ∧ x′) = 1 − (1 − (x′ × x′))(1 − x′) (14)  

Axiom 4. Finally, a system is said to be resilient if it has the ability 
to resist failure and respond to disruptions. The system’s overall 
response capacity is determined by its adaptive or restorative capacities 
or both. Consequently, using equations (6), (13), and (14), we model the 
overall resilience of a system using the following mathematical 
expression: 

Ri = Pr(RCi ∧ (ACi ∨ SCi)) = 1 − [(1 − RCi)(1 − ACi × SCi)] (15)  

Although this aggregated function is specific to septic systems under 
study, the presented axioms and the resulting framework can be 
generalized for applications of other infrastructure systems. An essential 
requirement is the clear delineation of factors, their impact on the sys
tem’s failure risk, and how these factors link together to shape the sys
tem’s overall resilience. In what follows, we demonstrate our approach 
with application to a real-life septic system network. 

3. Case study 

We present a case study concerning the septic systems in Miami-Dade 
County (MDC) in Florida to demonstrate the application of the proposed 
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Fig. 5. DFA-based resilience levels for OSTDS in Miami-Dade County, Florida, USA.  
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Fig. 6. Baseline resilience measures under varying resistive and responsive capacities.  
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DFA resilience assessment methodology. Septic systems are common
place in Florida, where an estimated 2.6 million onsite sewage treatment 
and disposal systems (OSTDS) serve 30% of the state’s residents and 
visitors. These systems discharge over 426 million gallons of treated 
effluent daily into the subsurface soil (Lusk et al., 2020). At the county 
level, according to the Florida Water Management Inventory dataset for 
parcel-level wastewater management methods, Miami-Dade County has 
approximately 107,000 active septic systems. In a recent OSTDS 
vulnerability assessment report, MDC officials reported that, out of these 
107,000 septic systems, nearly 56% might be periodically compromised 
during storms or wet years. With the rising sea levels within the next 25 
years, the County expects this number to significantly increase to more 
than 64% by 2040 (Elmir, 2018). 

Using the proposed DFA model, we derive the resilience levels of the 
107,526 septic sites located in MDC. The geographical distributions of 
the sites and their computed resilience values are depicted in Fig. 5. 
Considering the current sea levels and flood-risk zoning, our assessment 
indicates that nearly 32% of the existing sites have a resilience index 
below 0.5, indicating that at least one of the minimum operating re
quirements is not met for these sites, and around 18% of them have a 
resilience index less than 0.1. Geographically, Fig. 5 shows clusters of 
low-moderate resilience sites located in the northern and southern re
gions of the County. In addition to providing the overall system resil
ience measures, the DFA framework offers the ability to assess the 
resilience capacities at sub-aggregate levels, namely, resistive, adaptive, 
and restorative capacities. 

We examine three different septic systems selected from the case 
study to further illustrate our methodology. These septic sites exemplify 
three distinct operational and environmental settings and how they 
impact a system’s overall resilience. The first case involves a septic site 
with low resistive capacity yet high overall resilience. Whereas the 
second case exemplifies a system with moderate response capacity (low 
adaptive and high restorative capacities) and high overall resilience. 
Lastly, we present a system with moderate resistive and response ca
pacities, and overall moderate system resilience. Fig. 6 exhibits how the 
overall resilience measures for these systems are broken down into their 
building blocks, namely, the transformed leading indicators, these are: 
vertical separation distance (VSD_Tr), distance to hydric (saturated) 
soils (HydSoils_Tr), base flood elevation (BFE_Tr), distance to canals 
(Dist_Canal_Tr), distance to surface drainage lines (Dist_SD_Tr), 
distance to basins (Dist_Basin_Tr), distance to public potable water 

well head (D_PubW_Tr), distance to private potable water well head 
(D_Priv_Tr), distance to injection wells (Dist_InjW_Tr), distance to 
the nearest sewer line (D_Sewer_Tr), distance to the nearest sewer 
overflow point (D_Overflow_Tr), and median household income 
(Income_Tr). 

We use the site represented in Fig. 6c as an example to demonstrate 
the computation process of the composite resilience index. As listed in  
Table 1, we first identify the measured values of the leading indicators. 
We normalize these values for the first nine indicators listed in the table 
using the reference values and the transformation process discussed and 
illustrated in Section 2.3. Since there are no exogenous reference values 
for the remaining four indicators, median values are used in obtaining 
the transformed values in these cases. These transformed values are then 
plugged into the aggregation functions as detailed in Section 2.4 and the 
components of the resilience index are obtained as presented in Table 2. 
Finally, using (15), we compute the resilience index value of 0.48 for this 
site. 

