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1 Introduction

1.1 Deformation of theories with local symmetries and BRST symmetry

There are two main issues one may address in perturbative quantum theories of gravita-
tional fields:

1. What kind of UV divergences are predicted for the loop computations using original
undeformed classical theory on the basis of symmetries of this theory?
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2. Is it possible to deform the theory consistently by adding the higher derivative terms
which absorb UV divergences and introduce new couplings beyond the gravitational
coupling κ2 = 1

M2
P l
?

“Consistently” here has a meaning that local symmetries might be deformed but the
action has to be invariant under deformed local symmetries. Also in supergravity the
global E7-type duality symmetries might be deformed, but the deformed action needs to
be duality invariant on shell, to support unitarity.

In pure gravity the answer to both of these problems is known. A 2-loop UV divergence
R3 was predicted in [1] and confirmed by computations in [2]. The 1-loop UV divergence
in the form of a topological Gauss-Bonnet term was revealed by the computation in [3].
At present, a pure gravity action, which provides finite amplitudes up to 2-loop order can
be viewed as a deformed Einstein-Hilbert action. For example, in [4] we find

Lgravity
deformed = − 2

κ2

√
|g|R+ CGB

(4π)2

√
|g|R∗µνρσR∗µνρσ+ CR3

(4π)2

(
κ

2

)2√
|g|RαβµνRµνρσRρσαβ+. . . .

(1.1)
Here the new couplings absorb the known UV divergences

CGB =
( 53

90ε + cGB(µ)
)
µ−2ε , CR3 =

( 209
1440ε + cR3(µ)

)
µ−4ε. (1.2)

The renormalized couplings cGB(µ) and cR3(µ) are new parameters describing pure gravity.
Each of the 3 parts of the action (1.1) is separately invariant under the off-shell gauge
symmetry

δgµν = ∇µξν +∇νξµ . (1.3)

The gauge symmetry of the classical theory is not deformed by quantum corrections re-
quiring the deformation of the Einstein-Hilbert action.

The prediction of the RαβµνRµνρσRρσαβ 2-loop UV divergence in [1] was based on a
covariant formalism where the simplest form of Ward Identities is valid. In such case the UV
divergence can be predicted to form an invariant under the gauge symmetry of the classical
action. An analogous conclusion follows from BRST symmetry defining perturbative QFT
in a consistent gauge theory [5, 6]. The first step in BRST construction is the existence
of the local action, classical or deformed, invariant under local symmetry, classical or
deformed. Namely, iff the deformed by a counterterm (CT) action

Sdef = Scl + λSCT (1.4)

has a local (classical or deformed) gauge symmetry, we can call it Sinv. In such case one
can add to this action some gauge fixing terms, as well as the required ghosts action,

SBRST = Sinv + Sgauge-fixing + Sghosts (1.5)

and prove the symmetry under BRST transformation QBRST of the total action SBRST

which controls quantum corrections

QBRST SBRST = 0 , Q2
BRST = 0. (1.6)
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When the deformation terms break some of the local symmetries of the classical action,
so that Sdef is not Sinv, the BRST construction based on Sdef becomes inconsistent. The
proof of gauge symmetry and unitarity of the perturbative gauge theory becomes invalid,
like in theories with gauge anomalies.

In gravity, the action (1.1) is invariant under the gauge symmetry (1.3), one can
construct a BRST action so that quantum corrections control the loop computations in a
consistent perturbative QFT.

In d = 4,N = 8 supergravity [7, 8], as well as in all pure (no matter) N -extended
supergravities, the possible UV divergences were predicted in the past [9, 10] on the basis
of a Lorentz-covariant on shell superspace geometry [11, 12]. N = 8 supergravity was also
studied in the light-cone off shell superspace [13] where E7(7) symmetry commutes with
the super-Poincaré group.

The issue of UV divergences was consequently revisited in N = 8 light-cone superspace
in [14, 15]. It was found that all candidate CT’ s proposed in [9, 10] are ruled out since
they are not available in the off-shell light-cone superspace.

However, at smaller N = 5, 6, where loop computations are also possible, the argu-
ments in [14, 15] are difficult to apply. Here and hereafter, we will focus only on d = 4
unless otherwise noted. The light-cone superspace is complicated even in maximal super-
gravity [13], and in N = 5, 6 it was not developed. The Lorentz-covariant superspace [12],
as well as supergravity actions at N = 5, 6, are better known from the consistent trunca-
tion of maximal supergravity. Therefore to study all N = 5, 6, 8 supergravities and their
UV divergences we proceed with point 2 above, where candidate CTs are known from the
on-shell Lorentz-covariant superspace [9, 10].

The analysis of UV divergences in N = 5, 6, 8 was already performed in [16–19] using
manifest E7-type symmetry or properties of the unitary conformal supermultiplets. Under
assumptions that there are no supersymmetry anomalies, it was predicted that these the-
ories will be UV finite. Here we will study the effect of UV divergences on nonlinear local
supersymmetry directly.

We will ask a question: can we expect a deformation of N = 5, 6, 8 supergravities of
the kind we see in pure gravity? Once, at some loop order, UV divergence is detected, we
add the relevant expression to the original action and deform it: this term will absorb UV
divergence and provide additional couplings with higher derivatives, as in eqs. (1.1), (1.2)
in pure gravity.

The goal of this paper to establish the symmetries of the deformed N = 5, 6, 8 su-
pergravities, local supersymmetry, local H-symmetry and E7 duality, and to check the
consistency of such a deformation.

In the past, the role of a local nonlinear supersymmetry and of a local H symmetry in
d = 4 supergravity was not emphasized enough, although both are known to be features of
geometric CT’s existing at L ≥ Lcr = N , and both are broken at non-geometric linearized
CT’s at L < Lcr = N [9, 10].

The advantage of using local H-symmetry in d = 4 supergravity is that E7 symmetry
is independent on local H-symmetry. Meanwhile in the unitary gauge, the manifest rigid
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H-symmetry involves an additional compensating H-symmetry transformation preserving
the unitary gauge, it is a mix of E7 with H, see details in [20].

In a recent review paper [21] the list of three cases of enhanced cancellation of a UV
divergence at 1) N = 5, L = 4, d = 4, 2) N = 4, L = 3, d = 4, 3) N = 4, L =
2, d = 5 was given. We will show here that all these cases are explained by nonlinear local
supersymmetry. The first case is just below in section 1.2, the case of N = 4, L = 3, d = 4
supergravity in appendix A, since the main part of this paper is about N ≥ 5, d = 4 and
the one in half-maximal supergravity in d = 5 is in a separate work [22].

1.2 Enhanced cancellation of UV divergence in d = 4,N = 5, L = 4

The reason to discuss this case in the Introduction is the fact that during almost a decade
its only explanation was given in [18, 19]. But this explanation was not specific for d =
4,N = 5, L = 4, it was a prediction of UV finiteness at all loops based on duality symmetry,
assuming unbroken supersymmetry. In this paper we focus on predictions from nonlinear
local supersymmetry. In this spirit we provide here a simple explanation of cancellation of
UV divergences in d = 4, N = 5, L = 4. It does not extend to L > 4 directly, higher loops
need an additional study.

In the UV finite case of N = 5, L = 4 [23] the relevant harmonic CT was claimed to
be nonlinearly supersymmetric [24]. We will explain here why only a linearized version of
it can be justified, and that the nonlinear CT is not available.

The proof of consistency of the harmonic superspace (N , p, q) in [25] was given for
Yang-Mills theory and for N = 1, 2, 3, 4 conformal supergravity. Conformal constraints of
N ≥ 5 Poincaré supergravity in the harmonic superspace were established in [25]. It was
suggested there that “in the case of Poincaré supergravity one needs to find the geometrical
formulation of the additional constraints”. The purpose of these additional constraints is
to break the super Weyl invariance down to a super Poincaré invariance.

However, these additional constraints were not found during the last 3 decades since
this suggestion was made. And since N = 5 Poincaré supergravity breaks conformal
symmetry at the nonlinear level1 the consistency of the nonlinear harmonic superspace of
N = 5 Poincaré supergravity remains unproven. The linearized CT is

κ6
∫
d4x (d16θ)1

5
(
χ̄1rs
β̇
χα 5rs

)2
∼ κ6

∫
d4x d20θ

(
WijklW̄

ijkl
)2
, r, s = 2, 3, 4 (1.7)

The CT is linearly supersymmetric since the subspace of the superspace is available at the
linear level, also the superfield Wijkl of dimension zero exists only at the linear level. At

1See for example [17, 19] where it is explained that linearized supergravity is based on representations of
SU(2, 2|N ) superconformal algebra. However nonlinear interactions of N ≥ 5 supergravity break conformal
supersymmetry algebra SU(2, 2|N ) down to N ≥ 5 Poincaré superalgebra. These require the additional
constraints in the harmonic superspace which were discussed in [25] but not delivered since. Even in
case of N = 4 where superconformal theory is available, see for example [26] and references therein, the
relevant harmonic superspace constraint breaking the superconformal theory to N = 4 super-Poincaré is
not available. These additional constraints in a superspace without harmonic variables are known, they
were presented in details in [12].
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the nonlinear level both forms of this CT are non-geometric, in agreement with [9, 10].
This means that they break nonlinear supersymmetry.

