
Nature Materials

nature materials

https://doi.org/10.1038/s41563-023-01704-zArticle

Monolithic 3D integration of 2D materials- 
based electronics towards ultimate edge 
computing solutions

Ji-Hoon Kang    1,2,3,18, Heechang Shin    4,18, Ki Seok Kim    1,2,18, 
Min-Kyu Song    1,2,18, Doyoon Lee    1,2, Yuan Meng    5, Chanyeol Choi    2,6, 
Jun Min Suh    1,2, Beom Jin Kim    4, Hyunseok Kim1,2, Anh Tuan Hoang    4, 
Bo-In Park    1,2, Guanyu Zhou7, Suresh Sundaram    8,9, Phuong Vuong    9, 
Jiho Shin    1,2, Jinyeong Choe4, Zhihao Xu10, Rehan Younas    7, Justin S. Kim10, 
Sangmoon Han5, Sangho Lee    1,2, Sun Ok Kim5, Beomseok Kang    1,2, 
Seungju Seo    1,2, Hyojung Ahn11,12, Seunghwan Seo    1,2, Kate Reidy    13, 
Eugene Park    13, Sungchul Mun14,15, Min-Chul Park    16, Suyoun Lee    16, 
Hyung-Jun Kim16, Hyun S. Kum    4, Peng Lin    1,2,17, Christopher Hinkle    7, 
Abdallah Ougazzaden    8,9, Jong-Hyun Ahn    4  , Jeehwan Kim    1,2,13   & 
Sang-Hoon Bae    5,10 

Three-dimensional (3D) hetero-integration technology is poised to 
revolutionize the field of electronics by stacking functional layers vertically, 
thereby creating novel 3D circuity architectures with high integration 
density and unparalleled multifunctionality. However, the conventional 
3D integration technique involves complex wafer processing and intricate 
interlayer wiring. Here we demonstrate monolithic 3D integration of 
two-dimensional, material-based artificial intelligence (AI)-processing 
hardware with ultimate integrability and multifunctionality. A total of six 
layers of transistor and memristor arrays were vertically integrated into a 
3D nanosystem to perform AI tasks, by peeling and stacking of AI processing 
layers made from bottom-up synthesized two-dimensional materials. This 
fully monolithic-3D-integrated AI system substantially reduces processing 
time, voltage drops, latency and footprint due to its densely packed AI 
processing layers with dense interlayer connectivity. The successful 
demonstration of this monolithic-3D-integrated AI system will not only 
provide a material-level solution for hetero-integration of electronics, but 
also pave the way for unprecedented multifunctional computing hardware 
with ultimate parallelism.

The development of a system on a chip led to innovation in the realm of 
the integrated chip by providing several advantages, including flexibil-
ity in interfacing, better power efficiency, the ability to reconfigure the 
hardware and miniaturization of integrated chips1,2. However, because 

its lateral integration nature fundamentally limits further downscaling 
and miniaturization of integrated systems, there is a pressing need for 
a new integration strategy. A three-dimensional (3D) heterogeneous 
integration (3DHI) technology has become established as a promising 
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because the interface is affected by mechanical deformations and 
process residues (mostly polymer). This severely limits the large-scale 
realization of M3D integration of devices based on multiple layers of 
2D materials25–29. However, using our splitting technique and semi-
dry transfer method24, large-area stacked 2D heterostructures were 
secured with ultraclean interfaces. Based on this, 2D material-based 
memristors operating at large scale were implemented. Second, 2D 
transistors were monolithically integrated with 2D memristor arrays 
as a supporting circuitry. Last, we successfully achieved M3D integra-
tion of such device layers, implementing more efficient AI hardware. 
Combining M3D integration technology with non-von Neumann-based,  
in/near-sensor computing architecture enables efficient edge com-
puting by direct processing of data from adjacent layers, minimizing 
redundant data transmission. The fully M3D-integrated AI system has 
thus demonstrated much faster processing time, lower voltage drops, 
lower latency and a smaller footprint. We strongly believe that the suc-
cessful demonstration of M3D integration-based 2D material electron-
ics will not only improve computing performance but also open up new 
possibilities for advanced integration of electronics toward ultimate 
area-effective and multifunctional systems.