In the first case (Fig. 6a), the base flood elevation is very low (nearly 
zero), implying a higher likelihood of surface flooding and, therefore, a 
low ability to resist disruptions. Despite that, since all the other 
resilience-critical indicators representing the site’s response capacity are 
reasonably high, the system maintains a relatively high resilience level 
of 0.79. The intuition is that no impacts are anticipated to propagate 
from this site since the system is not proximal to any drinking water 
resources or surface water bodies. Moreover, no groundwater contami
nation is expected due to the relatively large vertical separation distance 
and unsaturated soil conditions. In the second case (Fig. 6b), a system 
with low adaptive capacity but high resistive and recovery abilities can 
still achieve a high overall resilience measure of 0.86. For this system, 
although impact propagation is a potential risk in the event of failure, 
the system’s high resistivity substantially diminishes the possibility of 
failure, resulting in a high degree of resilience. In other words, the 
former capacity is compensated by the latter. Finally, in the third case 
(Fig. 6c), as expected, the system has a moderate degree of resilience due 
to its moderate abilities to both resist and respond to disruptions. 

These examples demonstrate the effectiveness of the proposed DFA 
aggregation strategy in aligning with the widely accepted definition of 
resilience, which accounts not only for risk and vulnerability but also for 
the system’s ability to respond to disruptions through modeling its 
resistive, adaptive, and restorative capacities. The proposed aggregation 
method also incorporates the compensatory relationships between the 
system capacities in the sense that it is possible to observe cases in which 
a system with low resistance (resp. respond) capacity but high response 
(resp. resistance) capacity maintains a moderate-to-high resilience level. 

A bivariate statistical analysis is performed to generalize the obser
vations made in the aforementioned example and the relationship be
tween the measured resilience index and the response capacities across 
all sites. The DFA model output was smoothed using kernel density 
estimation, as illustrated in Fig. 7, to handle the large dataset and pro
vide a more informative visualization. The analysis indicates that both 
the resistive and adaptive capacities have a strong positive relationship 
with the resilience index. The relationship between the restorative 

Table 1 
The leading indicators and transformed values (distances are given in feet 
(meters)).  

Leading Indicator Raw Value Ref. Value Transformed 
Value 

Vertical Separation 
Distance (VSD) 

3.3 ( ≈ 1) 2–4 ( ≈
0.6–1.2)  

0.6 

Dist to Hydric Soils 
(HydSoils) 

9484.74 ( ≈
2890) 

75 ( ≈ 22)  1 

Base Flood Elevation (BFE) 7 ( ≈ 2) 0  0.4 
Dist to Surface Drainage 

(Dist_SD) 
21.9 ( ≈ 6) 50–75 ( ≈

15–22)  
0.0369 

Dist to Basins (Dist_Basin) 37251 ( ≈
11354) 

75–100 ( ≈
22–30)  

1 

Dist to Canals (Dist_Canal) 300.4 ( ≈ 91) 75 ( ≈ 22)  0.98 
Dist to Injection Wells 

(Dist_InjW) 
82.9 ( ≈ 25) 75–100 ( ≈

22–30)  
0.526 

Dist to Public Wells 
(Dist_PubW) 

10537 ( ≈
3211) 

100–200 ( ≈
30–60)  

0.98 

Dist to Private Wells 
(Dist_PrivW) 

5657.22 ( ≈
1724) 

75–100 ( ≈
22–30)  

0.98 

Dist to Sewer Lines 
(Dist_Sewer) 

66.78 ( ≈ 20) *  0.96 

Dist to Overflow 
(Dist_Overflow) 

3939.2 ( ≈
1200) 

*  0.8 

Median Household Income 
(Income) 

97500 *  0.7  

Table 2 
Aggregating the transformed indicators into the 
response capacities and Resilience.  

Level Value 

Resist (eq. (6))  0.24 
GWC_soils (eq. (8))  0.39 
GWC_Runoff (eq. (9))  0.45 
IP1 (eq. (10))  0.66 
IP2 (eq. (11))  0.01 
IP3 (eq. (12))  0 
Adapt (eq. (13))  0.32 
Recover (eq. (14))  0.93 
Resilience (eq. (15))  0.47  
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capacity and overall resilience is more ambiguous. For systems with very 
poor resistive capacity (less than 0.2), resilience is observed to be strictly 
low (less than 0.2). Whereas systems with low adaptive capacity (less 
than 0.2) could possess moderate or high overall resilience. On the 
contrary, for high resistive and high adaptive capacities, the system’s 
resilience is usually high (greater than 0.8) or moderately high (greater 
than 0.6), respectively. The computed restorative capacities are gener
ally moderate-to-high (greater than 0.5), with larger values corre
sponding to slightly higher resilience measures. These observations 
reflect the compensatory relations between the indicators established by 
the axioms of the proposed DFA approach. 