Thus, there is no CT generalizing the one in (1.7) to the nonlinear version with unbro-
ken local nonlinear supersymmetry and local U(5)H-symmetry. This explains the finiteness
of N = 5, L = 4 [23]. Comparative to arguments in [18, 19], the argument above is simple
(although it does not cover the cases with L ≥ N , which are covered in [18, 19] and will
be studied later in this paper).

We stress here that simple explanation of the cancellation of 82 diagrams observed
in [23] is that the relevant CT in (1.7) breaks nonlinear local supersymmetry, although is
preserves linear supersymmetry.

From the point of view of amplitudes, the cancellation of these 82 diagrams is surpris-
ing, it was given a name enhanced ultraviolet cancellations in [23]. In amplitudes there is
a manifest linear supersymmetry which controls the computations. But nonlinear super-
symmetry actually controlls the computations behind the scenes and leads to cancellation
of a UV divergence at N = 5, L = 4.

It remains to be seen what happens in computations in N = 5, L = 5. We will study
here the theoretical predictions based on nonlinear local supersymmetry.

1.3 A short summary and assumptions of this work

We would like to clarify our statement as a short summary of this paper ahead of detailed
discussions. It will be also a set of important facts/assumptions we are using here to derive
our main result.

1. We assume that N ≥ 5, d = 4 supergravities have a classical action which can be
deformed by a CT, as we show in pure gravity in (1.1) where in addition to Einstein-
Hilbert term we also have R3 term which allows to eliminate the UV divergence of
the second loop. We assume that the total action is Lorentz invariant.

2. We use the fact that (for example, in N = 8) the classical action [7, 8] has off
shell local symmetries: Lorentz symmetry, a nonlinear local supersymmetry and local
SU(8)-symmetry, and on shell global E7(7) symmetry. Before local SU(8)-symmetry
is gauge-fixed, E7(7) and local SU(8)-symmetry are linearly realized and independent.
After local SU(8)-symmetry is gauge-fixed, in the unitary gauge, there is a remaining
rigid SU(8)-symmetry, a diagonal subgroup of E7(7)×SU(8).

3. There is a significant difference between the linear supersymmetry in superampli-
tudes/supergravity and local nonlinear supersymmetry in supergravity.2 In the linear
supersymmetry there are certain constraints which permit the existence of the sub-
spaces of the superspace and superfields depending only on Grassmann coordinates

2We are grateful to R. Roiban for a suggestion to clarify this issue with an understanding that amplitude
computations manifestly preserve linearized supersymmetry. The reason for enhanced cancellation in this
context is that linearized CT’s in d = 4 at L ≥ N can be promoted to nonlinear level, whereas the ones at
L < N cannot. N = 5, L = 4 is an example of a linear CT which has no nonlinear generalization, which is
the reason for the mysterious cancellation of the sum of 82 diagrams in [23].

– 5 –



J
H
E
P
0
6
(
2
0
2
3
)
1
5
6

of the subspace. However, in the nonlinear case the integrability condition for these
constraints is not valid, as one can see via a local supersymmetry algebra [11, 12].

For example, a linearized superfield chirality condition Dα̇ iX = 0 has an integrability
requirement breaking chirality condition, in general, for N ≥ 3 where spin 1/2 fields
are present in geometry and induce the torsion

{Dα̇ i, Dβ̇ j}X = T γ
α̇β̇ ijk

Dk
γ X + . . . T γ

α̇β̇ ijk
= εα̇β̇ χ

γ
ijk. (1.8)

It follows that at the nonlinear level a chiral superfield must be a constant: it is chiral,
meaning that it is covariantly θ̄-independent, but it is required to be also covariantly
θ-independent, Dk

γ X = 0, due to torsion in the geometry. It follows that it cannot
depend on space-time coordinates x due to {Di

α, Dβ̇j}X = δij∂αβ̇X + · · · = 0

Dα̇ iX = 0 + integrability ⇒ Dk
γ X = 0 ⇒ X = const . (1.9)

Similarly, if we study the algebra of nonlinear supersymmetry acting on an SU(8)
vector, we find that two local supersymmetry transformations generate a local SU(8)
rotation on an SU(8) vector Xk

{Di
(α, D

j
β)}X

k = δ
(i
l N

j)k
αβ X

l + . . . (1.10)

where the SU(8) curvature N ij
αβ ,

N ij
αβ = − 1

72ε
ijklmpqrχαklmχβpqr , (1.11)

is quadratic in fermions. This term is absent in the linear supersymmetry algebra.
In N = 5, 6 analogous expressions for U(5) and U(6) H-symmetry curvatures are
obtained by truncation. The presence of these and other torsions and curvatures
in the geometry break at the nonlinear level the constraints which prove the linear
supersymmetry of the linearized CT’s.

Now back to amplitudes: in amplitudes the relevant on shell superfields (sometimes
called super-wave function [27]) in d = 4 depend on N Grassmann variables η’s,
see for example [28, 29]. There are 2N supercharges, they depend on N of η’s and
N of

(
∂
∂η

)
’s for each particle in the process. In [30] the most advanced analysis of

NKMHV n-point superamplitudes is performed. The manifest linear supersymme-
try relates various n-point amplitudes with fixed n to each other, the superamplitude
comes with the factor δ2N (Q̃). This is an important difference with a nonlinear super-
symmetry which relates amplitudes with different number of points n to each other.

Nonlinear supersymmetry requires the relevant 4N Grassmann coordinates θiα, θ̄α̇ i,
α, α̇ = 1, 2, i = 1, . . . ,N of the superspace [11, 12], universal for all particles. The
geometric superfields are nonlinear in space-time fields, being related to torsions and
curvatures of the superspace. The simplest analogy is in general relativity where
the curvature Rµνλδ(h) depends on gravitational fields hµν nonlinearly. For example,
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the third component of the superfield χαijk(x, θ) which has a spin 1/2 spinor in the
first component, is a Weyl spinor Cαβγδ(x). Weyl spinor is related to a nonlinear
Riemann-Christoffel tensor and

Di
αD

j
βD

k
γ χδ ijk(x, θ)|θ=0 = Cαβγδ(x). (1.12)

The η-super-wave function-superfields in amplitudes describe a manifest linear su-
persymmetry of particle states, it is kind of 1/2 BPS state for MHV amplitudes. In
nonlinear superspace geometry the superfields depend on 4N θ′s and there is no 1/2
or any other fraction subspace of the whole 4N -dimensional superspace. Therefore
predictions of the nonlinear supersymmetry work “behind the scenes” in amplitude
computations.

4. We will show that it is impossible to deform d = 4 N ≥ 5 supergravity action while
keeping all the symmetries that the classical action has, local off shell and global
on shell. Namely the deformation of the action leads to inconsistencies with either
local Poincarè supersymmetry or E7. Moreover, the breaking of E7 before local H-
symmetry is gauge-fixed leads to breaking of local supersymmetry in the unitary
gauge. So, in all cases we find a breaking of local nonlinear supersymmetry which is
caused by UV divergence.

2 E7, local H symmetries, and unitary gauge in N = 5, 6, 8

N = 5, 6, 8 supergravities3 have global duality symmetries, in addition to local symmetries,
which complicates the analysis of UV divergences. These are symmetries defined by the
groups

G : SU(1, 5), SO∗(12), E7(7) (2.1)

in N = 5, 6, 8, respectively. These are called groups of type E7, see for example [31] and
references therein. The local symmetries, in addition to local supersymmetry, include local
H-symmetries

H : U(5), U(6), SU(8) (2.2)

in N = 5, 6, 8, respectively. The scalars in these theories before local H-symmetries are
gauge-fixed are in the fundamental representation of G. When local H-symmetries are
gauge-fixed only physical scalars remain. These physical scalars represent the coordinates
of the coset space GH . For example, in N = 8 there are 133 scalars before local SU(8) is
gauge-fixed, and only 70 physical scalars in the unitary gauge, the 63 local parameters of
SU(8) being used to remove the unphysical scalars.

