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1 Introduction

It was conjectured that there is an approximate duality between semiclassical 3d gravity
and the statistics of OPE coefficients [1–3] and energy level statistics [4] of an ensemble
of formal CFT2s with large central charge c and a sparse low-energy spectrum.1 This is
analogous to the duality between Jackiw-Teitelboim (JT) gravity [7–9] and random matrix
theory [10, 11]. These dualities are both different from earlier examples of AdS/CFT and
their boundary ensembles satisfy the Eigenstate Thermalization Hypothesis (ETH) [12, 13].

This proposed duality provides a playground to study various quantities. One thing
is a BTZ black hole [14] in AdS3 with light operator insertions. Here light and heavy are

1This is not a true microscopic ensemble. For a free toy model of CFT2 ensemble microscopically defined
see [5, 6].
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Figure 1. (a) Analogy between a 3d solid torus and a 2d disk. (b) Analogy between a 3d torus
wormhole and a 2d cylinder.

respectively distinguished by whether the operator dimension (h, h̄) is below or above the
black hole threshold c

24 where c = 3
2G is the central charge. In particular, we study averaged

one-point and two-point correlators on a torus on the CFT2 ensemble side. Their variances
involve a torus wormhole on the 3d gravity side. More precisely, the averaged product
of two torus correlators are dual to a Maldacena-Maoz wormhole [15] with insertions.2

A Maldacena-Maoz wormhole has two asymptotic boundaries with identical topology and
constant moduli. The boundaries are Riemann surfaces, with the simplest options Riemann
spheres or tori. In order for a Riemann sphere to be stable, there need to be at least three
insertions. For torus, at least one insertion. If we take the operator dimension to zero
for a torus wormhole, we can connect back to [4, 16] which calculates the torus wormhole
partition function in 3d pure gravity [17].

The BTZ black hole can be reduced to JT gravity by Kaluza-Klein mechanism [18, 19].
In this paper we study 3d gravity using methods inspired by 2d gravity. In particular, there
is an analogy between a solid torus in 3d and a disk in 2d as shown in figure 1(a). This
can be extended to the analogy between a torus wormhole in 3d and a cylinder (or double-
trumpet) in 2d as shown in figure 1(b).

We can take the analogy further by taking a Z2 quotient of a torus wormhole in 3d
and compare that to a Z2 quotient of a cylinder in 2d. In 2d, identifying antipodal points
on a cylinder gives a disk with a crosscap inserted as shown in figure 2(a). Similarly in
3d, we identify the torus wormhole as shown in figure 2(b) and get a solid torus with a
thinner solid torus carved out in the middle. Every point on the blue torus is identified
with another point on that blue torus. We find that there are two ways of doing the Z2
quotient; one orientable and one non-orientable. Each configuration gives a non-decaying
contribution to torus two-point function reminiscent to that a disk with a crosscap gives a
non-decaying contribution to the thermal two-point function in 1d [20].

We can understand these two contributions using Random Matrix Theory (RMT)
from the boundary side perspective. In particular, the orientable geometry comes from
RT symmetry contained in the proposed formal CFT2 ensemble. In 2d, CPT symmetry
is equivalent to reflection+time reversal (RT). While the non-orientable geometry arises
from adding time reversal (T) symmetry to the formal CFT2 ensemble. Noticing this RT

2Following the terminology of [1]. These wormholes have topology Σg,n × I, where Σg,n is a genus-g
Riemann surface with n conical defects. Σg,n admits a hyperbolic metric.
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Figure 2. (a) Z2 quotient of a cylinder in 2d. (b) Z2 quotients of a torus wormhole in 3d.

symmetry has bigger consequences, one is that it tells us that the torus wormhole partition
function calculated in [4, 16] should be multiplied by a factor of two. The other is that
we notice that actually any relativistic quantum field theory with random matrix statistics
has energy eigenvalue distribution a GOE ensemble for bosonic states and a GSE ensemble
for fermionic states.

We show the 3d calculations in the main text and the parallel 2d calculations in
appendix A. In section 2, we consider one insertion on each boundary torus. First in
section 2.1, we find that if we take the mass of the insertions to zero, we get a result similar
to the partition function found in [4, 16] but with a factor off. Second in section 2.2, we
find that if we analytically continue the two boundary tori, the average product of one-
point functions do not decay over time. In section 3, we consider two insertions on each
boundary torus. First in section 3.1, we find that if we analytically continue the location
of one of the insertions on each boundary, the average product of two-point functions
do not decay over time. Second in section 3.2 we discuss the Z2 quotients of a torus
wormhole and their contributions to torus two-point function both from a bulk perspective
and from a boundary perspective, and examine the effect of RT and T symmetry. Finally,
in section 4 we look again at the partition function found by [4, 16] and also examine a
generic relativistic quantum field theory with random matrix statistics.

Review: CFT2 ensemble. We review some key properties of unitary compact CFT2
following the presentation of [3] and state the conjectures of [1] that we will also assume in
this paper. A CFT2 is defined by its central charge c and a list of primary operators with
known scaling dimensions (h, h̄) and operator product expansion (OPE) coefficients cijk.
We reparametrize in terms of “Liouville parameters”

c = 1 + 6Q2 = 1 + 6
(

b + 1
b

)2
h = α(Q − α) α = Q

2 + iP (1.1)

Also denote the spin as s = h − h̄. Viewed as an ensemble, CFT2’s have some universal
features depending only on the central charge, we list two such features below. Both can be
formulated in two ways which are equivalent to each other because of modular invariance.

1. (a) The identity operator has
h1 = 0 = h̄1 (1.2)
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(b) Cardy’s formula for the density of primary states

ρ(h, h̄) ≈ exp

4π

√(c − 1)h
24 +

√
(c − 1)h̄

24

 as h, h̄ → ∞ (1.3)

2. (a) For any operator Oi, the OPE coefficient of two Oi’s and the identity is

cii1 = 1 (1.4)

(b) Averaged value of the OPE coefficients over all primary operators is given by

|cabc|2 = C0(ha, hb, hc)C0(h̄a, h̄b, h̄c) (1.5)

when at least one of the three operator is heavy. Here C0 is given by

C0(h1, h2, h3) = C0(P1, P2, P3) =
Γb(2Q)√
2Γb(Q)3

Γb

(
Q
2 ± iP1 ± iP2 ± iP3

)
∏3

k=1 Γb(Q ± 2iPk)
(1.6)

where
Γb(x) =

Γ2(x|b, b−1)
Γ2(Q/2|b, b−1) (1.7)

From now on, following the conventions of [1], we assume that our CFTs are holo-
graphic, i.e. with a large central charge and a sparse spectrum of low-lying operators. We
also extend 1(b) to hold above the black hole threshold and 2(b) to hold for all primaries.
In addition assume

cabc = 0 (1.8)

and

cabcc
∗
def = C0(ha, hb, hc)C0(h̄a, h̄b, h̄c)(δadδbeδcf + (−1)sa+sb+scδadδbf δce + 4 more terms)

(1.9)
where the remaining four terms are cyclic permutations of the first two terms. In sec-
tion 3.2.2, we discuss a way to understand this ensemble from the prospective of Random
Matrix Theory.

We introduce a graphical way of representing the OPE coefficients. Consider a CFT2
on a Riemann sphere. Let O1, O2, and O3 be three insertions. Instead of thinking of these
as point insertions we can expand the point out to form cycles and the Riemann sphere
with three insertions now look like a pair of pants. This just gives the OPE coefficient c123.

⟨O1O2O3⟩ = = c123 (1.10)

[1] showed that the averaged product of two three-point-functions of two CFT2’s on
Riemann spheres matches the semiclassical action of the sphere wormhole shown in figure 3
on the 3d gravity side.

They are both equal to the universal asymptotic formula for OPE coefficients i.e.

⟨O1O2O3⟩S2 ⟨O1′O2′O3′⟩S2 = c123c1′2′3′ = |C0(h1, h2, h3)|2 (1.11)
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Figure 3. A Maldacena-Maoz wormhole with two boundaries both Riemann spheres with three
light insertions.

