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Significant effort has been devoted to searching for new fundamental forces of nature. At short length

scales (below approximately 10 nm), the strongest experimental constraints come from neutron scattering

from individual nuclei in gases. The leading experiments at longer length scales instead measure forces

between macroscopic test masses. We propose a hybrid of these two approaches: scattering neutrons off of

a target that has spatial structure at nanoscopic length scales. Such structures will give a coherent

enhancement to small-angle scattering, where the new force is most significant. This can considerably

improve the sensitivity of neutron scattering experiments for new forces in the 0.1-100 nm range. We

discuss the backgrounds due to Standard Model interactions and a variety of potential target structures that
could be used, estimating the resulting sensitivities. We show that, using only one day of beam time at a
modern neutron scattering facility, our proposal has the potential to detect new forces as much as 2 orders of
magnitude beyond current laboratory constraints at the appropriate length scales.

DOI: 10.1103/PhysRevD.108.055005

I. INTRODUCTION

While the Standard Model has been fantastically suc-
cessful at describing much of the observable Universe,
several outstanding questions—the nature of dark matter,
the Higgs hierarchy problem, and the quantum description of
gravity, to name a few—render it necessarily incomplete.
Theories that attempt to resolve these problems generally
involve the addition of new fields, often leading to a variety
of new associated phenomenology. In particular, though the
Standard Model includes only four fundamental forces,
extensions to it can include a range of additional interactions.

One way that such new forces can arise is via additional
gauged U(1) symmetries, such as baryon (B) or baryon
minus lepton (B — L) number [1-4]. The resulting gauge
bosons will generically mix with the Z boson, leading to a
force proportional to some combination of baryon number,
lepton number, and hypercharge. Alternatively, new finite-
range forces appear in many models with compact extra
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dimensions [5-7], for example, due to messenger fields
living in the bulk of such extra dimensions. Other motiva-
tions for new forces include proposals to resolve the
cosmological constant problem [8], vector models of dark
matter [9,10], and various new scalar fields [11]. More
comprehensive reviews of these various motivations can be
found in, for example, Refs. [12,13].

In this work, we consider new forces independent of the
spins of the interacting particles. Such interactions are
generally described by a Yukawa potential [14]:

2
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V) ==

(1)

with Q;, the charges of the two interacting particles,
separated by r, with g the coupling to the new force
mediator and ¢ the mediator’s mass.

In most of this work, we will further assume for
simplicity that the new force couples to mass, such that
the charges of the two particles are simply their respective
masses. Since such a new force acts as a short-range
modification to gravity, it is conventional to parametrize
the new force’s strength by its ratio a to that of gravity:
a = g*m2,/(4x) with mp the Planck mass. Extending our
discussion to forces coupled to other charges (e.g., baryon
number) is generally simply a matter of rescaling, so long as
the interaction remains a Yukawa potential (1).
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In this work, we will be focused on mediator masses
around 10°-10* eV, corresponding to force ranges A of
roughly 1072 — 10> nm (we will use 4 = 1/u; note that
some sources instead define A = 2z/u). This regime is
uniquely interesting, because it lies around the boundary of
two dramatically distinct approaches to new force detection:
macroscopic test masses and neutron scattering. Longer-
range interactions can be effectively detected by measuring
forces between macroscopic objects [15-21], with the
collection of atoms in one test mass seeing the coherently
summed potential of the other. Conversely, shorter-range
interactions are typically probed through the angular dis-
tribution of neutrons scattered from a target [22-25]. These
experiments rely on the drastically smaller charge radius of
the neutron compared to atomic matter, reducing the back-
grounds from electromagnetic interactions and Casimir
forces [26] which plague force measurements below the
micrometer scale. An alternative approach employing the
Pendellosung effect, which is the source of the strongest
existing constraints over much of the parameter space we
consider, is described in Ref. [27].

This work’s proposal is a combination of these two
approaches, using spatial structure such that individual
neutrons scatter coherently from collections of many
atoms. Such an approach should allow for significantly
superior sensitivity to new forces at these length scales. An
different technique for detecting new forces with 4 = 1 nm
has recently been proposed in Ref. [28].

The remainder of this work is organized as follows: We
begin by presenting a summary of our proposal in Sec. IL.
We then specialize to the relatively simple version of our
approach that can be performed on targets consisting of only
a single element in Sec. Il before addressing targets
consisting of two different materials in Sec. IV. In both
of these sections, we discuss candidate materials and
provide projected sensitivities; the former section also
includes an explanation of how to separate the effects of
a new force from those of structure using x-ray scattering,
with the corresponding two-material discussion left for
Appendix D. Finally, we summarize our results and offer
some concluding remarks in Sec. V.

Because our proposal blends two largely distinct fields—
the study of new interactions familiar to particle and nuclear
physicists and scattering techniques used largely for material
analysis—we have also included a range of background
information, as well as various technical details, in the
appendixes. We discuss the theory of neutron scattering from
single atoms in Appendix A. Appendix B provides an
introduction to x-ray scattering from atoms and photo-
absorption, as x-ray scattering is necessary in order to
normalize the neutron scattering distribution of structured
targets. Appendix C describes how scattering is modified for
targets with structure on length scales comparable to the
inverse momentum transfer of the scattering process; while

our discussion in this appendix is focused on neutron
scattering, the ideas are applicable to scattering of any
particle. As we noted above, Appendix D describes how a
new force can be distinguished from a modification of this
sort of target structure in two-material targets.

The next several appendixes describe a variety of
systematic effects that must be controlled in our proposal.
Appendix E describes the impact of multiple scattering
events, in which a neutron is scattered multiple times before
its detection. Appendix F considers the effects of finite
target temperatures on our proposal. The effects of inter-
actions between atoms within the target are then considered
in Appendix G.

Some additional information about neutron and x-ray
scattering instruments, including the realistically achievable
parameters of instruments that are relevant to our proposal,
are presented in Appendix H. Finally, in Appendix I, we
describe our numerical approach to translating predicted
scattering distributions into projections for sensitivity to
new forces.

II. OVERVIEW

The general principle behind neutron scattering-based
searches for new forces is straightforward: A beam of
neutrons is scattered off of a target, and the resulting angular
distribution of scattered neutrons is measured; any signifi-
cant deviation from the Standard Model prediction for that
distribution is then an indication of new physics. A
simplified sketch of such an experiment is shown in Fig. 1.

There are two significant Standard Model sources of
neutron scattering: the strong nuclear interaction of neu-
trons with target nuclei and the electromagnetic interaction
of neutrons with atomic electric and magnetic fields.
Nuclear scattering can be treated as hard sphere scattering
at the 1072 — 10?> nm length scales that we consider, so
accounting for it is a matter of a single, angle-independent
fit parameter. Electromagnetic scattering, on the other hand,
can be more difficult to model precisely, as it arises from a
combination of several different effects and depends
sensitively on the target atoms’ electronic states. This is
frequently circumvented by conducting new force searches
using targets composed of noble gases (most often xenon)
with zero spin and orbital angular momentum, in which
case electromagnetic scattering is far more predictable.

The limiting factors for this procedure are then statistical:
Though the Standard Model backgrounds are well under-
stood, the finite number of neutrons scattered from the
target sets a minimum strength for a new force that can be
detected. This problem is exacerbated by the need to select
neutrons scattered with very small momentum transfers in
order to detect new forces of interest. Taking the Yukawa
force that is the focus of this work as an example, the
neutron scattering distribution from a noble gas can be
written as [see Eq. (C12)]
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A simplified sketch of a neutron scattering experiment of the type discussed in this work, illustrating the key components of

such an experiment; for details, see Appendix H 2. Neutrons are produced from a reactor [29-34] or via spallation [35,36] and then
cooled in a moderator. A subpopulation of smaller velocity spread is then selected using either a rotating helical passage [37] or a series
of rotating disks [38], and a collimated beam is formed by passing the neutrons through two or more apertures. This beam is then
incident on the target material—which, in this work, will typically have some internal structure—with scattered neutrons detected at

some distance beyond the target.

do
dIn@
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(2)

where b is a characteristic, angle-independent scattering
length (primarily due to nuclear scattering, although it
receives an electromagnetic correction), kgy; and K, are
some measures of the relative strength of electromagnetic
and new force scattering relative to nuclear scattering
(typical values for this work are xgy ~ 1072 and, at our
sensitivity goal, Knew ~ 107%), ¢7(0) is the momentum
transfer for a scattering angle of 20 [ie., ¢7(0) =
2q, sin @ for incident neutrons of momentum g¢,; see
Fig. 1], f(q) is a form factor for the atom, and x is the
new force mediator’s mass. The three terms in this
distribution are plotted in Fig. 5 (although note that that
figure uses dp/dQ rather than dp/d In 6). The new force
contribution to this distribution is best resolved when
qr(6) ~ p, such that the new force term is not yet heavily
suppressed by (g7/u)~2 but is no longer an angle-inde-
pendent offset that cannot be distinguished from the nuclear
force, when gy/u < 1. In terms of the new force’s mass
coupling g, we have

32

m, g A

=—5— 3

Knew 277:/12 bo ( )
(see Appendix A 3); kgy is defined by Eq. (C14).

The former condition—that the momentum transfer

not be too large—can be accomplished through some

combination of two approaches: by using colder neutrons

and by considering scattering at small angles. Both methods
are statistically costly. “Cold” neutrons, with wavelengths
conventionally in the 0.4-3 nm range, are generally pro-
duced by thermalizing neutrons in a cryogenic moderator
[39]; see Appendix H 2. Neutrons with longer wavelengths
(“ultracold” neutrons, or “UCNs”), however, are produced
via momentum selection of cold neutrons, reducing the
available neutron flux. Restricting to small-angle scattering
also impacts the statistics, by requiring a more precisely
collimated neutron beam. This further reduces the neutron
flux, since neutron beams are collimated primarily by
rejecting neutrons outside of the chosen phase space. A
straightforward optimization shows that, for the application
discussed here, looking at small-angle scattering of thermal
neutrons is preferable to employing UCNSs.

In addition, in experiments done to date on nuclei of
conventional materials, the small-angle scattering is also
suppressed by the 0 sin 20 term in Eq. (2), corresponding
to the limited phase space available for small-angle
scattering. In this work, we present a method of circum-
venting this problem using coherent scattering from struc-
tured targets to enhance the fraction of incident neutrons
that are scattered at the desired momentum transfers
(typically to the order of unity, in fact). In particular,
coherent scattering changes the scattering distribution (2) to
(schematically) [40-42]

do
dln @

2 p 2K'new
o o (14 2saf ar0) + )

x S(q(0))0 sin 26, (4)
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where S(q) is the structure factor of the target, which
gives the coherent enhancement of scattering at a given
momentum transfer. Then, by employing targets such that
S(qr(6))0 sin 20 is maximal at g7 (6) ~ u, neutrons can be
made to scatter primarily at angles where the new force is
most observable, effectively increasing the neutron count
available for the measurement.

The structure factor for a collection of identical target
atoms, assuming incident plane wave neutrons, is given by
(see Refs. [40—42] or the discussion in Appendix C 1)

| 2
Star) =y , ®

E eiqT'rj

J=1

with the sum over the N atoms in the target and r; the
position of atom j. For an ideal gas of spatial extent much
larger than ¢7!, the positions are effectively uncorrelated,
so one expects N atoms to give S(gy) ~ 1. (A similar result
arises even for correlated positions if the number of atoms
is variable; see Appendix C 1.) However, if one considers a
cluster of N atoms over some length scale R with ¢g;R < 1,
one instead expects S(gy) ~ N, giving a factor of N
enhancement in the differential scattering cross section
at this momentum transfer. This is the central idea behind
this work’s proposal: using targets with structures at length
scales comparable to ,u‘l, such that scattering is coherent
at small momentum transfers but becomes incoherent at
large ones.

As we noted previously, it is generally preferable to
perform neutron scattering from noble gases, in order to
both reduce and simplify the electromagnetic scattering
background. Forming nanometer- to micrometer-scale
structures from noble elements alone is likely to be difficult,
though perhaps not impossible, as we discuss in Sec. IIT A.
A more straightforward option is to employ a combination
of two materials: a granular or porous solid and a noble
liquid or gas which fills in the gaps in the solid. (In most of
this work, we will refer to the noble component of a two-
material target as a “gas,” although we will ultimately be
interested in fluids near liquid density. Distinctions between
gases, liquids, and supercritical fluids other than density will
generally not be significant for our purposes; see
Appendix G2.) We will consider several candidates for
such two-material targets in this work, though we will not
attempt to catalog them exhaustively and better options than
what we discuss are likely to exist.

Realistic targets’ structure factors cannot be predicted
a priori with sufficient accuracy to remove them from the
measured neutron scattering distribution alone. Thus, when
using a structured target, a low-angle bump in the scattering
distribution cannot be attributed to a new force, because it
may instead correspond to some additional target structure
at that scale. This issue can be circumvented by employing
another type of scattering, most probably of x rays. In the

single-material case, the ratio of the neutron to x-ray
scattering distributions is then target structure independent
and remains well predictable within the Standard Model, so
a deviation of this ratio from its prediction signals the
presence of new physics. Thus, while we will generally
focus on neutron scattering—as it is in many ways more
technically difficult and is where many new forces are likely
to appear—practical experiments will require both x-ray and
neutron scattering and treat them on mostly equal footing.

An additional complication arises in the case of two-
material scattering, due to the interference of the solid and
noble gas scattering amplitudes. If not for this interference,
the solid scattering contribution could simply be measured
separately and subtracted out. Dealing with the interference
term, however, requires making measurements using at
least two, and possibly three, distinct noble elements; we
discuss this procedure in Appendix D. Nonetheless, while
more involved, two-material scattering can still be used to
constrain new forces.

III. SCATTERING FROM SINGLE MATERIALS

We begin by considering the more straightforward
implementation of our proposal using targets consisting
of only a single noble element. Whether such a target could
be produced with appropriate structure is unclear: We
discuss several potential approaches to doing so below, and
there may exist others, but the viability of these target
candidates will need to be tested experimentally. Even if
none of these approaches can be implemented, however,
the single-material version of our proposal is useful as a
simple illustration of how neutron and x-ray measurement
can be combined to look for new forces, before consid-
ering the far more involved analysis required when using
two-material targets.

A. Possible target materials

The neutron’s magnetic moment leads to significant,
angle-dependent scattering from atoms with nonzero total
orbital angular momenta, total electron spins, or nuclear
spins; see Appendix A. The uncertainty in the Standard
Model predictions for these scattering contributions acts as
a background for any neutron scattering search for new
forces. Similarly, the electromagnetic interactions between
atoms in molecules or solids are likely to induce significant
(at the required ,.,, ~ 107 level) magnetic moments even
in atoms that do not otherwise have them, creating an
analogous background. Avoiding these two effects makes
noble elements particularly attractive target materials [43],
as they have no magnetic moments and form nonmolec-
ular gases.

While other elements (e.g., mercury) may, in principle,
make for usable targets, we will focus on noble gases
exclusively, considering them alone in this section and in the
presence of a solid in Sec. IV. Of the noble elements, xenon
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is likely the most promising candidate and has historically
been the most used for new force searches, as its large
atomic weight enhances the new force scattering contribu-
tion of typical models. All of our discussion in this work
should hold for any (stable) noble element, however. There
should likewise be no qualitative distinction between iso-
topes of those elements, except through their different
nuclear spins, which lead to a small electromagnetic back-
ground. (In fact, we will generally focus on isotopes with
zero nuclear spin, but this is not critical; see Appendix A.)
We note, however, that different isotopes of a single element
can have wildly different neutron scattering lengths; see, for
example, Refs. [44,45].

We consider three possible approaches to creating
structured targets from a single noble element: noble solids,
aerosols, and boiling liquids.

While the solid states of most noble elements are
reasonably achievable in laboratory conditions [46], form-
ing granular structures of such solids may be significantly
more difficult. Xenon can form a “snowlike” state under
appropriate cooling conditions [47]. We are not aware of
any systematic studies of this state, but it may be possible
to create xenon snow with structure on length scales
appropriate for our purposes. Similarly, there may or
may not be ways to produce snow from other noble
elements. Substantial density changes have been discov-
ered when decreasing the temperature of noble solids
below a certain critical temperature [48], although this may
be due to phase transitions in the solid without changes in
homogeneity.

It may also be possible to create granular structures from
noble liquids. One way to do this is through aerosolization
of a noble liquid. As with the possibility of xenon snow
discussed above, we are not aware of any analyses of
achievable droplet size distributions for noble elements, but
the submicrometer sizes we are interested in are fairly
typical for generic aerosols [49,50]. Since such an aerosol
would be unlikely to remain airborne or maintain a constant
particle size distribution, this option would require continu-
ous production and extraction of the aerosol in the target
chamber. This does not meaningfully change the measure-
ment strategy, however: In the case of a time-varying target,
every appearance of the structure factor in the separation of
scattering contributions procedure described below can
simply be replaced by its average, so variation in the
structure factor does not affect final sensitivity. Note that,
in this case, the structure factor must remain constant (to a
precision of the order of «,.,) between neutron and x-ray
scattering measurements; this should be possible, however,
for example, by performing these measurements simulta-
neously [51].