To develop monolithically stackable AI hardware we developed 
2D material-based memristors that store and compute information 
contemporally and are readily stackable. Among various types of 
memristor we chose to construct conductive bridge random access 
memory, because resistive switching can be naturally achieved almost 
regardless of the switching medium providing that defects are ver-
tically aligned through the electrodes. In the same manner as the 
typical utilization of a metal oxide layer as an insulating switching 
medium for conductive bridge random access memory, an h-BN 
layer—an insulating 2D material with a bandgap of ~5.9 eV—was tested 
as a switching medium. h-BN film was transferred on patterned Pt/Cr  
layers on SiO2/Si substrates. Next, Ag was deposited and patterned using 
conventional photolithography. The Ag electrode served as a reactive 
electrode for electrochemical metallization (Supplementary Note 1). 
As expected, the h-BN-based memristors showed resistive switching 
behaviour with a good on:off ratio of around 103 (Supplementary  
Fig. 1). However, unstable and non-uniform switching was observed in 
set and reset processes. Previous findings have shown that integration 
of semiconducting and insulating layers can result in enhanced elec-
trical performance, including endurance, on:off ratio and uniform-
ity30–33. Thus we configured double layers of WSe2 and h-BN by transfer 
of WSe2 film on h-BN (Supplementary Fig. 2). This approach led to 
the development of a reliable memristor with excellent electrical 
properties, achieved by engineering the semiconducting/insulating 
double-layer configuration—Ag/WSe2/h-BN/Pt/Cr/SiO2/Si. As shown 
in Fig. 1b,c and Supplementary Fig. 3, double-layer (WSe2/h-BN)-based 
memristors showed good set–reset behaviour at low set voltage 
with sufficient on:off ratio and stable multistate retention for 100 s, 
which represents an enhanced performance compared with that 
of WSe2-based memristors. (Supplementary Figs. 3–5). Moreover, 
good endurance under >1,000 cycles of set–reset processes was also 
confirmed (Fig. 1d and Supplementary Fig. 4a), which is mandatory 
for computing operation. Based on comparative study, layer configu-
ration using 2D materials enabled optimization of electrical perfor-
mance by taking advantage of both layers. Fine-tuning of switching 
performance was achieved by implementation of further studies on 
the ideal combination and thickness of 2D materials. It should be 
noted that, for wafer-scale fabrication of neuromorphic computing 
hardware on 2D materials, it is crucial to secure appropriate transfer 
methods that do not contaminate the interfaces of the heterostruc-
tures because minor contaminants can easily affect ion migration for 
resistive switching. Thus our semidry transfer, termed layer-resolved 
transfer24, was utilized to maintain clean interfaces. Two-dimensional 
memristor heterostructures created by a conventional wet-transfer 
process failed to switch memristor devices because of processing 

candidate to tackle these limitations of the system on a chip3–5. This 
3DHI is a technology that allows stacking of different types of semi-
conductor device wafer on top of each other in 3D. Various electronic 
components such as memory, logic and opto-electronics can thus 
be vertically combined into a single unit to create smaller and more 
effective electronic devices5,6. In addition, the integration of different 
technologies, including complementary metal-oxide semiconductor 
(CMOS) circuits and microelectromechanical systems (MEMS), could 
lead to the creation of new functionalities such as the integration of 
sensors and actuators with digital logic7,8. However, connecting active 
device layers to each other also creates an extremely high technical 
barrier9,10: it requires precise hole drilling through the wafers, so-called 
through-silicon-via and solder bump bonding of each wafer die. Thus, 
conventional 3DHI requires extremely complicated wafer fabrication 
and bonding processing, which severely constrain chip integrability. 
Monolithic 3D (M3D) integration is regarded as an alternative solu-
tion for more efficient chip connection because all functional device 
layers are directly connected without wafers11–13. Nevertheless, the 
required removal of device layers from the substrate sets another 
technical challenge in regard to practical applicability on account of 
their intrinsically brittle nature and high internal stress level, and thus 
handling such layers could easily result in mechanical device failure. 
The emergence of two-dimensional (2D) materials-based electronics, 
in contrast, highlights their considerable potential in overcoming the 
above issues14–18. Due to the atomically thin nature of 2D materials, 
these possess intrinsically extremely low stiffness and almost zero 
internal stress. Accordingly, the physical constraints of M3D integra-
tion imposed by conventional rigid 3D materials can be completely 
overcome with 2D material-based electronics that perform on a par 
with their conventional, silicon-based counterparts.