4. DFA approach vs statistical-driven methods 

As detailed in Section 2 and illustrated by the case study in Section 3, 
the proposed DFA models system resilience as a multidimensional index 
that explicitly reflects compensability between the associated indicators. 
To provide a more cogent analysis of the proposed method, we compare 
the proposed methodology against other statistically-driven models 
adopted in the context of composite indicators building. The main goal 
of this discussion is to identify the similarities and gaps between the 
DFA-based resilience metric and the latter group of models. We aim to 
derive insights from such a comparison concerning the connotation of 
resilience implied by different assessment methods. Two statistical 
models that differ in their weighting strategy are selected for the anal
ysis. The first model is the Partial-Least Squares - Path Model (PLS-PM) 
for latent variables, which can be viewed as an extension of factor 
analysis and path analysis. The second model uses Principal Component 
Analysis (PCA) to derive weights and compute the aggregate scores. 

4.1. Partial-least squares path model (PLS-PM) 

The variance-based Partial-Least Squares Path Model (PLS-PM) fits a 
composite model to given data by maximizing the amount of variance 
explained. Thus, it enables the estimation of complex cause-effect re
lationships in path models with latent variable(s) that directly or indi
rectly causes, or is caused by, a group of measured indicators. In this 
sense, PLS-PM quantifies the hypothesized relations among a hierarchy 
of manifest (measured) and latent variable(s) using a system of multiple 
interconnected linear regressions (Sanchez, 2013). Consequently, the 
model estimates factor loadings representing the correlation between 
the latent variable(s) and the underlying manifest variables. As such, it 
provides a measure of the adequacy and significance of the latter in 
reflecting the latent construct(s) (Kline, 2015). Although the PLS-PM is 
widely addressed in management, marketing, and psychology (Latan 
et al., 2017), it has recently been utilized to construct composite in
dicators, such as in Cataldo et al. (2017), Lauro et al. (2018), and 
Tomaselli et al. (2021). 

The PLS-PM tests the theoretically hypothesized causal relationships 
by developing two sub-models: the measurement model and the struc
tural model. While the measurement model captures the relations be
tween each latent variable and its corresponding measured variables, 
the structural model formulates the relations among the latent variables. 
In the context of the axiomatic framework introduced in Section 2.4, the 
measurement model specifies the relation between the leading resilience 
indicators and their corresponding latent variables representing the 
system’s response capacities. Because these measurable indicators are 
perceived as the cause for the latent constructs, formative relations are 
considered in this analysis. In this case, the latent variables are defined 
as a linear combination of their corresponding measurable variables. 
This measurement model is expressed mathematically as follows: 

ξq =
∑Pq

p=1
ωpqxpq + δq ∀q ∈ Q (16)  

where ξq is the score of the latent variable (q), xpq are the values for the 
variables measuring the construct q, ωpq are the coefficients linking each 
measured variable p to the corresponding latent variable q, and δq is the 
error term representing the fraction of the corresponding latent variable 
q not accounted by the considered measured variables P. The structural 
model among the latent variables, on the other hand, is expressed as 
follows: 

ξj = β0j +
∑

q∈Q
βqjξq + δj (17)  

where ξjis the generic latent variable, e.g. resilience, βqj is the generic 
path coefficient interrelating the latent variable q to the generic latent 
variable j, and ϵj is the error term for latent variable j. 

We note that an additional intermediate model is needed in our 
context to map the adaptive capacity constructing blocks, namely IP1, 

Fig. 7. The relation between resilience and the system’s three response capacities.  

Table 3 
The Measurement Model Loadings.  

Measured Indicator Latent Construct Loadings 

Vertical Separation Distance Resist  0.41 
Distance to hydric Soils   0.25 
Base-flood Elevation   0.33 
Distance to surface Drainage IP1  0.06 
Distance to injection Wells   0.16 
GW Cont = f(VSD, Soils)   0.70 
Distance to basins IP2  0.58 
Distance to canals   0.42 
Distance to public wells IP3  0.09 
Distance to Private Wells   0.15 
GW Cont = f(VSD, Soils)   0.76 
Distance to sewer lines Recover  0.36 
Distance to sewer overflow   0.35 
Median Income   0.29  
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IP2, and IP3 as defined in Axiom 2. In that respect, our setting exploits a 
higher-order PLS-PM model where the parameters are estimated using a 
two-step approach. In the first step, the first-order latent variables’ 
scores are computed using Principal Component Analysis (PCA). Sub
sequently, in the second step, the PLS-PM analysis is performed using the 
computed scores as indicators for the 2nd order constructs, which are 
adaptive capacity and resilience. 