2 Torus one-point function wormhole

In this section, we focus on studying a torus wormhole with one insertion on each boundary.
In section 2.1 we take the mass of the insertions to zero and compare with partition function
in [4, 16], in section 2.2 we show that the averaged product of two torus one-point functions
does not decay over time. We consider the averaged product of two one-point functions.

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) (2.1)

Note that pictorially, for each torus one-point function we can think of it as a torus with
a hole. Then this can be decomposed as a sum of the product of OPE coefficient c1pp

and conformal block |Fg=1
1 (hp; τ)|2 over primary operators p. The sum over descendents

of each primary operator is encoded in the conformal block.

⟨O1⟩T 2(τ,τ̄) = (2.2)

=
∑

p

∣∣∣∣∣
∣∣∣∣∣
2

(2.3)

=
∑

p

c1pp|Fg=1
1 (hp; τ)|2 (2.4)

=
∑

p

c1ppFg=1
1 (hp; τ)F

g=1
1 (h̄p; τ̄) (2.5)

The proposed ensemble of formal CFT2 (1.11) predicts that the averaged product of two
torus one-point functions is given by

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′)≈(1+(−1)s1)
∣∣∣∣∫ dhpρ0(hp)C0(h1,hp,hp)Fg=1

1 (hp;τ)F
g=1
1 (hp;−τ ′)

∣∣∣∣2
(2.6)

=(1+(−1)s1)⟨O1⟩L
T 2(τ,−τ ′) ⟨O1⟩L

T 2(−τ̄ ′,τ̄) (2.7)

where ⟨O1⟩L
T 2(τ,−τ ′) and ⟨O1⟩L

T 2(−τ̄ ′,τ̄) are torus Liouville one-point functions. For a deriva-
tion of this result see appendix B.1.

It was shown in [1] that in the large c limit (to one-loop order), (2.7) agrees with the
semiclassical limit of the 3d gravity calculation of a torus wormhole with a defect insertion.
It is interesting to contemplate that the r.h.s. of (2.6) could actually be the exact answer for
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this wormhole in 3d gravity. Our understanding is that this has indeed been established as
part of the work of [21]. This motivates us to take the formula seriously enough to consider
a non-semiclassical limit where ∆ → 0.

2.1 ∆ → 0 limit

In this section, we take the mass of the insertions to zero ∆ → 0. There are a couple of
interesting features that we want to point out about this limit. First, the expression is
simple and given by

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) =
4 (1 + (−1)s1)Q2

∆2π2

∫
dkdk̄χk(τ)χk(τ ′)χk̄(τ̄)χk̄(τ̄

′) (2.8)

where the character is given by

χk(τ) =
q

k2
4

η(τ) = e
iπτk2

2

η(τ) k = 2P =
√
4hp − Q2 (2.9)

Here η(τ) is the Dedekind eta function. Second, naively we would guess that in the ∆ →
0 limit, the averaged product of two one-point functions ⟨O⟩ ⟨O⟩ should reproduce the
partition function predicted by Cotler-Jensen [4, 16]. This turns out to not to be the case,
and the discrepancy is simple, just a factor inside our integral over k and k̄. The same
kind of discrepancy also appears in 2d because even though we take ∆ → 0 there is a still a
sum over windings of the particle around the cylinder which contributes a divergent overall
factor (see appendix A.2 for a detailed 2d analysis).

Let us begin with our formula of the averaged product of two one-point functions

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) ≈ (1+ (−1)s1)
∣∣∣∣∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1

1 (hp; τ)F
g=1
1 (hp;−τ ′)

∣∣∣∣2
(2.10)

where C0 is given by (1.6). Now we take the weight of O1 to zero, i.e. ∆ = 2h1 → 0. In
this limit O1 becomes the identity operator. Then the above equation becomes

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) ≈
4 (1 + (−1)s1)Q2

∆2π2

∣∣∣∣∫ dP Fg=1
1 (hp; τ)F

g=1
1 (hp;−τ ′)

∣∣∣∣2 (2.11)

for derivation see B.3.
From (2.5) we know that

ZT 2(τ) =
∑

p

Fg=1
1 (hp; τ)F

g=1
1 (h̄p; τ̄) (2.12)

But we also know that
ZT 2(τ) =

∑
p

χk(τ)χ̄k(τ̄) (2.13)

so
Fg=1

1 (hp; τ)F
g=1
1 (h̄p; τ̄) = χk(τ)χ̄k(τ̄) (2.14)
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and the averaged product of two torus one-point function in the limit ∆ → 0 is given by

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) =
4 (1 + (−1)s1)Q2

∆2π2

∫
dkdk̄ χk(τ)χk(τ ′)χk̄(τ̄)χk̄(τ̄

′) (2.15)

On the other hand, the partition function given in Cotler&Jensen [4, 16] is

ZT 2×I(τ1, τ̄1, τ2, τ̄2) =
∑

γ∈PSL(2;Z)
Z̃(τ1, τ̄1, γτ2, γτ̄2) (2.16)

where

Z̃(τ1, τ̄1, τ2, τ̄2) =
√
Im(τ1)Im(τ2)

∫ ∞

0
dkdk̄χk(τ1)χk(τ2)χ̄k̄(τ̄1)χ̄k̄(τ̄2)kk̄ (2.17)

so the lim∆→0 ⟨O⟩ ⟨O⟩ differ by a factor kk̄ inside the integral compared to the partition
function Z̃ before the sum over PSL(2, Z). However, not like in 2d, in 3d we do not know
a precise way to calculate this factor yet.

We can also compare the expressions after integration which are

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) =
4 (1 + (−1)s1)Q2

∆2π2
1

|η(τ1)|2|η(τ2)|2
1

|τ1 + τ2|
(2.18)

vs.
Z̃(τ1, τ̄1, τ2, τ̄2) =

√
Im(τ1)Im(τ2)

2π2|η(τ1)|2|η(τ2)|2
1

|τ1 + τ2|2
(2.19)

2.2 Lorentzian torus limit

In this section, we examine the late-time behavior of the product of two torus one-point
functions. In 2d, the simplest quantity to probe the late-time behavior is the spectral
form factor ⟨Z(β + it)Z(β − it)⟩ [22]. This is two thermal partition functions, one with β

analytically continued to β + it and the other to β − it. We can do a similar analytical
continuation in 3d.

Writing the torus one-point function in operator form, we get

⟨O1⟩T 2(τ,τ̄) = Tr
(
O1e−βH+isP

)
= Tr

(
O1eiτ(h−c/24)e−iτ̄(h̄−c/24)

)
(2.20)

where τ = iβ+s and τ̄ = −iβ+s are complex conjugates since the torus T 2 is a Euclidean
torus. Also by definition H = h + h̄ − c/12 and P = h − h̄.

The above is one boundary of the Maldacena-Maoz wormhole. The other side T 2(τ ′, τ̄ ′)
is another torus that look like the reflection of T 2(τ, τ̄). Thus τ ′ = iβ−s and τ̄ ′ = −iβ−s.
Then the torus one-point function is

⟨O1⟩T 2(τ ′,τ̄ ′) = Tr(O1e−βH−isP ) (2.21)

For simplicity, we take s = 0 so the product of the two torus one-point function becomes

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) = Tr(O1e−βH) Tr(O1e−βH) (2.22)
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Now we can do analytical continuation similar to ⟨Z(β + it)Z(β − it)⟩ [22], and make the
two tori into Lorentzian tori by taking β 7→ β + it for T 2(τ, τ̄) while taking β 7→ β − it for
T 2(τ, τ̄). But this is just saying now

τ = iβ − t τ ′ = iβ + t (2.23)
τ̄ = −iβ + t τ̄ ′ = −iβ − t (2.24)

so we are calculating the quantity

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) = ⟨O1⟩T 2(iβ−t,−iβ+t) ⟨O1⟩T 2(iβ+t,−iβ−t) = Tr(O1e−(β+it)H) Tr(O1e−(β−it)H)
(2.25)

(2.7) then becomes

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) = (1 + (−1)s1) ⟨O1⟩L
T 2(iβ−t,−iβ−t) ⟨O1⟩L

T 2(iβ+t,−iβ+t) (2.26)

But now we can see that the Liouville one-point functions on the right-hand-side are on
Euclidean tori instead of Lorentzian tori. Another way to present the answer is

Tr(O1e−(β+it)H) Tr(O1e−(β−it)H) = (1 + (−1)s1) TrL(O1e−βH−itP ) TrL(O1e−βH+itP )
(2.27)

On the l.h.s. we start with an average over the formal ensemble of CFTs of a quantity
similar to the spectral form factor, but with an operator inserted in each factor. The r.h.s.
is the answer for this ensemble average, or equivalently, it is the wormhole contribution in
3d gravity — either way it boils down to a computation in Liouville theory involving an
operator insertion with the same dimension. The key point is that on the r.h.s., the large
time parameter t multiplies the momentum operator P , not the Hamiltonian H. Now, P

is quantized so the r.h.s. is periodic in time with a short period, and in particular does not
decay for large t.