Finally, scattering could be performed from noble liquids
in the process of boiling, with the granular structure formed
by the gaseous bubbles that appear during this process. It
appears unlikely that the resulting bubbles would be

sufficiently small or consistent [52-56], however, so we
leave serious consideration of this approach to future work.

For the rough sensitivity projections of this work, we
assume that single-material targets consist of isolated
granular spheres of approximately equal radii, separated
by vacuum; see Appendix C for a more precise description
of our assumptions. This should be a reasonable approxi-
mation of aerosol geometry but may appear less appropriate
for snow (which does not consist of spherical grains) or
boiling liquids (which have liquid between the grains).
However, as Appendix C further discusses, the general
behavior of structure factors is determined solely by the
structure’s dimensionality and length scale, precluding any
large corrections from the differing geometry of snow.
Similarly, boiling liquids’ structure factors are suppressed
by the limited density contrast between the liquid and
gaseous states but are not otherwise affected. All three cases
should, therefore, be approximately described by the same
structure factor, to the order-unity precision we desire in this
work (see, e.g., [41,42] and Appendix C):

127 -

where R is the typical radius of the grains in the material and
n is the number density of the noble atoms. Example
structure factors for liquid xenon grains of various size are
plotted in Fig. 6.

The limiting behaviors of this structure factor are easily
understood. For g7R < 1, S(q7) — (4n/3)nR>: Scattering
is coherent over individual grains, and, thus, the scattering
distribution is enhanced by the number of atoms per grain.
Conversely, for g7R > 1, S(qr) — 1, corresponding to
fully incoherent scattering, with cross sections simply
summed over all atoms. Accounting for the variation in
phase space available at different scattering angles [see
Eq. (4) and the preceding discussion], thus, gives a
scattering distribution peaked at ¢; ~ R~!. Granular mate-
rials, therefore, provide a means of increasing scattering
probabilities at chosen momentum transfers. In particular,
using materials with R ~u~' will allow us to increase
experimental sensitivity to a new force of range u~'.

B. Separating scattering contributions

While it is possible to calculate the structure factors
of targets based on their geometric properties (see
Appendix C), such estimates will not be exactly correct
for any realistic targets due to variation in their constituent
grain size and shape, as well as due to impurities. As a
result, it is not sufficient to measure the neutron scattering
distribution from a structured target in order to search for a
new force, as any bump in low-angle scattering could
indicate a bump in the structure factor rather than in the
atomic scattering distribution. Circumventing this requires
an additional set of measurements to extract the structure
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factor of the target alone. We now describe how this can be
done for a single material, in which case the procedure is
relatively straightforward and can be described analytically.

For simplicity, we restrict further to targets consisting of
only a single phase or density of the noble element (e.g.,
xenon snow). Two-phase targets such as a boiling liquids
require a slightly modified analysis to account for the
density contrast between the two phases, as we discuss for
the two-material analysis in Appendix D. (Note that this is
the only change required, however; the majority of
Appendix D is devoted to removing uncertain electromag-
netic backgrounds, which are not a concern for targets
containing only noble atoms.)

The key fact allowing the scattering distributions of
individual atoms to be disentangled from the structure
factor of the target as a whole is that structure factors are
independent of the scattered particle, so long as the
scattering lengths of each atom are equal for the scattered
particle. For a noble gas, this is likely to hold quite
generally, since all of the lowest-order electromagnetic
properties (the total electron orbital momentum, the total
electron spin, etc.) are zero. Thus, the structure factor can
be obtained by performing scattering with x rays. That
structure factor can then be used to extract the neutron
scattering distribution from individual atoms.

X-ray scattering is discussed in more detail in
Appendix B; here, we will merely cite the corresponding
scattering distribution for noble atoms:

doy <Ze2 )2<f(qT(0)) _Zme>21+C2)8229’ )

aQ 4zm, e

where m,,. is the mass of the atomic nucleus, m, is the
mass of the electron, Z is the atomic number of the target
atoms, and we have averaged over incident polarizations
and summed over outgoing ones. Note, in particular, two
features of this distribution: It approaches a constant
comparable (or equal) to its maximal value at small angles,
and it is fully described by precisely known parameters
except for its dependence on the atomic form factor.

The ratio of the x-ray scattering probability distribution
for the structured target to that of a uniform target of the
same material is

de s/dQT
— =239 s 8
dpx.u/dCIT (qT) ( )

with the “s” and “u” subscripts referring to structured and
uniform targets, respectively, and we use g in place of Q or
0 in order to emphasize that it is the momentum transfer,
and not the angle, that should be compared between x-ray
and neutron measurements. Here, we have switched to
probability rather than cross-section distributions in order
to account for normalization (or, equivalently, target thick-
ness): We will generally assume that target thickness is

selected so that 10% of neutrons are scattered above some
minimum angle (see Appendix E), requiring different target
thicknesses for different target structures. We will, there-
fore, want to compare these normalized scattering proba-
bilities rather than cross sections.

The unstructured neutron scattering distribution can then
be reconstructed from these two x-ray measurements,
combined with a structured neutron measurement:

dpmu::dpms(dpxﬂ/qu>
dgr  dqr \dpxs/dqr

©)

Crucially, this combination of measurements can lead to
smaller uncertainties at small angles than a single, direct
measurement of neutron scattering from a uniform target
would, due to the latter’s poor statistics at small angles.
This requires, up to O(1) factors,

dPns o, 4Pnu

N, Z N, , 10a
dqr dqr ( )
Nyd d

7X pX,S z ) pn,u . (lOb)
2 dqr dqr

Ny d d

_X pX,u Z ) pn,u (10C)
2 dqr dqr

over the range of momentum transfers useful for detecting
the new force (q; ~u), where N, is the total incident
neutron count given a fixed available neutron beam time
and Ny is the analogous total x-ray count. (The included
factors of 2 conservatively account for dividing x-ray beam
time equally between the structured and unstructured
measurements, although an unequal division may be more
efficient.) The first condition holds whenever the structure
factor is greater than its average:

_ 1 /2
where 0, is the smallest angle observed. Note that this is a
stronger condition than merely S(g;) > 1, due to the
differing normalization of structured and uniform targets
needed to keep the total scattering probability constant. As
long as this is the case, the third condition also implies the
second.

In fact, we will be able to satisfy a somewhat stronger
condition: that the error on the neutron scattering distri-
bution from the noble element (i.e., from the uniform
target) is dominated by the error in the structured neutron
scattering distribution rather than by the pair of x-ray
measurements. This is the case whenever the number of x
rays scattered in a given angular range from the uniform
target is greater than the number of neutrons scattered at
those angles from the structured one, i.e., whenever
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FIG. 2. A comparison of projected sensitivities to new mass-
coupled Yukawa forces for experiments following the design
described in this work, using several different single-material
target candidates. Detailed assumptions for each projection are
discussed in the main text. Shown is scattering from simple xenon
gas (the target of many previous experiments) as well from xenon
targets with spherical grains of radius 1, 10, and 100 nm and from
argon targets with 10-nm-radius grains. (The spacing between
these spheres does not affect the sensitivity, so long as their
positions remain uncorrelated, as we discuss in the main text.)
Also shown are the regions of parameter space already excluded
by previous experiments, namely, Refs. [15,21-25,27], and the
line corresponding to ke, = 107 for xenon, as an illustration of
the target systematic error we use throughout this work. Astro-
physical constraints at these masses lie below the bottom edge of
the plot but are somewhat model dependent; see Sec. V.

dpns .
n bl
dqr

Nx dpx.u -
2 qu ~

(12)

since x-ray scattering is approximately angle independent
at small momentum transfers [see Eq. (7)], this is approx-
imately equivalent to the requirement that

Ny _ S(qr)
> 1. 13
2N, ™ S g (13)

The assumption that S(g7) > S will never hold at all
momentum transfers: Increased scattering at small angles
corresponds to decreased scattering at large angles, when
total scattering probability is held constant. Depending on
the particular measurement, this may be irrelevant (if y is
small enough that only the enhanced small angles are useful
for detecting a new force), or it may indicate that the
optimal measurement strategy is to spend some neutron
beam time on the uniform target measurement in order to
reduce uncertainties at large angles. In this work, we will
restrict to neutron measurements using only structured
targets; we leave a more thorough analysis of optimal
measurement strategies to future work, though our results

suggest that there is little advantage to neutron scattering
from uniform targets (see Fig. 2).

As we discuss in Appendix H, achievable fluxes for
x-ray beams exceed those of neutron beams by a factor of at
least 10°. Since we will not consider structure factors in
excess of approximately 103 (see Fig. 6), this is sufficient to
ensure that Eq. (13) should always hold.

It is worth noting, however, that the condition (13) is
likely too stringent, as it assumes no knowledge of the
atomic form factor f(g). In fact, atomic form factors can be
calculated numerically from Standard Model parameters
(see, e.g., Refs. [57-60]), though it is unclear if this can be
done with the precision necessary for our purposes. A
complete prediction for f(g) is unnecessary, however:
Since the momentum scale over which f(q) varies
(go ~ 11Z'3 nm~'; see Appendix A) is known to be much
larger than the momentum transfers of interest, the x-ray
scattering distribution (7) can be accurately described by a
combination of known parameters and a series expansion of
f(gr) in powers of g;/gy. Doing so contributes a few
additional degrees of freedom to the fitting procedure, but,
crucially, it does not eliminate the signal, as there is no way
for such an expansion to replicate the 1/(1 + (q7/u)?)
behavior of the new force scattering length contribution
once g7 > u. (This is essentially the same reason why
electromagnetic effects have little impact on our sensitivity
projections, as we discuss in the next subsection.)

Using this separation of scales, only the structured
measurements are necessary, and the condition for the
neutron measurement to dominate the final uncertainty
becomes considerably weaker:

N
X 1. (14)
N,

Along with being easily satisfied by a wide range of x-ray
instruments, this condition has the added benefit of being
intuitively understandable: In this measurement approach,
the experiment consists simply of looking at the ratio of the
neutron to x-ray scattering distributions of a structured
target. The shared dependence of these distributions on the
structure factor is eliminated in the ratio, leaving only a
measurement of the ratio of scattering distributions of
individual atoms; any deviation of this ratio from the
Standard Model prediction is then interpreted as a signal
of a new force. Since this approach is fully symmetric
between the neutron and x-ray measurements, the dominant
uncertainty is determined simply by whichever included
fewer scattering events.

C. Sensitivity projections

In the absence of systematics, a new force is detectable if
it increases the number of small-angle scattering events by
more than the corresponding Poisson error (summed over
bins). Accounting for the uncertainties in the nuclear
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scattering length, electromagnetic scattering length scale,
and atomic form factor complicates this criterion: A
scattering distribution that includes the new force must
be fit with Standard Model parameters, and only new forces
for which no combination of these parameters leads to a
sufficiently good fit can be detected. A precise statistical
description of this criterion is presented in Appendix I;
here, we will merely summarize our approach.

Given a pair of new force parameters (¢ and g), it is
straightforward to generate a predicted total neutron scatter-
ing distribution from an assumed target. This distribution
can then be fit with Standard Model parameters alone or
with the addition of the two new force parameters. The fits
can then be compared using an F test (see Appendix I); a
significant improvement in the fit when including the new
force parameters indicates the presence of such a new force.
We assume errors from x-ray scattering (i.e., in our knowl-
edge of the structure factor) to be subdominant. We include
three Standard Model parameters in our single-material
fits: an overall normalization N (corresponding to the
angle-independent scattering length of the target atom
by), the magnitude of electromagnetic scattering kg, and
the momentum scale of electromagnetic scattering g, (see
Appendix A). Our two fit functions are, therefore, given by

do (fit) Zkg;[)
dinf I+ (i)
V14 (gr(0)/48)?
2K(feit>
+ = S(qr(6))0sin20, (15)
1+ (qr(0)/pu™)?

with and without the bracketed term; all labeled fit param-
eters are allowed to vary freely. This ignores any existing
constraints on these quantities, but this is unlikely to be
particularly conservative: Nuclear scattering lengths are
generally not known to the required precision, and including
the electromagnetic fit parameters had only a small effect on
our sensitivity projections.

While this fitting procedure omits higher-order correc-
tions to the atomic form factor (see Appendix A), such terms
are unlikely to be significant for y < ¢ given the minimal
effect of the leading-order electromagnetic term. This is the
result of the same separation of momentum scales discussed
in the previous subsection: The large ratio of g,/ precludes
a modified electromagnetic term from effectively imitating
the new force contribution’s momentum dependence. Note
as well that the atomic form factor can be empirically
determined from x-ray scattering from a uniform target
alone, if the approximate analytic form that we employ is
insufficient; see Appendix B. To be conservative, we do
not show projections for 4 < 10~! nm, since u begins to
approach ¢ at these length scales; an accurate treatment of
this regime is beyond the scope of this work.

Our projections are based on a fiducial beam line with a
flux of 108 cm™2 s~! neutrons over a target area of 10 cm?,
a typical wavelength of 0.6 nm, and a minimum resolvable
angle of 3 mrad [i.e., a minimum visible momentum
transfer of approximately (30 nm)~!]. We assume an
integration time of 28 h, giving a total of 103 scattered
neutrons (i.e., 10'* incident neutrons; see Appendix E);
sensitivities for other neutron counts are easily estimated
from g2, o« N~!/2. Neutron beam properties relevant to our
proposal are discussed further in Appendix H 2.

We illustrate the projected sensitivities for several single-
material targets in Fig. 2. We focus primarily on scattering
from xenon, as its large atomic weight makes it the optimal
target in this case, though we illustrate an achievable
sensitivity for argon as well for comparison. Both noble
elements are assumed to be at liquid densities, and the
number of grains in each target is adjusted to reach a
scattering fraction of 0.1 into angles above the minimum
visible angle (see Appendix E). We assume angular accep-
tance of 20 from 3 x 1073 to z/4 rad. For xenon, we
consider targets with spherical grains of typical radii 1, 10,
and 100 nm as well as with no structure at all; the spatial
density of these grains has no impact on the sensitivity, so
long as their positions are uncorrelated (and assuming that
the total scattering fraction is held fixed). The no-structure
curve illustrates the gain in sensitivity over existing experi-
ments that arises simply from assuming more neutrons
scattered from the target (as well as from the inevitably
somewhat simplified analysis of our estimate compared to
actual experiments), as opposed to the benefits of coherent
low-angle scattering. As Fig. 2 illustrates, the use of
structures targets can potentially extend a neutron scattering
experiment’s sensitivity to new forces by nearly 2 orders of
magnitude in ¢* at ranges of at least 10 nm, with gains
decreasing at shorter ranges until achieving parity at a few
angstroms.

It is worth briefly considering some properties in Fig. 2
in order to confirm that our projections are reasonable.
First, the no-structure curve can be reasonably compared to
the results in Ref. [23], as the primary difference between
the assumptions of our curve and the parameters of that
work should be the number of scattered neutrons. We
assume approximately 400 times more scattered neutrons
than were used in Ref. [23] (noting that the scattering event
count reported in that work is restricted to small-angle
scattering events), in part due to a higher assumed
integrated incident flux and, in part, because the target
depth in Ref. [23] was insufficient to scatter 10% of
incident neutrons, as we assume. This should lead to a
sensitivity improved by a factor of approximately 20, quite
close to our projection at their optimal sensitivity, given the
coarseness of this comparison.

Second, it is straightforward to understand the limiting
behavior and grain radius dependence of the curves in Fig. 2.
In the high-u limit, all of the sensitivity curves approach
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g2 o u. This is the result of a combination of two effects:
the p? suppression in k., [see Eq. (3)] and the fact that the
new force scattering distribution is angle independent up to
(Gmax/M)* corrections; the angle-independent component is,
therefore, absorbed into the nuclear scattering length fit. At
small masses u, the advantages of larger grain radii (10 nm
rather than 1 nm) become apparent, as longer-range new
forces can be coherent over larger grains. Conversely,
increasing the grain radius from 10 to 100 nm is not
beneficial with a minimum accepted momentum transfer
of (30 nm)~!, as the scattering that would be enhanced at
these radii is below the minimum visible angle; a sensitivity
advantage appears only if one observes scattering at smaller
angles and only at force ranges near the upper limit
considered. (Note as well that targets with 100 nm grains
may or may not suffer from significant multiple scattering
backgrounds that would worsen their sensitivity; see the
discussion in Appendix E.)