Here we demonstrate the M3D integration of fully 2D material- 
based electronics to highlight wafer-free device stacking. Given the 
limited capability of academic fabrication settings, we attempted to 
mimic the vertical heterogenous integration of logic and memory by 
monolithic stacking of 2D material-based transistors and memris-
tors, respectively. These stacked structures finally function in regard 
to artificial intelligence (AI) hardware in edge computing applica-
tions. As shown in Fig. 1a, an M3D-integrated system enables the hard-
ware implementation of AI processors by stacking 2D material-based 
multifunctional layers including sensory layers, signal-processing 
layers and AI computing layers. Depending on the purpose of the 
application, different combinations of layers can be designed. Vari-
ous sensors integrated into a sensory layer can provide redundant 
and complementary information that compensates for errors and 
increases accuracy through sensor fusion19–22. Different filters and 
amplifiers can be implemented on signal-processing layers for input 
data enhancement. Finally, multiple AI computing layers perform AI 
computations according to different AI applications. The configura-
tion of the AI computing layer can be readily modified, taking into 
account the balance between AI computing complexity and power 
consumption. This study demonstrates a fully stackable, non-von 
Neumann architecture-based, two-tier, AI computing layer consisting 
of memristors and transistors. The combination of non-von Neumann 
architecture and M3D integration enables near/in-sensor computing 
that improves processing time latency and power consumption by 
reducing the physical distance between the sensor and processing 
unit23. Due to the outstanding intrinsic properties of 2D materials, we 
succeeded in securing a high degree of integrability that facilitated a 
high degree of freedom in vertical integration, allowing vertical inte-
gration of a total of six layers of 2D material-based electronic devices 
on a single chip. First we obtained large-area uniform 2D heterostruc-
tures by leveraging our layer-resolved splitting technique and semidry 
transfer method24. Despite the outstanding mechanical advantages 
of 2D materials in regard to M3D integration, existing methods have 
limitations in maintaining pristine interfaces in 2D material stacks 
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Fig. 1 | M3D integration of 2D material-based memristors and transistors. 
a, Schematic illustration of ultimate edge computing system based on M3D-
integrated, 2D material-based electronics. The schematic of the M3D-integrated 
system (top) illustrates multistacking of different functional layers including 
AI computing layers, signal-processing layers and a sensory layer. All layers can 
be monolithically integrated into the 3D heterostructure. As shown in the inset 
on the left, an AI computing layer consists of a 2D material-based memristor 
array (top) and 2D material-based transistor array (middle) to construct an 
integrated, 2D-based AI processor (bottom). Both memristor and transistor 
arrays were M3D integrated. The schematic illustration of the computing system 
(bottom) shows the sequence of data processing throughout the system. Input 
signal is detected by the sensory layer and transferred to the signal-processing 
layers, which convert the signal to an appropriate configuration as an input 

to AI computing layers. Finally, AI computing layers play a role in cognitive 
computing by utilization of each layer in parallel. b–d, Electrical performance of 
double-layer (WSe2/h-BN)-based memristors. Excellent memristor performance 
was confirmed by direct current (DC) switching performance of set and reset 
processes (b), multistate data retention for 100 s programmed under various 
current compliance levels (c) and an endurance test under 1,000 cycles of set and 
reset pulsed voltage stresses (PVS) (d). e,f, Electrical performance of bilayer MoS2 
TFTs. High on-current and on:off ratio with high device-to-device uniformity 
were confirmed by transfer characteristics (ID–VG) under VD = 1 V (e) and output 
characteristics (ID–VD) under various VG (f). e, Inset shows the transfer curve in log 
scale. g, Histograms of μFE and VTH. CC, compliance current; VD, drain voltage.  
μavg, average field-effect mobility.
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residue, which impacts ion diffusion kinetics in 2D double layers 
(Supplementary Fig. 6).