3 Torus two-point function wormholes

In this section we focus on studying a torus wormhole with two insertions on each boundary.
In section 3.1, we show that the averaged product of two torus two-point functions does
not decay over time and in section 3.2 we study Z2 quotients of this torus wormhole. These
quotients give non-decaying contributions to the torus two-point function. We calculate
these contributions from the bulk in section 3.2.1 and from the boundary in section 3.2.2
where we justify and extend the proposed formal CFT2 ensemble (1.9) using RMT.

We consider the averaged product of two torus two-point functions

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′) (3.1)

Each two-point function is given by

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) = (3.2)

=
∑
p,q

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

(3.3)
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=
∑

p

c1pqc2pq|Fg=1
12 (hp, hq; τ, v)|2 (3.4)

=
∑

p

c1pqc2pqFg=1
12 (hp, hq; τ, v)Fg=1

12 (h̄p, h̄q; τ̄ , v̄) (3.5)

Thus the averaged product of two torus two-point functions is given by

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′)

≈ 2
∣∣∣∣∫ dhpdhqρ0(hp)ρ0(hq)C0(h1, hp, hq)C0(h2, hp, hq)Fg=1

12 (hp, hq; τ, v)Fg=1
12 (hp, hq;−τ ′,−v′)

∣∣∣∣2
(3.6)

≈ 2 ⟨O1(v,−v′)O2(0)⟩
L
T 2(τ,−τ ′) ⟨O1(−v̄′, v̄)O2(0)⟩

L
T 2(−τ̄ ′,τ̄) (3.7)

where ⟨O1(v,−v′)O2(0)⟩L
T 2(τ,−τ ′) and ⟨O1(−v̄′, v̄)O2(0)⟩L

T 2(−τ̄ ′,τ̄) are torus Liouville two-
point functions. For details, see appendix B.2.

3.1 Large time-separation limit

In this section, we examine the late-time behavior of the product of two torus two-point
functions.

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′) = Tr(O1(v, v̄)O2(0)e−βH) Tr(O1(v,′ v̄′)O2(0)e−βH)
(3.8)

Note that here the notion of late-time is different from section 2.2. In section 2.2, at late
time the two tori on the boundary becomes large in time direction. Here two operators
inserted on each torus becomes far away from each other. We take the twist of the Euclidean
torus s = 0 but we do not analytically continue β. Instead, we just analytically continue
the location of the insertion O1 on both boundaries

v = i

(
β

2 + it

)
= i

β

2 − t v′ = i

(
β

2 − it

)
= i

β

2 + t (3.9)

v̄ = −i

(
β

2 + it

)
= −i

β

2 + t v̄′ = −i

(
β

2 − it

)
= −i

β

2 − t (3.10)

plugging these into (3.7) we get

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′)

= 2 ⟨O1

(
i
β

2 − t,−i
β

2 − t

)
O2(0)⟩

L

T 2(iβ,−iβ)
⟨O1

(
i
β

2 + t,−i
β

2 + t

)
O2(0)⟩

L

T 2(iβ,−iβ)
(3.11)

Observe that one torus has one insertion at 0 and another insertion at iβ
2 − ⌊t⌋. The

other torus has one insertion at 0 and another insertion at iβ
2 + ⌊t⌋. Here ⌊·⌋ means

the fractional part of t. Thus, as t becomes large, the arguments don’t change much, so
⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′) does not decay at late time.
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(x, y) ∼ (x + Z, y + Z)

Figure 4. A torus represented as a square with sides identified.

T 2 K2

(x, y) ∼ (x + 1/2, y) (x, y) ∼ (x + 1/2,−y)

Table 1. Ways of doing a Z2 quotient of a torus.

3.2 Single-boundary quotients of a torus wormhole

So far we have discussed two-boundary configurations with large Lorentzian separation
that do not decay with time. In this section we calculate Z2 quotients of a torus wormhole
from both the bulk side (section 3.2.1) and the boundary side (section 3.2.2). These
configurations each has one boundary which is a torus, so they contribute to the torus two-
point function. And then using the result from 3.1, we observe that these contributions do
not decay at late time.

3.2.1 Semi-classical gravity calculation

Let us classify ways of doing Z2 quotient of a torus wormhole that gives a smooth geometry
with one torus boundary. In other words, we classify Z2 symmetries of the torus wormhole
such that the two boundaries are mapped to each other. Our trick of doing the classification
is to focus on the zero-curvature slice in the middle of the torus wormhole. This zero-
curvature slice is a torus that is mapped to itself under the Z2 symmetry. We represent
this torus as a square with sides identified as shown in figure 4, i.e. (x, y) ∼ (x+Z, y +Z).

There are two inequivalent Z2 symmetries and doing a quotient results in either a torus
T 2 or a Klein bottle K2 as shown in table 1. Without loss of generality, the fundamental
region is the part to the left of the blue dashed line.
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Figure 5. (a) Z2 quotient of a cylinder in 2d. (b) Z2 quotients of a torus wormhole in 3d.

Going back to 3d, the above analysis tells us that there are two ways of doing Z2
quotient of a torus wormhole. Let us use the coordinate (x, y, z) ∈ T 2× [−1, 1] for the torus
wormhole. Thus these two Z2 quotient corresponds to (1) (x, y, z) ∼ (x+1/2, y,−z) and (2)
(x, y, z) ∼ (x + 1/2,−y,−z) respectively.3 We should note that both these configurations
contain a Möbius band (x, 0, z) ∼ (x + 1/2, 0,−z). Now let us examine whether our two
kinds of Z2 quotients are orientable or not. To do that we go back to the torus wormhole
which is a 3d smooth manifold embedded in R3. We can think of the identifications as
transition maps between two different elements in the atlas of the torus wormhole. The
Z2 quotient is orientable iff. the atlas is oriented. The atlas is oriented (unoriented) if the
Jacobi determinant is positive (negative).

(1) (x, y, z) ∼ (x + 1/2, y,−z). This has Jacobi det = −1, which means it’s a non-
orientable 3d geometry. In particular, this configuration is equivalent to a Möbius
strip ×S1.

(2) (x, y, z) ∼ (x+1/2,−y,−z). This has Jacobi det = 1, which means it’s an orientable
3d geometry. Intuitively, it has a twist in the z direction and another twist in the
y-direction, they cancel each other.

Notice that there is an analogy between Z2 quotients of a 3d torus wormhole and the Z2
quotient of a 2d cylinder as shown in figure 5. Z2 quotient of a 2d cylinder is the same as a
disk with a crosscap inserted as shown in figure 5(a). Z2 quotients of a 3d torus wormhole
are also equivalent to carving out a solid torus and then identify points on this torus as
shown in figure 5(b). We should note that if we insert operators on the boundaries of torus
wormhole and then take the Z2 quotient, the insertions need to be compatible with the
corresponding Z2 symmetry.