The inferior sensitivity of an argon-based experiment is
also easily interpretable: The visibility of the new force is
given by its relative strength «,.,, & A/by, which is larger
for xenon than any other noble element (see Table I). We

TABLE 1. The coherent scattering lengths, densities, and
scattering length densities of all of the stable noble elements
and of some candidate solid materials: alumina, silica, and carbon
nanotubes (“CNTs”). Noble element densities are given for their
liquid state, as an upper bound; the optimal isotope was chosen
for each. For the solid ceramics, the scattering lengths and
densities are for the full “molecule”; e.g., they treat all five
atoms of Al,O5 as one unit; note that this is an inaccurate measure
of coherent scattering once the inverse momentum transfer is
comparable to the interatomic spacing. The CNT number density
assumes a skeletal mass density of 2 g/cm?, though estimates for
the true value vary; see, for example, Refs. [61-64]. All of the
solid results assume a natural mixture of isotopes. Nuclear
incoherent scattering and absorption should not significantly
affect measurements using any of these materials, so we do not
include them here. Values for scattering lengths are from
Refs. [44,45], while those for densities are from Refs. [65,66].

Material bc (fm) nliquid (nm_3) SLDliquid (fm nm_3)
He-4 33 22 72

Ne-20 4.6 37 170

Ar-36 25 21 530

Kr-86 8.1 18 140

Xe-136 9.0 14 120
Material bt (fm) n"™™t (nm=3) SLD (fmnm~3)
Si0, 16 27 420
ALO; 24 24 580
ALTi; 0, 49 5.6 275
BaTiO3 19 15 290
CeO, 16 25 410
CNTs 6.7 100 670

include argon in Fig. 2 both to illustrate the large advantage
of xenon over other elements and because argon will be a
more promising candidate gas in the two-material experi-
ments discussed below.

IV. SCATTERING FROM TWO MATERIALS

We now turn to scattering from targets consisting of two
materials: one structured solid, providing a framework
with the required nonuniformity scale, and one noble
element filling the spaces within the solid. Crucially,
while the neutron scattering length of the noble element
is analytically tractable, we do not assume any particular
behavior for the scattering length of the solid, whose
electronic structure may lead to difficult-to-predict electro-
magnetic scattering. It is therefore necessary to combine
several measurements—including, at minimum, measure-
ments with two different noble gases—from such targets in
order to eliminate this background. This procedure lacks a
simple analytic description (as we described for the single-
material case above), so we limit ourselves to demonstrat-
ing that there are sufficient possible measurements in order
to constrain the pertinent degrees of freedom; this analysis
is presented in Appendix D.

As we discuss below, two-material targets have generi-
cally inferior sensitivity compared to single-material targets,
as a result of systematic effects deriving from the back-
grounds due to the solids as well as of the loss in statistics
occurring when a fixed number of neutrons is divided
between measurements with different targets. However,
unlike the speculative single-material targets of the previous
section, the two-material combinations we consider here are
readily available. The resulting sensitivity projections are,
therefore, a lower bound on the potential of this proposal.

A. Possible target materials

The solid materials that could be appropriate for our
purposes can be loosely divided into two categories:
porous materials, whose pores are filled with a noble
gas or liquid, and granular materials, whose interstitial
volume can be filled with the noble element. We will
generally remain agnostic to the particular noble element
used in the examples below; as we discuss in Appendix D,
two-material targets will generally require two or even
three noble elements in order to separate the different
scattering contributions, but the procedure does not other-
wise depend on the specific element.

Different solid materials may, however, be more or less
compatible with particular noble elements. One reason for
this is the enhancement of the scattering probability with
increasing difference in scattering length density (SLD,
i.e., the product of atomic number density and scattering
length, summed over constituent atoms) between the solid
and the gas (see Appendix C): Solid materials whose SLD
is much higher than that of the gas will scatter too much,
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potentially forcing an experiment to use impractically thin
targets in order to avoid excessive multiple scattering (see
Appendix E). Note that, since scattering lengths of differ-
ent isotopes of a single element can differ by large factors
(see Refs. [44,45]), we will focus on particular isotopes of
noble gases in this section; see Table I. We assume natural
abundances for all solids.

Even if thickness is not a concern, however, large solid
SLDs lead to a loss of sensitivity, because they reduce the
fraction of scattering events that come from the noble gas,
which are the only events for which a new force can be
resolved from the electromagnetic background.

For both of these reasons, solids whose SLD is not much
greater than the maximum achievable value for a given
noble element—essentially the SLD for its liquid form,
given the incompressibility of liquids—are preferable.
Table I lists approximate SLDs for all of the stable noble
liquids and several example solid materials. As this list
illustrates, finding solids with sufficiently small SLDs (and
the necessary granular structure) may be challenging,
motivating much of our discussion below.

Note that we do not include electromagnetic scattering
lengths in Table I or in our calculations, as these depend on
the detailed electronic structure of solids and are, thus,
difficult to predict. While electromagnetic scattering
lengths of atoms with nonzero total spins or orbital angular
momenta can be comparable to their nuclear scattering
lengths, they sum incoherently (see Appendix C) and, thus,
should have little impact on the sensitivity projections, as
the expected scattering distributions are dominated by
small-angle coherent scattering.

Several example candidate solid materials are presented
in this section, but this is likely not a complete list and
better materials may result from a more thorough search.
The first is silica, SiO,, which we use as our primary
benchmark for sensitivity projections. Silica may be a
candidate material in either of two forms: as a porous
ceramic or as a collection of spherical grains. Silica gels (in
particular, aerogels and xerogels) can have very high
porosities and can be produced with a variety of pore
sizes, including some appropriate for our purposes (for a
review, see, for example, Ref. [67]). Silica can also be
manufactured in the form of small spheres, typically via the
Stober process (see, e.g., Refs. [68,69]). Silica has a
reasonably low SLD of 420 fmnm™ (see Table I): lower
than the maximum of argon, though not of any other noble
element.

Cerium oxide (CeO,) has a very similar SLD of
410 fmnm™ and is widely available in powdered form
due to its application in surface polishing [70]. Note,
however, that the typical grain size of common cerium
oxide powders is too large for our purposes.

Alumina, Al,Os, can be produced as a porous ceramic
with pores of variable sizes [71], as it is used in filtration

and various industrial processes; it cannot, to the authors’
knowledge, be produced in the form of appropriately sized
beads. However, its SLD is 580 fm nm~, somewhat higher
than that of silica.

Carbon nanotubes (CNTs) can provide appropriate
granularities but, unlike the preceding materials, in a
nonisotropic geometry. The structure factors of forests
of CNTs, with incident neutrons parallel to the average
nanotube direction, are estimated in Appendix C 3. While
not as sharply peaked as the spherical grain structure
factor, the CNT result nonetheless accommodates the same
low-angle scattering enhancement. Forests of multiwalled
CNTs with appropriate radii [O(10 nm)] have been
produced [72-75], though it is unclear whether they can
be produced with appropriate thickness, density, substrate,
etc., for this work’s procedure.

Finally, we broadly consider the potential of some alloys
to be effective targets. Alloys can be attractive solid
targets, because they can be chosen to have small or even
vanishing SLD: Since some elements (e.g., hydrogen,
lithium, and titanium [44,45]) have negative coherent
scattering lengths, it is possible for the total coherent
scattering length to be suppressed at length scales greater
than the inverse interatomic spacing. (A degree of this
effect can be achieved even with nonmetals as the two
titanium-containing entries in Table I illustrate; the ad-
vantage of alloys is the greater freedom to adjust their
atomic compositions.) This can potentially reduce the
solid-background issues discussed above. We note that
we are not aware of any materials with this characteristic
that can be produced with the necessary granular structure,
but the attractiveness of such a target means that this may
be a direction worth exploring in future work.

Our projections for the two-material case assume the
same geometry as the single-material projections—a col-
lection of uncorrelated spherical grains of gas—but now
with the space between those grains filled with a solid
material rather than vacuum. As we noted in Sec. IIT A, the
exact shape of the grains should modify our projections
only by order-unity factors, leaving us to compute only a
single structure factor. The structure factor in this case is
defined analogously to the single-material definition (5) but
now including the contributions of both materials:

| N wr|
S(qT) = W ;;bl(qT)e qr°T;, (16)

where the target contains N; atoms of the jth element, each
with scattering length b;(q7). As we show in Appendix C 1,
this is well approximated for our geometry by
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122R3

fIASP

S(qr) =

where f is the volume fraction of the target occupied by the
gas, n, (ng;) is the number density of the gas (the jth
element in the solid), b,(qr) [b,;(qr)] is the neutron
scattering length of the gas (the jth solid element), and AS
is the difference in SLDs between the two materials. The
key difference from the single-material case is the depend-
ence on this difference: Coherent scattering vanishes in the
limit of equal SLD, as the two materials become essentially
equivalent for it.

B. Sensitivity projections

Sensitivity projection is considerably more involved for
two-material targets; we describe our approximation of it in
Appendix I 3. We assume the same neutron beam param-
eters as for the single-material case; see Sec. III C and
Appendix H2. The two-material analysis requires several
different neutron scattering measurements, so, in this case,
we assume that the 10'3 total scattered neutrons are divided
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—=—- Xe/Ar/Silica (1 nm, f=0.5)
—— Xe/Ar/Silica (10 nm)
----- Xe/Ar/Silica (100 nm)
—— Xe/He/Silica (10 nm)
Ar/He/Silica (10 nm)
&= Previous Experiments
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FIG. 3. A comparison of projected sensitivities to new mass-
coupled Yukawa forces for experiments following the design
described in this work, using several different two-material target
candidates. As discussed in Appendix D, the two-material
measurement requires at least two different noble elements, so
each projection is labeled by two noble elements and one porous
solid. Detailed assumptions for each projection are discussed in
the main text. Shown is scattering from xenon and argon within
silica with spherical pores of radius 1, 10, and 100 nm, as well as
from the 10 nm case with helium replacing either of the gases.
Also shown are the regions of parameter space already excluded
by previous experiments, namely, Refs. [15,21-25,27], and the
line corresponding to ke, = 107° for xenon, as an illustration of
the target systematic error we use throughout this work. Astro-
physical constraints at these masses lie below the bottom edge of
the plot but are somewhat model dependent; see Sec. V.

9 + Z(QTR)4 f”g'bg(qT)lz + (1 _f)Zjns,j|bs,j<qT)|2

+1, (17)

l

evenly between them. We choose the porosity of each
composite target such that 10% of neutrons are scattered by
the minimum accepted angle (3 x 1073 rad) or more, when
both solid and gas are present, in a thickness of 0.1 cm.
(The one exception to this is xenon and argon in 1-nm-
radius grain silica, for which 0.1 cm thickness is never
sufficient; in that case, we assume a porosity of 0.5 and
increase the thickness to reach 10% scattering.) The
resulting sensitivity projections are shown in Fig. 3.

We focus on the promising of the readily available target
candidates: granular silica, with measurements taken from
both xenon and argon within it, showing the resulting
sensitivities for several grain radii. Sensitivities for the
10 nm grain case with helium in place of xenon and in place
of argon are also shown for reference; notably, the latter
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===+ Xenon (No Structure)
—— Xenon (10 nm)

—— Xe/Ar/Silica (10 nm)
&== Previous Experiments
~ =« U(1) at Aew

----- U(1) at 10 TeV
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FIG. 4. A summary of the sensitivity to new mass-coupled
Yukawa forces for the most promising single- and two-material
targets considered in this work (see Figs. 2 and 3). Here, the solid
black region indicates the portion of parameter space excluded by
previous experiments [15,21-25,27] (exclusion from astrophysi-
cal observations lies below the bottom edge of the plot; see
the text), the two gray lines show the mass-coupling relations
expected for new forces arising from U(1) gauge symmetries
broken at the electroweak scale or at 10 TeV [2,3], while the
dotted black line corresponds to an estimate of the sensitivity that
could be obtained using the conventional, uniform targets of
previous experiments but assuming the 10'3 scattered neutrons
that we use for our projections. Any parameter space below this
dotted line reachable using structured targets then corresponds to
the benefits of coherently enhanced low-angle scattering. Note
that, while the additional achievable parameter space for the silica-
based target is fairly small, this projection is quite conservative:
Significantly better sensitivity may be achievable using porous or
granular solids with smaller SLDs; see Sec. IVA.
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performs comparably to the argon option. This is the result
of two competing effects with opposite influences on the
resulting sensitivity: Helium’s low scattering length density
makes it difficult to resolve above the solid background, but
its small atomic weight means that comparison to it
removes less of the new force contribution of xenon than
comparison to argon does; see Appendix I 3.

Figure 3 illustrates many of the same features discussed
in the single-material case in Sec. III C. However, the
projected sensitivities are notably worse in the two-
material case, due to the loss in statistics from dividing
neutron flux between measurements and from eliminating
the solid background. Nonetheless, scattering from silica
with 10-nm-radius grains surrounded by xenon and argon
has the potential to surpass the reach of traditional, xenon-
only scattering experiments by a factor of several for forces
with ranges at or slightly above 10 nm; see Fig. 4.

Sensitivity projections for solid materials other than
silica were calculated but are not shown, as they differed
from the silica results only by order-unity factors. This is
consistent with the comparable SLDs of all solids we
considered (see Table I). We emphasize, however, that our
projections in Fig. 3 should be interpreted as conservative
estimates, as there may exist better solid material candi-
dates (i.e., granular solids with smaller SLDs) than we have
considered. Thus, the true potential reach of two-material
neutron scattering likely lies somewhere between our one-
and two-material projections.

V. CONCLUSION

We have presented an improved approach to constraining
short-range forces using neutron scattering. By taking
advantage of the enhancement of scattering at length scales
comparable to target structures, neutrons can be made to
preferentially scatter at small angles, where a new force
may be most visible. The effects of such substructure can
then be separated from those of a new force by combining
measurements with different targets and by using x-ray
scattering. The technique we describe could be imple-
mented using a variety of different targets, including both
single-element targets—which offer superior sensitivity but
may be significantly more difficult to produce—and two-
material targets.

Our estimates for spin-independent forces proportional
to mass, assuming approximately one day of neutron beam
time, are summarized in Fig. 4; these projections can be
generalized to other couplings (e.g., couplings to baryon
number or baryon minus lepton number) simply by
rescaling. We do not consider parametrically different
forces (e.g., spin-dependent interactions) in this work.
Such forces can be detected in scattering measurements
using polarized neutrons, but we leave consideration of
such approaches to future work.

Figure 4, like the two preceding figures, also shows
the parameter space excluded by previous experiments,
including both other neutron-based experiments [22—24,27]
and searches for Casimir forces between many-atom test
masses [15,21,25]. A variety of other experiments have
obtained limits that are now subdominant to those plotted for
the force ranges we consider; see, e.g., Refs. [24,25,76-80].
Other proposals to explore similar parameter space include
Refs. [28,81].

Our focus in this work has been on experimental
searches for new forces, but we note that typical sources
of new interactions are strongly constrained by astrophysi-
cal observations. In particular, measurements of stellar
cooling generally restrict g> < 10724 GeV~2 for all media-
tor masses we consider [82,83], excluding most models to
which our proposal is sensitive. Note, however, that
astrophysical bounds are generically quite model depen-
dent: For example, stellar cooling constraints on forces
coupled to B — L are several orders of magnitude stronger,
due to their interactions with electrons [82]; conversely,
modifications to gravity due to extra dimensions will
generally evade cooling constraints entirely. For a variety
of particle physics models that can avoid standard astro-
physical bounds, see Refs. [84-90]; although none of these
models are immediately applicable to the new forces we
consider, they illustrate the general model dependence of
such constraints. See also Refs. [91,92] for a discussion of a
broader class of generally weaker astrophysical bounds on
new forces.

Notably, the techniques discussed here are expected to
achieve significantly improved sensitivity in the 1-100 nm
regime even using only existing facilities and materials.
Substantial additional sensitivity improvement over the
entire 0.1-100 nm range should be possible through the
development of appropriate granular materials.
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APPENDIX A: NEUTRON SCATTERING
FROM ATOMS

In this section, we tabulate leading contributions to the
neutron-atom scattering length, including both Standard
Model backgrounds and the potential fifth-force contri-
bution. As discussed in the main text, we break these
contributions into three categories: nuclear scattering,
which arises due to quantum chromodynamics (QCD)
effects; electromagnetic scattering, due to quantum
electrodynamics (QED) effects; and new force scattering,
due to an assumed new spin-independent force coupling
neutrons to nucleons. A plot of these three scattering
contribution is shown in Fig. 5. Scattering due to weak
interactions is negligible, so we will not discuss it here.
More detailed reviews of neutron-atom interactions can be
found in Refs. [93,94].