The results for the measurement model are summarized in Table 3. In 
general, for models assuming formative relations, the loadings of in
dicators are investigated to determine their absolute contribution to the 
latent construct. As highlighted in the table, the PLS-PM model identifies 
the vertical separation distance, the groundwater contamination, and 
the distance to sewer lines as the primal contributors in shaping the 
system’s resistive, adaptive and restorative capacities, respectively. 
Since the compromised vertical separation distance is a primal cause of 
groundwater contamination, the results indicate that the vertical sepa
ration distance is pivotal in shaping not only the resistive capacities of 
the systems but also their adaptive capacities. In this sense, the model’s 
conclusions support the underlying causal theory employed by the 
proposed DFA approach. 

The structural model is applied by analyzing the determination co
efficients R2 and the redundancy index. In addition, path coefficients’ 
significance level (t-test) and magnitude are also assessed. Results are 
summarized in Table 4. In this case, endogenous latent variables 
represent adaptive capacity as defined in (13) and resilience as defined 
in (15). While the former is shaped by the three impact propagation 
latent constructs, namely, IP1, IP2, and IP3, the latter is determined by 
the latent resistive, adaptive, and restorative constructs. R2 values of 
0.96 and 0.98 for the adaptive and resilience constructs evince the sig
nificance of the proposed hierarchical structure in mapping the 
resilience-critical indicators to the system’s response capacities and 
overall resilience. 

The Redundancy Index measures the performance of predicting the 
structural model given the measurement model. As shown in Table 4, 
redundancies of 0.58 and 0.66 are obtained for the adaptive capacity 
and resilience, respectively. These results imply that the resilience 
construct’s adaptive, resistive, and restorative capacities can predict 
66% of variability within the resilience indicators. According to 
research, these values indicate a satisfactory level of explanation in the 
context of the PLS-PM model (Sanchez, 2013). 

Path Coefficients capture the causal relations between variables, 
specifically the direct effect of a variable in causing another variable. In 

the context of the structural model, these variables are the latent con
structs of their underlying latent or manifest variables. Path coefficients 
produced by the PLS-PM approach are presented in Table 5. These re
sults indicate that despite their significance, the path coefficients do not 
seem to be entirely compatible with the premise of the proposed DFA 
approach, particularly the relations posited in equations (13) and (15). 
The results imply that impact propagation to drinking water resources 
has the highest path coefficient and, therefore, the highest influence in 
shaping the system’s ability to adapt, followed by surface water and 
groundwater contamination according to the PLS-PM approach. How
ever, as previously discussed in Axiom 4, impacts can’t propagate to the 
potable water wells prior to contaminating the groundwater or fresh
water resources first. Axioms of the DFA approach explicitly establish 
this relation resulting in high criticality in its context. In addition, all 
system response capacities are nearly equally important in shaping 
resilience, with slightly higher path coefficient values corresponding to 
the adaptive and recovery abilities. These findings contradict the orig
inal theory under which the resistive and adaptive capacities are ex
pected to have a higher effect than the ability to recover, as implied by 
Axiom 4 and the results presented in Fig. 7. 

The results of the PLS-PM indicate that although the fitness metrics 
obtained by this approach are statistically acceptable, the extent of the 
individual indicators’ impact on the system response capacities and 
overall resilience does not entirely align with the proposed DFA 
approach. As expected, this gap emerges due to the differences in the 
formative and deductive views of the PLS-PM and DFA approaches. 
Before discussing the intuitions behind these observations in detail, we 
first examine the application of the Principal Component Analysis 
(PCA). 

4.2. Principal component analysis (PCA) 

The effectiveness of PCA in mapping high-dimensional data to fewer 
proxies has made this approach and its extensions, such as the spatially 
dependent PCA (Saib et al., 2015), an appealing tool to construct com
posite indicators (OECD, 2008; Li et al., 2012; Kotzee and Reyers, 2016). 
PCA is primarily utilized to identify how different variables are associ
ated. This is achieved by transforming the originally correlated variables 
into a new set of uncorrelated variables, known as Principal Components 
(PCs). The latter variables are calculated by combining their respective 
indicators using optimized weights, ensuring that the retained principal 
components (PCs) capture the maximum variance in the data. The 
evaluation of these results typically involves assessing the proportion of 
variance captured within the data and examining the loadings between 

Table 4 
The Structural Model Metrics.  