Before analyzing the insertions in 3d torus wormhole, let us recall a similar situation
in 2d where we insert four operators on the cylinder that respect the antipodal map so that
we can do the antipodal identification for the cylinder later. The configuration of insertions
compatible with the Z2 symmetry is shown in figure 6. The two V ’s are antipodal of each
other and the two W ’s are also antipodal of each other. We analytically continue the

3(x, y, z) ∼ (x+1/2, y,−z), (x, y, z) ∼ (x, y+1/2,−z), and (x, y, z) ∼ (x+1/2, y+1/2,−z) are equivalent
identifications because we can change the ways we represent a torus on a R2 plane.
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Figure 6. In 2d, we get a cylinder from the hyperbolic disk by identifying the two brown geodesics.
Then we insert two pairs of operators V and W on the boundary.

Euclidean distance between V and W to β
2 + it and β

2 − it. In particular, we can check
that the configuration shown in figure 6 makes sense by observing that the left boundary
and right boundary of the cylinder gives the same two-point correlator.

l.h.s. = Tr
(
e−(

β
2 −it)HV e−(

β
2 +it)HW

)
(3.12)

r.h.s. = Tr
(
e−(

β
2 +it)HWe−(

β
2 −it)HV

)
(3.13)

so l.h.s. = r.h.s.
If we use the (x, z) coordinate to denote S1 × [−1, 1], the insertions are at

(xV , zV ) = (0,−1) (x′
V , z′V ) =

(
β

2 , 1
)

(3.14)

(xW , zW ) =
(

β

2 + it,−1
)

(x′
W , z′W ) = (β + it, 1) (3.15)

These satisfy Z2 symmetry because (x′
v, z′v) = (xv + β/2,−zv) and (x′

w, z′w) = (xw +
β/2,−zw).

Analogously in 3d we again insert four operators (as shown in figure 7) so that they
satisfy the Z2 symmetries, i.e. (x′

v, y′v, z′v) = (xv + β/2,±yv,−zv) and (x′
w, y′w, z′w) = (xw +

β/2,±yw,−zw)

(xV , yV , zV ) = (0, 0,−1) (x′
V , y′

V , z′V ) =
(

β

2 , 0, 1
)

(3.16)

(xW , yW , zW ) =
(

β

2 + it, 0,−1
)

(x′
W , y′W , z′W ) = (β + it, 0, 1) (3.17)

Note that both (1) and (2) Z2 quotients are compatible with these operator insertions
because the y-coordinates of all four insertions are zero and the only difference between
(1) and (2) is from the y-coordinates. Again the distance between V and W are β

2 + it

and β
2 − it. If the tori are given by T 2(τ, τ̄) = T 2(iβ,−iβ) and T 2(τ ′, τ̄ ′) = T 2(iβ,−iβ)

respectively. The insertions should be V at 0 and W at (v, v̄) =
(
i
(

β
2 + it

)
,−i

(
β
2 + it

))
for the left torus, and should be W at 0 and V at (v′, v̄′) =

(
i
(

β
2 − it

)
,−i

(
β
2 − it

))
for

the right torus.
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Figure 7. We insert operators the same way for a 3d torus wormhole as for a 2d cylinder.

There is one more subtlety to the configuration. For the operators to satisfy the Z2
symmetries, we should actually insert TV T−1 and TWT−1 for (1) and (RT )V (RT )−1 and
(RT )W (RT )−1 for (2) where T denotes time-reversal symmetry and R denotes reflection.

Thus the torus wormhole contribution to the averaged product of two torus two-point
functions we are calculating is

(1) ⟨W (v, v̄)V (0)⟩T 2(τ,τ̄) ⟨TV (v′, v̄′)W (0)T−1⟩T 2(τ ′,τ̄ ′) (3.18)

(2) ⟨W (v, v̄)V (0)⟩T 2(τ,τ̄) ⟨(RT )V (v′, v̄′)W (0)(RT )−1⟩T 2(τ ′,τ̄ ′) (3.19)

Now we take V = O1 and discuss the two cases separately

(1) (3.18) is only nonzero when
W = TO1T−1 (3.20)

Using (3.7), we get

⟨TO1(v, v̄)T−1O1(0)⟩T 2(τ,τ̄) ⟨TO1(v′, v̄′)T−1O1(0)⟩T 2(τ ′,τ̄ ′)

= 2 ⟨TO1

(
i
β

2 − t,−i
β

2 − t

)
T−1O1(0)⟩

L

T 2(iβ,−iβ)
⟨TO1

(
i
β

2 + t,−i
β

2 + t

)
T−1O1(0)⟩

L

T 2(iβ,−iβ)

(3.21)
This is given by two quotient wormhole contributions glued together and semiclassi-
cally we can write

e−Swormhole = e−2Squotient (3.22)

Thus quotient (1) contributes to the torus two-point function by

⟨TO1T−1O1⟩(1) = (3.23)

≈classical

√
⟨TO1(v, v̄)T−1O1(0)⟩T 2(τ,τ̄) ⟨TO1(v′, v̄′)T−1O1(0)⟩T 2(τ ′,τ̄ ′) (3.24)

=
√
2 ⟨TO1

(
i
β

2 − t,−i
β

2 − t

)
T−1O1(0)⟩

T 2(iβ,−iβ)

×
√
⟨TO1

(
i
β

2 + t,−i
β

2 + t

)
T−1O1(0)⟩

T 2(iβ,−iβ)
(3.25)
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and this is non-decaying over time. We should note that this equation is only valid
in the leading (zero loop) classical approximation, because we are just using the
relationship between the classical actions (3.22). Also since

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′)

= 2
∣∣∣∣∫ dhpdhqρ0(hp)ρ0(hq)C0(h1, hp, hq)C0(h2, hp, hq)Fg=1

11 (hp, hq; τ, v)Fg=1
11 (hp, hq; τ ′, v′)

∣∣∣∣2
(3.26)

we can use saddle-point approximation (for a justification see appendix B.4) to get

⟨TO1T−1O1⟩(1) ≈classical

∣∣∣∣∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1
11 (hp, hp; τ, v)

∣∣∣∣2 (3.27)

(2) (3.19) is only nonzero when

W = (RT )O1(RT )−1 (3.28)

Using (3.7), we get

⟨(RT )O1(v, v̄)(RT )−1O1(0)⟩T 2(τ,τ̄) ⟨(RT )O1(v′, v̄′)(RT )−1O1(0)⟩T 2(τ ′,τ̄ ′)

= 2 ⟨(RT )O1

(
i
β

2 − t,−i
β

2 − t

)
(RT )−1O1(0)⟩

L

T 2(iβ,−iβ)

× ⟨(RT )O1

(
i
β

2 + t,−i
β

2 + t

)
(RT )−1O1(0)⟩

L

T 2(iβ,−iβ)

(3.29)

Quotient (2) contributes to the torus two-point function by

⟨(RT )O1(RT )−1O1⟩(2) = (3.30)

≈classical

√
⟨(RT )O1(v, v̄)(RT )−1O1(0)⟩T 2(τ,τ̄) ⟨(RT )O1(v′, v̄′)(RT )−1O1(0)⟩T 2(τ ′,τ̄ ′)

(3.31)

=
√
2 ⟨(RT )O1

(
i
β

2 − t,−i
β

2 − t

)
(RT )−1O1(0)⟩

T 2(iβ,−iβ)

×
√
⟨(RT )O1

(
i
β

2 + t,−i
β

2 + t

)
(RT )−1O1(0)⟩

T 2(iβ,−iβ)
(3.32)

and this is non-decaying over time. Again this is only valid in the leading (zero loop)
classical approximation. And again using saddle-point approximation

⟨(RT )O1(RT )−1O1⟩(2) ≈classical

∣∣∣∣∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1
11 (hp, hp; τ, v)

∣∣∣∣2
(3.33)
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But RT acting on O1 is equivalent to a 180◦ rotation so

⟨O1O1⟩(2) = (−1)s1⟨(RT )O1(RT )−1O1⟩(2) (3.34)

≈classical (−1)s1

∣∣∣∣∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1
11 (hp, hp; τ, v)

∣∣∣∣2 (3.35)

(3.27) and (3.35) are results of a classical approximation. However, it’s interesting to
contemplate that whether they are actually exact equations.