The vector fields transform as doublets under E7, however, only half of them are phys-
ical vectors. The relevant constraint on graviphotons takes care of the unitarity of the
theory, making half of the doublets to be physical and independent, the second half depen-
dent on physical vectors. For example, in N = 8 there are 56 vectors in the doublet but

3The review of N ≥ 5 supergravities with the proof of absence of U(1) anomalous amplitudes can be
found in [29].
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only 28 of them are physical. Therefore E7 duality and the related self-duality constraint
are required for the unitarity of the theory.

A constraint which makes half of supergravity vectors physical was introduced in [7, 8].
It was given a name twisted nonlinear self-duality constraint and studied in [32–42]. Thus
when looking at the deformation of the action caused by potential UV divergences we
need to preserve local supersymmetry, local H-symmetry and E7 symmetry. All these
symmetries may require a deformation consistent with a deformed action.

The E7(7) duality in N = 8 was discovered and studied in [7, 8] where 133 scalars are
present before the gauge-fixing of a local SU(8) symmetry. The gauge-fixing of local SU(8)
was also performed in [7, 8, 20] and the unitary gauge with 70 physical scalars was described.

A general case of dualities in d = 4 supergravities was introduced by Gaillard and
Zumino (GZ) in [33]. Standard global symmetries require a Noether current conservation,
but in case of GZ duality [33] the usual Noether procedure is not applicable since duality
acts on field strength and its dual rather than on vector fields. Therefore this duality
symmetry is associated with the Noether-Gaillard-Zumino (NGZ) current conservation. In
N = 8 case this NGZ conserved current was presented in [20].

Studies of duality symmetries were also performed in a unitary gauge, where local H-
symmetries of supergravities were gauge-fixed [7, 8, 20], or using a symplectic formalism [34]
developed in the bosonic theory without fermions. In both cases only physical scalars are
present in the theory [33–46], they form coordinates of the coset space GH .

The approach to deformation of N ≥ 5 supergravity developed in [39, 42] was revisited
in [16–19] from the point of view of special properties of E7-type groups and supersymmetry.
It was shown there that in absence of supersymmetry anomalies, duality symmetry protects
N ≥ 5 supergravities from UV divergences. In [18] the analysis was based on manifest
E7 symmetry whereas that in [19] was based on the properties of the unitary conformal
supermultiplets of SU(2, 2|N + n).

Here we will first recall that at the loop order L < Lcr = N for N = 5, 6, 8 there are
no geometric superinvariants4 in whole (x, θ) superspace in d = 4. This means that a UV
divergence at L < Lcr = N breaks nonlinear local supersymmetry and local H symmetry. If
such terms are added to the classical action, they will break nonlinear local supersymmetry
and local H symmetry of the classical theory. It means that the classical action deformed
by L < Lcr = N CT’s is BRST inconsistent since deformed action is not invariant under
local symmetries of the classical action.

We will also study the deformation of the local supersymmetry transformation caused
by potential UV divergences supported by geometric non-linearly supersymmetric and H
locally invariant candidate CTs at L ≥ N . We will look at supersymmetry transformation
of fermions before gauge-fixing where fermions transform under local H-symmetry, they are
neutral under E7, and these two symmetries are independent and linearly realized.

4In N = 4 the situation is different since the version of the theory with unbroken local U(4) symmetry
has also a local superconformal symmetry, see [26] and references therein. Local superconformal symmetry
in N = 5, 6, 8 supergravities is broken at the nonlinear level.
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Fermions before gauge-fixing local H-symmetry transform under supersymmetry into
an E7 invariant and H-covariant graviphoton F , for example

δSχijk = Fijεk + . . . . (2.3)

In presence of the CT deforming the action the graviphoton is deformed into Fdef
ij

Fdef
ij = F (cl)

ij + λF̂ij . (2.4)

This requires a deformation of supersymmetry transformation on fermions

δdef
S χijk = Fdef

ij εk + · · · = F (cl)
ij εk + λF̂ijεk + · · · . (2.5)

to preserve the invariance of the fermions on E7 symmetry and covariance on H-symmetry
before gauge-fixing. We will find out that the deformed action (1.4) is not invariant under
deformed supersymmetry (2.5).

If, instead, we sacrifice E7 and do not deform supersymmetry transformation on
fermions, we will find that the breaking of E7 before gauge-fixing feedbacks into break-
ing local nonlinear supersymmetry in the unitary gauge.

3 Symmetries of de Wit-Nicolai (dWN) N = 8 supergravity

3.1 Local SU(8) and on shell E7(7) symmetry

The classical action [8] with a local SU(8) symmetry before this symmetry is gauge fixed
depends on 133 scalars represented by a 56-bein

V =
(
uij

IJ vijKL
vklIJ uklKL

)
(3.1)

and its inverse
V−1 =

(
uijIJ −vijKL

−vklIJ ukl
KL

)
. (3.2)

We summarize some identities for these matrices in appendix B. The capital indices I, J
refer to E7(7) and small ones ij refer to SU(8). The 56-bein transforms under a local SU(8)
symmetry U(x) and a global E7(7) symmetry E as follows

V(x)→ U(x)V(x)E−1. (3.3)

These two symmetries are linearly realized and independent. Here E ∈ E7(7) is in the
fundamental 56-dimensional representation where

E = exp
(

ΛIJKL ΣIJPQ

ΣMNKL ΛMN
PQ

)
. (3.4)

Duality symmetry in (3.4) consists of a diagonal transformation ΛIJKL = δ[I
KΛJ ]

L where
ΛJL are the generators of the SU(8) maximal subgroup of E7(7) with 63 parameters. The
off-diagonal part is self-dual ΣIJPQ = ± 1

4!εIJPQMNKLΣMNKL and has 70 real parameters.
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The total Lagrangian in eq. (3.18) of [8] consists of two parts. One is manifestly
E7(7)×SU(8) invariant, where E7(7) is a global symmetry and SU(8) is a local symmetry.
The other part of the action L′ + L′′ is not manifestly E7(7)×SU(8) invariant. It depends
on vectors, scalars and fermions and takes 3 lines in eq. (3.18) in [8] (lines 3, 4, 5).

The 28 abelian vector field strength are defined as

F IJµν = ∂µA
IJ
ν − ∂νAIJµ = F+

µνIJ + F−IJµν . (3.5)

The dual vector field strength is

G+µν
IJ ≡ −4

e

∂L
δF+

µνIJ

. (3.6)

The same Lagrangian L′ + L′′ takes the following form in these notations

L′ + L′′ = −1
8eF

+
µνIJ G

+µν
IJ −

1
4eF

+
µνij O

+µνij + h.c. . (3.7)

Here the fermion bilinear term is

O+ij
µν = ±

[ 1
144
√

2εijklmnpqχ̄klmσµνχnpq −
1
2(ψ̄λkσµνγλχijk −

√
2ψ̄iργ[ρσµνγ

σ]ψjσ)
]
. (3.8)

The first term is bilinear in gaugino, the second one has gaugino and a gravitino, the third
one is bilinear in gravitino.

The graviphoton here is related to F+
µνKL as [8]

uijIJF+
µνij = SIJ,KLF+

µνKL + (SIJ,KL + uijIJvijKL)O+KL
µν , (3.9)

where SIJ,KL is defined in eq. (B.8). We will review the derivation of this relation below.
Now the first term in the action in (3.7) together with its h.c. vanishes on shell since

upon partial integration it is of the form

FG̃→ Aν∂µG̃
µν |on shell = 0 (3.10)

and the vector equation of motion with account of (3.6) is

∂µG̃
µν = 0 . (3.11)

This equation of motion pairs with the Bianchi Identity for the abelian vector field strength

∂µF̃
µν = 0 . (3.12)

E7-type symmetry flips one into another. The second term in (3.7) depends on the
graviphoton F+

µνij , and on spinor bilinear O+µνij which are both SU(8) tensors and E7
invariants.

