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1 Introduction and summary

The duality between minimal string theory and double-scaled matrix integrals [1] is the
earliest known example of a duality between a gravitational and a non-gravitational system.
The term minimal string theory refers to two-dimensional gravity coupled to c < 1 minimal
models. These are non-critical string theories where the Liouville mode does not decouple.
More precisely, the worldsheet theory consists of the (p′, p) minimal model plus Liouville
theory, with total central charge 26, together with the usual bc-ghosts. Here p′ and p are
relatively-prime positive integers, and we work with the convention that p > p′ ≥ 2. The
models with (2, p) matter are dual to matrix integrals over just one matrix. The p → ∞
limit of the (2, p) family is JT gravity [2], a subject which has been of much recent interest.

While the minimal string theories are toy models, one of the lessons from them that gen-
eralizes to even critical superstring theories is the existence of stronger-than-expected non-
perturbative effects [3, 4]. Let gs be the closed string coupling. Then the non-perturbative
effects are of order exp

(
−Cg−1

s

)
, rather than the exp

(
−Cg−2

s

)
expected from field theory.

In the language of JT gravity, gs ∝ e−S0 where S0 is the coefficient of the Euler characteris-
tic term in the action. Given this identification, these effects are “doubly-nonperturbative”
in the parameter S0 [2].

These non-perturbative effects are known to arise from ZZ branes on the string theory
side [5]. In the matrix integral, these effects correspond to one-eigenvalue instantons. A
one-eigenvalue instanton refers to a subleading saddle point configuration in the matrix inte-
gral which differs from the leading saddle point by pulling one eigenvalue out of the droplet
of eigenvalues and placing it at an extremum of the one-eigenvalue effective action [3, 6].

Let us consider the computation of the matrix integral Z itself. Let T denote the
action of the one-eigenvalue instanton or the “tension” of the ZZ brane, which is a positive
quantity of order g−1

s . The quantity Z admits an expansion of the form

Z = Z(0) + Z(1) + . . . = Z(0)
(
1 +N e−T + . . .

)
. (1.1)
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Here Z(0) is the perturbative contribution to the matrix integral and Z(1) is the contribution
to the matrix integral when one eigenvalue is in the classically forbidden region. One can
also write (1.1) in terms of the free energy as logZ = log Z(0) +N e−T + . . ..

The object of interest to us in this paper is the normalization constant N . Roughly
speaking, in string theory, N is the exponential of the worldsheet annulus with ZZ boundary
conditions on both ends. This annulus amplitude has been computed using the worldsheet
theory [7, 8] and is divergent. However, starting with [9, 10], many papers have computed
a finite value for N using matrix integral technology [2, 9–14], with ref. [14] containing the
result for general (p′, p).

This state of affairs is very reminiscent of the recent computations in the c = 1 system,
where the annulus amplitude between ZZ branes is also divergent, while the matrix side
of the duality provides a finite unambiguous answer [15]. It has been shown by one of
us [16] that string field theory techniques allow us to compute N in this case and the result
matches with the matrix computation.

The purpose of this note is to apply these string field theory tools to the (2, p) minimal
string theories and compute the value of N in these theories. We find perfect agreement
with the matrix integral computations [2, 9–13]. We record the final result

N = T−
1
2

i√
32π

cot(π/p)√
p2 − 4

. (1.2)

Let us make a few comments about the form of this answer. First, the combination N T
1
2

is natural to consider since the dependence on gs cancels out in this combination. This
is important since it is impossible to fix the multiplicative constant between the genus
counting parameters on the two sides of the duality, since we can always add the Euler
characteristic term to the worldsheet action with an arbitrary coefficient. So, when trying
to match precise numerical constants, one should compute quantities that are independent
of gs, like N T

1
2 rather than N or T separately.1 On the matrix integral side, the gaussian

integral around the one-eigenvalue instanton gives a multiplicative factor in N that is
proportional to T−

1
2 . On the string theory side, this factor arises because the proper

volume of the rigid U(1) gauge group on the instanton is proportional to T
1
2 [16]. Division

by this gauge group volume in the path integral produces the factor of T−
1
2 . Second, the

overall sign of the right hand side of (1.2) is ambiguous on both sides of the duality, as it
depends on a two-fold choice of the contour of integration over one unstable mode. One
should make this choice so that the result is the same for the matrix integral and the
string theory. Third, the normalization constant N is purely imaginary and the instanton
correction we are studying computes the leading imaginary part of the free energy. In this
sense, this correction is similar to the case of “bounce” solutions in instanton physics [20]
and the instanton correction is meaningful. Finally, note that the coefficient on the right
hand side of (1.2) is finite in the JT gravity limit p→∞.