Next we fabricated 2D transistor arrays for monolithic connec-
tion to 2D memristor arrays as a driving circuitry to control switching 
behaviour. We attempted to modulate the device performance of both 
transistor and memristor arrays to match the current density of both 
devices for seamless monolithic integration. We tuned 2D transistors 
to have a higher on-current and lower off-current than those of 2D 
memristors32. To ensure that the transistor footprint matched with that 
of the memristors, we attempted to match the current requirement by 
maximizing the performance of 2D transistors rather than increasing 
channel dimension. We mainly engineered the interface to modulate 
the energy barrier arising from metal-induced gap states34 and Coulom-
bic scattering35,36, by deposition of a 10-nm-thick Al2O3 planarization 
layer on the substrates and MoS2 films, which led to high on-current 
(Supplementary Fig. 7). Metal-organic chemical vapour deposition 
(MOCVD)-grown MoS2 was transferred to the source/drain metal con-
tacts and subsequently a top-gate dielectric Al2O3 layer was depos-
ited on the MoS2 film. The transfer characteristics (drain current-gate 
voltage, ID–VG) of bilayer MoS2 thin-film transistors (TFTs) exhibited 
field-effect mobility (μFE) of 10.42 ± 2.1 cm2 Vs−1, an on:off ratio of 109, a 
subthreshold swing of 0.612 ± 0.05 V dec−1 and threshold voltage (VTH) 
of 1.7 ± 0.8 V under a drain voltage of 1 V (Fig. 1e,f and Supplementary 
Figs. 8 and 9). The average values of on and off currents were 2.02 mA 
and 1.80 pA, respectively. Histograms of the evaluated μFE and VTH of 
the MoS2 transistor array represent uniform characteristics with aver-
age values of 10.17 cm2 Vs−1 and 0.87 V, respectively (Fig. 1g). Detailed 
fabrication processes and characterization conditions are discussed 
in Methods.

Given the separately optimized stackable AI hardware and driv-
ing circuitry based on 2D materials, we attempted to integrate these 
monolithically. We chose to integrate WSe2/h-BN-based neuromorphic 

computing arrays on top of the MoS2-based transistors because con-
struction of neuromorphic computing arrays can be completed by 
stacking and depositing each component at room temperature. Fol-
lowing integration of transistor arrays on the substrate, we deposited 
Al2O3 layers as an isolation layer followed by the formation of via-holes 
on the source region of the underlying MoS2 transistors. It is important 
to note that electronic disconnection can easily happen when process-
ing residue, such as when photoresist residue is present on the drain 
electrode of the driving circuitry. To address this issue we implemented 
a two-step etching process. Initially, reactive ion etching was utilized 
to create via-holes until reaching the etch stop layers, which is a drain 
electrode. Next, wet chemical etching using buffered oxide etchant 
was performed to ensure complete removal of any remaining residue. 
Even after thorough cleaning of the top surface of the driving circuitry, 
the deposition of solely Au as an interconnector still resulted in open 
circuitry due to the weak adhesion of Au layers. We therefore first 
deposited 10 nm of Cu, a material well known for its strong soldering 
properties, and then deposited Au on top of the Cu layer. The word 
lines of the memristor crossbar arrays were formed across the Au fills, 
which provided a direct connection between transistors and memris-
tors. We constructed WSe2/h-BN-based memristor arrays on top of the 
underlying word lines by transferring WSe2 and h-BN layers. Finally, 
memristor-based AI processors were fully integrated by the forma-
tion of bit-line metal arrays on the memristors as depicted in Fig. 2a 
and Supplementary Fig. 10. It is critical to perform semidry transfer of 
WSe2 and h-BN to construct memristors to maintain the performance of 
memristors (Methods). As shown in Fig. 2b, the performance of memris-
tors integrated on the transistors was comparable to that of those on a 
plane substrate. When correct integration is compromised it disrupts 
the seamless flow of electrical signals, impeding the normal operation 
and performance of the system. These issues can result in undesirable 
consequences such as an open circuit or incorrect set–reset behaviour 
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AI processing. a, Schematic diagram of M3D-integrated AI processor comprising 
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device array. e, Empirical CDF of the M3D-integrated device array with various 
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(Supplementary Fig. 11). Figure 2c shows successful hybridization of 
the function via monolithic integration, where multiple conductance 
states were precisely controlled by modulation of the gate voltages 
of MoS2-based transistors. Limiting transistor current by gate bias 
through the memristors during set operation enables precise weight 
programming37,38. Following successful integration, excellent conduct-
ance retention was observed similar to that of control devices on plane 
wafers. We statistically confirmed the operation of M3D-integrated 
AI hardware (Supplementary Figs. 12 and 13). In addition this showed 
good endurance behaviour over >300 cycles of switching, and empir-
ical cumulative distribution function (CDF) exhibited readily con-
trollable multiple resistance states, as shown in Fig. 2d,e. These 2D 

material-based memristors and transistors could be further improved 
by direct growth of 2D materials and further optimization of 2D layer 
configuration in terms of electrical performance and device yield17,39.