To conclude, the 3-line part of the action in [8] can be brought to a form (3.7) which,
on shell with account of eq. (3.11), has manifest local SU(8) symmetry and global E7(7) .
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3.2 Manifest E7(7) and twisted nonlinear self-duality constraint

The E7(7) doublet
(
F+

1µνIJ
F+IJ

2µν

)
depends on a double set of vectors, 56 in this case, which

is a minimal representation for the symplectic representation in E7(7) . Note however that
there are only 28 physical vectors in N = 8 supergravity. The doublet is constructed in [8]
from a combination of the field strength F and its dual G, where G defined in eq. (3.6)

F+
1µνIJ ≡

1
2(G+µν

IJ + F+µν
IJ ), (3.13)

F+IJ
2µν ≡

1
2(G+µν

IJ − F
+µν
IJ ). (3.14)

The E7(7) doublet
(
F+

1µνIJ
F+IJ

2µν

)
depends on 56 independent vectors which is necessary to

have manifest E7(7) . Under E7(7) the doublet transforms as(
F+

1µνIJ
F+IJ

2µν

)
→ E

(
F+

1µνIJ
F+IJ

2µν

)
. (3.15)

We define the SU(8) covariant graviphoton and F+
µνij and the SU(8) covariant tensor T +ij

µν(
F+
µνij

T +ij
µν

)
≡ V

(
F+

1
F+

2

)
=
(
uij

IJ vijKL
vijIJ uijKL

)(
F+

1µνIJ
F+KL

2µν

)
. (3.16)

All capital indices in the r.h.s. of eq. (3.16) are contracted between the 56-bein V in eq. (3.1)

and E7 doublet From their definition and E7(7) properties of V and the doublet
(
F+

1µνIJ
F+IJ

2µν

)
it is clear that the l.h.s. of eq. (3.16) are E7(7) invariant. Thus, both the graviphoton
and the tensor T +ij

µν in eq. (3.16) are manifestly invariant under E7(7) symmetry according
to (3.3) and (3.15).

In this manifestly E7 invariant form the constraint on vectors which makes only half of
them physical and the other half dependent on physical vectors and scalars takes the form

T +ij
µν = Oijµν , (3.17)

or equivalently
1
2(I − Ω)V

(
F+

1µν
F+

2µν

)
=
(

0
O+ij
µν

)
. (3.18)

Here the 56-dimensional Ω is
Ω =

(
I 0
0 −I

)
. (3.19)

We call eq. (3.17) the twisted self-duality constraint. Let us see how eq. (3.17) reduces
the number of degrees of freedom: equation. (3.17) is explicitly given by

2O+ij = (vijIJ + uijIJ)G+
IJ + (vijIJ − uijIJ)F+IJ . (3.20)
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Note that here and hereafter we omit the Lorentz indices. We need to solve it with respect
to the dual field strength G+

IJ , which yields

G+
IJ = (vijIJ + uijIJ)−1

[
(uijKL − vijKL)F+KL + 2O+ij

]
=
[
(2S − 1)IJ,KLF+KL + 2SIJ,KLO+KL

]
, (3.21)

where O+ij
µν ≡ uijIJO+IJ

µν and we have used some identities in appendix A. This result
corresponds to (2.4) of [8]. One can rewrite graviphoton F+

ij as

F+(cl)
ij = 1

2(uijIJ + vijIJ)G+
IJ + 1

2(uijIJ − vijIJ)F+
IJ

= 1
2(uijIJ + vijIJ)

[
2SIJ,KLF+

KL − F
+
IJ + 2SIJ,KLO+

KL

]
+ 1

2(uijIJ − vijIJ)F+
IJ

= (uijIJ + vijIJ)SIJ,KLF+
KL − vijIJF

+
IJ + (uijIJ + vijIJ)SIJ,KLO+

KL

= (Mij,klu
kl
KL − vijKL)F+

KL +Mij,klO+kl, (3.22)

where
Mij,kl ≡ (uijIJ + vijIJ)(uklIJ + vklIJ)−1. (3.23)

The twisted self-duality constraint (3.17) reduces the number of degrees of freedom in a
manifestly E7(7) invariant way.

In conclusion, the classical action of N = 8 supergravity in the form (3.7) has the
following properties. The first term is

FG̃ (3.24)

and it vanishes on shell when classical field equations are satisfied. The second term involves
a graviphoton coupled to fermion bilinears

Lcl = −1
4eF

+
µνij O

+µνij + h.c.+ . . . . (3.25)

Here . . . include vector independent terms, which are manifestly E7(7) and local SU(8)
invariant.

Once the CT is added to the classical action, equations of motion are deformed. We
will study this below for N ≥ 5 supergravities in general, and provide details in N = 8 case.

4 dWN supergravity deformation

The deformation of Lagrangian due to the presence of a new local CT must be consistent
with the duality, and therefore the dual field strength is affected by the presence of the
new term in the action so that G→ Gdef

G+ def
KL = −4δ(L

cl + λLCT)
δF+

µνKL

. (4.1)

In order to keep manifest E7(7) and SU(8) invariance, instead of starting from the action,
we deform the twisted duality condition (3.17) and find a consistent dual field strength
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and a corresponding action, which is proposed in [39]. Here we generalize the previous
results [39, 42] to include fermionic bilinear terms: we consider the deformed twisted self-
duality constraint

T +ij
µν + λX ij

klF̄−klµν = O+ij
µν (4.2)

where Xij
kl is an H-covariant differential operator depending on other fields such as scalars

and gravitons. Since we may interpret this condition as a shift of O+ij
def = O+ij−λX ij

klF̄−kl,
one can formally rewrite (4.2) as

F+
ij = F+(cl)

ij − λMij,klX
kl
mnF̄−mn (4.3)

or equivalently
F̄−ij = F̄−ij(cl) − λM̄ij,klX̄kl

mnF+
mn, (4.4)

where the classical graviphoton is defined in (3.22) and we recall that Mij,kl ≡ (uijIJ +
vijIJ)(uklIJ + vklIJ)−1. One can substitute the second equation to the first, which yields

F+
ij =F+(cl)

ij −λMij,klX
kl
mn(F̄−mn(cl)−λM̄mn,pqX̄pq

rsF+
rs)

⇔ (1−λ2MXM̄X̄)ijklF+
kl =F+(cl)

ij +λMij,klX
kl
mnF̄−mn(cl) (4.5)

⇔F+
kl =

(
(1−λ2MXM̄X̄)−1

)
kl
ij(F+(cl)

kl +λMkl,mnX
mn

pqF̄−pq(cl)).

This is a formal all-order solution to the deformed twisted self-duality condition. We
emphasize that in the derivation of the deformed graviphoton, we have not imposed gauge
fixing conditions on local SU(N ) and therefore the result is fully consistent with both G
and H. One can further solve this relation in G+

IJ , which fixes the dual field strength as
the classical supergravity case.

Formal expansion in λ yields the graviphoton, and up to O(λ) we find

F+
ij = F+(cl)

ij + λMij,klX
kl
mnF̄−mn(cl) +O(λ2). (4.6)

Solving this equation with respect to G+def
KL and integrating the both sides of (4.1) with

respect to F+
KL perturbatively yields the corresponding duality invariant action, and one

can check that the lowest order correction is given by

λLCT = −1
2λF

+
ijX

ij
klF̄−kl +O(λ2) (4.7)

as we expected. However, the constructed action in general has infinite numbers of higher
order terms, which is necessary to keep E7(7) to all orders. This is a generalization of the
purely bosonic deformation in [38–40, 42], and we also emphasize that we have not gauge
fixed local H-symmetry unlike our previous construction using a symplectic formalism
in [34].

We would like to emphasize the most crucial point of our result (4.6): the on-shell
deformed graviphoton has a term including Mij,kl which looks E7(7) invariant but actually
is not. Thus, the deformation of the graviphoton makes the E7(7) invariance not manifest.
Nevertheless, it is still consistent with E7(7) if we include all order corrections by construc-
tion. However, it is not clear if such deformation is consistent with supersymmetry, and we
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will show that it is unlikely, from which we will conclude that despite duality invariant con-
struction of the deformation, the resultant action leads to a problem with supersymmtry.

Throughout this paper, we focus on the deformed twisted self-duality constraint (4.2).
One may wonder whether a more general constraint is available. We expect that it is
possible but the generalization would not change our conclusion: we note that λ is a cou-
pling constant which is some powers of κ, and we could add more terms to the constraint
such as λ(F+ρη

kl T +kl
ρη )nT +ij

µν if n is appropriately chosen, namely, if the mass dimension of
λ(F+ρη

kl T +kl
ρη )nT +ij

µν matches that of λX ij
klF̄−klµν . Such terms would contribute to higher

point interactions and we will not discuss it here as we are interested in a minimal deforma-
tion.5 As far as we have considered, we have not found any term that (1) may change our
discussion below, (2) has appropriate SU(8) indices and (3) is manifestly E7(7) invariant.
Therefore, we believe that the following discussion would not be changed by adding more
terms to the twisted self-duality constraint.

5 Deformation of N ≥ 5

5.1 Candidate CT’s

There are three approaches to candidate CT’s we would like to describe here shortly.