The organization of this paper is as follows. In section 2, we present the computation of
N in the double-scaled one-matrix integral, which is dual to the (2, p) minimal string. The

1Another quantity like this would be the ratio of the disk amplitude to the square-root of the sphere
amplitude [17]. See also [18, 19].
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results of this section are not new, and we are including them to illustrate the relevant tools
in the simpler setting of the one-matrix integral. In section 3, we first present a general
string field theory analysis of the divergences in the cylinder diagram with both boundaries
lying on a D-instanton. We then apply these tools to the (2, p) minimal string and obtain
a finite answer that agrees with the matrix integral result. In section 4, we make a few
remarks about the extension of these results to the more general (p′, p) minimal string.

2 The matrix computation

In this section we will compute the normalization constant N for the one-matrix integrals
that are dual to the (2, p) minimal string. The results in this section are not new and
can be found in many papers, including [2, 9–14, 21]. We choose to follow the streamlined
presentation given in the recent work [2].

We start by explaining the setup. The starting point is an integral over all L × L

hermitian matrices
Z =

∫
dH e−LTrV (H) . (2.1)

Here V is a potential which can be taken to be an even polynomial of degree p + 1. The
matrix integral Z is a function of the coefficients in this polynomial. In the large L limit,
we can talk about a smooth density of eigenvalues and it is supported on a finite interval
on the real axis. The double-scaling limit refers to a procedure where, in addition to
taking L→∞, we zoom in near the left edge of the spectrum and tune the coefficients of
the potential such that the dominant double-line Feynman diagrams in the perturbation
expansion of (2.1) resemble continuum surfaces [1] . In this limit, the density of states is
non-normalizable and is supported on the entire positive real axis.

We focus on the so-called “conformal background” [22], where the leading density of
states in the double-scaling limit reads2

〈ρ(E)〉(0) = eS0

π
sinh

p arcsinh

√
E

2κ

 Θ(E) . (2.2)

Here Θ(E) denotes the Heaviside theta function. This is the density of states that is dual
to standard Liouville theory with only the cosmological constant term in the action turned
on. See, for example, [17] for an explicit family of potentials that lead to the density of
states (2.2) in the double scaling limit. Here, eS0 is the genus counting parameter after
taking the double-scaling limit and κ is an arbitrary energy scale.

Using the relationship between the form of the density of states and the spectral curve,
we conclude that the spectral curve is given by [8, 23]

y(z) = sin
(
p arcsin z√

2κ

)
= (−1)

p−1
2 Tp

(
z√
2κ

)
, (2.3)

where Tp denotes the p-th Chebyshev-T polynomial. One way to see this is to note
that the leading density of states 〈ρ(E)〉(0) is determined from the spectral curve as

2To get to the density of states in JT gravity, we need to take κ ∼ p2 as p→∞ [2].
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〈ρ(E)〉(0) = −iπ−1eS0y(i
√
E) for E > 0. It is also a standard result in one-matrix in-

tegrals that the derivative V ′eff(E) of the one-eigenvalue effective potential Veff(E), that
includes contributions from both the potential V that appears in (2.1) and the Vander-
monde determinant, is proportional to y(

√
−E) in the forbidden region E < 0 (see, for

example, [2] for a recent exposition). The precise relationship is

V ′eff(E) = eS0
(
−2y

(√
−E

))
(for E < 0) . (2.4)

Integrating this using (2.3) and taking Veff(E = 0) = 0 we get, for E < 0 that

Veff(E)=−2eS0κ

 1
p+2 sin

(p+2)arcsin

√
−E
2κ

− 1
p−2 sin

(p−2)arcsin

√
−E
2κ

 (2.5)

=2eS0κ(−1)
p−1

2

 1
p+2Tp+2

√−E
2κ

− 1
p−2Tp−2

√−E
2κ

 . (2.6)

Let us now look at the extrema of the one-eigenvalue effective action. From (2.4)
and (2.3), we see that as we move towards negative energies starting at E = 0, the first
zero of V ′eff(E) occurs at

E? = −2κ sin2 π

p
. (2.7)

We record the values of Veff(E?) and V ′′eff(E?), which are obtained from (2.5) and (2.4)
using (2.3):