3.2.2 CFT calculation

Before calculating the Z2 quotients of a torus wormhole from the boundary side, let us
examine the boundary ensemble in [1] more closely.

cabcc
∗
def = C0(ha, hb, hc)C0(h̄a, h̄b, h̄c)(δadδbeδcf + (−1)sa+sb+scδadδbf δce + 4 more terms)

(3.36)
where the remaining four terms are cyclic permutations of the first two terms. Let’s start
by writing the OPE coefficients of two heavy operators Oi, Oj and one light operator Oα

in operator form
ciαj = ⟨i|Oα|j⟩ = ⟨OiOαOj⟩ (3.37)

Here all operators that are Hermitian. We should note that

ciαj = ⟨i|Oα|j⟩ = ⟨i|O†
α|j⟩ = ⟨j|Oα|i⟩∗ = c∗jαi (3.38)

We now show that an OPE coefficient c123 is real if s1+s2+s3 is even and purely imaginary
if s1 + s2 + s3 is odd. If the operator O is a symmetric traceless tensor of spin s = h − h̄,
we can write it in component form as

O(x, J) = Oµ1,··· ,µsJµ1 · · · Jµs (3.39)

Let Rot denote rotation by 180◦, define |1⟩ = O1(x1, J1) |0⟩ and |3⟩ = O3(x3, J3) |0⟩, then
three-point function is given by

⟨1|O2(x2, J2)|3⟩ = Rot ⟨1|O2(x2, J2)|3⟩
= (−1)s1+s2+s3 ⟨3|O2(x2, J2)|1⟩ = (−1)s1+s2+s3 ⟨1|O2(x2, J2)|3⟩∗ (3.40)

where in the second line the prefactor comes from rotating the spin while the braket comes
from rotating operators keeping spin fixed. Thus

c∗iαj = (−1)si+sα+sj ciαj (3.41)

The ensemble of OPE coefficients can be justified by considering a simple model of Haar
random matrices. We introduce a change of basis by unitary matrix u and write

ciαj = (u†Oαu)ij (3.42)
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where u is a unitary matrix and they form a Gaussian unitary ensemble (GUE) [23]. We
can justify writing the change of basis u by thinking that there are two sets of basis: local
basis and energy eigenbasis. In local basis, the operator Oα is simple but in the energy
eigenbasis Oα need to be transformed by some rather complicated change of basis, so we
can take those complicated matrix u to be random. We can then model averaging over
ensemble of OPE coefficients as integral over random unitary matrices. Recall we have the
leading order contribution to Weingarten’s formula [24]∫

du u j1
i1

u j2
i2

(u†) l1
k1

(u†) l2
k2

≈ 1
L2
(
δl1

i1
δl2

i2
δj1

k1
δj2

k2
+ δl2

i1
δl1

i2
δj2

k1
δj1

k2

)
(3.43)

Now let us review how to derive this formula. The general idea is we observe that u is a
projector onto invariants. Thus we can first find the invariant states then we can just write
the integral formula immediately. More specifically, denote our Hilbert space by H, then
our random matrices as maps u, u† : H → H and u∗, uT : H∗ → H∗.

|i⟩ 7→ u j
i |j⟩ ⟨i| 7→ (u∗)i

j ⟨j| (3.44)

Let us denote elements of {H,H,H∗,H∗} using the indices 1, 2, 3, 4 respectively. Then
the following state is invariant under evolutions by Haar random matrices4

|13⟩ =
∑

i

|i⟩ ⟨i| (3.45)

because
u⊗u∗ |13⟩ =

∑
i

(u |i⟩)(u∗ ⟨i|) =
∑
i,j,k

|j⟩ ⟨j|u|i⟩ ⟨i|u†|k⟩ ⟨k| =
∑
j,k

|j⟩ ⟨j|uu†|k⟩ ⟨k| =
∑

j

|j⟩ ⟨j| = |13⟩

(3.46)
Note in particular that |13⟩ is the identity operator which is basis-independent, and so
well-defined. The same hold for |24⟩, |14⟩, |23⟩ so∫

du u j1
i1

u j2
i2

(u†) l1
k1

(u†) l2
k2

=
∫

du u j1
i1

u j2
i2

(u∗)l1
k1
(u∗)l2

k2
(3.47)

≈ 1
L2
(
δl1

i1
δl2

i2
δj1

k1
δj2

k2
+ δl2

i1
δl1

i2
δj2

k1
δj1

k2

)
(3.48)

For two boundary dimensions, we should modify (3.43) by adding reflection + time-
reversal, i.e. RT symmetry.5 We want to know how the ensemble of OPE coefficients would
change if we add RT symmetry (i.e. RT commuting with u or u†RTu = RT ) to GUE.
Recall that Lorentzian time-reversal T is antilinear and antiunitary. Since we know that
complex conjugate K is antilinear and antiunitary,6 it is natural to model T with a factor
of K in it. With RT symmetry, there are more invariant states

|12⟩′ =
∑

i

|i⟩RTK |i⟩ (3.49)

4The states |i⟩ are orthogonal in the leading order approximation of Weingarten’s formula.
5Relativistic theories always have this symmetry. It’s sometimes called CPT symmetry.
6Complex conjugate operator is an antilinear and antiunitary operator K : H → H because K

∑
αi |i⟩ =∑

α∗
i |i⟩ and if we write |ψ⟩ =

∑
αi |i⟩, |χ⟩ =

∑
βi |i⟩ then we have the inner product ⟨Kχ|Kψ⟩ =∑

i,j
(⟨j|βj)(α∗

i |i⟩) =
∑

i
α∗

i βi ⟨i|i⟩ =
∑

i,j
(⟨j|α∗

j )(βi |i⟩) = ⟨ψ|χ⟩.
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since

u ⊗ u |12⟩′ =
∑

i

|i⟩uRTKuT |i⟩ =
∑

i

|i⟩uRTu†K |i⟩ =
∑

i

|i⟩RTK |i⟩ = |12⟩′ (3.50)

Therefore, time-reversal symmetry adds a term to the Weingarten’s formula∫
du u j1

i1
u j2

i2
(u†) l1

k1
(u†) l2

k2
≈ 1

L2
(
δl1

i1
δl2

i2
δj1

k1
δj2

k2
+ δl2

i1
δl1

i2
δj2

k1
δj1

k2

+ (RTK)−1
i1,i2

(RTK)j1,j2(RTK)−1
k1,k2

(RTK)l1,l2
)

(3.51)

Thus the averaged product of two OPE coefficients with one light and two heavy operators is

ciαjc∗kβl =
∫

du(u†Oαu)ij(u†Oβu)lk (3.52)

= 1
L2

(
Tr(OαOβ)δikδjl +Tr

(
(RTK)OT

α (RTK)−1Oβ

)
(RTK)−1

il (RTK)jk

)
(3.53)

= 1
L2

(
Tr(OαOβ)δikδjl +Tr

(
(RT )O†

α(RT )−1Oβ

)
(RTK)−1

il (RTK)jk

)
(3.54)

= 1
L

(
δαβδikδjl + (−1)si+sα+sj δαβδilδjk

)
(3.55)

where in the last line we used two facts: first, RT acting on Oα by conjugation is equivalent
to rotation by 180◦ so

Tr
(
(RT )O†

α(RT )−1Oβ

)
= (−1)sα Tr(O†

αOβ) = (−1)sαδαβ (3.56)

Second, we can write (RTK)−1
il and (RTK)jk in braket notation as

(RTK)−1
il =

(∑
n

⟨n| (RTK)−1 ⟨n|

)
|i⟩ |l⟩=

∑
n

⟨i|(RT )−1|n⟩ ⟨n|l⟩=⟨0|O†
i (RT )−1Ol|0⟩=(−1)siδil

(3.57)

(RTK)jk =⟨j| ⟨k|

(∑
n

|n⟩RTK |n⟩

)
=
∑

n

⟨j|n⟩ ⟨n|RT |k⟩=⟨0|O†
jRTOk|0⟩=(−1)sj δjk (3.58)