1. The candidate CT’s for the possible UV divergences in extended supergravities were
predicted in the past [9, 10] on the basis of a Lorentz-covariant on shell superspace
geometry [11, 12] with 4 space-time coordinates x and 4N Grassmann coordinates
θ. These were either linearized CT’s or full nonlinear CT’s, the examples will be
presented below. The nonlinear CT’s are known to have manifest local nonlinear
supersymmetry and duality symmetry under condition that classical equations of
motion are satisfied.

Linearized CT’s break nonlinear supersymmetry and duality, some of them can be
promoted to full nonlinear status, some cannot. The difference is defined by di-
mension: in d = 4 the ones for loop order L ≤ N − 1 cannot be promoted to the
supersymmetric terms at the nonlinear level, whereas the ones for L ≥ N can be.

2. The candidate CT’s in Lorentz-covariant on shell harmonic superspace geometry, see
for example [24], are linearized CT’s depending on additional harmonic coordinates.
At the linearized level they can be written also without harmonic coordinates as
integrals over subspace of the superspace

∫
d4N (1− 1

k
)θ, these are called 1

k BPS invari-
ants. We have argued in section 1.2 that nonlinear harmonic superspace describing
nonlinear super-Poincaré supergravities is inconsistent since the relevant constraints
promised in [25] is still missing.

3. Finally candidate CT’s were studied in the amplitude’s framework in [44–47]. In all
cases in these papers only linearized supersymmetry was used in combination with

5We expect that such deformation can also be solved at least perturbatively in λ.
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studies of a single soft scalar limit. In all cases in [45, 47] only part of nonlinear su-
persymmetry and duality was used, namely linearized supersymmetry and soft scalar
limits. This was the reason why in [45] the case of N = 8, L = 7 was left as incon-
clusive and the same in [47] where the case of N = 5, L = 4 was left as inconclusive.

By comparing these tree approaches to candidate CT’s we conclude that only in case 1.
we have a clear explanation of enhanced cancellation of N = 5, L = 4 UV divergence [23]
since the relevant candidate CT breaks nonlinear local supersymmetry.

We assume that UV divergences require the deformation of the action so that we add
the CT with the parameter λ

Sdef = Scl + λSCT
L≤N−1. (5.1)

In what follows we will use the short form of the superinvariants as integrals over a super-
space or its subspaces. Note that in our eqs. (5.2), (5.4), (5.5) below we show that the result
of θ-integration of these superinvariants can be computed and gives a space-time integral
with some dependence on space time curvature as well as other terms shown by a set of dots.

The reason to use a short form of the supersymmetric invariants becomes clear if one
looks at the 3-loop CT in N = 8 in eq. (6.8) in [46] written in components in linearized
approximation: it has 51 terms. This expression was obtained using amplitude methods.
But all these 51 terms are packaged in the linearized superinvariant in eq. (5.4) below, it
was first presented in [9].

5.2 Loop order L ≤ N − 1

It is known from [9, 10] that in d = 4 the whole superspace CT’s are available only starting
from Lcr = N

CTL=N = κ2(N−1)
∫
d4x d4N θ detE L(x, θ) = κ2(N−1)

∫
d4xD2(N−3)R4 + . . . (5.2)

where the superspace Lagrangian L(x, θ) has dimension 2, the smallest possible dimension
for a geometric Lagrangian. For example at N = 8 it is a quartic product of 4 geometric
superfields defining minimal dimension torsion shown in eq. (1.8).

L(x, θ)L=8 = χα ijk(x, θ)χαmnl(x, θ) χ̄
ijk
α̇ (x, θ) χ̄α̇mnl(x, θ) (5.3)

The first components of these superfields are spin 1/2 fermions. At smaller N a consis-
tent supersymmetric truncation of the maximal superspace [11] was performed in [12]. A
consistent truncation of the expression in (5.3) will provide the superfield Lagrangian for
smaller N . Here we integrate over the total superspace and the spinorial superfield χα ijk
associated with the superspace torsion is covariant under the local SU(8). The superspace
Lagrangian (5.3) quartic in spinorial superfields is invariant under local H-symmetry.

All candidate CT’s at L < Lcr are available only as integrals over a subspace of
the superspace: this is one way of reducing the dimension of d4N θ. Also the superfield
Lagrangian in linearized supersymmetry is not geometric anymore, it typically depends on
superfields starting with scalar fields and has dimension 0, instead of dimension 2 in (5.3).
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For example, the 3-loop N = 8 candidate CT is [9, 48]

CTL=3 = κ4
∫
d4x (d16θ)1234W

4
1234 = κ4

∫
d4xR4 + . . . . (5.4)

It is an integral over the half of the superspace and it depends on physical scalars only.
This linearly supersymmetric expression exist only in the unitary gauge where the local
SU(8) symmetry is gauge-fixed. In loops L = 4, 5, 6, 7 the linearized candidate CT’s are
also available, and they also require a unitary gauge and a subspace of the full superspace.
Therefore all local symmetries, in particular a nonlinear local supersymmetry is broken,
despite the CT’s like (5.4) have unbroken linear supersymmetry. It means, for example,
that the simplest explanation of the 3-loop UV finiteness of N = 8 supergravity [49] is the
fact that the CT (5.4) breaks nonlinear local supersymmetry.

If a UV divergence will show up at L < Lcr = N in N = 5, 6, 8 and the corresponding
CT will be added to the action to absorb the UV divergence, the relevant deformed theory
will be BRST inconsistent since a local nonlinear supersymmetry of the deformed action
will be broken. There is even no need to study the situation with duality in these cases,
breaking of local symmetries makes the deformed action BRST inconsistent.

So far in the loop computations in d = 4 we have not seen UV divergences at L <

Lcr = N . The loop computation in N = 5, L = 4 [23] suggest that so far there is no need to
deform N = 5 supergravity. But the loop computations of UV divergences at N = 6, L = 5
and N = 8, L = 7 are not available.

Thus we have to wait to see if d = 4 is special in this respect. Assuming that as in
N = 5 case the cases of N = 6, L = 5 and N = 8, L = 7 are also UV finite, we proceed to
the case L ≥ N for all of them.

5.3 Loop order L ≥ N

Starting from loop order L = N the geometric on shell CT’s are available [9, 10]. With a
symbolic insertion of space-time H covariant derivatives to increase the dimension we can
present them as follows

CTL≥N = κ2(L−1)
∫
d4x d4N θ detE L(x, θ) = κ2(L−1)

∫
d4xD2(L−3)R4 + . . . , (5.5)

L(x, θ) = χα ijk(x, θ)χαmnl(x, θ)D2(L−N )χ̄ijkα̇ (x, θ) χ̄α̇mnl(x, θ), (5.6)

where D in (5.2) denotes spacetime covariant derivative whereas that in (5.6) symbolically
denotes multiples of either spinor or spacetime covariant and H-covariant derivatives with
total dimension 2(L−N ). These expressions require that the classical equations of motion
are valid since the superspace in N ≥ 5 is available only on shell [11, 12].

At this point if the UV divergence takes place at any of L ≥ N , we deform the action
to absorb UV divergence, as

Sdef = Scl + λSCT
L≥N . (5.7)

We cannot easily dismiss these terms as in cases L ≤ N − 1 where the CT’s like the ones
in (1.7) and in (5.4) manifestly break non-linear supersymmetry and local H symmetry
and therefore do not present a consistent deformation. As long as classical equations of
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motion are satisfied the CT’s in eqs. (5.2), (5.6) appear to be legitimate candidates for the
deformation.

However, once we deform the classical action due to UV divergences, classical equations
of motion are not valid anymore, they acquire λ-corrections. Furthermore, it was already
realized that due to these corrections, E7 symmetry of the deformed action is broken and
higher order in λ deformations are required to restore E7 symmetry [38–40, 42]. The study
in [42] was performed for the bosonic action with local H-symmetry gauge-fixed.

Here we have generalized the results in [42] to the supergravity with local H-symmetry
and including fermions in section 4. We will study below the local supersymmetry of the
deformed action at the λ-order.

6 Deformation of supersymmetry due to UV divergences

6.1 Preserving E7

Consistency of supergravity with unbroken local H-symmetry requires that E7 and super-
symmetry commute modulo equations of motion. This is a consequence of the require-
ment that the classical or deformed action is invariant under local supersymmetry off shell
δSS = 0 and under E7 on shell δE7S|S,i=0 = 0,

[δE7, δS ]|S,i=0 = 0. (6.1)

If there is a UV divergence we add a CT to the classical action. Classical supersymmetry
transformation of the fermions depends on E7 invariant H-symmetry covariant graviphoton
F (cl).