Veff(E?) = eS0κ
4p sin(2π/p)

p2 − 4 , (2.8)

V ′′eff(E?) = −eS0κ−1 p

sin(2π/p) . (2.9)

Now we organize various contributions to the integral (2.1) depending on how many
eigenvalues are in the classically allowed region E > 0 and how many are in the classically
forbidden region E < 0. The leading contribution Z(0) comes from the integration region
where all eigenvalues are in the classically allowed region. The next important contribution
Z(1) comes from the integration region when only one eigenvalue is in the forbidden region.
Next, we borrow a couple of results from [2, 10, 11, 13], which in the notations of [2] are
as follows:

Z(1)

Z(0) =
∫
F
dE 〈ρ(E)〉 , (2.10)

〈ρ(E)〉 = 1
−8πE exp(−Veff(E)) for E < 0 . (2.11)

Here the subscript F on the integral denotes integration over the classically forbidden region
E < 0. The formula (2.11) captures the small amount of quantum mechanical leakage of
eigenvalues into the classically forbidden region.3

3As commented upon in [2], the expression for Veff in (2.6) is negative for certain intervals on the negative
real axis. However, in the regime E ∈ [E?, 0], with E? as in (2.7), this issue does not arise, and this interval
is all that we will need. See the discussion of the integration contour below.
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Figure 1. The contour of integration for the eigenvalues showing that we only need to include
“half” of the steepest descent contour for the instanton saddle point. We have shown the numbers
for the case p = 3 with κ = 1

2 but it is qualitatively similar for all p. In string theory, the integration
contour for the open string tachyon also looks like this.

We now plug in (2.11) into (2.10) and use the saddle point approximation about E?

to compute the integral (along a contour to be specified momentarily):

Z(1)

Z(0) = 1
−8πE? exp (−Veff(E?))

∫
dE exp

[1
2
∣∣V ′′eff(E?)

∣∣ (E − E?)2
]

(2.12)

= 1
−8πE? exp (−Veff(E?))× i

2

√
2π

|V ′′eff(E?)| . (2.13)

It is important to note from (2.9) that V ′′eff(E?) < 0 and thus the steepest descent contour
is parallel to the imaginary-E axis. Furthermore, we only integrate over half of the steepest
descent contour, since, in the perturbative region E � κ, the defining contour must lie
along the real axis [2]. Figure 1 shows this contour. On the string theory side, this
“unstable mode” is the open string tachyon and one has a similar contour of integration
over the tachyon mode [16].4 These facts give us the factor of i/2 in the gaussian integral.5

Comparing (2.13) to (1.1) and using equations (2.7), (2.8) and (2.9), we get

T = Veff(E?) = eS0κ
4p sin(2π/p)

p2 − 4 , (2.14)

N = e−
S0
2 κ−

1
2

i

16
√
π

√
cos(π/p)
p sin3(π/p)

. (2.15)

As explained in the introduction, it is natural to factor out T−
1
2 from the expression for

4In fact, such a contour is common in decay rate computations using bounce solutions. See, for exam-
ple, [20].

5Since we are only interested in computing the imaginary part, we don’t need to worry about the part
of the contour along the real axis, which contributes something real.
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N , and so we write the above result as

N = T−
1
2

i√
32π

cot(π/p)√
p2 − 4

. (2.16)

Refs. [9–12] contain this result for p = 3, while the result for general p can be found in [13].6

Ref. [2] was interested in the limit p→∞.
We would like to explain one subtlety in the above analysis. One can explicitly check

that the effective potential given in equation (2.6) has (p−1)/2 extrema on the negative-E
axis. Roughly half of them are maxima and half are minima. The extremum at E? in (2.7)
is the one closest to the origin and is a local maximum. However, even among the local
maxima, this is not the one with the smallest value of the effective potential, in general.
This raises the question of why we have chosen the saddle point E? in (2.7) as the relevant
saddle. The point is that we want the perturbation series of the matrix integral to match
with the vacuum string perturbation theory, and so we should not allow the integration
contour for the matrix eigenvalues to pass through regions on the real axis with Veff < 0,
since these regions will give real contributions to the matrix integral that are much larger
than the terms in perturbation theory around the saddle point (2.2). This can be avoided
by turning the integration contour along the steepest descent contour once it reaches E∗.