Since we will be interested in the interference of
scattering contributions (of both individual and distinct
atoms), it is most convenient to work in terms of scattering
lengths b(qr), where q7 is the momentum transfer and the
differential cross section is

10! g
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§ —— Nuclear

{ —— Electromagnetic

§ — New Force

- Standard Model Fit

dp/dQ (AU)

10-9 et
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FIG. 5. An illustration of the relative sizes of the three
scattering probability contributions in Eq. (2)—nuclear, electro-
magnetic, and new force—for xenon gas, assuming a new force
with ¢~! = 1 nm and coupling ¢g*> = 10~'°, near our projected
sensitivity at this range. Also shown is a linear combination of the
nuclear and electromagnetic contributions that attempts to re-
produce the new force’s behavior, illustrating the inability of the
new force contribution to be absorbed into the Standard Model fit
parameters. Since the total scattering distribution is proportional
to the target density and depth, the three solid lines shown here
have been normalized so that dp/dQ =1 for the nuclear
contribution (at all angles since it is angle independent). Note
that the electromagnetic and new force contributions shown here
correspond to the interference terms between those forces’
contributions and the nuclear contribution, since this is their
dominant effect.

do

= = |b(q)]. (A1)
dQ qr(0)=q

This will be appropriate when incident neutrons are
accurately described as plane waves; we discuss the
alternative in Appendix C.

1. Nuclear scattering

Nuclear scattering of neutrons from atoms arises due to
the strong force, which has a range of only O(1-10 fm).
Since the maximum momentum transfers that we consider
in this work are O(10 nm™!), we can model nuclear
scattering as scattering from a delta function potential
(the “Fermi pseudopotential”’) up to corrections of the
order of O((|q7|byuc)?) < O(1078) for momentum transfer
qr and nuclear scattering length scale b,,. [95-100]. This
is sufficiently small that we will not be concerned with
corrections to the delta function form in this work. Subject
to this approximation, the nuclear scattering length is
therefore angle independent.

This scattering length can, however, depend on the
neutron’s spin with respect to the neutron’s spin. In
particular, the most general expression we can write for
it is

bl’ll]C (qT) = bl’ll]C.C + \% I(I + 1)bnuc.i6 : I

with o the neutron’s spin, I the nuclear spin, and b, . and
by i constants that must be determined empirically. In this
work, we focus in large part on noble element isotopes with
zero nuclear spin, in which case the second term vanishes
and nuclear scattering is fully isotropic.

Here, the subscripts ¢ and i in the two components of the
nuclear scattering length mark these as being coherent and
incoherent contributions, respectively. As the name sug-
gests, incoherent scattering contributions do not generally
combine coherently in bulk targets, since different atoms’
nuclear spins should not be significantly correlated in any
systems we consider. This is discussed in more detail in
Appendix C.

(A2)

2. Electromagnetic scattering

Electromagnetic scattering of neutrons is significantly
more complex than nuclear scattering. Here, we will not
attempt to provide a complete description of the electro-
magnetic contributions to neutron-atom scattering but will
simply summarize the results. For a more detailed dis-
cussion, see, for example, Refs. [93,99,101].

The largest source of electromagnetic neutron-atom
scattering is the interaction of the neutron with atoms’
magnetic dipole moments. Including the contributions from
electron spin, electron orbital angular momentum, and
nuclear spin, this gives a total scattering length of
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g€ .

8ﬂm66' (1-Gr4r)

(aefslans + futant + 1),

bdipole (qT) -

where g, is the neutron g factor (g, ~ —3.8 [102]), & is the
neutron’s spin (with magnitude 1/2), q; is the momentum
transfer, qr is a unit vector along the direction of the
momentum transfer, g, is the electron g factor (g, =~ 2), g; is
the nuclear g factor of the target atom, S, L, and I are the
atom’s total electron spin, electron orbital angular momen-
tum, and nuclear spin, respectively, and the functions
fs2(q) are form factors, defined below. (Note that we
work in units where &, = 1, which leads to a factor of 47
difference relative to, for example, Ref. [93].)

The form factors f;(q) account for the spatial corre-
lations of electron spins and angular momenta, which affect
the relative phases of scattering contributions from different
electrons. (Form factors are entirely analogous to structure
factors, discussed in the main text and in Appendix C.)
Thus, while scattering from all of the electrons will
add coherently in low momentum transfer scattering
(g77aom < 1), this will not be the case at momentum
transfers comparable to or larger than the inverse atomic
radius. For spin, this form factor is defined by

fs(@)S = <Zsj€iq‘rf>,

where the expectation value is over one atom, the sum is
over the electrons, and the jth electron has spin s; and
position r;. The definition of f; is somewhat more involved
[103], and we will not be concerned with its form in this
work. Analogous form factors for the nucleus are not
relevant for our purposes, as the nuclear radius is far smaller
than the inverse momentum transfers we consider (see the
discussion of nuclear scattering above).

Since the neutron is moving with respective to the atom,
the magnetic field it sees also acquires a contribution from
the Lorentz transformation of the atom’s electric field. This
leads to an additional scattering contribution known as the
“Schwinger term,” given by [104]

(A4)

 gnZe*
l

bschwinger (A7) = — r— (1 -f(qr))e -1 cot 6,

(AS)
where Z is the atomic number of the atom, 1 is a unit vector
along the cross product of the incident and outgoing
neutron momenta, and f(q) is the atomic form factor:

fl@)z= <Zei‘1"f>.

(A6)

This atomic form factor is reasonably well approximated by

1
T A

where ¢y ~ 11Z'> nm~!. Note that, while cot @ diverges
at small scattering angles, 1 — f(q;(6)) approaches 0 as 0
goes to zero quickly enough (x 6?) for the Schwinger term
to also go to zero at small angles [93].

Neutrons can also scatter from purely electric fields, due
to their internal charge distribution. Though the neutron is
charge neutral to extremely high precision and has a
vanishing or negligible electric dipole moment [102],
positive and negative charge densities within it may still
be physically separated. Radial dependence of the charge
density then leads to a potential depending on the Laplacian
of the electric potential and, thus, to a scattering contribu-
tion of the form [93,101]

m,Z
3aym,

(A7)

(r)(1 = f(ar)). (A8)

be(ar) = -
where a; is the Bohr radius and (r2) ~ 107" fm? [102] is
the neutron mean-square charge radius, defined as

)= [ Potwar (A9)
with p(r) the charge density within the neutron.

We note that, historically, it was common to include one
additional source of neutron scattering of the same form,
known as the “Foldy term” (see, e.g., Refs. [93,99,105]),
though this is now understood to be incorrect [106,107].
This change in understanding is of no phenomenological
importance, however, as the Foldy term took a form
identical to that of Eq. (A8) and could, thus, be absorbed
into the value of the (empirically determined) neutron
charge radius.

Finally, there is one more noteworthy contribution to
neutron-atom scattering, which arises due to the electric
polarizability of the neutron. Though the neutron’s electric
dipole moment is known to be extremely small (or zero) in
the absence of external electric fields [102], it may acquire
one in their presence. This leads to additional scattering of
neutrons from electric fields, which can be shown to take
the form [93]

_ [3ma,(Ze)? (ra)
bp(dr) = ﬁrm <1+0< . )
+wwﬁﬁﬂ,

where @, is the neutron’s electric polarizability (~1073 fm?
[102]) and r, is the atomic radius. Note that both /(r2)/r,

(A10)
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and g7/ (r?) are <107, while the overall magnitude of b
is around 107*b,,.. We can therefore ignore both of these
terms at our systematic error target of 107 (see Appendix I 1),
in which case the polarizability scattering term is angle
independent and is indistinguishable from a change in the
nuclear scattering length.

Throughout this discussion, we have omitted terms at
higher order in m,/m,. Since (m,/m,)* ~3 x 1077, such
terms should generally be too small to matter for our
purposes. However, the large value of Z for many targets of
interest could potentially result in some such terms becom-
ing significant. We leave the calculation of such higher-
order terms to future work, noting that these are purely
electromagnetic effects and should, therefore, be precisely
calculable if necessary.

3. New force scattering

The scalar-scalar fifth forces that we consider in this
work correspond to a Yukawa potential of [14]

>
_gMM,
r

V(r) = (Al1)

with ¢ the new force coupling, M, the masses of the
interacting particles, and y the mediator mass. The resulting
neutron scattering length of an atom of atomic weight A
(i.e., mass Am,,) is (see, e.g., Ref. [22])

3.2
m,gA 1
b = . Al2
new(qT) o0 /12 + q% ( )
It is convenient to define a relative strength
3 2A
mng <A13)

K, = —
new 27[/,l2 bO

of the new force scattering length b, to the sum of angle-
independent Standard Model scattering lengths b,, where
the latter is dominated by nuclear scattering but also
receives contributions from electromagnetic scattering.
[There is, of course, some ambiguity in this definition,
since we can always subtract a constant from the angle-
dependent scattering length and add it to by. We define b,
explicitly after our discussion of how scattering is sim-
plified for noble gases in Appendix C; see Eq. (C13).] In
terms of Kpe,, We have

Knewb
bnew(qT) = > (A14)

L+ (qr/p)*

APPENDIX B: X-RAY SCATTERING
FROM ATOMS

The elastic x-ray scattering distribution from the elec-
trons of a single atom, ignoring near-resonance effects, is
given by [108-110]

62 2
X - (4”me)

iE iqor (AT X P;
—m—e<f‘ZJ€qTrJ<TA+SJB>

do
aQ

2

El

)

(B1)

where E is the photon energy, € and ¢ are the incident and
outgoing photon polarizations, respectively, r;, p;, and s;
are the position, momentum, and spin, respectively, of the
Jjth charge, i (f) is the initial (final) atomic state, and A and
B are matrices depending on ¢ and ¢ whose exact forms
will not matter for our purposes. Scattering from the
nucleus is described by analogous terms [111]. As in the
case of neutron scattering, these expressions simplify
considerably for noble atoms, leaving only

722

do ©  Zfar) or B
=— - £-¢
¥ 4mm, qar 4 Mgye ’

dQ

where f(gy) is the usual atomic form factor (see
Appendix A), my,. is the mass of the nucleus, and we
are ignoring the finite size of the nucleus. If we assume
unpolarized incident x rays and sum over outgoing polar-
izations, the observed scattering distribution becomes

do
dQ|,

(B3)

e’ Z%¢ \’ 1 +cos?0
=\ —Zf(ar) - :
4zm, 47 2

X-ray scattering in practice is significantly complicated
by photoabsorption, with typical attenuation lengths of
10-1000 pm for 10 keV x rays; higher-weight elements
typically lead to stronger absorption [112]. While attenu-
ation lengths at the higher end of this range are unlikely to
be a problem for our proposal, the much shorter attenuation
length of, for example, xenon would lead to essentially
complete absorption of 10 keV x rays for the targets we
consider. X-ray attenuation lengths generically increase
rapidly with photon energy, however, so this issue can be
largely circumvented using higher-energy x-ray sources, at
the cost of requiring measurements at smaller scattering
angles in order to study the same momentum transfers. At
40 keV, x rays have an attenuation length of several
hundred micrometers in liquid xenon [112]; using X rays
at or above this energy should, therefore, be sufficient for
our purposes.
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APPENDIX C: SCATTERING FROM
STRUCTURED MATERIALS

In this appendix, we present a largely pedagogical
introduction to structure factors; other sources on this topic
include Refs. [40-42]. We begin by summarizing the
structure factors of several target material configurations,
beginning with relatively simple targets before considering
the structured targets that are the focus of this work. In the
first subsection of this appendix, we ignore the distinction
between the coherent and total scattering lengths of an atom
(i.e., the incoherent scattering length) for simplicity; while
this is a reasonable approximation for noble gases, it is not
for many other elements, so we return to the more general
case in the second subsection. Finally, we present an
estimate of the structure factor of a carbon nanotube forest:
This both serves as an illustrative example of the behavior
of structure factors and provides an alternative (albeit likely
inferior) structure to the grain-based targets that are the
focus of this work.

We emphasize that the structure factors computed below
are intended only as rough predictions in order to estimate
the projected sensitivities of our proposal. The structure
factors of actual targets will need to be measured in order to
separate their effects from those of a new force, as
discussed in Sec. III B and Appendix D.

1. Structure factors of simple geometries

Our focus in this work is scattering from noble gases,
which have zero total electron spin and angular momentum.
We further assume zero nuclear spin; while this is not true of
all noble element isotopes, it holds for all of the isotopes we
consider. Moreover, at the target temperatures relevant to
our proposal, there are no significant excited state popula-
tions for any atoms we consider. Thus, in the absence of any
internal state variation, scattering from individual noble
atoms depends exclusively on the momentum transferred
during the scattering process. We therefore begin by
considering scattering from targets where every atom has
the same scattering length, before returning to the more
general case in the next subsection of this appendix.

Scattering lengths of different atoms within the target
sum, though the differing path lengths corresponding to
scattering from different target atoms lead to relative phase
factors. In the limit of large distances to the neutron source
and detector, the resulting total scattering length is then

b (ar) = Zb(qT)eiqT'r” (C1)

where the sum if over atoms at positions r;.

The simplest relevant geometry for which we can
evaluate the result of Eq. (C1) is a large volume of ideal
gas. Here, the “largeness” requirement is satisfied if all
length scales of the target volume are much larger than the

inverse momentum transfers ¢7! considered. If this is the
case, the phase factors associated with scattering from
each atom are independent and uniformly distributed, such
that the expected total scattering length of the target is 0.
The expected total cross section, however, is given by the
variance of this distribution:

do

—| =NIb
Q| |b(ar)

2

, (C2)

with N the total number of atoms. The structure factor for
this case is thus S(gy) = 1. This is the usual incoherent
sum of scattering cross sections and is plotted in Fig. 6 as
“(no structure).”

Note that this result depended only on two conditions:
the absence of a preferred phase (such that the expected
total scattering length was zero) and the variance in the total
of the phase factors 47" being equal to the number of
atoms. The second condition, in particular, can arise in
various ways: While the independent random phases
present in this example are one option, variation in the
number of atoms is another. Thus, even in the limit of
qr — 0, incoherent cross sections can arise if the number of
atoms within a target structure is a random variable, with
the factor of N in Eq. (C2) replaced by the variance in the
number of atoms (e.g., the expectation value of N, in the
case of Poisson statistics).

= (No Structure)
- Xe (1 nm)

Xe (10 nm)

== Xe (100 nm)
Xe/Si (10 nm)
Ar/Si (10 nm)
Xe/Al (10 nm)

1023
1013

1003

c

3

3 ]

T 1014
10’22 ___________
10_32 _____________ —]

10-1 100 10!
gr (nm™1)

FIG. 6. A comparison of the neutron scattering distributions of
different targets, including a target with no structure, three
targets consisting of spherical grains of xenon of radius 1, 10,
or 100 nm, and three targets consisting of xenon or argon within
spherical 10-nm-radius pores in silica or alumina. All targets are
assumed to have depths that lead to 10% scattering at or above
3 x 1073 rad for a neutron wavelength of 0.6 nm, with the two-
material targets’ porosities set to make that depth 0.1 cm,
consistent with our assumptions in Sec. IV. The left and right
limits of the plot correspond to scattering angles (26) of 3 x 1073
and zrad, respectively.
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Up to this point, we have implicitly assumed that the
incident and outgoing neutrons are plane waves, such that
the momentum transfer and scattering cross section are well
defined. In practice, the finite momentum spread (or,
equivalently, finite spatial extent) of neutrons complicates
this result. Consider a neutron propagating along Z with
transverse wave function

1

r =
WL( L) \/Q;T—A;—{

we will ignore any z dependence of the neutron wave
function throughout this discussion, since it does not affect
the result in the limit of small momentum transfers, where
qr is orthogonal to Z; generalizing to larger angles is
straightforward. The scattering probability is then

e—ri/(4Ari); (C3)

2
(C4)

dp -
= :|ZWL(rj,J_)b(qT)equ &
tot J

To calculate the coherent prediction for this value, we take
the standard continuum limit, such that

dp 2

dQ

- ‘/ wo(r;1)b(ar)eridN
h

— Salb(qr) P(Ar, nLY2e 2407

CO!

(C5)

with n the atomic number density and L the depth of the
target. Accounting for incoherent scattering, subject to our
usual assumption that the resulting phase factors are entirely
random, gives the usual contribution of nL|b(qz)[?, for a
total scattering distribution of

d 2 2
EPV — uLlb(qr)P(1 + 8a(nLAFR e 20i8m),

C6
dQ| (ce)

In particular, while the scattering distribution of Gaussian
neutrons is unchanged when g;Ar| > 1, it is enhanced by
an additional factor of 8znLAr? (effectively the number of
atoms seen by a single neutron) for g;Ar; < 1: Scattering
is “fully coherent” in this regime, even for targets with no
structure whatsoever. We will assume that grAr; > 1
throughout most of this work, but we note that this
requirement may (or may not) constrain realistic imple-
mentations of our proposal due to the impact of multiple
scattering events; this is discussed in Appendix E.