δχcl
αijk = F (cl)

αβ[ijε
β
k] + . . . , (6.2)

where . . . are vector-independent dependent terms. But the classical graviphoton F (cl) is
not E7 invariant anymore. It is the deformed graviphoton

Fdef = F (cl) + λF̂ . (6.3)

which we defined in eqs. (4.3), (3.23), which is E7 invariant.
If we would like to preserve the E7 invariance of the fermions after supersymmetry

transformations, we need to deform the supersymmetry transformation of the fermions
due to UV divergence.

δdefχαijk = δclχαijk + δ̂χαijk (6.4)

where
δ̂χαijk = λF̂αβ[ijε

β
k], (6.5)

We use the λ-order CT in (4.7) in spinorial notation

LCT = Fαβij Xαβα̇β̇F̄
α̇β̇ij (6.6)

and we find that
F̂aβij = −Mij,mnXαβα̇β̇F̄

α̇β̇mn cl +O(λ). (6.7)
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Classical action is invariant under classical supersymmetry transformations, however,
when we deformed classical supersymmetry transformations for spin 1/2 fermions, we have
an extra term in the supersymmetry transformation of the action

δ̂S(cl) = δS(cl)

δχαijk
λF̂αβ[ijε

β
k] + h.c. . (6.8)

How to cancel this term? There are two possibilities, the first one is to deform some
supersymmetries of the classical fields in the classical action. The second one is to find out
if the λ order CT has an analogous term to cancel (6.8).

For our purpose here it is convenient to use the form of supersymmetry transformations
in [7] which is manifestly E7(7) covariant. In particular the supersymmetry of vectors is
presented in the form of the doublet using all 56 vectors, 28 vectors BMN

µ and 28 CµMN

in notations in [7] as shown in eq. (8.23) there. By checking all supersymmetry rules
in eqs. (8.21)–(8.25) we can see that only fermion rules in presence of CT deformation
break E7(7). All supersymmetry transformations of bosons do not change due to presence
of the CT in the action. Even the ones for vectors, due to a manifest doublet form of
supersymmetry rules in eq. (8.23) in [7], have a build-in dependence on presence of the CT.

The term we would like to cancel in eq. (6.8) is

δ̂SS
(cl) = δS(cl)

δχαijk
λMij,mnXαβα̇β̇F̄

α̇β̇mn εβk + h.c. . (6.9)

All expressions in (6.9) are E7(7) invariant with exception of Mij,kl. This expression,
Mij,kl = (uijIJ + vijIJ)(uklIJ + vklIJ)−1, is H-symmetry covariant but not E7(7) invariant.
Note that in both factors in Mij,kl we add terms which transform differently under E7
with indices I, J both up and down.

This means that trying to cancel the term (6.9) we need to deform some of the super-
symmetry transformations in classical action for the graviton, vectors or scalars by forcing
some additional λ corrections which are not E7(7) invariant. We have not found any such
transformations which would remove the problematic terms in (6.9).

Furthermore, it would mean that we have to add a term in (6.4) that is not invariant
under E7(7) in the transformation law of an E7(7) singlet field χαijk. But this would defeat
the purpose of restoring E7(7) on fermions which is lost in presence of the CT. We conclude
therefore that there is no consistent way to avoid supersymmetry breaking of the classical
action while preserving E7(7).

6.2 Breaking E7

Here we will argue that breaking E7 leads to the same consequences as deforming super-
symmetry on fermions with preservation of supersymmetry. So, we keep classical super-
symmetry transformations on fermions as in eq. (6.2) and the classical action is invariant
under local supersymmetry, but E7 is broken.

There are few aspects in this analysis. We study supersymmetry algebra with account
of nonlinear terms in supersymmetry transformations. We take into account the fact that
local H symmetry and rigid one in the unitary gauge differ by an E7 transformations. It
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means, the object which was covariant under local H symmetry might break a rigid H
symmetry in the unitary gauge. We give a relevant example of this phenomena.

1. Supersymmetry algebra. Breaking E7 when using a classical supersymmetry transfor-
mations without deformation also leads to a breaking of a nonlinear supersymmetry.
We explain it here, this effect can be seen via the local supersymmetry algebra.
If we keep classical supersymmetry and breaking E7, this would mean that the fermion
supersymmetry transformation is not affected by the CT, but inconsistencies will
appear in the nonlinear supersymmetry algebra. The supersymmetry algebra on
fermions at the linear level is

{δ1, δ2} = δDiff + δSO(3,1) + δU(1) +O(χ2) (6.10)

(see eq. (3.14) in [35]). But at the non-linear level (see eq. (3.22) in [35])

{δ1s, δ2s} = δ3s + δDiff + δSO(3,1) + δU(1) + δSU(8) (6.11)

one can see that there is, in addition, another supersymmetry transformation δS3
as well as an SU(8) rotation. We have shown this SU(8) rotation before in
eqs. (1.10), (1.11). Thus in the unitary gauge the commutator of two non-linear clas-
sical supersymmetry variations generates another supersymmetry, a field dependent
SU(8) symmetry in addition to the parts which were seen in the linear approximation

{δ1s, δ2s} = δ3s + δSU(8) + . . . (6.12)

where . . . is for terms in the algebra one can see in the linear approximation. In
the unitary gauge, the rigid field dependent SU(8) symmetry is a mix of locally
gauge-fixed SU(8) and the SU(8) subgroup of E7. Therefore, if E7 was broken before
gauge-fixing, in the unitary gauge the field dependent SU(8) will be broken. This
results in breaking of nonlinear supersymmetry according to the algebra in eq. (6.11).

2. Compensating H symmetry transformation preserving the unitary gauge. When we
make an E7(7) transformation for example inN = 8, it will by itself not keep 70 scalars
intact, its role is to mix 133 of them, so E7 by itself will break the unitary gauge
condition that V = V†. Therefore the important feature of SU(8) symmetry in the
unitary gauge, is that it is the rigid subgroup of E7(7)×SU(8). Comparing it with the
one before gauge-fixing one finds that it involves an additional compensating SU(8)
rigid field dependent transformation preserving the unitary gauge. The explicit form
of this compensating transformation on fermions as a function of E7(7) parameters is
presented in eqs. (4.31)–(4.34) in [20].
This explains why an expression which was covariant under local H symmetry might
break a rigid H symmetry in the unitary gauge.

3. Example. To exemplify this statement consider the expression causing supersymme-
try breaking in eq. (6.9) due to

δ̂χαijk = λM[ij,mnXαβα̇β̇F̄
α̇β̇mnεβk] (6.13)
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When local H-symmetry is not gauge-fixed, the r.h.s. of eq. (6.13) is SU(8) covariant
since each factor in the product

Mij,kl ≡ (uijIJ + vijIJ)(uklIJ + vklIJ)−1 = (u+ v)(ū+ v̄)−1 (6.14)

is SU(8) covariant, although not E7 invariant, according to eqs. (3.1), (3.3). The sub-
matrices u and v carry indices of both E7(7) and SU(8) (I, J = 1, . . . , 8, i, j = 1, . . . , 8)
but in the unitary gauge where

V = V† (6.15)

we retain only manifest invariance with respect to the rigid diagonal subgroup of
E7(7) × SU(8), without distinction between the two types of indices.

In the unitary gauge [7, 8, 20]

V =
(
uij

IJ vijKL
vklIJ uklKL

)
|V=V† ⇒

(
P−1/2 −(P−1/2)y
−P̄−1/2ȳ P̄−1/2

)
+ . . . (6.16)

where

P = 1− yȳ , yij,kl = φijmn

tanh
√

1
8 φ̄φ√

φ̄φ

mn
kl , (6.17)

Here φijkl and φ̄ijkl = ± 1
24ε

ijklmnpqφmnpq transform in 35-dimensional representation of
SU(8). These are 70 physical scalars in the unitary gauge.

In the linear approximation P = P̄ = 1, y = 1√
8φ, and we find

u+ v ⇒ 1− 1√
8
φ , ū+ v̄ ⇒ 1− 1√

8
φ̄ (6.18)

M|V=V† ⇒ I − 1√
8

(φ− φ̄) + · · · (6.19)

If we use indices, we see that SU(8) is broken down to SO(8)

Mij,kl|V=V† ⇒ δijkl −
1√
8

(φijkl − φ̄klij) + · · · (6.20)

We see here that in the unitary gaugeMij,kl is not SU(8) covariant anymore since the
SU(8) symmetry in the unitary gauge (the rigid diagonal subgroup of E7(7) × SU(8)) has
inherited the broken E7 symmetry ofMij,kl before gauge-fixing.