Owing to their extreme flexibility and stackability, and while main-
taining their device functionality, 2D material-based devices can take 
full advantage of monolithic 3D integration. Because the wafer-based 
bonding process, including through-silicon-via and bonding via solder 
bumps, can be avoided in M3D, the number of stacked layers is not lim-
ited in principle. This ultimate degree of freedom in layer stacking with 
our 2D material-based M3D strategy would allow unprecedented levels 
of integration and functionality in electronic systems. To demonstrate 
this potential we attempted to stack three layers of M3D-integrated 
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AI processors with driving circuits, resulting in stacking a total of six 
layers of device arrays (three transistor and three memristor arrays) as 
shown in Fig. 3g–k, where reduction in both voltage drops and latency 
were expected while performing computations. Moreover, heavier 
machine learning tasks could be implemented with smaller-sized 
artificial synapse arrays because series vertical connection of artifi-
cial synapses is facilitated by stacking (detailed discussion below). 
To construct such multiple M3D-integrated layers we must ensure 
the mechanical robustness of the stacked device arrays. As shown in  

Fig. 3a and Supplementary Fig. 14, we first performed M3D integration 
of a transistor–memristor array on an ultrathin flexible PI substrate that 
is readily peelable and stackable. The multistack of the M3D-integrated, 
2D-based AI processor shows outstanding mechanical performance 
(Fig. 3b), with a bending radius of 1 mm. The originated tensile strain 
was evaluated as 0.027% at the top bent surface by finite element analy-
sis—much lower than the fracture stress level of any materials used in 
M3D-integrated AI processors (Fig. 3c,d). This ensures high device 
yields following 3D integration stacking processes. We confirmed that 
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Fig. 4 | DNA motif discovery using the M3D-integrated, 2D material-based AI 
system. a, Schematic illustration of DNA motif discovery by 1D convolution.  
b, Implementation of 1D kernel pattern of four DNA bases (A, T, C and G) by one-
hot encoding. c, Flow chart of DNA motif discovery by 1D convolution. d, Output 
values of MAC and software results of DNA motif sweep by 1D convolution. 

e,f, Voltage drop across computing devices (e), and computing latency as a 
function of the number of multistacks of the M3D-integrated, 2D material-based 
AI hardware (f). Error bars represent s.d. (n = 100). g, Computing latency as a 
function of M3D-integrated, 2D material-based AI system footprint.
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the performances of 2D material-based memristors and transistors 
were maintained even after experiencing such a small bending radius 
(Fig. 3e and Supplementary Fig. 15). Their mechanical robustness 
was measured by repetitive bending test in up to 100 cycles (Fig. 3f)  
and, due to their extremely thin nature and low stiffness, critical 
adhesion energy substantially reduces, allowing multiple stacking of 
M3D-integrated AI processors.