3 The string theory computation

In this section we shall describe the string theory computation of the leading imaginary
part of the partition function, arising from a single ZZ-instanton contribution.

The string theory that is dual to the double-scaled one-matrix integral described in
section 2 is Liouville theory coupled to the (2, p) minimal model and the bc-ghost system.
The b parameter that appears in the Liouville lagrangian is determined by p and is such
that the total central charge of Liouville, the matter CFT and ghosts adds up to zero. One
finds b =

√
2/p.

3.1 The cylinder diagram and its divergences

We shall begin by describing some general issues that arise in the analysis of the cylinder
diagram with boundaries lying on a D-instanton (whose analog in non-critical string theory
is the ZZ instanton). We can express the cylinder partition function in the open string
channel as:

A =
∫ ∞

0

dt

2tF (t) , (3.1)

where F (t) has the structure

F (t) =
∑
b

e−2πhbt −
∑
f

e−2πĥf t , (3.2)

6Note that some of these references are computing an integral over the full steepest contour through
the saddle point, and others are including contributions from both ends of the eigenvalue cut, and thus the
pre-factors quoted there are a multiple of the value in (2.16).

– 6 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
9

hb and ĥf being the L0 eigenvalues of the bosonic and fermionic states of the open string
with any ghost number and subject to the Siegel gauge condition. A state |χ〉 is said to
satisfy the Siegel gauge condition if

b0|χ〉 = 0 (Siegel gauge condition). (3.3)

The states are taken to be fermionic if they carry even ghost number and bosonic if they
carry odd ghost number — this is the correct assignment of statistics when we regard the
coefficients of these states as modes of the open string field on the D-instanton. The Siegel
gauge condition (3.3) is needed, since without this condition there will be an equal number
of bosonic and fermionic states related by the action of the ghost zero modes b0 or c0,
and the partition function will vanish. The way this gets implemented in the worldsheet
computation is via the insertion of b0c0 to soak up the ghost zero modes on the cylinder [24].

In theories of interest to us in this paper, the integral (3.1) has no divergence in
the t → 0 limit, indicating that the (regulated) number of fermionic and bosonic states
are equal. In the hypothetical situation where hb and ĥf are all positive, there are no
divergences in the t→∞ limit either, and A is given by

A = 1
2 ln

∏
f ĥf∏
b hb

. (3.4)

For positive hb, ĥf this can be used to express the normalization factor N accompanying
the instanton amplitude as an integral,

N = eA =
(∏

f ĥf∏
bhb

) 1
2

=
∏′
f ĥf∏
bh

1/2
b

=
∫ ∏

b

dφb√
2π
∏
f

′
dpfdqf exp

−1
2
∑
b

hbφ
2
b−
∑
f

′
ĥfpfqf

 ,
(3.5)

where φb are grassmann even variables and pf , qf are grassmann odd variables. The prime
on the summation and the product symbols indicate that, since ĥf ’s occur in pairs,7 we let
the sum and product over f run over half the number of original variables, and for each f
introduce a pair of grassmann odd variables pf , qf . The final expression in (3.5) may be
regarded as the path integral over open string fields in Siegel gauge, with the understanding
that open string fields live on the zero dimensional worldvolume of the D-instanton and
therefore are just ordinary variables. See appendix A for our conventions for the open
string field action.

As long as hb and ĥf are positive, (3.1), (3.4) and (3.5) are all well defined and are
identically equal. However in most situations, some of the hb’s are negative or zero, and
some of the ĥf ’s may vanish. In that case (3.1) and (3.4) are ill-defined. The final expression
in (3.5) is also ill-defined but we can try to make sense of this using insights from string
field theory. We shall now describe this procedure.

7This can be seen as follows. For any choice of basis states {|a〉} for Siegel gauge states with a fixed L0

eigenvalue, 〈a|c0|b〉 gives a non-degenerate inner product matrix. Since this inner product pairs states of
ghost number n and (2 − n), we see that for every n other than n = 1, the L0 eigenvalues occur in pairs
in sectors with ghost numbers n and (2− n). Since fermions arise from even ghost number sector, the ĥf ’s
always occur in pairs.
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State L0 eigenvalue Ghost number In Siegel gauge? Field name Grassmann parity
of field

c1 |0〉 −1 1 Yes φ1 even
c0c1 |0〉 −1 2 No — odd
|0〉 0 0 Yes p1 odd
c0 |0〉 0 1 No ψ even

c1c−1 |0〉 0 2 Yes q1 odd
c0c1c−1 |0〉 0 3 No — even

Table 1. A list of states that are relevant for the discussion of divergences in the cylinder diagram.
We have ordered the states first by their L0 eigenvalues and then by their ghost numbers. A state
and the corresponding field appear multiplied together in the expansion of the open string field as
|Ψ〉 = φ1c1 |0〉+ . . ..