One can also try to invent some deformation of supersymmetry/duality rules to see
how exactly to make the action invariant under local supersymmetry off shell and under
E7(7) on shell so that eq. (1.10) is valid for a deformed theory. For example, we could add
terms that have more powers of fields. However, addition of such terms does not alter our
conclusion since it does not cancel the problematic term discussed above.
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6.3 Supersymmetry transformation of the CT

The CT action under classical supersymmetry is supersymmetric if classical equations
of motion are satisfied. Therefore it is hard to see how the expression in (6.8) can be
compensated if the action is Scl + λSCT.

One can look at a simple example when we keep only the terms in variation (6.8) with
the minimal number of fields, both in fermion eq. of motion as well as in F̂

δ̂S(cl) = λ(∂αα̇χ̄α̇ijk)δimδjnXαβα̇β̇F̄
α̇β̇mn clεβk + . . . , (6.21)

where we have used the fact that Mij,mn = δimδjn+ · · · at the leading order in scalar fields
expansion. If we choose Xαβα̇β̇ depending on 2 gravitons, this is a 4-field expression with
one fermion, 2 graviton and one vector.6 Then, the expansion of X in fields is given by

Xαβ α̇β̇ = Rαβγδ(x)Rα̇β̇γ̇δ̇(x)∂2(L−3)∂γ γ̇∂δ δ̇ + · · · , (6.22)

where ellipses denote the operators that have more fields. Using the leading order expan-
sion, the CT we consider is reduced as

LCT = Fαβij Xαβα̇β̇F̄
α̇β̇ij = Fαβij Rαβγδ(x)Rα̇β̇γ̇δ̇(x)∂2(L−3)∂γ γ̇∂δ δ̇F̄ α̇β̇ij + · · · (6.23)

where the ellipses denote terms having more fields. This leading term corresponds to a lin-
earized supersymmetric R4 invariant in [46] with extra ∂2(L−3) derivatives. We would like to
ask whether the linearized supersymmetric ∂2(L−3)R4 has a term that cancel the supersym-
metry variation (6.21) since it has the same numbers of fields. Indeed, there is the 2-fermion,
2 graviton term in the linearized superinvariant in [46] where (in line 5 in eq. (6.8))

Rα̇β̇γ̇δ̇χ̄
α̇ijk∂ββ̇∂γγ̇∂δδ̇∂2(L−3)χαijkRαβγδ. (6.24)

However, the supersymmetry transformation of this term does not have the tensorial struc-
ture to cancel (6.21), and therefore, the additional supersymmetry variation due to defor-
mation of the graviphoton cannot be canceled.

Let us repeat and summarize our logic here: first, we have considered a deformation of
twisted duality condition so that we keep E7(7) invariance. This leads to a deformation of
the graviphoton, and accordingly the deformation of fermion’s supersymmetry variation.
Thus, we find an additional supersymmetry variation (6.21). On the other hand, the CT we
have added at O(λ) can be represented by a linearized supersymmetric CT shown in [46].
We have asked whether the supersymmetry transformation of the linearized superinvariant
can cancel the additional variation (6.21) associated with the graviphoton variation. We
have found that it does not cancel the supersymmetry breaking of thew classical action
due nto deformation of the supersymmetry on fermions.

The deformation of local supersymmetry transformation is required to preserve the E7
invariance of the fermions after supersymmetry transformation. Thus if it is not cancelled

6We have used SU(8) covariant operator Xij
kl but now we are focusing on the terms containing two

gravitons with two fermions or with two vectors, and the SU(8) connection does not contribute. Therefore,
X becomes an operator without SU(8) indices independently of our choice of the full Xij

kl.
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within the action Scl + λSCT, it means that this action, which is claimed to restore E7
symmetry in presence of fermions, is not invariant under deformed supersymmetry.

If we do not deform the supersymmetric transformation of the fermions, the problem
we referred to does not arise directly. However, it does arise as we have shown using
the supersymmetry algebra and the fact that the effect of broken E7 before gauge-fixing
H-symmetry leads to a broken rigid H-symmetry and breaking of non-linear local super-
symmetry via the algebra in eq. (6.11).

It appears we have a choice, if UV divergence will be detected: save either supersym-
metry of the deformed action, or E7 symmetry. But not both of them. Moreover, the
broken E7 symmetry with preserved local H-symmetry leads to a broken local nonlinear
supersymmetry in the unitary gauge. Either way, UV divergence leads to breaking of local
nonlinear supersymmetry.
Finally, we would like to add some comments here:

• We have focused mostly on UV divergence at 4-point interactions, particularly by
the reason that 4-point loop computations of UV divergences might be expected.
However, there are candidate CT’s at higher point interactions, independent on 4-
point UV divergences. These may be studied in the future.

• We would like to emphasize here that we made a choice of the deformed twisted
duality constraint (4.2) associated with the candidate CT(4.7) at the leading order. If
we would try to make a more general choice of the deformed twisted duality constraint
associated with the candidate CT(4.7) it might affect the form of the all order in λ
deformed action. However, it would not affect the analysis of local supersymmetry
breaking at the order λ. Therefore the conclusion about UV divergence leading to
local nonlinear supersymmetry breaking is not affected by our choice of the deformed
twisted duality constraint.

7 Discussion and summary

N ≥ 5 supergravities have local H symmetry and global E7-type on shell symmetry, in
addition to nonlinear local supersymmetry, see for example N = 8 case in [7, 8] with
133 scalars, 70 of which are physical. When these supergravities are described in a form
when local H symmetry is not gauge-fixed (like in N = 8 with 133 scalars), both local
H symmetry and global E7-type on shell symmetry are independent and linearly realized.
The nonlinear local supersymmetries are E7 and H-symmetry covariant, see for example
eqs. (8.21)–(8.25) in [7]. Moreover, local supersymmetry and E7 symmetry commute,
modulo equations of motion.

In the unitary gauge where all parameters of local H symmetry are used to eliminate
unphysical scalars (63 in N = 8), global E7 symmetry is nonlinearly realized and the
remaining rigid H symmetry is a mix of originally independent local H symmetry and
global E7-type on shell symmetry.

In our goal to study deformation of N ≥ 5 supergravities with the purpose to absorb
potential UV divergences it was important to generalize the results in [42] where the de-
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formation of duality was described without fermions, using symplectic formalism. This is
effectively a unitary gauge where the local H symmetry is gauge-fixed and there are only
physical scalars (70 in N = 8).

We have introduced a deformed twisted self-duality constraint in (4.2). In absence of
fermions and in the unitary gauge with only physical scalars our constraint is reduced to
the one in eq. (3.4) of [42]. Here we have constructed the action including all order in λ

corrections with on shell deformed duality symmetry, local H symmetry and with fermions
present. In particular, the solution of the λ-corrected twisted self-duality constraint gives
an expression for the all order in λ deformed graviphoton in eq. (4.5). It is covariant under
local H-symmetry, it is E7 duality invariant, if all order in λ are taken into account.

This means that if we only take the first order correction in λ to deform the action,
E7 symmetry of the theory is broken starting at the level λ2, as it was shown in [37] and
confirmed in [39, 42]. Therefore it was possible to add to the action higher order in λ terms,
starting with λ2 terms and restore the deformed duality symmetry. We now have seen here
that the same is possible before gauge-fixing H symmetry and with fermions present.

In presence of fermions with unbroken local H-symmetry we were able to ask the
question about the local supersymmetry of the deformed action at the order λ. The
E7 invariant H-covariant fermions, under supersymmetry transform into E7 invariant H-
covariant graviphoton, classically. Once the deformation was added to absorb the UV
divergence, the graviphoton is deformed to restore E7 invariance. This deformation affects
the fermions supersymmetry transformations, see eqs. (6.4)–(6.8). We explained why the
deformed action breaks local supersymmetry at the level λ and why there is no way to
restore it, as opposite to E7 symmetry which was unbroken at the level λ. If we make
a choice to break instead E7 symmetry by not deforming supersymmetry transformations
of the fermions, we find that it leads to broken supersymmetry anyway, because the rigid
H-symmetry is a mix of a local H-symmetry and E7 symmetry.

To summarize, our results on N ≥ 5, d = 4 supergravities are the following.
We have recalled the fact that the CT’s proposed in [9] are of two types: the linearized

at L ≤ N − 1 which cannot be promoted to a level where they have nonlinear local
supersymmetry, and the ones, at L ≥ N which have an on shell nonlinear supersymmetry.