Thus we have reproduced (3.36).
Now we want to know how the ensemble of OPE coefficients would change if we add

time-reversal symmetry without reflection R (i.e. the time-reversal operator T commuting
with ui.e.u†Tu = T ) to GUE. With T symmetry, we have invariant state

|12⟩ =
∑

i

|i⟩TK |i⟩ (3.59)

because

u ⊗ u |12⟩ =
∑

i

|i⟩uTKuT |i⟩ =
∑

i

|i⟩uTu†K |i⟩ =
∑

i

|i⟩TK |i⟩ = |12⟩ (3.60)

Therefore, time-reversal symmetry adds a term to the Weingarten’s formula∫
du u j1

i1
u j2

i2
(u†) l1

k1
(u†) l2

k2
⊃ (TK)−1

i1,i2
(TK)j1,j2(TK)−1

k1,k2
(TK)l1,l2 (3.61)
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This would add an additional term to the averaged product of OPE coefficients

ciαjc∗kβl ⊃
1

L2 Tr
(
(TK)OT

α (TK)−1Oβ

)
(TK)−1

il (TK)jk (3.62)

= 1
L2 Tr(TO†

αT−1Oβ)(TK)−1
il (TK)jk (3.63)

=


1
L(TK)−1

il (TK)jk Oα = TOβT−1

0 otherwise
(3.64)

There are two kinds of anomalies T 2 = ±1. For T 2 = 1, we can just take T = K and
the condition TuT−1 = u reduces u†u = 1 to uT u = 1, which is equivalent to saying u is
orthogonal, and the ensemble becomes GOE. Thus the added term to ensemble simplifies to

ciαjc∗kβl ⊃


1
Lδilδjk Oα = TOβT−1

0 otherwise
(3.65)

For T 2 = −1, we can take T = Kω where ω =
( 0 1
−1 0

)
. The condition TuT−1 = u reduces

u†u = 1 to uT ωu = ω, which is equivalent to saying u is symplectic, and the ensemble
becomes GSE. Thus the added term to ensemble simplifies to

ciαjc∗kβl ⊃


1
Lω−1

il ωjk Oα = TOβT−1

0 otherwise
(3.66)

Now we can use results from last subsection to calculate torus two-point functions.
Note that on our 2d boundary, we always have RT symmetry so the ensemble is given
by (3.55), which we now use to contract indices of the OPE coefficients

⟨O1(v, v̄)O1(0)⟩T 2(τ,τ̄) =
∑
p,q

c1pqc∗1pq

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

2

=
∑
p,q

c1pqc∗1pq

∣∣∣F (N)
11 (hp, hq; τ, v)

∣∣∣2

(3.67)

=
∑
p,q

(
1 + (−1)s1+sp+sq δpq

)
|C0(h1, hp, hq)|2

∣∣∣F (N)
11 (hp, hq; τ, v)

∣∣∣2
(3.68)

=
∑
p,q

∣∣∣C0(h1, hp, hq)F (N)
11 (hp, hq; τ, v)

∣∣∣2
+ (−1)s1

∑
p

∣∣∣C0(h1, hp, hp)F (N)
11 (hp, hp; τ, v)

∣∣∣2 (3.69)

=
∣∣∣∣∫ dhpdhqρ0(hp)ρ0(hq)C0(h1, hp, hq)Fg=1

11 (hp, hq; τ, v)
∣∣∣∣2

+ (−1)s1

∣∣∣∣∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1
11 (hp, hp; τ, v)

∣∣∣∣2 (3.70)
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If we also add time-reversal symmetry, the ensemble becomes (3.65). This would add
another term to the two-point function

⟨TO1(v, v̄)T−1O1(0)⟩T 2(τ,τ̄) ⊃
∑

p

c2
1pp

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

2

=
∑

p

c2
1pp

∣∣∣Fg=1
11 (hp, hp; τ, v)

∣∣∣2 (3.71)

=
∣∣∣∣∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1

11 (hp, hp; τ, v)
∣∣∣∣2 (3.72)

Thus we see that the first term of (3.70) is the original decaying result of [1], the second
term of (3.70) matches contribution from (2) orientable Z2 quotient of torus wormhole
on the gravity side (3.35), and (3.72) matches contribution from (1) non-orientable Z2
quotient (3.27).

4 Comments on RT symmetry

In this section, we first show that a generic relativistic quantum field theory with random
matrix statistics should be of the GOE type for bosonic states and GSE for fermionic states,
then we point out that the partition function of a torus wormhole calculated in [4, 16] needs
another multiplicative factor of 2.

Section 3.2.2 tells us that the CFT2 ensemble proposed by [1] is inherently GOE
for bosonic states and GSE for fermionic states since it contains RT symmetry, and RT

symmetry is an anti-linear, anti-unitary symmetry that squares to (−1)F [25]. We should
note that in 2d, RT symmetry always exists (this can be understood as coming from the
CPT theorem7). Inspired by the above observation, we claim that to the extent that a
relativistic quantum field theory exhibits random matrix statistics it should be of the GOE
type for bosonic states and of the GSE type for fermionic states. To start with, a relativistic
quantum field theory exhibits random matrix statistics is of GUE, if the system has no
additional symmetry, adding RT symmetry would make it into GOE or GSE. One caveat
is that if the Hamiltonian has an additional symmetry which block diagonalize it, the RT
symmetry could potentially exchange different blocks instead of acting on each individual
block. We now show that the above situation does not happen. We can block diagonalize
the Hamiltonian into different momentum blocks

H =


Hp1 0 0

0 Hp2 0

0 0 . . .

 (4.1)

7C = charge conjugation, P = parity, T = time-reversal. In 2d, P = R and CT together is the time-re-
versal we are considering in RT.
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Figure 8. (a) gluing two torus trumpets to get a torus wormhole (b) act on the right torus trumpet
with RT and then glue to the left trumpet.

In order to show the energy eigenvalue distribution is GOE or GSE, we need to make sure
that each individual subblock of H commutes with RT. This is equivalent to showing that
momentum commutes with RT. Let Tµν be the stress-energy tensor then the momentum
is given by

p(t) =
∫

dx T01(x, t) (4.2)

From here, we can show that
RT p(0) = p(0) (4.3)

Therefore, momentum commutes with CPT and we conclude that any chaotic CFT2 has
energy eigenvalue distribution a GOE for bosonic states and a GSE for fermionic states.

RT symmetry has implications for torus wormhole partition function studied in [4,
16]. In Euclidean AdS3 bulk, having RT symmetry means that in addition to the usual
torus wormhole that can be obtained by gluing together two torus trumpets as shown
in figure 8(a), there should always exists a configuration that first act on the right torus
trumpet with RT, i.e. rotate the right torus trumpet by 180◦, and then glue it to the left
torus trumpet as shown in figure 8(b). This implies that the partition function of a torus
wormhole calculated in [4, 16] needs another multiplicative factor of 2.

Now we explain another way of understanding this which is through the Mapping Class
Group. The Mapping Class Group (MCG) of a torus T 2 is given by the automorphisms of
T 2, Aut(T 2), modding out by the path component of the identity in Aut(T 2), i.e.

MCG(T 2) = Aut(T 2)/Aut0(T 2) (4.4)

It turns out that
MCG(T 2) = SL(2, Z) (4.5)

Intuitively, this can be understood by focusing on how the two cycles of a torus α and β

get mapped. Recall that a torus is a quotient of the complex plane by a 2d lattice as shown
in figure 9.

The lattice has α and β as basis vectors, and we think of them as complex numbers.
We want to determine the number of ways this torus can be mapped to itself ignoring
simply zooming in or out. (α, β) gets mapped to (pα, qβ) where p and q are relatively
prime integers with the same sign. We know that any such pair (p, q) can be mapped from
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Figure 9. T 2 is a quotient of the complex plane by a 2d lattice.

Figure 10. A 180◦ rotation flips the directions of both α and β cycles of a torus.

(1, 1) by a unique element of SL(2, Z)(
a b

c d

)(
1
1

)
=
(

p

q

)
(4.6)

Ignoring the sign of (p, q). The complex structure of the torus is given by

τ = α

β
(4.7)

and it get mapped by PSL(2, Z) = SL(2, Z)/{±1} to

τ 7→ aτ + b

cτ + d
(4.8)

However, we should note that this representation of MCG ignores the case where (α, β)
gets mapped to (−α,−β). This is the case where the parallelogram formed by (α, β) get
rotated by 180◦. This 180◦ rotation is not included in PSL(2, Z) because it is identified
with the identity element. However, with RT symmetry, the directions of α and β are
important as shown in figure 10.