First we note that, for hb, hf > 0, we can pick any non-negative integer n and write
hybrid expressions for A and N as

A =
∫ ∞

0

dt

2t

F (t)−
2n∑
b=1

e−2πthb +
2n∑
f=1

e−2πtĥf

+
∫ ∞

0

dt

2t

 2n∑
b=1

e−2πthb −
2n∑
f=1

e−2πtĥf


=
∫ ∞

0

dt

2t

F (t)−
2n∑
b=1

e−2πthb +
2n∑
f=1

e−2πtĥf

+ 1
2 log

[∏2n
f=1 ĥf∏2n
b=1 hb

]
, (3.6)

N = eA = exp

∫ ∞
0

dt

2t

F (t)−
2n∑
b=1

e−2πthb +
2n∑
f=1

e−2πtĥf


×
∫ 2n∏

b=1

dφb√
2π

n∏
f=1

dpfdqf exp

−1
2

2n∑
b=1

hbφ
2
b −

n∑
f=1

ĥfpfqf

 . (3.7)

Now, when some of the hb’s or ĥf ’s are negative or zero, we shall choose n to be such that
for b, f > 2n all the hb’s and ĥf ’s are positive. Then the term in the first line of (3.7)
is finite since we have subtracted the ‘bad’ contributions involving hb, ĥf ≤ 0 terms from
F (t). Furthermore, since the subtraction term vanishes as t → 0, the integral is free of
divergences from the t→ 0 end as well. Thus, we are left with the goal of making sense of
the integral over the modes φb for b ≤ 2n and pf , qf for f ≤ n.

For the D-instantons that we shall discuss, the bad modes consist of one bosonic mode
— the tachyon mode φ1 corresponding to the state c1|0〉 with hb = −1, and a pair of
fermionic modes p1, q1 corresponding to the states i|0〉 and ic1c−1|0〉 with ĥf = 0. The
coefficients i in these states have been chosen to ensure that the modes multiplying these
states are real. Since there is only one bad bosonic mode and two bad fermionic modes,
we can choose n = 1 in (3.7). See table 1 for a list of the states that are relevant for the
discussion and their basic properties.

First we shall discuss the integration over the bosonic modes φ1 and φ2. Since h2 > 0,
the integration over φ2 gives a standard gaussian integral. The integration over φ1 is

– 8 –
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problematic since the exponent takes the form exp(φ2
1/2). We shall carry out this integral

by regarding this as a contour integral in the complex φ1 plane as follows [16]. Since the
vacuum without any D-instanton is represented by a particular solution of the open string
field theory corresponding to some positive value β of φ1, the integration contour must pass
through β. For this reason we take the integration contour to lie along the positive real
axis for <(φ1) > 0. However once we reach φ1 = 0, we take the contour to be along (half
of) the steepest descent contour — either from −i∞ to 0, or from i∞ to 0. The integration
along the real axis is real and can be regarded as the perturbative contribution since the
contour passes through the perturbative vacuum. The leading imaginary part comes from
the part of the contour from ±i∞ to 0. These two choices differ by a sign — an ambiguity
that is also present in the matrix model. Choosing the contour to be from −i∞ to 0 for
definiteness, we can write (the leading imaginary part of) the bosonic part of the integral as:∫ 0

−i∞

dφ1√
2π
eφ

2
1/2
∫ ∞
−∞

dφ2√
2π
e−h2φ2

2/2 = i

2h
−1/2
2 . (3.8)

Next we turn to integration over the fermion zero modes p1, q1. We can get physical
insight into the origin of these modes if, instead of a D-instanton, we consider a Dp-brane
extending along some directions in space-time in any bosonic string theory. In that case
the gauge field aµ(k) living on the brane appears in the expansion of the open string field
as a term proportional to

∫
dp+1k aµ(k)αµ−1c1|k〉 where αµn are the oscillators associated

with the scalars Xµ describing coordinates tangential to the brane and |k〉 = eik·X(0)|0〉 are
momentum carrying states. In string field theory, gauge transformations appear as BRST
exact states QB |Λ〉 (plus higher order terms), and |Λ〉 is referred to as the “gauge transfor-
mation parameter”. For instance, usual spacetime gauge transformations of the gauge field
δaµ(k) ∝ ikµθ(k) appear via the term i