1. We have explained the enhanced ultraviolet cancellation of 82 diagrams in UV diver-
gence in N = 5, L = 4 in [23] using local nonlinear supersymmetry. We have pointed
out that the CT proposed in [24] in harmonic superspace breaks local nonlinear su-
persymmetry, despite it has linearized supersymmetry, see eq. (1.7) and discussion
around this formula.

2. We have explained (in appendix A, since this work is about N ≥ 5) the enhanced
ultraviolet cancellation of UV divergence in N = 4, L = 3 in [50] using local nonlinear
supersymmetry. The 1-loop U(1) anomaly [51] of this theory is also a local nonlinear
supersymmetry anomaly, as well as a local superconformal anomaly. This explains
the structure of the UV divergence at L = 4 in [52]. The 3d case of enhanced
cancellation in d = 5 is explained also via nonlinear supersymmetry in [22].
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3. If UV divergences will show up at L < Lcr = N (N = 6, L = 5 and N = 8, L = 7)
they will also qualify as quantum corrections breaking nonlinear local supersymmetry,
as we elaborated in section 5.2. This statement follows from dimensional analysis
and properties of geometric candidate CT’s and the fact that these do not exist at
L < Lcr = N [9, 10]. The linearized ones, which exist at L < Lcr = N in the unitary
gauge, break nonlinear local supersymmetry.

4. If UV divergences will show up at L ≥ Lcr = N , they will also qualify as quantum
corrections breaking nonlinear local supersymmetry, as we elaborated in section 5.3
and in section 6. The proof of this result, however, required a more significant
effort compared to L < Lcr = N cases. Namely we had to study deformation of
E7 symmetry and deformation of local supersymmetry before gauge-fixing local H-
symmetry. In such case local H symmetry and global E7 symmetry are independent
and both linearly realized. This was done in sections 4, 6. We have found that
the deformed action breaks deformed nonlinear supersymmetry, either directly, or
indirectly via broken E7 symmetry which reflects on nonlinear local supersymmetry.

In conclusion, from the loop computations available, we know that N = 5, L = 4
supergravity is UV finite [23]. Here it is now explained by the requirement of unbroken
local nonlinear supersymmetry since the harmonic superspace candidate CT [24] is not
valid at the nonlinear level. If more L < Lcr = N loop computations will be available
and will be UV finite, for example, N = 6, L = 5 and N = 8, L = 7, the same nonlinear
local supersymmetry argument explaining UV finiteness will work, since the harmonic
superspace candidate CT [24] for L = N − 1 is not valid at the nonlinear level.

However, at present there are no examples of L ≥ Lcr = N loop computations. If
N = 5, L = 5 supergravity will be found to be UV divergent, we will conclude that the
relevant deformed supergravity is BRST inconsistent since nonlinear local supersymmetry
of the deformed action is broken. But if N = 5, L = 5 will be found to be UV finite, it will
be explained by unbroken nonlinear local supersymmetry arguments in sections 5.3, 6.

This will support the earlier work where UV finiteness was predicted based on manifest
E7 symmetry [18], or on properties of the unitary conformal supermultiplets [19], assum-
ing unbroken supersymmetry. Here we have investigated nonlinear local supersymmetry
directly.
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A d = 4, N = 4 enhanced cancellation and nonlinear supersymmetry
anomaly

Since the purpose of this work is to study N ≥ 5 supergravities, we have put the new
developments in N = 4, d = 4 in the appendix. It is however, a reflection of what we have
learned in N ≥ 5 supergravities.

As discussed above in section 5.3 the candidate CT’s with nonlinear local supersym-
metry are available starting L = N [9, 10]. The harmonic space CT proposed in [24] in this
case has the same problems we discussed in section (1.2). Namely the proof of consistency
of the harmonic superspace in [25] above the linear level is not available for N = 4 Poincaré
supergravity.

This explains why there is an enhanced cancellation in N = 4, L = 3 [50]: the CT’s
with local nonlinear supersymmetry exist only starting from L = 4 and is absent in L = 3.
The linearized CT at L = 3 is

CTL=3
lin = κ4

∫
d4x d16θ (WW̄ )2 (A.1)

The zero dimension chiral superfield W and its conjugate anti-chiral superfield W̄ break
nonlinear supersymmetry, as we explained in section 1.3, although the superinvariant
in (A.1) has linearized N = 4 supersymmetry.

This theory has 1-loop amplitude anomalies [51] and is UV divergent at L = 4 [52]. It
is interesting that at L = 3 anomaly has not yet kicked in.7 In L = 4 the UV divergences
are given by 3 different superinvariants [52] of Poincaré N = 4 supergravity. Only one of
them has full nonlinear supersymmetry, see the general case in eq. (5.2).

CTL=4
1 nonlin = κ6

∫
d4x d16θ detE χiα χαj χ̄α̇ iχ̄α̇j = κ6

∫
d4xD2R4 + . . . (A.2)

The additional 2 UV divergences discovered in [52] have found to have the same structure
as U(1) anomalies in [51]. Namely, the 1-loop U(1) anomalies in [51] are described by the
following linearized chiral superspace invariants

AnomalyL=1
2 lin →

∫
d4x d8θW 2W 2 ± hc , (A.3)

AnomalyL=1
3 lin →

∫
d4x d8θ C̄α̇β̇γ̇δ̇W∂αα̇∂ββ̇W∂−6∂γ̇α∂

δ̇
βW ± hc , (A.4)

Now we can present them here as 4-loop CT’s which have linearized supersymmetry and
break nonlinear supersymmetry. Namely, uplifting the 1-loop nonlocal anomaly structures
in [51] by κ6stu we present local CT’s, UV divergences in L = 4

CTL=4
2 lin → κ6

∫
d4x d8θW 2∂6W 2 + h.c. , (A.5)

CTL=4
3 lin → κ6

∫
d4x d8θ C̄α̇β̇γ̇δ̇W∂αα̇∂ββ̇W∂γ̇α∂

δ̇
βW + h.c. . (A.6)

7We believe it is possible to explain it using superconformal version of this theory [26] which also sheds
the light on the common irrational factor in front of all 3 UV divergences at L = 4.
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These break nonlinear supersymmetry since there is no generalization of these two linear
superinvariants to the nonlinear level. In [51] these 1-loop linearized superinvariants were
discovered with the purpose to expose U(1) anomaly. This U(1) is a subgroup of the duality
SL(2,R) symmetry which was broken. Note that SL(2,R) is also group of type E7 [31].

Thus here again we see that breaking E7-type SL(2,R) duality means also breaking of
a local nonlinear supersymmetry. Accordingly, the 1-loop U(1) anomaly is related to 1-loop
local nonlinear supersymmetry anomaly. These two expressions in (A.3), (A.4) represent
the U(1) anomaly as well as nonlinear supersymmetry anomaly: they are given by subspace
of the superspace superinvariants which do not have a nonlinear generalization.

We find it now extremely plausible that all these properties of N = 4 Poincaré su-
pergravity come from the superconformal version of the theory, as discussed in [26]. This
superconformal theory has anomaly defined by one structure combining tree independent
N = 4 Poincaré supergravity L = 4 UV divergences. If this is the case, the reason why at
L = 3 there are no UV divergences is that in addition to the fact that there is no nonlinear
candidate CT, the absence of anomaly is also explained: the CT in (A.6) at the 3-loop
order is non-local. Therefore since all 3 UV divergences correspond to one expression in
superconformal theory, breaking of superconformal symmetry did not show up at L = 3
but only at L = 4 where the CT in (A.6) at the 4-loop order is local.

B Identities for E7(7)/SU(8) matrices

We summarize some identities for the E7(7)/SU(8) matrices given also in [8].

uij
IJuklIJ − vijIJvklIJ = δklij , (B.1)

uij
IJvklIJ + vijIJukl

IJ = 0, (B.2)
uijIJv

klIJ − vijIJuklIJ = 0, (B.3)
uijIJuij

KL − vijIJvijKL = δKLIJ , (B.4)
uijIJvijKL − vijIJuijKL = 0, (B.5)

vijIJ(u−1)KLij − (u−1)IJ ijvijKL = 0, (B.6)
uij

KL − vijIJ(u−1)KLklvklIJ = (u−1)KLij . (B.7)

In [8], a matrix SIJ,KL is introduced, which can be identified as

SIJ,KL ≡ (uijIJ + vijIJ)−1uijKL. (B.8)

This matrix satisfies the following identities

(uijIJ + vijIJ)SIJ,KL = uijKL, (B.9)
(S−1 − 1)IJ,KL = (u−1)IJ ijvijKL = (u−1)KLijvijIJ , (B.10)

where 1 denotes an identity δIJKL, the first one follows from the definition and the second
follows from (B.6).
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