The high yield of M3D-integrated device circuitry was further eval-
uated by performing computing tasks utilizing our 2D-based AI proces-
sors. First we demonstrated DNA motif discovery by one-dimensional 
(1D) convolution, as shown in Fig. 4a. The purpose of DNA motif dis-
covery is to identify a particular DNA sequence within an input DNA 
sequence. As a 1D kernel, the target DNA pattern can be made in any 
way desired and the motif ‘ATGC’ was used as an example. The 1D kernel 
pattern was created by one-hot encoding and programming of four 
DNA bases (A, T, G and C) into memristor crossbar arrays, as shown 
in Fig. 4b. One-hot encoding is among techniques commonly used in 
machine learning and data processing, especially when utilized for 
categorical data such as DNA motifs. Using one-hot encoding, each DNA 
base in the input DNA sequences was converted to a 1 × 4 input (1 × 16 
inputs per kernel in this example (four DNAs based per kernel)). There 
are three possible scenarios for discovering DNA motifs, as shown in 
Fig. 4a: (1) unmatched, (2) partially matched and (3) fully matched. 
The multiply–accumulate (MAC) operation produces maximum cur-
rent when input sequence is fully matched to a 1D kernel. Figure 4c 
shows the flow chart of DNA motif discovery by 1D convolution. The 
relative current amplitudes of a 16-row/one-column memristor array 
are used to detect a target genetic sequence in a randomly produced 
genetic sequence with the one-hot encoding approach when the target 
genetic sequence is detected (target sequence in this example is ATGC)  
(Fig. 4d). In this experiment, cumulative currents from memristor 
arrays (MAC values) are normalized between 0 and 4 and a software 
simulation displays the number of genetic sequences that fit ATGC. In 
Fig. 4d the MAC values from memristor arrays and software simulation 
are shown as matching. Because the results from software simulation 
represent the ground truth of DNA motif discovery, the more similar 
the MAC values to software simulation results the more accurate the 
computing performance of the M3D-integrated AI device becomes. It 
has been discovered that the genetic sequence ATGC is detected using 
1D convolution programmed in memristor arrays, which results in the 
maximum cumulative current value. This eventually matches values 
obtained from software simulations of the sequence. In the fourth 
sweep the input sequence perfectly matched the 1D convolutional ker-
nel (ATGC), resulting in maximum current in both software-simulated 
results and MAC values from the 2D memristor crossbar (Fig. 4d and 
Supplementary Fig. 16). More information on our measurement set-up 
and kernel operations for crossbar arrays can be found in Methods. 
More importantly, we investigated the improvement in performance 
yielded by the fully M3D-integrated AI system. The effect of multistack 
was demonstrated by the excellent performance of vertically stacked 
memristor arrays in the following areas: (1) processing time, (2) device 
footprint and (3) voltage drop, among others. The stacked memristor 
arrays were used to achieve this acceleration, which was accomplished 
through parallel processing. In the present emerging AI environment, 
a large quantity of data must be handled at the same time; our fully 
M3D-integrated AI system will provide excellent parallel computing 
capability while also reducing latency. Figure 4e–g illustrates how these 
allow for a small footprint yet provide high performance. Using the 
same number of devices we investigated voltage drop as a function of 
the number of layers, as shown in Fig. 4e. Voltage drops across comput-
ing devices decrease as the numbers of multistacks of M3D-integrated 
devices increase, because the number of devices required for each 
row under a given number of total devices is reduced as a result of 
multistack, which makes it possible to reduce voltage drop across the 
array. It is worth noting that predicted processing time and latency 

also decreased as the number of vertically stacked memristor layers 
increased, by reduction in the length of routing paths, word lines and 
bit lines (Fig. 4f,g). To estimate voltage drop and latency as a function 
of the number of layers, simulations were conducted based on the 
measurement data obtained from our fabricated devices. As mentioned 
above, multistack reduces the number of devices per single layer when 
the total number of devices is constant, and allows multiple layers to 
handle multiple inputs in parallel. For upscaling of the device array 
along the same row/column, in the simulation part the calculation is 
based on a straightforward assumption that both voltage drop and 
latency are linearly proportional to the number of devices in a single 
layer. The results we have obtained thus far are highly promising, 
indicating that the M3D integration of our AI processor substantially 
enhances its computing performance.

In conclusion, we successfully demonstrated 2D material-based 
M3D-integrated elec tronic s,  leveraging the fabricated 
WSe2/h-BN-based memristors and MoS2-based transistors with excel-
lent performance. The M3D integration of each layer was experimen-
tally demonstrated to verify reliable and uniform operation of AI 
processors. Owing to the extremely low stiffness and internal stress of 
2D materials, we successfully realized multistack of the M3D-integrated 
devices—a total of six layers. The multistack of M3D-integrated AI pro-
cessing layers was also verified by improved latency, voltage drop and 
footprint. M3D integration allows integration of different functional 
layers with high density and reduced surface area. It can handle large 
volumes of data from different sensors with high bandwidth and low 
latency. It is expected that this sensor fusion approach can reduce 
errors and improve accuracy by providing redundant and complemen-
tary sensing information. The combination of M3D integration and 
near/in-sensor computing architectures enables power-efficient edge 
computing solutions. Furthermore, because M3D-integrated devices 
on an ultrathin flexible PI substrate exhibited outstanding mechanical 
properties, these can be utilized in next-generation wearable AI plat-
forms for various applications including real-time health and fitness 
monitoring, personalized medicine, emotional and cognitive monitor-
ing, augmented and virtual reality interaction and even soft robotics. 
We envision that the proposed M3D integration strategy, based on 2D 
materials, will bring considerable innovation in integrated chip applica-
tions and lead to the next generation of integration.
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Methods
Growth of MoS2

Bilayer MoS2 thin film was grown using the MOCVD system. A thermally 
grown, 300-nm-thick SiO2 on a 4 inch Si wafer was placed in a quartz 
tube following cleaning with acetone, isopropanol and water. Molyb-
denum hexacarbonyl (Sigma-Aldrich, purity ≥99.9%) and anhydrous 
dimethyl sulfide (Sigma-Aldrich, purity ≥99.0%) were used as precur-
sors for Mo and S, respectively, and were introduced into the quartz 
tube using 1.0 standard cubic centimetres min−1 (sccm) for H2 and 
310 sccm for Ar as carrier gases. The injected amounts of precursor 
were precisely controlled by mass flow controllers, with NaCl plates 
loaded upstream of the furnace. Optimized conditions for synthesis 
of bilayer MoS2 included pressure of 10.0 Torr, growth temperature 
of 580 °C, growth time of 22 h, molybdenum hexacarbonyl flow of 
1.0 sccm and dimethyl sulfide flow of 0.6 sccm.