∫
dp+1k θ(k)|k〉 in |Λ〉. Note that this term in |Λ〉

has ghost number zero. Then the linearized gauge transformation QB |Λ〉 produces a term
proportional to i

∫
dp+1k θ(k)kµαµ−1c1|k〉. Comparing to the state representing the gauge

field, we see that this generates the usual gauge transformation law δaµ(k) ∝ i kµθ(k).
The gauge transformation QB |Λ〉 also produces a state proportional to

i
∫
dp+1k θ(k)k2c0|k〉. This translates to a transformation δψ(k) ∝ k2θ(k) where ψ(k)

is the field multiplying the state ic0|k〉. The Siegel gauge choice corresponds to setting
ψ(k) = 0. This produces a Jacobian proportional to k2, which is represented by a pair
of Fadeev-Popov ghosts p1(k), q1(k) multiplying the states ic1c−1|k〉 and i|k〉. Since these
states have conformal weight ĥ1 = k2, integration over p1 and q1 will precisely produce the
required Fadeev-Popov determinant k2, for k 6= 0.

Now, the issue is that, on a D-instanton we have k = 0. Thus, neither the “gauge
field” nor the field ψ multiplying ic0|0〉 transforms, showing that the Siegel gauge choice
breaks down. This is a reflection of the fact that the usual local U(1) symmetry on the
Dp-brane becomes a rigid symmetry on the D-instanton. The remedy is to go back to the
“original” form of the path integral where we carry out integration over all the “classical”
modes of the theory and explicitly divide by the volume of the gauge group. In string field
theory language, fields that multiply states of ghost number one are referred to as classical
since the physical open string states belong to this sector. Concretely, among the states in
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table 1, this means that instead of integrating over {φ1, p1, q1}, we integrate over {φ1, ψ}
and divide by the volume of gauge group. The precise normalization of the integration
measure can be fixed by carefully following the line of argument described above and gives
the replacement rule [16]:

∫
dp1dq1 −→

∫
dψ e−ψ

2∫
dθ

=
√
π∫
dθ
. (3.9)

The −ψ2 in the exponent is the result of evaluating the open string field theory action for
the out-of-Siegel-gauge grassmann-even mode ψ,8 see appendix A. The quantity θ can be
related to the rigid U(1) symmetry paramater θ̃, under which an open string with one end
on the instanton picks up a phase eiθ̃, by comparing the string field theory gauge transfor-
mation to the rigid U(1) transformation. For canonically normalized fields and gauge trans-
formation parameters, the transformation law of a charged field Φ is proportional to igo θΦ,
as in conventional quantum field theories. Here go is defined to be the coefficient of the cu-
bic term in the open string field theory action, with conventions as described in appendix A.
This should be equated to the transformation law δΦ = i θ̃Φ under infinitesimal rigid U(1)
transformation. A detailed calculation of the constant appearing in the string field theory
gauge transformation law leads to θ = θ̃/go [16]. On the other hand, the open string
coupling go is related to the instanton action T via go = (2π2T )−

1
2 .9 Therefore we have∫

dθ = g−1
o

∫
dθ̃ = 2πg−1

o = 2
3
2π2T

1
2 , (3.10)

since θ̃ has period 2π.
Substituting (3.8), (3.9) and (3.10) into (3.7) we get:

N = exp
[∫ ∞

0

dt

2t
[
F (t)−

(
e2πt + e−2πht − 2

)]]
× i 2−

5
2π−

3
2 h−

1
2 T−

1
2 , (3.11)

where h = h2. One can easily check that the expression is independent of h by taking
derivative with respect to h. Therefore we do not need to choose h = h2, any choice of
h > 0 will give the same result.