Metric Latent Endogenous Variable Value 

R2 Coefficient of Determination Adapt  0.96  
Resilience  0.98 

Redundancy Adapt  0.58  
Resilience  0.66 

Goodness of Fit Index (GOF)  0.66  

Table 5 
The Structural Model Path Coefficients.  

2nd Order 
Latent 

1st Order Latent Path 
Coefficient 

Significance 

Adapt IP1 (Cont. Groundwater 
Resources)  

0.24 * **  

IP2 (Cont. Surface water 
resources)  

0.31 * **  

IP3 (Cont. Drinking Water 
Resources)  

0.45 * ** 

Resilience Resist  0.30 * **  
Adapt  0.36 * **  
Recover  0.34 * **  

Table 6 
Results of the Principal Component Analysis.  

PCA- 
Stage 

Proxies (Latent 
Vars) 

Indicators Loadings % 
Variance 

Stage 1 Resist Base-Flood Elev.  0.31  91.99%   
Vertical Sep. Dist.  0.31     
Dist. to Hydric Soils  0.37    

Adapt GW Cont = f(VSD, 
Soils)  

0.11  94.34%   

Dist. to Injection 
Wells  

0.16     

Dist. to Watersheds  0.07     
Dist. to Canals  0.16     
Dist. to Basins  0.16     
Dist. to Public Wells  0.17     
Dist. to Private Wells  0.17    

Recover Dist. to Sewer Lines  0.34  87.6%   
Dist. to Sewer 
Overflows  

0.31     

Median Income  0.35   
Stage 2 Resilience Resist  0.30  98.6%   

Adapt  0.51     
Recover  0.19    
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the original variables and the retained PCs. 
Following the methodology adopted in constructing the Environ

mental Sustainability Index (Li et al., 2012, we employ a PCA-based 
framework for constructing the resilience composite for the OSDS case 
study. In this approach, similar to the DFA model, the leading indicators 
are grouped according to the hypothesized relations depicted in Fig. 1. 
The analysis is performed in two stages. In the first stage, the first set of 
PCs, each representing a respective system response capacity, and their 
factor loadings are computed. These PC scores are then used to compute 
the loading and the final PC score for the overall system resilience in the 
second stage. 

The PCA results for the case study are summarized in Table 6. The 
results indicate that all the retained principal components representing 
resilience and the underlying system response capacities capture most of 
the variance within the data. In the first aggregation stage, we observe 
that indicators projecting the respective system response capacities are 
weighed almost equally, with a few exceptions. For the resistive ca
pacity, the weight of distance to hydric soils, represented by the load
ings, is slightly higher than the BFE and the VSD. Whereas for the 
adaptive capacity, the contribution of the distance to watersheds and 
groundwater contamination is considerably lower than other indicators. 
These results are not entirely aligned with the findings of the PLS-PM 

and the proposed DFA approaches. While both adaptive and resistive 
capacities strongly influence resilience in the second stage analysis, the 
approaches disagree on the primary contributor to resilience. DFA em
phasizes the resistive capacity, while the PCA-based approach highlights 
the adaptive capacity. In that respoect, the latter approach aligns more 
with the statistically-driven PLS-PM. 

4.3. Comparative analysis 

For the most part, the gaps between the DFA approach and the 
statistically-driven methods such as PLS-PM and PCA can be explained 
by the fact that the latter methods rely on correlations among variables 
for calculating the factor loadings and hence, the factor scores. Such 
reliance can be a consequential limitation since these implicitly assumed 
correlations do not necessarily represent the sub-indicators’ actual in
fluence on the phenomenon being assessed (Nardo et al., 2005), espe
cially when formative relationships are considered. As such, when the 
indicators are aggregated to form the composite index, they fail to 
accurately reflect the underlying phenomenon. 

We analyze and contrast how each index converts the site-related 
conditions into a measure of resilience using three different examples 
taken from the case study in order to further develop and explain this 