The more typical source of nontrivial structure factors is
the arrangement of the atoms in the target. Most of the
geometries of interest in this work will be characterized by

regions with similar length scales in all directions (the sole
exception, carbon nanotubes, is discussed later in this
appendix). Such isotropic geometries can be qualitatively
understood by considering scattering from a sphere; the
exact structure factors of generic geometries must be
computed numerically.

The structure factor for a sphere of monatomic ideal gas
with radius R is (see, for example, Refs. [41,42]; we also
derive this result, including corrections from incoherent
scattering, in the next subsection)

S(gr) = <3(Sin<CITR) — grRcos(qrR))

2N 1 C7
(@) ) MR

with N the total number of atoms in the sphere. Here, the
first term corresponds to coherent scattering from the
sphere as a whole, while the (frequently omitted) second
term accounts for incoherent scattering due to random
variation in atom positions as discussed in the large-volume
case above.

All targets that we consider will consist of many distinct
grains. We will generally assume that these grains’ posi-
tions are essentially uncorrelated on the scale of g7', such
that we can treat their sum in the same way as an ideal gas;
we consider deviations from this assumption below. Thus,
the structure factor of many, randomly positioned spheres
is still Eq. (C7), with N understood to be the number of
atoms per sphere rather than the total number of atoms in
the target.

In practice, the grains of realistic targets are unlikely to
have identical radii (or even, in most cases, identical
shapes). It will therefore be convenient for our purposes
to work with a version of Eq. (C7) averaged over a small
spread of radii:

127 -
S(qr) ¥ ————=nR*+ 1,

9+ 2(qrR) (C8)

with n the number density of atoms within each grain, is
accurate to within a few percent for relevant gy and R,
assuming 10% variation in R around its average R. This
simplified form will be preferable for the approximate
sensitivity projections we make in this paper; more precise
calculations, using measured distributions of R, can be
performed numerically.

Since creating isolated grains of noble atoms is poten-
tially quite difficult (though perhaps not impossible; see
Sec. Il A), many of the targets we consider in this work
consist of two separate materials: a solid that creates the
granular structure and a noble gas filling in the unoccupied
space within that solid. There are two general categories of
solids that could be used for this: porous materials,
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consisting of a single solid block with holes that are filled
by the noble gas, and piles of grains, where the noble gas
fills the spaces between the grains. Notably, these are
largely equivalent from the perspective of coherent scatter-
ing: Since coherent scattering from a uniform target is
negligible for gyAr; > 1 [see Eq. (C6)], the coherent
scattering cross section of a collection of grains filled with
an ideal gas is equal to the coherent scattering cross section
from a target where the same ideal gas occupies all of space
except those grains.

Predicting scattering distributions from solid targets is
significantly more challenging, due to the nontrivial corre-
lations between atomic positions. In the limiting case of
scattering plane wave neutrons from a perfect crystal
lattice, scattering is infinitely peaked at momentum trans-
fers that are integer multiples of the inverse lattice spacing,
generally less than 1 nm. Since our interest in this work is in
maximizing scattering at much smaller momentum trans-
fers, we will instead focus on amorphous solids, whose lack
of regular structure should dramatically reduce this source
of coherence. Nonetheless, some degree of short-range
order, and consequently some amount of coherent enhance-
ment, is likely to persist. We will ignore this effect below, as
it should not have a significant impact on our sensitivity
projections so long as it is smaller than the coherent
enhancement caused by the target’s granular structure;
while this appears likely, it should be checked empirically
for any particular target solid candidate.

122R3

For targets consisting of multiple elements, the definition
of the structure factor (5) must be generalized to

Zb qT l‘lT .k

where the target contains N ; atoms of the jth element, each
with scattering length b;(gr). Ignoring the effects of
regular solid structure discussed above, this can be rewrit-
ten as (see, e.g., Refs. [41,42] or, again, the derivation in the
next subsection)

2

S(qr) = (€9)

Z/N]|b qT

. 2
ngaS (Sgas(qT) - Ssolid(QT))equ'raBr

ar) = SN 4P o

(C10)

where Ry, is the region filled with gas and Syyjig (Sgqs) 18
the scattering length density or “SLD” of the solid (gas),
defined as S(qy) = >_;n;b;(qr) with the sum over the
distinct elements making up the solid (gas). In particular,
coherent scattering from two-material targets is dependent
on the difference between the SLDs of the two materials
and vanishes when they are equal. Taking as an example
our usual geometry of isolated spherical grains, but now
with a different material between the grains, we have

fIASP

S(qr) ~

where AS is the difference of the two materials’ SLDs, f is
the fraction of the total volume taken up by the gas, and the
remaining sum is over the distinct elements making up the
solid. (The apparent asymmetry in f <> 1 — f here is a
consequence of our assumption that the grain locations are
uncorrelated, which can hold exactly only in the f <1
limit. Realistic geometries will have f~1— f, giving
order-one corrections to this result.) Approximate scatter-
ing distributions for a selection of two-material targets of
interest in this work are illustrated in Fig. 6.

2. Coherent and incoherent scattering

The discussion of scattering above assumed that the
scattering length of every atom in the sphere was equal. At
minimum, this requires all of the atoms in the target to be
the same isotope. Even for a single isotope, however,
electromagnetic scattering depends on the electronic (and
nuclear spin) state of the atom, which will vary from atom

9+2(grR)* fnylb,(qr)* + (1

= )32 s lbs j(ar) P 1 (C11)

to atom in every system we consider; see Appendix A 2. It
is easy to see that a uniform mixture of isotopes and states
can be handled simply by replacing b and |b|? in Eq. (C9)
by their average values; we consider effects that might lead
to spatially correlated states in later appendixes.

Throughout this section, we will restrict to scattering of
unpolarized neutrons, for which the neutron spin & is
uniformly distributed. Averaging over spins will, there-
fore, allow us to simplify our scattering distributions
significantly.

For an isotropic medium, the expectation values of L, S,
and I are all zero. The spin average of ¢ - i cot 0 is also
zero for every scattering direction (but note that it is
generally nonzero for any particular neutron, so
Schwinger scattering is enhanced by structure factors;
averaging over neutrons merely eliminates any interfer-
ence between it and coherent scattering). Then the expect-
ation value of the scattering length is given by the
remaining terms from Appendix A:
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bc(qT) = <bn(qT>> = bnuc,c + bE(qT) +bp+ bnew(‘]T)
B B Emozn(Ze)2 _ mZ ,
_ <b Jrmalg_ mt %>>

m,Z m; > A 1
+ (T (r + =
<3aome< >)f(qT) 2 1+ (gr/n)?

— by <1 + kemf(qr) + ﬁ)

where we have split the expectation value of the scattering
length (i.e., the coherent scattering length) into an angle-
independent contribution

(C12)

3ma,(Ze)> m,Z
b :bnucc—\/: " iy Cl13
0 s 7[471\/@ 3a0me< > ( )

and two angle-dependent components: one from electro-
magnetic interactions and one from any new force. Here,

m,Z ’

KEM (C14)

- 3a0meb0 "

parametrizes the relative strength of electromagnetic scat-
tering compared to nuclear scattering (the noble elements
we consider typically have kgy ~ 1072), and k., [defined
by Eq. (A13)] does the same for the new force. The
contributions of the three terms in Eq. (C12) are plotted
in Fig. 5, although we do not absorb the angle-independent
component of electromagnetic scattering into b, in that
figure [i.e., we plot the physical contribution bokgy (1 —
f(gqr)) of electromagnetism rather than the bk f (g7 ) that
we use in most of the text for convenience].

For an anisotropic medium, the coherent scattering
length will pick up additional terms proportional to the
expectation values of L, S, and I. We will never need
these terms, however: As we discuss in the main text, we
do not expect scattering from solids to be sufficiently
predictable anyway, so we will always use combinations
of measurements in which solid scattering cancels out.
This leaves only scattering from the gas (or perhaps liquid)
component, which should be sufficiently isotropic on its
own. We demonstrate that solids will not lead to signifi-
cant anisotropy in the gas or liquid near their surface in
Appendix G.

Polarized neutrons are less inherently problematic but
require somewhat more tedious calculations: Preferential
polarization along some direction leads to Schwinger
scattering that depends on the angle of scattering around
the beam axis. Since we focus on unpolarized neutron
beams, however, we omit this contribution.

Incoherent scattering is significantly more complicated,
since the various electromagnetic terms generally do not
average to zero. It will be helpful to organize the scattering
length contributions as follows:

b,(ar) = b.(qr) + bsew(dr)o -+ b; 5(qr)o - (1 - Grhr)
‘S+b;.(qr)e- (1-GrG7) - L +b; 0

(al=qrqr)- 1, (C15)
where
bsen(ar) = 122 (1 - f(ar)) cot 0. (Cl6a)
schldr) = l87rmn flqr)) cot 0, a
gnge?
bi.S(qT) = Sam fs((lT)’ (C16b)
gn€?
b (qr) = ry— frar). (Cléc)
b, = 99 (C16d)
" 8am,
b .
a:1+\/1(1+1)% (Cl6e)
il

with the various constants and functions defined in
Appendix A 2. Note that a can be much larger than 1
for some atoms but is exactly equal to one for atoms with
zero nuclear spin, which including all of the most prom-
ising target gases considered in this work.

The expectation value for the norm squared of the
scattering length receives contributions from the square
of each of these, as well as from any cross terms that are
nonzero. Fortunately, many of these terms turn out to be
negligible for the situations we consider. Isotropic targets
and unpolarized neutrons make all of the cross terms
including b, zero. (This is precisely what we assumed
when discussing the coherent scattering length above.) The
same holds for cross terms involving bsy,(q7). This leaves
only cross terms from terms that depend on the target
atoms’ electronic and nuclear spin states.

The largest of these cross terms is

2b; 5(qr)b; L (ar){(6 - (1 = 4rhr) - S)(e- (1= Grqr) - L))
1

= *bi.s((IT)bi.L((ITMS -L),

5 (C17)

where the right-hand side has been averaged over neutron
spin and assumes an isotropic target, leaving only the
expectation value over that target. (Recall that |6| = 1/2 in
our conventions.) There are analogous terms for the cross
terms including b, ;, but in practice the expectation values
of (S-1I) and (L - I) are suppressed by the small value of
the hyperfine coupling compared to the target temperature,
which renders these cross terms negligible for the targets
we consider.

With these simplifications, and performing the rest of the
spin averages, we find, for a single atom,
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by ar) = {1bu(ar) ) ~lb (ar) P bsar(ar)?

1
_ . 24 -

3a®>—2a+1
+ IR,

Fbis(ar)bis (ar)(S-L).

L(L+1)b;1(qr)®

(C18)

Note that the bg,(qr)? term is suppressed by (Zm,/my)?
relative to the leading-order electromagnetic terms. While
this makes it a small correction to the total scattering length,
the large values of Z for target atoms we consider, and the
fact that it is coherently enhanced in structured materials,
make it potentially non-negligible.

In much of this work, we restrict to scattering from noble
gases with zero nuclear spin. In this case, the incoherent
scattering length is simply zero, which is why we generally
ignore the distinction between coherent and total scattering
length. Note, however, that the scattering lengths through-
out this text should be understood to include the small
Schwinger correction

1 . gnZe?
Ab(qr) = —=bsm(qr) = g

> —lm(l—f((h)) cot 0,

(C19)

which behaves like a coherent scattering length but must
always be added to scattering probabilities in quadrature
after averaging over neutron polarizations (as well as due to
its relative factor of i).

We now return to scattering from a collection of
spherical grains. Our estimate of the resulting scattering
distribution above Eq. (C8) did not distinguish between
coherent and incoherent scattering lengths. We can correct
this by more carefully evaluating the total scattering length
of a sphere of ideal gas:

<|bsphere(qT)|2> = |<bsphere(qT)>|2 + Var(bsphere(qT>)'
(C20)
As discussed above, the expectation value of the total

scattering length of one sphere can be evaluated in terms of
the integrated SLD:

<bsphere(qT)> = /S(qT)eiqT‘rd3r

= S(qr) / / 2772 sin 0 4T drdo

N 4n(sin(qrR) — grR cos(qrR))
= 3
dr

S(qr).

(C21)

Note that, since this corresponds to coherent scattering,
only the coherent scattering length should be included in
the SLD, i.e., S(q7) = nb.(qr).

The variance of the total scattering length of the sphere
conversely corresponds to incoherent scattering and, as
discussed previously, should simply be given by the sum of
the total scattering length’s norm squared over all of the
atoms within it. Thus,

<|bsphere<qT)|2> -

<4”(Sin(CITR) — qrR cos(qrR)) )2
3 n
dar

2 A o3 2
x [be(ar)|” + - nRlby(ar). (C22)
We are interested in the structure factor of a target
containing many such spheres; assuming that these sum
incoherently, the total scattering lengths of each sphere
should add in quadrature, which does not affect the
structure factor of the target. Armed with this result, and

performing the same radius averaging as above, correcting
Eq. (C8) is straightforward:

12 _ . 2
N XU Y
9 +2(qrR) b, (ar)]

S(qr) (C23)

When grains are closely spaced (e.g., in highly porous
materials) and for small ¢, (e.g., g7' ~ 30 nm, near the
limit of what we consider), there may be some degree of
coherence even between the grains of the target, as their
positions become correlated on scales of g7!. Similarly to
the effect of short-range correlations in amorphous solids
discussed previously, this is likely to have some effect on
the total scattering distribution but should not significantly
change our conclusions so long as it does not prevent an
order-unity fraction of neutrons from scattering at small
angles.

We can now extend this approach to two-material targets
in which one of the materials is arranged in spherical grains
or pores; above, we merely cited the result (C10). The
expectation value of the total scattering length is now

(lar) = [ Saslar)evra'r
+/ Siotia(ar) e’ d’r
Rotia
:A (Sgas(qT) _Ssolid(qT))eiqT.rdSr
(C24)

+/ Ssotia(qr)e T dr.
leal

As discussed above, the last term is suppressed as
exp(—q7Ar? /2) for neutrons with a Gaussian transverse
profile of width Ar ;. We assume throughout this work that
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this renders it irrelevant for all momentum transfers we
wish to observe; the potentially significant effects of this
term through multiple scattering events are the subject of
Appendix E. Then,

(bular)) = [

Rgas

(Sgas(qT) - Ssolid(qT))eiqT.rcpr' (CZS)

The variance in the total scattering length can be broken
into three contributions: the variance of the total scattering
length of the gas, the variance of the total scattering length
of the solid, and the covariance of those two scattering
lengths. We assume, as usual, that the first two are given
simply by the sums of the squares of the atomic scattering
lengths; the third is discussed in Appendix G, where we
show that it should be negligible. We can then immediately
write down the structure factor of the two-material target:

122R3
f1AS[?
1.
) (fng|bg(qT)|2 +(1 _f)Zjns.j|bs.j(qT)|2> -

(C26)

This looks identical to the form we obtained previously
(C11), but it should now be understood that the SLDs in the
numerator include only the coherent scattering lengths,
while the scattering lengths in the denominator are the total
scattering lengths (which may be quite different for non-
noble elements).

3. Structure factors of nanotube forests

There is one other geometry considered in this work: a
collection of tubes, such as that of a carbon nanotube forest.
We will, therefore, be interested in calculating the structure
factor for this geometry as well. We will calculate it for the
single-material case; generalizing to the (more applicable)
two-material case can be straightforwardly done as above.

Consider an array of long, thin tubes approximately
aligned with the neutron beam axis z. Let one tube have
length L and a circular cross section of radius R, and let its
center line be described by the function x(z)X + y(z)y. If
we assume that the tubes are, on average, radially sym-
metric about z, we can take x to be the momentum transfer
direction without loss of generality, in which case the total
coherent scattering length from one tube is approximately

(buse (7)) = / / / dzrdrdgne @ rsnep (q,). (C27)

Note that the effects of the tube’s transverse size are
completely separable from the effects of the variation in
the center line position:

(buse(ar)) = nb.(ar) / / rdrdgeisnrino / dzeitnnta),
(C28)

The first factor, from the tube cross section, is analytically
expressible in terms of a Bessel function:

. . 2R
// rdrdge'dr" S ¢ = LJI (qrR).

qr

(C29)

The second factor, however, is strongly dependent on the
details of the tube shape. In general, this must be calculated
numerically for a chosen target geometry. For the purpose
of obtaining an estimate of the sensitivities we can achieve,
however, it is helpful to compute an approximate result
for it.