Thus we should add in this element back, i.e. we should modify (2.16) to

ZT 2×I(τ1, τ̄1, τ2, τ̄2) =
∑

γ∈SL(2;Z)
Z̃(τ1, τ̄1, γτ2, γτ̄2) (4.9)

This gives an additional multiplicative factor of two in the result. In large spin, this result
would again reduce to a double-trumpet in JT but with an additional factor of two, which
is consistent with JT with time-reversal symmetry added8 [11]. Also note that this is more
consistent with (2.15), if we take s1 even and large.

8Time-reversal symmetry adds the double-trumpet glued from two trumpets but with a reflection on
one of the interfaces being glued.
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A JT gravity

Calculations in the main text parallel those in JT gravity. In this appendix, we give
analogous results in JT gravity following the order of presentation of the main text. For a
more detailed presentation see [20].

In 2d, correlators are studied in the context of Jackiw-Teitelboim (JT) gravity [7–9]
which is dual to an ensemble of quantum mechanical systems on the boundary [10, 11] and
can be described by Random Matrix Theory (RMT). Saad [26]9 computed bosonic two-
point correlation functions using the techniques developed by Yang [28]10 on the bulk side
and compared with RMT predictions for operators satisfying Eigenstate Thermalization
Hypothesis (ETH) [12, 13] on the boundary side.

A.1 Introduction

The 2d gravity theory we will study consists of the Einstein-Hilbert action + JT gravity
action + action from matter. JT gravity on a 2d manifold M has Euclidean action

IJT = −1
2

(∫
M

ϕ(R + 2) + 2
∫

∂M
ϕb(K − 1)

)
(A.1)

Classically, the equation of motion fixes the bulk geometry to be AdS2 with R = −2 and
the action reduces to a Schwarzian action on the boundary [33]. In 2d, the Einstein-Hilbert
action is purely topological and can be written as

IEH = −χS0 (A.2)

where χ = 2 − 2g − n is the Euler character for manifold M with g the genus and n the
number of boundaries, and S0 is the zero-temperature bulk entropy which is a constant.
The Einstein-Hilbert action then contributes an overall factor eχS0 to the partition function.
In all of our figures the orange disks represent infinite hyperbolic space (or its quotient)
and yellow geometries inside represent the physical Euclidean spacetimes, with wiggly
regularized boundaries described by the Schwarzian theory [33].

The two main shapes of Euclidean AdS we consider in this review are a hyperbolic
disk which has one asymptotically boundary with renormalized length β, and a hyperbolic
trumpet which has one asymptotic boundary with renormalized length β and one geodesic
boundary with length b (see figure 11). That is because a disk is the simplest hyperbolic
geometry with one asymptotic boundary and a trumpet can be thought of as a building

9Continuing the idea of [27].
10For other approaches see [27, 29–32].
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Figure 11. (a) disk partition function (b) trumpet partition function.

block of more complicated geometries via attaching a Riemann surface with one geodesic
boundary to the geodesic boundary of the trumpet.

JT path integrals without operator insertions can be computed directly by doing the
path integral over the wiggly boundary of the disk and the trumpet explicitly. Disk [28,
32, 34–40] and trumpet partition functions [26, 37] are given respectively by

ZDisk(β) = eS0 e
2π2

β

√
2πβ3/2 = eS0

∫ ∞

0
dE

sinh
(
2π

√
2E
)

2π2︸ ︷︷ ︸
ρ0(E)

e−βE (A.3)

and

ZTrumpet(β, b) = e
− b2

2β

√
2πβ

=
∫ ∞

0
dE

cos
(
b
√
2E
)

π
√
2E

e−βE (A.4)

where ρ0(E) denotes the density of state.
To compute path integrals with operator insertions we need more tools. Before we do

that, we should note that there is another way of computing the disk partition function. A
disk can be decomposed into two Hartle-Hawking wavefunctions by the following procedure

ZDisk(β) = (A.5)

=
∫

eℓdℓ (A.6)

= eS0

∫
eℓdℓ φDisk,τ (ℓ)φDisk,β−τ (ℓ) (A.7)

This decomposition may seem redundant since we already know how to calculate Zdisk
but this procedure teaches us how to calculate two-point correlation functions. To do that,
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we just need another factor of e−∆ℓ in the integral, which is the QFT two-point correlation
function of two boundary operators V of conformal weight ∆ with renormalized geodesic
distance ℓ apart. Disk contribution to two-point correlation functions at time t = −iτ is
then given by

⟨V (t = −iτ)V (0)⟩χ=1 = (A.8)

=
∫

eℓdℓ e−∆ℓ (A.9)

= eS0

∫
eℓdℓ φDisk,τ (ℓ)φDisk,β−τ (ℓ)e−∆ℓ (A.10)

Note that this two-point correlator is not normalized by dividing out the disk partition
function which is of order eS0 . Hartle-Hawing wavefunctions can be written in a sim-
ple closed form by first writing the wavefunctions with fixed energy boundary conditions
given by

φE(ℓ) = ⟨ℓ|E⟩ = 4e−ℓ/2Ki
√

8E(4e−ℓ/2) (A.11)

where K is a Bessel-K function. Hartle-Hawking wavefunctions i.e. wavefunctions with
fixed length boundary condition are given by [26, 28]

φDisk,τ (ℓ) =
∫ ∞

0
dE ρ0(E)e−τEφE(ℓ) (A.12)

Now we review two important relations that the Hartle-Hawking wavefunctions satisfy:∫ ∞

−∞
eℓdℓ φE(ℓ)φE′(ℓ) = δ(E −E′)

ρ0(E) (A.13)

∫ ∞

−∞
eℓdℓ φE(ℓ)φE′(ℓ)e−∆ℓ = |VE,E′ |2 =

∣∣∣Γ(∆+ i
(√

2E +
√
2E′
))

Γ
(
∆+ i

(√
2E −

√
2E′
))∣∣∣2

22∆−1Γ(2∆)
(A.14)

In particular using (A.13) we can verify

ZDisk(β) = eS0

∫
eℓdℓ φDisk,τ (ℓ)φDisk,β−τ (ℓ) (A.15)

by plugging in (A.3), (A.12). In addition to partition functions and Hartle-Hawking states,
we review a final and important tool we use: propagators (as shown in figure 12) i.e. time
evolution operators of Hartle-Hawking wavefunctions such that

φDisk,β+β1+β2(ℓ) =
∫

eℓ′dℓ′ PDisk(β1, β2, ℓ, ℓ′)φDisk,β(ℓ′) (A.16)
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Figure 12. (a) Hartle-Hawking wavefunction (b) disk propagator.

Figure 13. (a) A cylinder with one operator insertion on each side (b) embedded on a hyper-
bolic disk.

we can check [26] that the above relations are solved by

PDisk(β1, β2, ℓ, ℓ′) =
∫

dE ρ0(E)e−(β1+β2)EφE(ℓ)φE(ℓ′) (A.17)

A.2 Product of two one-point functions

In this section, we focus on the product of two one-point functions, which on the gravity
side corresponds to a cylinder with one operator insertion on each side as shown in figure 13.

As shown in figure 13(b), this is given by a propagator so

⟨V ⟩β1
⟨V ⟩β2

=
∫

eℓdℓ PDisk(β1, β2, ℓ, ℓ)e−∆ℓ (A.18)

=
∫

dE ρ0(E)e−(β1+β2)E |VE,E |2 (A.19)

=
∫

ds sρ0(s)e−(β1+β2)s2/2Γ(∆± i2s)Γ(∆)2

22∆−1Γ(2∆) (A.20)

where s =
√
2E.