Fig. 8. Comparing Resilience Index across the DFA, PLS-PM and PCA models.  
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result. These comparisons are summarized in Fig. 8. The selected in
stances possess varying levels of resilience, namely, low, moderate, and 
high. For the system with high resilience (Sys03), the three models yield 
consistent resilience values with varying estimates for the system ca
pacities. However, unlike the PLS-PM (Fig. 8c) and the PCA-based 
models (Fig. 8d), the proposed DFA approach results in a relatively 
low adaptive capacity (Fig. 8b) due to the likelihood of impact propa
gation to surface waters in the event of system failure. This relationship 
is not captured fully by the statistically-driven methods. For the system 
with moderate resilience (Sys02), both the resistive and adaptive ca
pacities are low-to-moderate with high ability to recover, resulting in an 
overall moderate system resilience of 0.48 according to the proposed 
DFA model. These results do not align with the other two models, where 
the PLSPM and the PCA result in considerably high resilience of 0.7 and 
0.78, respectively. Similarly, for the low resilience system (Sys01), the 
two statistically-driven models result in moderate-to-high resilience 
levels despite the system’s low resistive, adaptive, and recovery capac
ities. The DFA approach, however, identifies this system’s resilience to 
be considerably low. The differences in the obtained resilience measures 
can be explained by the lower weights assigned to resistivity and the 
linear aggregation adopted in the former approaches. 

To capture the factors leading to the observed gaps in resilience 
measures, we generate the distributions of the resilience indices ob
tained by the three approaches across the entire dataset of 107,000 
septic systems, as depicted in Fig. 9. It can be observed from the graph 
that the statistically-driven methods tend to produce moderate-to-high 
resilience values, with the PCA-based model yielding considerably 
higher values. The DFA measures, on the other hand, extend across the 
entire range in [0,1]. Notably, in terms of resilience, septic sites tend to 
cluster around low (below 0.20) and high (above 0.8) values with a 
nearly uniform distribution in between. 

The findings highlight that the three models can yield varying levels 
of resilience. The approaches that rely on linear aggregation and 
statistically-computed weights may lead to an over-reduction of 
dimensionality, which can obscure the adequate representation of an 
indicator’s importance and result in measures with “truncated domain” 
as illustrated in Fig. 9. In this regard, we conclude that the proposed DFA 
approach can be utilized to address the above-mentioned challenges and 
develop a composite index that; (i) aptly accounts for compensatory 
relations between indicators, (ii) is not prone to statistical homogeneity 
of data, (iii) accounts for indicators’ relative importance and thus, 
eliminates the need for weights, and most importantly, (iv) maps the 

Fig. 9. Distribution of the Resilience Index computed by the proposed DFA approach, the PLS-PM, and the PCA-based model.  
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system capacities to resilience consistently and accurately. Hence, is 
able to capture systems with very poor resilience (below 0.5) that need 
to be prioritized for adaptations. 

To sum up, we reiterate that all three approaches employed in our 
analysis consistently agree on the significance of the selected indicators. 
However, they differ considerably in measuring the extent of these in
dicators’ impact on the overall resilience of a system. While the first 
conclusion is relevant and essential, the second is especially critical in 
decision-making pertaining to resilience improvement and adaptation. 
Clearly, effective adaptation decisions cannot be made without correctly 
incorporating their impact on the objectives or criteria related to resil
ience. In the next section, we introduce a general framework to 
demonstrate how DFA-based metrics can actuate decision-making 
models in the context of adaptation for resilience. 

5. Resilience-based decision making 

While building consistent and effective metrics for resilience is a 
critical stage, the loop in resilience enhancement cannot be closed until 
these metrics are utilized to build decision models that result in effective 
adaptation solutions. Previous work due to Weiss et al. (2008), Moli
nos-Senante et al. (2012), and Abdalla et al. (2021) refer to four main 
strategies for adapting a septic systems to rising sea levels: (i) aban
doning the existing system and connecting the site to the sewer network, 
(ii) considering a mound septic system by elevating the drain field, (iii) 
considering a non-conventional advanced treatment system, and (iv) 
abandoning the existing system and connecting the site to a micro (or 
community) sewer network with a decentralized treatment facility (also 
known as package plant). Each of these strategies is subject to con
straints that set the limits for feasible solutions. For instance, according 
to the septic design and siting manual, a mound system cannot be 
installed if the vertical separation distance is less than 1 ft ( ≈ 30 cm). 
Also, connection to the sewer network cannot be considered when the 
pump station basin to which the site belongs is in moratorium condition. 
Moreover, financial limitations pose additional constraints when mak
ing adaptation decisions. Moreover, the decision-making framework 
should determine not only the “optimal” actions but also the sequence in 
which these actions should be implemented. This sequence can be 
influenced by a variety of factors, such as the resilience of the site, 
financial limitations, and equity. 