If the variation in x(z) is large compared to the inverse
momentum transfers considered, we can approximate the
center line integral using the stationary phase approxima-
tion. In this case,

/ dzer®) 3 giareteo) gifents ) (30

HES qrX (ZO)
where X is the set of points z, satisfying x'(z). Intuitively,
this corresponds to assuming that the rapidly varying
phases along slanted portions of the tube average to zero,
leaving only contributions from around the points where
the tube is temporarily parallel to the z axis.

At this point, it is helpful to switch to evaluating
the norm squared of the coherent scattering length,
|(bube(qr))|?, which allows us to simplify these expres-
sions further. Averaging the first factor squared over some
variation in R (just as we did for spheres) allows us to
make the approximate replacement

‘// rdrdge'tr”sne

While not exact, this expression is convenient and will be
good enough for order-of-magnitude sensitivity estimate
we wish to obtain.

Since the x coordinates of the points z;, are essentially
random on the scale of ¢7!, the contributions from each
point add in quadrature (i.e., incoherently) even for the
coherent scattering contribution. (This is analogous to our
assumption of spheres summing incoherently above, with
similar caveats about small ¢;.) The second factor then
simplifies to

‘ / dzeirx(2)

2 (nR?)?

140.7(qrR) (€31)

" > o (C32)

20z

055005-21



BOGORAD, GRAHAM, and GRATTA

PHYS. REV. D 108, 055005 (2023)

This is still a somewhat awkward expression, so it is helpful
to rewrite it in terms of more intuitive variables. If we let A
and A be the typical wavelength and amplitude, of the
tube’s center line undulation, respectively, the integral can
be approximated, very roughly, by

‘ / dzeidr*(2)

Combining these two approximations, we have a total
coherent scattering length per tube of

2 LA

~ —

e (C33)

(zR?)? LA

o T b(ge)).
1+0.7(qrR)? grA (nbe(gr))

|{bue (a7)) (C34)

If carbon nanotubes’ atomic structure was highly irregu-
lar, the incoherent scattering contribution would be given
by a sum of |b,(q7)|? over all of the atoms in the tube. For a
forest of tubes, we assume, just as for the sphere case, that
the individual tubes’ phases are uncorrelated. Then the
structure factor of the full forest would be the same as that
of a single tube:

R? 1 2
anR?*) 3_|bc(CIT)|2 ey (C35)
1+0.7(q7R)* q7A |b,(q7)]

S(ar) ~

In fact, carbon nanotubes are likely to have highly regular
atomic structures, which may significantly modify this
result. Accounting for this is beyond the scope of this work
(and is likely to require measurements of particular nano-
tube forests), but we note that, as usual, this should not
meaningfully affect our conclusions unless it changes the
dominant angular scale of scattering from the forest.

APPENDIX D: SEPARATING
SCATTERING CONTRIBUTIONS WITH
TWO-MATERIAL TARGETS

Many of the targets that we consider in this work
combine a solid responsible for the target’s granular
structure with a noble liquid or gas within that structure.
This significantly complicates the task of separating fea-
tures of the scattering distribution that are the result of the
target structure from any that are the result of a new force.
We will not attempt to illustrate this process explicitly
(though a crude approximation is presented in Appendix |
3) as we did for the single-material case above; in practice,
this will need to be done numerically. In this section, we
demonstrate merely that this is possible: that is, that enough
parameters can be measured to constrain every pertinent
degree of freedom, including the two (coupling and mass)
for the new force.

The generic neutron scattering distribution from such a
solid-gas combination is (see Appendix A)

d(fn’z -
do

1
+ Knew W) W(qr)
+[(Bs(qr) — ibso(1 = f(qr))

By(qr) + bo (1 + xkemf(qr)

2

x cot W (gy)n) ~62) sin 0, (D1)
where
Ngas
W(gr) =Y e'drm (D2)

=1
is the sum of the scattering phases from the atoms in
the gas [such that, if the gas remained in place but there
was no solid, the structure factor would be §'(gr)=

(W(qr)P/Negasl.

bso = (D3)

is the magnitude of the gas’s Schwinger scattering length,
By(gr) is an unknown total spin-independent scattering
length for the solid (already summed over all the atoms),
and Bg(gy) -6 is the analogous spin-dependent total
scattering length, which sums coherently with the spin-
dependent Schwinger scattering length of the noble gas.
We do not assume that either B, or By takes any particular
form or value, as they are likely to both depend heavily
on the complicated interactions within the solid. We do,
however, assume that the electronic structures of the noble
gas atoms are not significantly affected by the presence of
the solid (or by the likely high pressure of the gas); this is
confirmed in Appendix G.

For simplicity, we begin by assuming that the spin-
dependent terms are negligible; we reintroduce them below.
In this simplified case, we have

02— (1Bu(ar)P + oo 1+ ks ar)
v >
+ Knew 1 n (L]T//l)z) ‘W(qT)l
+ 2Re(By(q7)W(qr)*)bo
1 .
X (1 + kemf(91) + Knew W)) sin 0.

(D4)

We can separate the various parameters in this expression
by taking a series of measurements. In particular, consider
measurements performed using P different particles (neu-
trons, x rays, electrons, etc.; we will generally restrict to

055005-22



DETECTING NANOMETER-SCALE NEW FORCES WITH ...

PHYS. REV. D 108, 055005 (2023)

P = 2 in this work, assuming neutron and x-ray scattering)
and Q different noble gases, with a shared solid. Then we
can measure the following set of scattering distributions:
(i) PQ distributions for each of the P particles scattered
from the solid filled with each of the Q noble
elements;
(i1) P distributions scattering each particle from the solid
alone; and
(iii) (P —1)Q distributions for each of the P particles,
except neutrons, scattered from the Q noble ele-
ments alone.
We do not include neutron scattering from the gas alone
here, since, as we discussed for the single-material case in
Sec. III B, it suffers from poor statistics at small angles; it is,
however, still potentially useful at large angles, as we
discuss below. We can thus take a total of

Nieasure = 2PQ+P-0Q (DS)

independent measurements.

This should be compared to the number of degrees of

freedom in the scattering distributions above:

(i) One sum of phase factors W(gy).—This sum is
complex, but there is an arbitrary overall phase
corresponding to the choice of origin (i.e., only the
relative phases between W and each B appears in
scattering distributions), so we can take W(gy) to be
real without loss of generality.

(ii) Q real atomic form factors f(qy) for the noble
elements.

(iii) Q real neutron nuclear scattering lengths for the
noble elements.

(iv) P complex solid scattering lengths (B, (qr),
By o(qr), etc.).

(v) One real, angle-independent electromagnetic scat-
tering length scale for neutrons (i.e. bokgm)-

(vi) P — 1 angle-independent scattering length scales for
each of the other particles.—We will assume that
each of these particles’ scattering distributions is
fully described by some combination of this length
scale, the atomic form factor, and the scattering
angle, as is the case for x-ray scattering:

_ (262 >2<f(CIT) _Zm€>2 1 +C08229'

4zm, Mpue 2

do
dQ

(Do)

Generalizing this discussion to more complicated
scattering lengths is straightforward, but we will find
below that neutron and x-ray scattering alone should
be sufficient for our purposes.

(vii) Two angle-independent parameters describing the
new force: the coupling g and the mass p.

We thus find a total of

Nd.o.f.,é) == ZP + Q + 1 (D7)
degrees of freedom per angular bin, plus the P+ Q + 2
angle-independent parameters. Of these, the Q neutron
scattering lengths can be measured using the otherwise-
unhelpful gas-only neutron scattering measurements dis-
cussed above, as they are both inherently angle independent
and not suppressed by other effects at large angles.

Assuming we have at least P + 2 bins per measurement,
we can conservatively treat the remaining angle-independent
parameter as one additional angle-dependent degree of
freedom. Note that at least two of these bins must be at
small angles, since the new force parameters are suppressed
at larger momentum transfers; this minimum may be
increased if any of the scattered particles have distributions
that are similarly peaked. We will assume that there are
sufficient bins for this to be the case; see Appendix H 1.

In order to detect a new force, we need N caure =
Nyor.o+ 1, with the 1 accounting for these angle-
independent parameters. This can be achieved with at least
two particles and at least two noble gases. The most
promising candidates are likely neutron and x-ray scattering
from xenon and argon (see Sec. IV A), though there may be
circumstances in which other options are preferable.

We now return to the full scattering distribution (D1),
including spin-dependent scattering. This leads to three
new terms, which can be handled in different ways.

(i) After averaging over neutron polarizations,
IBs(gqr) - 6> acts simply as a correction to the
pure-solid | By (g7 )|? term; it can therefore be absorbed
into the spin-independent description by a replace-
ment of By with B, such that | B, (¢7)|> =|Bo(q7)|* +
Bs(qr) o> while 2Re(Bo(qr)W(qr)") = 2Re
(By(qr)W(qr)*). This term therefore does not re-
quire any modification to the analysis above.

(i) |ibso(1 = f(qr))cotOW(gr)h -6|*> is the corre-
sponding gas-only term; it is suppressed relative
to spin-independent scattering both by two powers
of the small Schwinger scattering length by,
typically of the order of 10~ times the nuclear
scattering length b, generally rendering it irrelevant
at our systematic error target. Even if this is
insufficient, note that, at small angles, it is addi-
tionally suppressed by (1 — f(g7))?* cot®> @ o 6°.

(iii) This leaves 2Re(iBg(qr)) - 6bso(l — f(q7))
cot OW (gz)h - 6, the cross term from these two
effects. This is suppressed at small angles by a
factor of 6bg /by, or approximately 1073 for the
smallest angles we consider in this work. There
may be additional suppression relative to the spin-
independent scattering contributions from the mag-
nitude of Bg(gy), though this is uncertain: The
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magnitude of spin-dependent scattering from indi-
vidual, non-noble atoms is generally comparable to
that of spin-independent scattering (see Appen-
dix A), but the spin dependence may limit coherence
at small angles.

One additional source of suppression is created by
the target structure. If the atoms in the solid had
random spins and angular momenta, their spin-
dependent contributions would never sum coher-
ently; in practice, there will be some correlations
between nearby atoms due to interactions within the
solid, leading to coherent scattering up to the
correlation length scale . Nonetheless, if & < R,
coherent spin-dependent scattering will still be sup-
pressed relative to spin-independent scattering when
qré <1 < grR, which may be sufficient to make
this cross term insignificant at small angles. Other-
wise, this term produces one additional degree of
freedom per angular bin.

If we assume, optimistically, that the cross term is
insignificant at small angles, none of the spin-independent
discussion above needs to be modified and we can still
separate all scattering contributions with two scattered
particles and two noble gases.

If not, however, we now have one additional degree of
freedom; requiring Npeasure = Nios o+ 1 then requires
either a third scattered particle (e.g., electrons) or, likely
more simply, a third noble gas. Thus, even in this
pessimistic scenario, new force scattering can be separated
from generic solid backgrounds, though doing so requires a
combination of several measurements.

APPENDIX E: MULTIPLE SCATTERING
EVENTS

Throughout most of this work, we have worked in terms
of scattering probabilities. While this is a good approxi-
mation when scattering events are rare, it is not sufficient at
the level of precision we require. In fact, the various
scattering probabilities estimated throughout this work
should be interpreted as expected numbers of scatterings
per neutron, with the scattering count per neutron Poisson
distributed. This has an unfortunate consequence: A neu-
tron that is observed to have scattered with some momen-
tum transfer q; may, in fact, have scattered two or more
times with momentum transfers that summed to qz. This
becomes especially problematic when low-angle scattering
is coherently enhanced, as this coherent enhancement will
extend not only to the small angles we want to measure, but
also to even smaller angles. This results in the observed
small-angle scattering distribution being enhanced more
than expected, due to combinations of even-smaller angle
scatterings, which could simulate a new force signal. In this
appendix, we estimate the magnitude of this effect and
discuss how one can account for it.

For concreteness, we continue to use the collection of
spherical grains model that we use throughout much of this
work; we begin with the single-material case for simplicity.
It is helpful to rewrite the resulting scattering distribution
[given by Eq. (C8), plus the fully coherent contribution
analogous to Eq. (C6)] in terms of the logarithm of the
scattering angle:

dp 127
- L(——————nR*+1
Y <f” <9+2<qTR>4” +>

+ 8ﬂ(fnLArL)Qe_q%A’2L/2> |b(q7)|*270 sin 20,
(E1)

where f is the fraction of the target volume occupied by the
grains, each with atomic number density n and average
radius R, and L is the thickness of the target. We can rewrite
this as the sum of three terms, which dominate at different
angles:

dp . (‘9/9pc)2
P A0 sin 20+ A — P
ding (et SN 0F AT 1

2
+ ACOh (i) e_(e/gcoh)2 s
ecoh

(E2)
where Aj., Ape, and Ay, are constant prefactors for
incoherent, partially coherent (i.e., coherent over grains
but not over the full target), and fully coherent scattering,
respectively, and 6,. and 0., are the angular scales of
partial and full coherence, respectively (i.e., the angle
above which scattering from individual spheres becomes
incoherent and the angle above which the neutron size no
longer matters). Here, we use g « 6 rather than the exact
form g7 < /2 —2 cos(20) =2 sin(f) for simplicity,
since we are interested only in small-angle effects in this
section. The resulting scattering distribution is illustrated
schematically in Fig. 7.

In a typical experiment, 6, is likely to be comparable to
the smallest scattering angle at which neutrons can be
observed, since the entire purpose of employing structured
targets is to maximize small-angle scattering. The question,
then, is whether neutrons observed to scatter by an angle
around 6, are sourced by a single significant scattering of
the order of that angle or by a series of smaller-angle
scatterings that summed to it. In particular, any experiment
must ensure that the observed scattering distribution is not
significantly affected by scatterings at angles too small to
study using x-ray scattering, since there is no way to
determine the structure factor at such small momentum
transfers.

To establish conditions for this to be the case, divide
angles below 6, into two regimes: those large enough to be
measured using x-ray scattering (6 > 6y) and those below
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Acoh

dp/d1n 6 (log-scaled)

Ocon 0nl1in 0.X epc 7T/4
0 (log-scaled)

FIG. 7. A schematic illustration of the scattering distribution
(E2). The locations and values of local extrema indicated on the
plot are approximate; we have omitted various O(1) factors here
for simplicity. Also marked is the minimum angle 6y accessible via
x-ray scattering (conservatively assumed to be larger than ;).

that threshold. At least some of the former will certainly
affect the final observed scattering distribution, but their
effects can be numerically predicted once the structure
factor at these angles is determined with x-ray scattering.
The effects of angles below fy, on the other hand, should be
insignificant as long as 0y /0, is sufficiently small, as we
show below.

Now, further subdivide the angles below 8y further into
two ranges: those above the local minimum in the
scattering distribution at d,,;, (see Fig. 7) and those below
it. We begin with the former. The number of scatterings
per neutron from the 6., <& < 6y range is upper
bounded by a Poisson distribution with expected value
a=dp/dIn0lp_y In(Ox/O,), with each scattering by
an angle upper bounded by fy by assumption; we will
conservatively use both of these upper bounds.

Under these assumptions, the probability of N scatter-
ings from this range is

e~ %aN

p(N) = N

(E3)

The minimum number of scattering events from this
angular range needed to create an observed scattering by
at least 0, is Ny, = [0,./0x]1, though contributions from
larger numbers of scatterings may dominate when N, >
Lor Nyin — 0p/0x < 1, as itis unlikely for all of the small-
angle scatterings to be in the same direction. Even this
weak lower bound is likely sufficient for our purposes,
however: The probability of at least N;, scatterings is at
most [113]

(eat)Nming=t

P(N > Npyiy) € ——7—.
e (N min)Nmm

(E4)

and we have

dp )
T ™ 6 (ES)

in this angle range, so this bound becomes

92 Nmin
p(N 2 Nmin) < <6Apc HTX) e—Apcei/%C (Nmin)_Nmi" :
pc

(E6)

Taking a typical value of A, ~ 0.1 to balance maximizing
statistics with not being swamped by multiple scatterings
at angles around the peak, and assuming In(0x/6) ~ 1,
this gives

p(N >3) <107, (E7)

so we should need to perform x-ray scattering only down to
an angle of around one-third (perhaps one-fourth) of the
minimal neutron scattering angle in order to be able to
accurately numerically predict the effects of multiple
scatterings in the 0, < 6 < Oy range. As we discuss in
Appendix H 3, this should not be particularly difficult.