3.2 Specialization to minimal string theory

We shall now use (3.11) to compute the normalization of the instanton amplitude in the
(2, p) minimal string theory. The form of the integrand F (t) for the cylinder diagram in
minimal string theory is well-known [7]. Since we are studying the cylinder diagram, we
need to specify boundary conditions for the worldsheet fields. For the Liouville CFT, we
pick the “(m,n) = (1, 1)” ZZ boundary condition [5], as this is the one that corresponds to
the saddle point E? in equation (2.7) in the matrix integral [8, 18]. For the matter CFT,

8The generalization of this term to a Dp-brane would be −
∫
dp+1x (ψ+ γ ∂µa

µ)2, where the constant γ
is chosen such that the combination ψ + γ ∂µa

µ is gauge invariant.
9There are many ways to derive this result, but the one that holds universally is from the observation

that the tachyon vacuum solution in open string field theory has action T − (2π2g2
o)−1 [25, 26]. Since this

describes the vacuum, we must equate this to zero, leading to T = (2π2g2
o)−1.
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we pick the Cardy state on both ends so that the open string channel only contains the
identity character [27].10

Let t be the modulus of the cylinder that corresponds to time in the open string
channel and let q = e−2πt. The partition function of Liouville theory on the cylinder with
(m,n) = (1, 1) ZZ boundary conditions on both ends is [5]

ZLiouville(t) =
(
q−1 − 1

)
q−

1
4 (b−1−b)2

η(it)−1 =
(
q−1 − 1

)
q
− (p−2)2

8p η(it)−1 . (3.12)

The partition function of the matter CFT with the given boundary conditions equals the
identity character in the minimal models, which is given by [28, 29]

Zmatter(t) = η(it)−1
∞∑

k=−∞

(
q

(4pk+p−2)2
8p − q

(4pk+p+2)2
8p

)
. (3.13)

Multiplying the contribution η(it)2 from the ghosts (see, for example, [24]), we find

F (t) =
(
e2πt − 1

) ∞∑
k=−∞

(
e−2πtk(2pk+p−2) − e−2πt(pk+1)(2k+1)

)
. (3.14)

It is important to note that the leading terms in F (t) as t→∞ are the ones with k = 0:

F (t) =
(
e2πt − 1

) (
1− e−2πt +O(e−4πt)

)
= e2πt − 2 +O(e−2πt) . (3.15)

As already discussed in section 3.1, the e2πt term arises from the open string tachyon, while
the −2 arises from the two ghost zero modes.11

If we substitute (3.14) into (3.11) and choose h = 1, we can see that the k = 0 term
in the sum exactly cancels the subtraction term

(
e2πt + e−2πt − 2

)
. The rest of the terms

may be analyzed using the general result:∫ ∞
0

dt

2t
(
e−2πh1t − e−2πh2t

)
= 1

2 ln h2
h1
. (3.16)

Using this we can rewrite (3.11) as

N = i 2−
5
2π−

3
2T−

1
2

∞∏
k=−∞
k 6=0

[(pk + 1)(2k + 1)− 1
k(2pk + p− 2)− 1

k(2pk + p− 2)
(pk + 1)(2k + 1)

] 1
2

= i 2−
5
2π−

3
2T−

1
2

 ∞∏
k=−∞
k 6=0

1− 4
p2(2k+1)2

1− 1
p2k2


1
2

. (3.17)

10For the (2, p) minimal string, there are (p − 1)/2 possible ZZ brane boundary conditions [23]. By
comparing the relative tensions of these branes (given in, for example, [8]), to the relative heights of the
extrema of the matrix effective potential (2.6), one can establish that it is the (m,n) = (1, 1) ZZ brane,
with identity character from the matter CFT, that corresponds to the matrix saddle point at E? in (2.7)
with Veff(E?) as in (2.14).

11In the c = 1 case, we have F (t) = e2πt− 1 exactly. The change of coefficient in the L0 = 0 sector comes
from an additional bosonic zero mode that corresponds to time translations of the D-instanton [15, 16].
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We now use

sin πx = πx
∞∏
k=1

(
1− x2

k2

)
, cosπx = sin 2πx

2 sin πx =
∞∏
k=1

(
1− 4x2

(2k − 1)2

)
(3.18)

to write

cot π
p

= p

π

∞∏
k=1

1− 4
p2(2k−1)2

1− 1
p2k2

. (3.19)

Using this it is easy to see that product over terms in (3.17) for k < 0 produces π
p cot πp .

For positive k, (3.17) is missing the 1−4/p2 term from the cosine infinite product in (3.18).
Thus the infinite product term in (3.17) produces

π

p
cot π

p
× 1

1− 4
p2
× π

p
cot π

p
= π2

p2 − 4 cot2 π

p
. (3.20)

Using this result in (3.17) yields

N = T−
1
2

i√
32π

cot(π/p)√
p2 − 4

, (3.21)

in perfect agreement with the matrix integral result (2.16).