The baseline function for resilience given in (15) can be incorporated 
into a decision model in several ways. It can be used to form the model’s 
objective function, where maximization of resilience bears on the goal of 
the decision-making. In this context, it can also serve as one of the ob
jectives under a multi-objective decision-making setting. Alternatively, 
it can be incorporated into the set of constraints to establish lower 
bounds on resilience under various objectives (e.g., cost minimization, 
equity maximization, etc.). The resilience function influences decision- 
making by responding to changes in the adaptation decision variables. 
For example, if the sewer extension solution is adopted, most of the 
resilience-critical indicators initially identified for shaping the septic 
system’s resilience no longer constitute a threat to the functionality of 
the sewage collection and disposal from the site. These include distance 
to saturated soil, proximity to drinking water wells, and proximity to the 
sewer lines, given that a site is already connected. Moreover, after 
merging the OSTDS with the sewer system, the significance of vertical 
separation distance measure changes in that it now reflects the clearance 
between the buried components of the infrastructure, such as pipes, and 
the groundwater level. On the other hand, proximity to sewer overflow 
points may become a significant indicator as the site may coincide with a 
stressed section of the sewer network, making it less resistant to future 
stresses. Consequently, the resilience function must be updated to reflect 
the system’s response under alternative adaptation options. 

To set up the mathematical model, we let L denote the set of all 
possible adaptation actions, and l ∈ L represents a particular action in 
this set, where l = 0 corresponds to “Do nothing.” We let Ril denote the 

resilience function for site i under adaptation action l. For example, if we 
let l = 1 indicate the sewer line connection option, the resilience func
tion under this option will be: 

Ril = 1 −

[(

1 −
∏

j=2,12
x′

)(

1 −
∏

j=3,5,7,11
x′

) ]

∀l = 1 (18) 

Similarly, if we let l = 2 represent the option of elevating the drain 
field (i.e., mounding the septic system), the resilience function under 
this option can be rewritten as 

Ril = 1 − [(1 − RC′)(1 − ACi × SCi)] ∀l = 2 (19)  

where, both; ACi and SCi follow equations (13) and (14), whereas RC′ is 
updated using the new vertical separation distance, xn

i3, expressed by: 

xn
i3 = xi3 + yi (20)  

where yi is the drain field mounding height for septic site i. 
Consequently, we can develop a general adaptation decision-making 

framework by integrating the estimated current resilience levels and the 
proposed post-adaptation resilience relations. A sample framework, 
where resilience is incorporated as a constraint, is given by the following 
generic integer programming formulation: 

Min Z
∑

i∈N

∑

l∈L
cilγil (21)  

∑

l∈L
γilRil ≥ bi ∀i ∈ N (22)  

∑

l∈L
γil = 1 ∀i ∈ N (23)  

γil ∈ [0, 1] ∀i ∈ N, l ∈ L (24) 

In this generic formulation, N is the set of septic sites, cil is the cost of 
adopting adaptation strategy l for septic site i, and γil is the binary var
iable that indicates whether a strategy is selected (γil = 1) or not (γil = 0). 
The overall objective of the model is to minimize the total investment in 
adaptation under a constraint set that stipulates a minimum preset level 
of resilience for site i denoted by bi (22). Constraint (23) ensures that 
exactly one adaptation strategy is selected for each site, including the 
do-nothing option. 

The generic formulation presented here is for illustrative purposes. A 
more comprehensive and context-specific version would include addi
tional operational, technological, and socio-ethical constraints, along 
with associated decision variables. Our aim is to demonstrate the inte
gration of the proposed composite resilience measure into decision- 
making and suggest potential research directions for adaptation 
decision-making while explicitly considering resilience. The resilience 
function can be incorporated into the decision model in different ways, 
depending on the context. For example, it can be reconfigured to 
maximize resilience within budget constraints. In a broader context, the 
model can be customized for goal programming and multi-objective 
optimization, considering multiple stakeholders’ perspectives. This al
lows the decision model to provide a range of non-dominated solutions, 
enabling decision-makers to evaluate alternative plans that meet various 
goals and stakeholder perspectives. 

In real-world applications, adaptation actions are often conducted in 
multiple stages and periods to address budget constraints and changing 
environmental conditions over time, such as sea level rise projections. 
The proposed modeling framework can be tailored to accommodate 
such settings by adopting multi-stage, multi-period structures. Incor
porating stochastic programming and robust optimization techniques 
can capture the dynamic and uncertain nature of climate change-related 
parameters. Integrating the proposed resilience measure into decision- 
making frameworks opens avenues for future research in developing 
large-scale mathematical programming models for regional adaptation 
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problems. These models can address diverse objectives, constraints, and 
decision variables across time, space, and domain. 