We can similarly bound the effects of scattering at angles
below 0,,;,, which are enhanced by total coherence over the
neutron’s transverse extent. In this case, the minimum
number of scatterings to reach the first angular bin outside
of the beam is [6,,./6con |, Which should be at least of the
order of 10 for realistic experiments. The fully coherent
scattering peak height A, can be estimated using Eq. (C6);
relative to the partially coherent peak, it is

Acoh ~ fL
Apc \/EﬂR

This is likely to give A, > 1, so we can instead estimate
the result of these fully coherent scatters by the sum of A,
random two-dimensional vectors of length 6.,,. This, in
turn, is well approximated by a two-dimensional Gaussian,
which gives a probability for the fully coherent scatters to
sum to an observable angle of

3(}’lerlﬁo)2
p(gcoh,lotal 2 Gpc) ~ eXp <_TA§C

n 2/ b \?
~ =53
exP( <10nm‘3) <10fm>
A 2/ 2 \%2/0.1\2
(o) (iox) (o))
10 pm 10A) \Ap
where Ay = 2x/q, is the incident neutron wavelength.
This probability needs to be smaller than 107 in order to
reach our desired control over systematic errors (see
Appendix I1). Assuming near-liquid densities, this is

always satisfied for argon-36 (see Table I) but may not be
the case for xenon-136 if the neutron transverse size is less

(E8)
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than approximately 7 pm (for a wavelength of 0.6 nm);
previous experiments have measured values from roughly
1-100 pm [114-117].

Our discussion to this point has assumed scattering from
a single material. However, as we discuss in the main text, it
is likely that a realistic experiment would combine two
materials: a solid lattice to form the granular structure and a
noble liquid or gas within it whose scattering distribution
has simpler electromagnetic contributions. This leads to a
suppression of the partially coherent scattering peak by the
fractional difference between the two materials’ scattering
length densities, since partial coherence depends on the
SLD contrast [see Eq. (C10)], and an enhancement of the
fully coherent and incoherent scattering peaks, since both
materials contribute to them. While this does not affect the
multiple scattering contribution of the intermediate angular
range, O, < 6 < Oy, it does enhance the effect of small
angles € < 6,;,. This may prohibit certain material combi-
nations and porosities, depending on the value of Ar . In
particular, for two-material targets, the argument of the
exponent in Eq. (E9) acquires a factor f(Sy. — Ssona)/
(fSgas + (1 = f)Sso1ia)» accounting for the different scatter-
ing length densities relevant for fully and partially coherent
scattering.

Finally, we note that the frequency of multiple scattering
events can be further increased by short-range order, which
tends to enhance scattering at momentum transfers com-
parable to the inverse length scale of that order. This is
unlikely to be significant for short-range order within
amorphous solids, as the expected length scales should
be shorter than those of the target grains, leading to
additional peaks at larger rather than smaller angles.
Any correlations in grain positions, however, may be more
consequential, as the necessarily large associated length
scales would enhance scattering at angles below 6,,.. The
magnitude of this effect will depend on the detailed
structure of a particular target, but it appears unlikely that
it would significantly affect the discussion above except in
highly ordered targets. We will therefore not consider this
effect further in this work.

APPENDIX F: THERMAL EFFECTS

The observed neutron scattering distribution depends on
the temperature of the target in several ways. At high
temperatures, the velocity of atoms in the target leads to a
significant difference between the center-of-mass velocity
of the scattering event and the lab-frame velocity of the
neutron, creating an apparent enhancement of the cross
section at low neutron energies [118,119]. Additionally,
higher temperatures lead to larger populations of excited
states of atoms, which can have different neutron scattering
lengths due to electromagnetic effects.

As discussed in Appendix A, nuclear scattering of
neutrons is angle independent in the center-of-mass frame
of the scattering event. When considering scattering from a

bulk target, however, it is more convenient to work in
the laboratory frame, in which individual atoms within the
target have a Maxwellian velocity distribution. Since the
target atoms are no lighter (and typically much heavier)
than the incident neutron, this leads to large differences in
the center-of-mass velocity of the neutron. In particular, the
apparent scattering cross section of neutrons slower than
the atoms in the target is enhanced, because the scattering
becomes the result of atoms striking an essentially sta-
tionary neutron. This leads to an enhancement of the low-
energy cross section as oy, o 1/v, with v the neutron
velocity, whenever this velocity is lower than the thermal
velocity of atoms in the target, as well as a modification of
the angular distribution of neutrons after scattering in the
lab frame.

As we discuss in Appendix H 2, typical neutron wave-
lengths at beam lines that may be appropriate for our
purposes are around 0.4-0.8 nm. Targets with atomic
weight A then have thermal velocities equal to the neutron
speed at temperature

y) -2
T~A <0.4 nm> x 10 K. (F1)

Most of the targets we consider in this work have A > 1
and can, therefore, likely be cooled below this temperature
with little difficulty. In this case, frame differences will lead
only to small corrections in the observed scattering dis-
tribution, which should not meaningfully affect final
sensitivities. If this is not the case—for example, if using
helium or for argon at larger neutron wavelengths—Ilow-
velocity enhancement may become more significant. While
this should not prevent measurements of the sort we
describe in this work from being performed, it may have
a more significant effect on the final sensitivity, which we
do not attempt to estimate.

The other effect of high target temperatures on cold
neutron scattering is the enhancement of populations of
excited atomic states. In particular, our modeling of neutron
scattering from noble elements throughout this work
assumes their ground state electron configuration, with
zero total spin or orbital angular momentum. These
assumptions no longer hold for excited states of the atoms.

Fortunately, the excitation energies of noble elements are
too high for this to be a significant effect: The lowest
excited state of xenon is at an energy of 1.3 eV [120-122],
corresponding to an excited state population fraction of the
order of 10722 even at room temperature; the excited states
of other noble elements are even more suppressed. This is
far below the 107% benchmark that we use throughout this
work, so any effects of excited electronic states in the noble
gas should be negligible. Any thermal effects in the solid
component of a target should be accounted for when
separating scattering contributions, so they do not affect
our analysis further; see Appendix D.
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APPENDIX G: ATOMIC INTERACTION
EFFECTS

In this appendix, we discuss the effects of interactions
between atoms on structured targets’ scattering distributions.
We consider both interactions between atoms within the
noble gas (or liquid; while we have ignored the distinction in
most of this work, the high density of the noble fluid will be
relevant here) and between those noble atoms and the atoms
in the solid. Interactions among atoms within the solid are
not relevant for our purposes, since we are generally
impartial to the total scattering length of the solid.

1. Interactions at the grain surface

There are two ways in which interactions at the surface
between the solid component of the target and the liquid or
gas within it can affect the observed neutron scattering
distribution. First, they can modify the distribution of the
noble atoms within their grain, modifying the structure
factor. For example, an attractive potential near the surface
could increase the density of the noble gas near the surface,
whereas our estimates in Appendix C assumed a uniform
distribution of the gas within each grain. Second, they can
modify the electron orbitals of the noble atoms, potentially
changing the electromagnetic scattering length. In particu-
lar, we have assumed throughout this work that the noble
atoms have zero net electron spin and angular momentum,
but this may cease to be the case in the presence of
electromagnetic fields induced by the solid.

The former effect does not significantly affect us, so long
as it does not lead to an order-unity change in the structure
factor, since it is independent of the scattered particle and,
thus, will be accounted for when combining measurements,
as described in Appendix D. This condition should cer-
tainly be satisfied for typical materials, considering both the
weakness of van der Waals interactions and that optimal
sensitivity is generally achieved for near-liquid densities of
the noble element, in which case there is little room for
atoms to deviate from uniform packing.

Significant modification of the noble atoms’ electronic
structure could be more difficult to handle, however. In the
presence of an inhomogeneous magnetic field, the atomic
Hamiltonian should acquire off-diagonal terms of the order
of |u||AB|, with s ~ up the characteristic magnetic moment
of atomic electrons and AB the variation in the magnetic
field over the extent of the atom; we ignore any numerical
factors here, given the considerable uncertainties in the
discussion below. This perturbation then leads to a mixing
of the ground state by a fraction

AH  pug|AB]|

AE AE

(G1)

of the excited state, with AE the energy of that state, and,
thus, gives a correction to the neutron scattering length of
the order of

_lgale? up|ABJ

Ab ;
[A5] 8zm, AE

(G2)

see Appendix A.
The maximum magnetic field resulting from a single
atom on the solid surface is of the order of

HB
R3

atom

B max ~ ; (G3)

with R,om ~ 0.1 nm the characteristic size of the atoms.
The neutron scattering length of such an atom is then
modified by approximately

|9, €213

|AD| ~ —— o —
8am, RyomAE

<3x1073 fm,  (G4)

where we use the lowest excited state energy of a noble
element (1.3 eV for xenon [120-122]) for this upper bound.
This should be compared to nuclear scattering lengths of
the order of 10 fm; see Table I.

Such a correction to every atom would be well above our
systematic error target of one part in 10°, if it were not
further suppressed by two additional effects. First, the rapid
decay of dipole magnetic fields with distance from the
dipole means that only an order-unity number of atoms near
the surface dipole will be affected; only a fraction of the
order Of Ryom/ Rgrain Of the atoms in a grain of radius Ry,
are therefore affected. Second, since we are not considering
ferromagnetic targets, we expect the magnetic field direc-
tions, and, thus, the sign of the neutron scattering length
changes for a given momentum transfer, to vary within (as
well as among) grains. Assuming that any correlations in the
alignment of surface dipoles occur on length scales
& < Rgpain, We expect a total of approximately (Rgmin /€)?
independently chosen directions over the extent of the grain
surface.

The average change in scattering length is then

|A_b| ~ ‘gn‘ezﬂ%} <Rat0m> 1
8”meRgtomAE Rgrain (

Rgrain/§>2
R
< (;—“15)3 x 107 fm,

(G5)

~

grain

which should be below our target of the order of 10~ fm
for all targets we consider.

Note that this average change in the scattering length is
the correct quantity to consider (as opposed to, for example,
its root mean square change) even for incoherent scattering:
Since the maximal change in the scattering length of one
noble atom is much smaller than its nuclear scattering
length, its non-negligible effect comes from the interfer-
ence between nuclear and electromagnetic scattering (i.e.,
from the product of the nuclear and electromagnetic
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scattering lengths). This term is linear in the electromag-
netic scattering length, and, thus, the changgn the total
scattering probability depends precisely on |Ab|.

2. Interactions among noble atoms

We now turn to the effects of interactions within the
noble liquid or gas itself. Similarly to the surface inter-
actions described above, the effects of interactions between
the atoms in a fluid can affect the observed scattering
distribution both by modifying the target’s structure factor
and by inducing changes in the electromagnetic scattering
length of the atoms.

The high density of liquids leads to significant correla-
tions between the positions of atoms and their neighbors,
i.e., a nontrivial pair distribution function [123—-129]. These
correlations will then lead to a modification of the structure
factor at inverse momentum transfers comparable to the
atomic spacing in the liquid. Fortunately, these are not an
issue for the measurements we propose: Since this effect is
independent of the scattered particle, it will automatically
be accounted for when combining measurements (see
Sec. III B), and it should have little effect on achievable
sensitivity, since it occurs at much larger momentum
transfers than the focus of this work.

Interactions between the atoms within the liquid may, in
principle, also lead to changes in their electronic states,
which would then modify the electromagnetic scattering
lengths of the target atoms. Since we are considering noble
elements, whose ground states have zero magnetic moment,
there are no apparent mechanisms to induce significant
changes in the atoms’ electronic states. Thus, this should
not be a significant effect for liquids or gases. It is less clear
whether spontaneous magnetization could appear in noble
solids, but we leave consideration of this to future work.

APPENDIX H: INSTRUMENT PARAMETERS

In this appendix, we summarize the key features of
neutron and x-ray scattering instruments and describe the
parameters of such instruments that we assume for our
projections in the main text. We begin with an outline of
small-angle neutron scattering instruments as a whole,
before focusing on the properties of neutron sources and
beams in particular, which are the limiting parameters for our
proposal’s reach. We then consider the analogous properties
of x-ray beams, justifying our assumption in the main text
that these contribute subdominant uncertainties.

1. Target geometry

A sketch of a simplified neutron scattering experiment
layout is shown in Fig. 1. In this section, we consider a few
aspects of this layout and their impact on the sensitivity of
such an experiment to the new forces we consider.

The importance of the distance between the neutron
source and the scattering target for collimation is discussed

in the next section of this appendix. We begin instead with
the distance beyond the target, between it and the neutron
detectors, which is significant in comparison to three other
length scales: the pixel size of the neutron detector and the
transverse and longitudinal target dimensions.

Modern neutron detectors can achieve resolutions
approaching 1 pm [130-135], though this enormously
exceeds our needs; as we discuss below, there is little
benefit to resolutions significantly below the target’s
transverse size. The ratio of the pixel size to the distance
between the target and the neutron detector sets the
maximum angular resolution of the experiment. This
angular resolution should certainly be no greater than
the minimum scattering angle we wish to measure, and
there is likely to be some benefit to an angular resolution a
few times better, in order to better resolve the new force
peak. Our projections below assume a minimum scattering
angle of 3 mrad, requiring a detector distance of at least
300 times the pixel size.

The minimum useful pixel size, in turn, is set by the
target’s transverse length scale. Below this length scale,
scattering events at the same angle can appear in different
pixels if they occurred at different locations within the
target. While this is not intrinsically problematic, there is
little purpose to using much smaller pixels, since the angular
distribution of the neutrons will be washed out by the target
size at these scales. Note as well that, when the target
transverse size is larger than the pixel size, it is the ratio of
the detector distance to the former that sets the maximum
resolution. Thus, the 10 cm? targets that we assume in our
projections require a target to detector distance of approx-
imately 10 m.

There is a similar effect from the target’s longitudinal
size (i.e., its depth), though it is likely to be subdominant
for our purposes due to our focus on small-angle scatter-
ing. There are three other constraints on this depth,
however. First, for a given set of target materials, the
target depth sets the fraction of neutrons that are scattered
into observable angles; as we discuss in Appendix E,
we assume that this is set to 0.1, in order to maintain
control over multiple scattering events. Second, as we
noted in Sec. IVA, excessively thin targets may be
difficult to work with; combined with the maximum depth
from multiple scattering, this may preclude certain
material combinations.

The third effect of finite target depth is a suppression of
fully coherent scattering at large angles. Our calculation of
fully coherent scattering in Appendix C assumed that the
direction of momentum transfer was perpendicular to the
neutron’s incident direction, but this is true only in the limit
of zero scattering angle. At larger angles, neutrons scattered
from one end of the target become incoherent with those
scattered from the other end, reducing the fully coherent
scattering contribution at these angles. This is completely
insignificant for all parameters we consider, however, since
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full coherence is significant only at very small angles to
begin with.

Finally, we consider the effects of the cell containing the
target material(s), which we have heretofore ignored. The
additional scattering contribution from the neutron beam
passing through the walls of the cell must be separated in
order to isolate the scattering distribution of the ideal gas
within. However, the separation of contributions procedure
discussed in Appendix D is not immediately applicable to
this issue, because scattering from the ideal gas cannot be
performed without the cell. Note, however, that this is a
concern only if there is coherent scattering from the cell
walls combined with the cell contents (i.e., the cross term
discussed in Appendix D); otherwise, the cell’s scattering
distribution can simply be measured separately and then
subtracted out of the final distribution. Our projections
assume that the cell walls lack any structure at length scales
comparable to the inverse momentum transfer, such that
this should be the case, leaving characterization of cell wall
roughness to future work.

2. Neutron beam parameters

Neutrons used in small-angle neutron scattering (SANS)
experiments are typically produced in nuclear reactors (e.g.,
Refs. [29-34]) or neutron generators (e.g., Refs. [35,36]).
Since such sources produce neutrons at much higher
energies than desirable for SANS experiments, they are
then cooled by passing through one or more cold moder-
ators (e.g., water and liquid hydrogen), resulting in an
uncollimated collection of neutrons with a broad (though
not necessarily thermal) distribution of energies.

The simplest approach to forming a neutron beam is
simply to reject all neutrons that do not pass through two
small, widely separated apertures. Neutrons can also be
transported via waveguides and focused with optics,
though we will not review such devices here (see, e.g.,
Refs. [136,137]). The key feature of neutron collimation
for our purposes is simply that it is statistically costly, with
neutron count proportional to accepted phase space.

Neutron energy distributions are, similarly, narrowed
primarily through rejection of velocities other than those
desired. A typical design for a neutron velocity selector is
described in Ref. [37]: a rotating cylinder of absorbing
material with helical channels, such that neutrons are
absorbed unless they have the right velocity to pass through
in a straight line without striking any surfaces. An alter-
native approach to velocity selection using slotted disks is
described in Ref. [38]. The statistical cost of these
procedures depends somewhat on the particular neutron
source used and the corresponding energy distribution after
moderation.