Growth of WSe2

Growth of WSe2 was performed using a seed layer growth method on 
a 2 inch, single-side-polished sapphire (0001) wafer using molecular 
beam epitaxy. The sapphire was first annealed at 900 °C for 60 min 
and then cooled to 20 °C. The growth process started with deposition 
of a seed layer equivalent to 0.5-monolayer-thick WSe2 at 20 °C, by 
codeposition of tungsten (W) and evaporation using a multipocket 
e-beam evaporator and elemental selenium (Se) with a cracker source. 
A tungsten:selenium flux ratio of 1:200 was used with a W flux of 
~5 × 10−9 mbar and Se flux of 1 × 10−6 mbar. After deposition of the seed 
layer, the sample was then annealed at 900 °C under a Se background 
only for 1 h and then ramped down to the growth temperature of 600 °C 
at 0 °C min−1. The main WSe2 was then grown using the same W and Se 
fluxes as for the seed layer, at a growth rate of 1 layer 5 h−1. Total growth 
time was 25 h, corresponding to a thickness of ~3 nm.

Growth of h-BN
Growth of 3 nm h-BN was performed in an Aixtron MOVPE close-coupled 
showerhead reactor on the 2 inch sapphire substrate at 1,280 °C and 
90 mbar pressure. Triethylboron and ammonia (NH3) were used as B 
and N precursors, respectively, and hydrogen was used as carrier gas; 
growth rate was 15 nm h−1. Further information on specific growth 
conditions can be found in ref. 40.

Fabrication and characterization of MoS2 TFT
A 10-nm-thick Al2O3 layer was deposited on a 300-nm-thick SiO2 wafer 
as a planarization layer using atomic layer deposition (ALD). Source 
and drain electrodes (Cr/Au, 3/30 nm) were patterned on the Al2O3/
SiO2 wafer using photolithography, with channel dimensions designed 
as 750 and 5 μm for width and length, respectively. The bilayer MoS2 
film was transferred onto the wafer and patterned as an isolated chan-
nel via reactive ion etching using CHF3/O2 plasma. Subsequently, a 
30-nm-thick Al2O3 gate dielectric layer was deposited on MoS2.

To inhibit trapping of H2O molecules and improve the interface 
between Al2O3 and MoS2, the device was annealed overnight at 120 °C 
under vacuum conditions. The top-gate electrode (Cr/Au, 3/30 nm) 
was formed using photolithography and a lift-off process. MoS2 TFT 
was characterized using a source measure unit (Keithley 4200 SCS 
parameter analyser, Keithley Instruments, Inc.).

The MoS2 film grown using the hot-wall MOCVD system was 
transferred to the bottom-contact source and drain (S/D) structure, 
which is designed for high drain current (channel width/channel 
length = 150) (Supplementary Note 2 and Supplementary Figs. 17 
and 18). Subsequently, a top-gate dielectric Al2O3 layer was depos-
ited on the MoS2 film. The Al2O3 layer involved in S/D electrodes can 
effectively reduce contact resistance due to screening effects from 
the high-k top dielectric overlayer (k = ~7.2 in ALD Al2O3), resulting 
in decoupling of the metal–semiconductor interaction. Moreover, 
the top-gate insulator layer enables n-type doping of the MoS2 layer 