It is important to highlight that the DFA-based methodology pro
posed in this paper does not aim to completely replace traditional 
models such as simulations and table exercises with stakeholders. 
Simulation remains a valuable tool for assessing the robustness of so
lutions derived from index-based mathematical models and for refining 
the transformation functions. Additionally, the analytical structure 
outlined in Section 2 can be incorporated into table exercises to quantify 
indicators and reduce subjectivity in mapping indicators to the proposed 
resilience index. Thus, our proposed methodology is complementary to 
these approaches and can be utilized to enhance their efficacy. 

6. Conclusions 

Extreme stresses caused by climate change, such as the rising seas, 
are growing more severe, threatening different aspects of society 
including the infrastructure systems. To meet the gravest threats, plan
ners and communities have been devising solutions to climate adapta
tion by enhancing systems’ resilience. The effectiveness of the 
adaptation decision framework depends on how well it models resilience 
and incorporates it into a holistic decision-making process. Although 
there has been growing literature on integrating resilience into adap
tation policy-making, several challenges are yet to be addressed. First, 
developing a multidimensional resilience index that reflects the signif
icance of the underlying resilience-critical indicators consistently and 
accurately with the proper scope is challenging. Second, the failure to 
capture the relationship between resilience and adaptation and 
adequately integrate it into decision-making might lead to maladaptive 
outcomes. 

To tackle these challenges, in this paper, we propose a framework for 
a composite resilience metric that can be incorporated into adaptation 
decision-making. In our approach, we follow the general principles of 
risk engineering that include hazard identification, risk analysis, risk 
evaluation and risk treatment. In the context of the on-site wastewater 
treatment and disposal systems (OSTDS), we first identify the hazards 
for these systems caused by the rising sea levels. We then develop a 
framework that employs a deductive (formative) construct based on the 
conditions essential for systems’ survival during and after disruptions. 
The proposed deductive fault analysis (DFA) framework is founded on a 
set of axioms that map the individual resilience leading measures into a 

multidimensional composite resilience index. These axioms address 
compensatory and non-compensatory relations between indicators. 
Moreover, they do not require the assumption of statistical homogeneity 
of data and do not resort to weights to map the system capacities to 
resilience. We contextualize the proposed approach using a case study 
based on the on-site wastewater treatment and disposal systems 
(OSTDS) located in Miami-Dade County in Florida. 

Using the case study, we compare and contrast the proposed DFA 
with two statistically-driven models: the Partial-Least Squares Path 
Model (PLS-PM) and the Principal Component Analysis (PCA). Although 
all three approaches are primarily in accord with each other concerning 
the significance of the selected indicators, we observe that they differ 
considerably in measuring the extent of these indicators’ impact on the 
overall resilience of a system. On one hand, the reliance of the 
statistically-driven models on the statistical homogeneity of the data and 
correlations among the indicators to inform weights limit their extent 
and spread. On the other hand, the DFA approach provides higher de
grees of freedom and does not synthesize any correlations across the 
data set. Moreover, the latitude of incorporating compensatory relations 
in this approach provides an additional advantage to establishing more 
accurate mapping across indicators. 

Although the proposed approach is demonstrated in the context of 
OSTDS, it can be generalized to other infrastructure systems subject to 
varying risks. An essential precondition is a clear understanding of the 
system, its various failure modes, and operating requirements. Such 
knowledge will help establish the premise on which the resilience- 
critical indicators are identified and the potential causality relations 
between the indicators and resilience. As a limitation, this methodology 
could become intricate with extensively complex systems. Under such 
settings, more aggregation layers may be needed to capture the complex 
structure, resulting in tractability challenges. 

The proposed metric integrates system characteristics, environ
mental factors, and social factors to assess the system’s resilience in 
resisting, adapting to, and recovering from disruptions. As a multi- 
dimensional measure, our resilience index can be a practical tool for 
decision-making, as it maps the relationships between adaptation de
cisions and the factors that contribute to resilience. Our transformation 
and modeling approaches address the challenge of incorporating resil
ience into quantitative and systematic decision-making processes. For 
future work, we intend to utilize our framework to develop compre
hensive decision-making models and solution algorithms. These models 

Fig. A1. CLD illustrating the mapping between OSTD system failure modes and the potential root causes.  
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will consider a multi-period planning horizon and account for uncer
tainty in sea-level projections while maintaining a focus on the OSTDS. 
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Appendix A. Causal Loorp Diagram (CLD) for The Exploratory 
Analysis 

Figure A1 depicts the CLD utilized in our deductive fault analysis. 
The arrows in the diagram denote the direction of influence and + ∕ 
− signs indicate whether the influence is upward or downward respec
tively. The deduced key root causes are identified and highlighted in red. 
These root causes serve as the basis for deriving leading indicators, 
which are utilized in the development of the proposed resilience index. 
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