4 Generalization to (p′, p) models

A more general class of minimal string models is Liouville theory coupled to the (p′, p)
minimal model and the bc-ghost system. Here p and p′ are relatively-prime integers with
p > p′ ≥ 2. The b parameter of Liouville theory is determined by the requirement that the
total central charge vanishes; the result is b =

√
p′/p.

The Liouville sector admits ZZ boundary conditions labeled by two integers (m,n) [5].
We leave a general analysis to future work, but for illustration purposes, we note here that
the computation in section 3.2 can be extended to the (p′, p) minimal string with the same
boundary conditions. That is, we pick the (m,n) = (1, 1) ZZ state for Liouville, and for
the matter CFT, we pick the Cardy state on both ends so that the open string channel
only contains the identity character [27]. This gives the partition functions [5, 28, 29]

ZLiouville(t) =
(
q−1 − 1

)
q
− (p−p′)2

4pp′ η(it)−1 , (4.1)

Zmatter(t) = η(it)−1
∞∑

k=−∞

(
q

(2pp′k+p−p′)2
4pp′ − q

(2pp′k+p+p′)2
4pp′

)
. (4.2)
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Combining the Liouville, matter and ghost contributions to F (t), using (3.11), and following
the steps in section 3.2, we get

N=i2−
5
2π−

3
2T−

1
2

∞∏
k=−∞
k 6=0

[(pk+1)(p′k+1)−1
k(pp′k+p−p′)−1

k(pp′k+p−p′)
(pk+1)(p′k+1)

]1/2
(4.3)

=i2−
5
2π−

3
2T−

1
2

∞∏
k=1

[(
1− 1

k2

(1
p
− 1
p′

)2
)(

1− 1
k2

(1
p

+ 1
p′

)2
)(

1− 1
k2p2

)−2(
1− 1

k2p′2

)−2
] 1

2

=T−
1
2

i√
32π

 sin
(
π
p+ π

p′

)
sin
(
π
p′−

π
p

)
sin2(π/p)sin2(π/p′)(p2−p′2)


1
2

=T−
1
2

i√
32π

√
cot2(π/p)−cot2(π/p′)

p2−p′2
.

This agrees with (3.21) when p′ = 2.
For p > p′ ≥ 3, these string theories are dual to the double-scaled limit of a two-matrix

integral [30, 31]. The two-matrix integral is more complicated, so we won’t go into the full
analysis of the eigenvalue instanton in this case [14, 19], and just note that the result (4.3)
agrees with the m = n = 1 expression given in [14].12 We leave a fuller investigation of the
two-matrix case to future work.
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A Conventions for the open string field theory action

Let us denote by |Ψ〉 the open string field which takes the form

|Ψ〉 = φ1c1 |0〉+ iψc0 |0〉+ . . . (A.1)

The vacuum state is normalized so that

〈0| c−1c0c1 |0〉 = 1 . (A.2)
12In carrying out this comparison, following the comment in footnote 6, we have divided the result of [14]

by two. However, since the saddle point corresponding to m = n = 1 is not the dominant saddle point
in general, we need to carefully analyze the full integration contour to figure out how the steepest descent
contour fits in. Since this issue exists both in the matrix model and in string theory, we expect any additional
factor to affect both sides in the same way. Hence it should not affect the comparison.
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Our starting point is the path integral over fields with ghost number one, divided by the
volume of the gauge group. In the string field theory literature, the fields with ghost
number one are known as “classical” fields since the physical open string states belong to
this sector. We take the weight in the path integral to be exp(−S) with the quadratic part
of the action being

S = 1
2 〈Ψ|QB |Ψ〉 . (A.3)

The BRST charge QB is given by

QB =
∮

dz

2πi (c Tm+:b c ∂c :) , (A.4)

where Tm is the matter stress tensor. There is also a cubic term in the action [32]. See
for example, [25] for a detailed form of this coupling. If we normalize the string field so
that the kinetic term is independent of the coupling as in (A.3), then the cubic term has
an explicit factor of the open string coupling go.

From the above equations, one can see, for example, that the contribution of the
tachyon field φ1 to the quadratic action is

S ⊃ 1
2 〈0|φ1c−1QB φ1c1 |0〉 = −1

2φ
2
1 , (A.5)

and thus the weight in the path integral is exp(φ2
1/2). The action for ψ is similarly seen to

be ψ2.
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