A variety of existing neutron scattering instruments may
be able to accommodate our proposal: the NIST Center for
Neutron Research’s VSANS instrument [138], Oak Ridge
National Laboratory’s EQ-SANS diffractometer [139], the

Institut Laue-Langevin’s D22 diffractometer [140], and
various instruments at J-PARC’s Materials and Life Science
Experimental Facility [141], among others. Since this work
is not specific to any particular source, our projections
assume a set of parameters approximately representative of
these optimal sources: a flux of 108 cm™s~! neutrons of
0.6 nm wavelength over a target area of 10 cm?, with a
minimum resolvable angle (including collimation, detector
pixel size, and detector distance to target size ratio) of
3 mrad, corresponding to a momentum transfer of approx-
imately (30 nm)~!.

Other parameters of the neutron beam should be less
important for our sensitivity projections. In particular,
energy spread acts only to “wash out” the low-angle peak
that would indicate the presence of a new force; while this
increases the uncertainty on a detected new force’s media-
tor mass u, it has little effect on the total number of new
force scattering events within that peak and, therefore, has
minimal impact on our ability to detect a new force’s
presence (see Appendix I). Similarly, our proposal should
not require particularly good angular resolution, so long as
sufficiently small angles can be observed.

3. X-ray beam parameters

Small-angle x-ray scattering (SAXS) sources are typi-
cally based on undulation of an electron beam by a series of
magnets of alternating polarity [142]. SAXS instruments
are available over a wide range of x-ray energies, including
well above the keV momentum scales of the neutron
sources we consider. Using such high-energy sources is
likely to be necessary for most targets of interest, due to
x-ray absorption: As discussed in Appendix B, low-energy
x rays are rapidly attenuated within dense materials,
especially at large atomic weights. For the xenon targets
that are the focus of this work, energies of at least 40 keV
are likely desirable.

A variety of SAXS facilities could potentially meet
the requirements of our proposal; see, for example,
Refs. [143,144]. Just as for neutron sources, we do not
choose a particular source in this work, and, in fact, we are
generally agnostic to the parameters of the source used so
long as they are sufficient for the dominant uncertainties in
the final measurement to arise from neutron scattering; we
assume that this holds for all of our projections. The precise
x-ray photon counts required for this to hold were discussed
in Sec. Il B: An x-ray count of 103 times the neutron count
should always be sufficient, with as little as a few times the
neutron count sufficient at the smaller mediator masses we
focus on. Even the former condition can be satisfied by
instruments such as the European Synchrotron Radiation
Facility’s ID15A [144], and an enormous variety of x-ray
sources can meet the weaker flux requirement.

There is one other property of x-ray sources that
complicates our proposal somewhat: their beam size.
Typical x-ray scattering instrument beams are far narrower
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than the centimeter-scale targets that are necessary to
maximize neutron count. Since targets may not be spatially
uniform over their transverse extent, it is necessary to scan
the x-ray scattering measurement over the target in order to
obtain a spatially averaged structure factor applicable to the
neutron scattering measurement. Note that the neutron
beam may not be spatially uniform either, so the spatial
distribution of neutrons must be measured as well. This has
a negligible impact on the total neutron count needed for
our experiment, however, as the absence of a scattering
target for this measurement eliminates the usual factor of 10
loss in flux from most of the beam passing through a target
without scattering (see Appendix E).

It is similarly critical that the x-ray and neutron
beam lines be precisely coaxial in order to see the same
effective target thickness and structures. This may pose
challenges for the use of recently developed techniques
for simultaneous x-ray and neutron scattering measure-
ments [51].

Other parameters of x-ray sources are generally not a
concern for our proposal. As discussed in Appendix E, the
x-ray collimation requirement is a factor of a few stronger (in
terms of transverse momentum) to the neutron requirement,
due to the need to measure the structure factor at smaller
momentum transfers in order to predict the impact of
multiple scattering events; this is easily satisfied by many
x-ray instruments. Similarly, the distribution of incident
x-ray energies is generally far narrower than that of neutrons,
so energy spread should not be a meaningful constraint for
our purposes.

APPENDIX I: STATISTICS

In this appendix, we describe our approach to estimating
the potential sensitivity of the various target materials
considered in the main text. We first tabulate the various
systematic errors faced by any implementation of our
proposal. We then describe our approach to calculating
the statistical reach of single-material targets, before
explaining our approximation of the statistical error for
two-material targets.

1. Systematic errors

We begin by summarizing the systematic errors that limit
the achievable sensitivity of new force searches implement-
ing our proposed strategy. Most of the effects we consider
in this section have been discussed elsewhere in this work;
our goal here is to tabulate their respective magnitudes
before we calculate realistically achievable experimental
sensitivities.

A relatively fundamental limit on searches for new
neutron-atom interactions is our limited ability to predict
strong nuclear interactions. In most of this work, we have
described nuclear scattering as entirely angle independent,
but this is an approximation: Significant deviations from

angle independence occur at momentum transfers compa-
rable to the inverse strong force range, i.e., inverse
femtometers [96—100]; see Appendix A. Corrections to
the angle independence of nuclear scattering are therefore
suppressed by O((q7bp)?) <1078 even at the largest
momentum transfers we consider, leaving them far below
our systematic target. In fact, a more significant systematic
error may arise from the contribution of the nuclear charge
form factor to the neutron’s electric polarizability scatter-

ing length, which is suppressed by O(g7/(r2)bp/byuc) ~
10~ (see Appendix A 2). This error may be reducible
using knowledge of this form factor, but we will not
explore this here, given that we do not expect this to be a
limiting error for our proposal.

Errors related to modeling of electromagnetic scattering
may be more significant, though these depend consider-
ably on the exact target used. As we discuss in Sec. III C,
contributions from the new force and from electromagnetic
scattering become difficult to distinguish once ¢, ~ u; we
avoid this issue in our projections by conservatively
restricting to A > 10~! nm. Moreover, even for ideal noble
gases, our description of electromagnetic scattering (see
Appendix A) ignored various terms suppressed by m,/m,,
ry/Ta, OF qpry, With ry the nuclear radius and r, the
atomic radius. All three of these factors are of the order of
1076 but may be enhanced sufficiently to be relevant by the
large atomic numbers of the target atoms we consider. We
note, however, that these higher-order terms can likely be
worked out more precisely if this is useful for future
experiments, since, unlike the nuclear corrections
described above, they are the result of well-understood
electromagnetism.

Scattering from realistic targets leads to a number of other
electromagnetic corrections, however. Non-noble elements
generally have nonzero magnetic dipole moments, leading
to additional neutron scattering (see Appendix A), and even
noble atoms may have induced magnetic moments due to
interatomic interactions (see Appendix G). The separation
of scattering contributions explained in Appendix D allows
non-noble elements’ contributions to be removed, so they
do not lead to a systematic error (up to small caveats
discussed below). Magnetic moments induced in the target
noble atoms, however, cannot be separated out. We show in
Appendix G that magnetic moments induced by surface
interactions should lead to scattering length corrections of
no more than roughly 3 x 10_3(Ramm§/Rérain) fm when
correlations in the magnetic dipole moments within the
solid have length scale &; effects of interactions within noble
liquids (or dense noble gases) should be negligible by
comparison.

Separation of contributions may fail to entirely remove
systematic electromagnetic backgrounds from non-noble
elements if there are any changes to the target between
neutron and x-ray scattering or between different
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measurements of one type will inhibit the accuracy of this
separation, however. One potential cause of such changes is
material degradation from the scattering processes them-
selves, though this is likely to be minimal for the low
energies we consider. In the case of materials consisting of
piles of grains, the structure may also change simply due to
motion of the target between measurements (though this
may be circumventable by, for example, rotating such
targets continuously during measurements and using the
resulting average structure, as one would need to do for
aerosols or boiling liquids). Xenon snow may be so
unstable that it degrades even if not moved. Since all of
these effects are strongly dependent on the specific materi-
als used, we will not include them in our sensitivity
projections below, but we note that they may be significant
in some circumstances.

A related systematic effect arises due to the differing
energies of appropriate neutron and x-ray sources, which
change their respective correspondences between momen-
tum transfer and scattering angle. As a result, neutrons and
x rays at a fixed momentum transfer take different paths
through the target and do not, in fact, see identical target
structures, potentially changing their respective structure
factors. While we expect this effect to be small, given the
generally thin targets and small angles that we are most
interested in, it will likely need to be simulated numerically
or tested with additional measurements given our desired
precision. We leave a more detailed treatment of this effect
to future work.

Systematic errors may also arise if materials’ compo-
sitions change between measurements. This could occur
due to finite noble gas purity or due to imperfect separation
of materials, for example, from adsorption of atoms by the
solid components of a target. Again, these depend heavily
on details beyond the general principles outlined in this
work, so we will not include these effects below.

A final, more generic source of systematic error is low-
angle multiple scattering, discussed in Appendix E. As we
note in that appendix, multiple scattering should not be an
issue for scattering from argon but may or may not be a
significant constraint on xenon-based targets. The error
introduced by multiple scattering grows exponentially
as a function of various experimental parameters [see
Eq. (E9)], so it is generally either enormous or irrelevant.
In particular, this error depends on the transverse size of
individual neutrons, which is not currently known suffi-
ciently well for any apparatus to definitively determine
which material combinations are compatible with a
scattering fraction of 0.1; reducing the scattering fraction
suppressed this effect. We assume in most of this work that
neutrons have sufficient transverse sizes to use the
materials we consider with scattering fractions of 0.1
without significant multiple scattering errors, but we note
that some solids discussed in Sec. IVA may in actuality
require reduced statistics.

2. Projecting sensitivity for single-material targets

We can now estimate the sensitivity of a neutron
scattering experiment implementing our proposal. Since
we expect to have many neutrons observed in each angular
bin, we can approximate the exact maximum-likelihood
analysis of the data with an F test [145], comparing the y>
values obtained when fitting the observed data including
(%) and not including (x2.;.,) @ new force. More
precisely, let

O(éithout _)(%’vith)/2 (Il)
2 dof.
Xwith/ IV with

F =

for N30t degrees of freedom in the with-new force fit
(and assuming two degrees of freedom for the new force:
u and g). Then the distribution of F values will follow an F
distribution with d; =2 and d, = N35! degrees of free-
dom. We can then constrain any new force for which the
resulting F' is expected to exceed some threshold value.
In the case of single-material scattering, we can
straightforwardly compute the expected values of y> both
with and without the new force included in the fit as
follows. We generically expect a y> contribution of 1 for
each degree of freedom in a fit, simply from Poisson
statistics within each angular bin, independent of which fit
is used. In the presence of a new force, we expect an
additional number of scatterings into the bin at angle 6
giVCl‘l by 2KnewNexpecled (6)/(] + QT(Q)Z)’ with Nexpected the
expected number of neutrons scattered into this bin by
nuclear scattering. In the absence of any fit corrections—
that is, using the fit parameters that would be optimal in
the absence of a new force—this leads to an expected
)(\zvithout contribution given by 4K%ew(9)Nexpected(9)/(l +
gr(6)?)? but no contribution to y2.,. Note that this total
expected contribution is independent of the number of
bins in the limit that the nuclear scattering distribution
(including coherence) is constant within each bin:

4Kﬁew (H)Nexpected (9)
A)(ﬁo-fit = Z (1 + q7(0)%)?
bins T
Axiew(0) dp

Ny d0————F5—
d bcattered/ (1+qT(9)2)2 4o

(I2)

for Ngaerea total scattered neutrons and (nuclear, coherence-
enhanced) scattering distribution dp/d#, normalized to
integrate to unity over angles above some minimum.
This additional y? contribution is reduced after fitting
empirically determined Standard Model scattering param-
eters: Fitting over the angle-independent nuclear scatter-
ing length, for example, eliminates the average number of
additional scatters per bin (of constant solid angle),
leaving only the variation in new force scattering over
different angles.
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In terms of this additional postfit ¥ contribution, Eq. (I1)
predicts

1
F=1+4307 (13)

For N40f > 1, the cumulative distribution function is well
approximated at F of no more than a few by

CDF2 Ndo

£
" with

(F)~1—eF, (14)

so we expect to be able to detect a new force at 95% con-
fidence whenever 1+ Ay? /2 > In(20) ~ 3.0, i.e., when
Ay, > 4.0. Since the finite true number of angular bins
weakens this somewhat, we conservatively require A)(%it >
5.0 for the projections in this work.

3. Projecting sensitivity for two-material targets

In the previous subsection, we explained our method for
estimating the sensitivity of a single-material neutron
scattering experiment following the approach discussed
in this work. An exact analysis of the two-material case is
necessarily numerical. However, in this appendix, we
describe an approximate, analytic approach to estimating
the two-material sensitivity, which avoids the computa-
tional cost of the numerical analysis while offering addi-
tional insight into the parameter dependence of the
sensitivity.

Note that, throughout this appendix, we assume that the
spin-dependent scattering cross term discussed in
Appendix D is not significant, such that measurements
from two noble gases are sufficient. Including the spin-
dependent cross term complicates the analysis further, but
we will not consider it in detail in this work; in any case, it
is unlikely to have more than an order-unity effect on the
final sensitivity.

In the single-material case, the effects of a new force can
be resolved from those of similar-length scale structure
simply by looking at ratios of neutron to x-ray scattering.
Unfortunately, this fails in the two-material case due to
interference between scattering from the solid and gas,
which differs for neutrons and x rays. In particular, the total
neutron scattering distribution in this case can be written as
[see Eq. (D1)]

dp dp

B E s,inc +E

+by(ar)(W(ar)) . (15)

dp

o +1{Bo(ar)

g.inc

2-material

where the first two terms on the right-hand side are the
incoherent scattering distributions from the solid alone and
the gas alone, while the last term is the total coherent
scattering length, including both the unknown solid con-
tribution By(qy) and the gas contribution, which is given

by the product of the gas’s single-atom scattering length
b,(qr) and the target phase sum W(qr). Note that we have
taken the expectation values of By(q;) and W(qy) above in
order to separate the coherent and incoherent scattering
contributions to the scattering distribution.

We can eliminate all of the terms not enhanced by the
gas’s structure by making three measurements—the two
materials together, the solid alone, and the gas alone (which
gives precisely the incoherent gas scattering distribution
above)—and taking the following linear combination:

| _dp dp|  _dp
dQ difference dQ 2-material dQ sonly dQ gonly
=2Re((B;(0))b,(0)(W(0))) +[b,(0)(W(0))[*.

(I6)

Now suppose that we have obtained W(q;) from x-ray
scattering measurements. This is not a precise description
of the two-material analysis, since the x-ray scattering
distribution similarly suffers from interference, but it
should act as a reasonable approximation of the process,
since the purpose of the x-ray measurements is precisely to
distinguish any new force from the (shared) structure factor.

Then, if we ignore the electromagnetic and new force
contributions to the last term, we can predict it from a
combination of the gas-only measurement of b, () = b
and the x-ray measurement of W(@); including an estimate
of the electromagnetic contribution (from other measure-
ments or from theoretical calculations) can make this
prediction even more precise. Similarly to the handling
of the phase sum above, this is not necessary in the true
numerical analysis but is useful for our simple estimate here;
note that this approximation is likely to be conservative, as
we are discarding part of the effect of the new force. Then let

dp| _dp apr dap
dQ cross dQ 2-material dQ sonly dQ gonly

Since the only complex component to the single-atom
scattering length comes from the irrelevant Schwinger
scattering length (see Appendix D), we can also write this
measurement combination as

1o = 2Re((B{(9))(W(0)))b,(0). (I13)

Crucially, this is now fully factored into a gas-independent
term 2Re((Bj(0))(W(#))) and a gas-specific scattering
length b,(6). Thus, if we perform this process for two
different noble elements, we can take the ratio
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dp/dQL:ross.l bg,l (9) (19)
dp/dQ|cross,2 9.2

T b,0(0)

which is now independent of both the solid and the structure
factor.

We can now use this to detect a new force by
detecting a difference in the angle dependence of the
two elements’ single-atom scattering lengths. In particular,
using Eq. (C12), we have

dp/dglcross
m = (const) (1 + kem1S1(q7) — kemaf2(qr)
Akpe
R—— A 1 )’ 110
T (gosur O (1o

where Akew = Kpew.1 — Knew2. From here, the fitting pro-
cedure is much the same as for the single-material case,
with seven free parameters (the constant prefactor, two

electromagnetic parameters for each noble element, and
two new force parameters). The four electromagnetic
parameters were not included in the fits for the rough
projections of this work, as this significantly reduced
computational expense. We do not expect this to have a
meaningful impact on the final sensitivity, however, as
electromagnetic scattering has a significantly different
angular dependence from new force scattering; this was
also confirmed numerically for the single-material case.

As we note in the main text, the dependence of this final
ratio only on the difference Axk,.,, makes it advantageous to
use noble gases with very different atomic weights, in order
to maximize this difference. However, this must be bal-
anced against the weakness of the gas’s scattering con-
tribution relative to that of the solid, given the low value of
helium’s SLD, in particular—see Table [—leading to the
approximate parity between argon- and helium-based
scattering seen in Fig. 3.
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