due to its oxygen-deficient surface and interfacial oxygen vacancies, 
lowering the conduction band edge below Fermi level41. These effects 
allow charge carriers to fill lower-conduction band states at the semi-
conductor–insulator interface, resulting in n-type carrier injection in 
MoS2. N-type doped MoS2 in the channel and contact regions resulted 
in increased electron concentration at the interface of S/D contact 
regions, reducing Schottky barrier width and thus decreasing contact 
resistance42. Reduction in contact resistance enhances both carrier 
mobility and high on-current level, which facilitate matching of the 
current with memristor operation for seamless monolithic integra-
tion. The transfer characteristics (ID–VG) of bilayer MoS2 TFTs exhibited 
μFE of 10.42 ± 2.1 cm2 Vs−1, an on:off ratio of 109, a subthreshold swing 
of 0.612 ± 0.05 V dec−1 and VTH of 1.7 ± 0.8 V under a drain voltage of 
1 V (Fig. 1e and Supplementary Figs. 8 and 9). In particular, VTH of the 
TFTs indicates a normally off operation, which enables lower power 
consumption following integration with WSe2/h-BN-based memris-
tors. In particular, the output characteristics (ID–VD) of the MoS2 TFT 
indicate that drain current reached 10 mA at a gate voltage of 9.0 V with 
ohmic behaviour (Fig. 1f). Furthermore, histograms of the evaluated μFE 
and VTH of the MoS2 transistor array represent uniform characteristics 
with average values of 10.17 cm2 Vs−1 and 0.87 V, respectively (Fig. 1g).

3D monolithic integration
Following fabrication of bilayer MoS2 transistors, a 50-nm-thick Al2O3 
layer was then deposited by ALD as a passivation and insulation layer 
between the TFTs and WSe2/h-BN-based memristors. For construction 
of the interconnections between the drain electrode of MoS2 TFTs and 
the bottom electrode of the WSe2/h-BN-based memristor, via-holes 
were patterned and dry-etched by reactive ion gas plasma (CHF3/O2, 
40/10 sccm) with precise control of etching rate (3.7 Å s−1) followed, 
after a few seconds, by treatment by buffered oxide etchant to create 
a clean interface. Interconnections (Cu/Au, 10/50 nm) were made 
through the via-holes with bottom-electrode lines (Ti/Pt, 5/30 nm) 
for the WSe2/h-BN-based memristor. Electrical connections through 
interconnections were identified by probe station. The integrated 
circuit was placed in the central region (7 × 7 mm2) connected with four 
outer source lines. Gate, source and drain lines were used for driving 
MoS2 transistors, the drain line was simultaneously operated as a bot-
tom electrode and a further top-electrode line for WSe2/h-BN-based 
memristors was constructed. Following fabrication of the first layer of 
the integrated arrays, the second and third were peeled off precisely. 
Stacking of the second and third layers of the integrated arrays was 
controlled by an alignment mark from the first layer, sharing four outer 
source lines soldered with Ag paste. We designed the upper layers to be 
smaller than those underneath, to expose contact pads on the edges of 
each layer for convenience. By stacking a smaller layer on top we could 
maintain exposure of the contact pads on the lower layers.

Implementation of 1D kernel motif on memristor crossbar 
array for DNA motif discovery
The 1D kernel motif used in this study consisted of four DNA bases. First, 
each DNA base (A, T, G and C) was one-hot encoded as shown in Fig. 4b. 
Because each one-hot-encoded DNA base consists of four digits, 4 × 1 
memristor cells are required for one DNA base and thus the 1D kernel 
motif with four DNA bases was programmed on 16 × 1 memristor cells 
using a pulse generator unit (Keysight, 33622 A) and a digital storage 
oscilloscope (Keysight, DSOX3024T).

Electrical measurement set-up for DNA motif discovery
For the measurement of crossbar arrays, a pulse generator unit was used 
to generate input pulse strain and a digital storage oscilloscope was 
used to measure output currents calculated by MAC operation. Memris-
tors were programmed to the binary state for DNA motif discovery, to 
minimize errors from interdevice variability. This was further improved 
by optimization of array programming into multistate conductance.  
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As shown in Fig. 4a,b, four input DNA bases were selected from the input 
sequence and one-hot encoded. Next, 16 one-hot encoded inputs (four 
inputs × four DNA bases) were applied as voltage pulses by the pulse 
generator unit to the 1D kernel motif implemented on the crossbar 
array. The current measured in each cell in the memristor array is equal 
to the product of input voltage and cell conductance by Ohm’s law, and 
the accumulation of current in the output is equal to the sum of the 
currents measured in each cell by Kirchhoff’s current law. The sum of 
output currents calculated by MAC operation was measured by digital 
storage oscilloscope. Having determined the measured value, the next 
four DNA bases were selected from the input sequence and the same 
process repeated until the end of the input sequence.

Data availability
All data are available in the main text or Supplementary Information. 
All relevant data are available from the corresponding authors upon 
reasonable request.
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