Take the limit ∆ → 0 we get

⟨V ⟩β1
⟨V ⟩β2

= 4
∫

ds sρ0(s)e−(β1+β2)s2/2Γ(±2is)
∆ (A.21)

= 4
∆

∫
ds sρ0(s)e−(β1+β2)s2/2 π

2s sinh(2πs) (A.22)

where we have used the fact that when ∆ → 0

Γ(∆) = Γ(1 + ∆)
∆ = 1

∆ − γ + O(∆) (A.23)
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and that
Γ(z)Γ(−z) = Γ(z)Γ(1− z)

−z
= − π

z sin πz
(A.24)

But now we should recall that the density of states is given by

ρ0(s) =
sinh(2πs)

2π2 (A.25)

so

⟨V ⟩β1
⟨V ⟩β2

= 1
π∆

∫
ds e−(β1+β2)s2/2 (A.26)

= 1
π∆

√
π

2(β1 + β2)
(A.27)

But on the other hand, we can directly calculate the partition function of a cylinder by
using the partition function of trumpet

Zcylinder = (A.28)

=
∫

db b (A.29)

=
∫

db b ZTrumpet(β1, b)ZTrumpet(β2, b) (A.30)

=
√

β1β2
2π(β1 + β2)

(A.31)

This disagrees with equation (A.27), but we can explain the reason as follows.
We can also calculate the product of two one-point functions using the trumpet par-

tition function, but when doing that we need to include an additional factor e−∆ℓ. This
means that we need to sum over different windings which contributes a factor

∞∑
n=−∞

e−∆bn ≈ 2
b∆ (A.32)

Now we can calculate product of two one-point functions again including the winding factor
with weight ∆ → 0

⟨V ⟩β1
⟨V ⟩β2

(∆ → 0) =
∫

db b
∞∑

n=−∞
e−∆bn ZTrumpet(β1, b)ZTrumpet(β2, b) (A.33)

= 2
∆

∫
db ZTrumpet(β, b)ZTrumpet(β′, b) (A.34)

= 1
π∆

√
π

2(β1 + β2)
(A.35)

This now matches equation (A.27) so we have the discrepancy fixed.
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Figure 14. (a) A cylinder with two operator insertions on each side (b) embedded on a hyper-
bolic disk.

A.3 Product of two two-point functions

In this section, we focus on the product of two two-point functions, which on the gravity side
corresponds to a cylinder with two operator insertions on each side as shown in figure 14.

As shown in figure 14(b), this is given by two propagators glued together so

⟨V (τ1)W (0)⟩ ⟨V (β2 − τ2)W (0)⟩ (A.36)

=
∫

eℓdℓeℓ′dℓ′PDisk(τ1, β1 − τ1, ℓ, ℓ′)PDisk(β2 − τ2, τ2, ℓ′, ℓ)e−∆V ℓe−∆W ℓ′ (A.37)

=
∫

dEdE′ρ0(E)ρ0(E′)e−(β2+τ1−τ2)E−(β1−τ1+τ2)E′ |VE,E′ |2|WE,E′ |2 (A.38)

In particular, if we take V = W and τ1 = τ2, the above expression becomes

⟨V (τ1)V (0)⟩ ⟨V (β2 − τ2)V (0)⟩ =
∫

dEdE′ρ0(E)ρ0(E′)e−β2E−β1E′
|VE,E′ |4 (A.39)

=
∫

dsds′ss′ρ0(s)ρ0(s′)e−
β1s′2

2 − β2s2
2

(∏
±1,2

Γ (∆±1 is±2 is′)
22∆−1Γ(2∆)

)2

(A.40)

where s =
√
2E and s′ =

√
2E′.

A.3.1 Crosscap

In this section we give a way of calculating the disk with a crosscap contribution to the
2-point correlator by first doubling the crosscap configuration to give a cylinder and then
take the square root.

We start from the contribution to the averaged product of two 2pt functions. This
comes from the cylinder

⟨V (τ)V (0)⟩ ⟨V (β − τ)V (0)⟩ =
∫

dEdE′
sinh

(
2π

√
2E
)

2π2︸ ︷︷ ︸
ρ0(E)

sinh
(
2π

√
2E′

)
2π2︸ ︷︷ ︸

ρ0(E′)

e−β(E+E′)|VE,E′ |4

(A.41)
where

|VE,E′ |2 =

∣∣∣Γ (∆+ i
(√

2E +
√
2E′

))
Γ
(
∆+ i

(√
2E −

√
2E′

))∣∣∣2
22∆−1Γ(2∆) (A.42)
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Let s =
√
2E and s′ =

√
2E′ we can rewrite the above equation as

⟨V (τ)V (0)⟩ ⟨V (β − τ)V (0)⟩ =
∫

dsds′ss′
sinh(2πs)

2π2
sinh(2πs′)

2π2 e−
β
2 (s2+s′2)

(∏
±1,2 Γ (∆±1 is±2 is′)

22∆−1Γ(2∆)

)2

(A.43)
Now make a change of variables

s1 + s2 = s+ s1 − s2 = s− (A.44)

Then the above expression becomes
⟨V (τ)V (0)⟩ ⟨V (β − τ)V (0)⟩ ∝∫

ds+ds−(s2
+ − s2

−)(e2πs+ + e−2πs+ − e2πs− − e−2πs−)e−
β
4 (s2

++s2
−)
(∏

±1,2 Γ (∆±1 is+) Γ (∆±2 is−)
22∆−1Γ(2∆)

)2

(A.45)
Using the Stirling approximation∏

±
Γ(∆± is+) ≈ e−πs+s2∆−1

+ (A.46)

So we pick the term s2
+ and e2πs+ in the expansion

⟨V (τ)V (0)⟩ ⟨V (β − τ)V (0)⟩ ∝
∫

ds+ds−s4∆
+ e−

β
4 (s2

++s2
−)
(∏

± Γ (∆± is−)
22∆−1Γ(2∆)

)2
(A.47)

Saddle point of s− is at s− = 0, so (A.41) can be approximated by

⟨V (τ)V (0)⟩ ⟨V (β − τ)V (0)⟩ ≈
∫

dE
sinh

(
2π

√
2E
)

2π2︸ ︷︷ ︸
ρ0(E)

sinh
(
2π

√
2E
)

2π2︸ ︷︷ ︸
ρ0(E)

e−β2E |VE,E |4 (A.48)

We should note that here we only care about the saddle point (i.e. only the integrand of
the above integral). Thus we get√

⟨V (τ)V (0)⟩ ⟨V (β − τ)V (0)⟩ ≈
∫

dE
sinh

(
2π

√
2E
)

2π2︸ ︷︷ ︸
ρ0(E)

e−βE |VE,E |2 (A.49)

In [20], crosscap contribution to the 2-point function was calculated directly using propa-
gator

⟨V (t = −iτ)V (0)⟩cc,0 =
∫

eℓdℓ PDisk(τ, β − τ, ℓ, ℓ)e−∆ℓ (A.50)

= (A.51)

=
∫

eℓdℓ

∫
dE ρ0(E)e−βEφE(ℓ)2e−∆ℓ (A.52)

=
∫

dE ρ0(E)e−βE |VE,E |2 (A.53)
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Therefore (A.49) is exactly the crosscap contribution, so we just showed that√
⟨V (τ)V (0)⟩ ⟨V (β − τ)V (0)⟩ ≈ ⟨V (t)V (0)⟩cc (A.54)

B Calculation details

B.1 Calculating product of two torus one-point functions

We start from the torus partition function

Z(τ, τ̄) = (qq̄)−c/24 Tr(qL0 q̄L̄0) (B.1)

where q = e2πiτ . Based on this the one-point function can be written as

⟨O1⟩T 2(τ,τ̄) = (qq̄)−c/24 Tr(qL0 q̄L̄0O1) (B.2)

= (qq̄)−c/24∑
h

⟨h, h̄|O1|h, h̄⟩ qL0 q̄L̄0 (B.3)

=
∑

p

⟨hp, h̄p|O1|hp, h̄p⟩
∑

h∈Vhp

⟨h, h̄|O1|h, h̄⟩
⟨hp, h̄p|O1|hp, h̄p⟩

eiτ(h−c/24)e−iτ̄(h̄−c/24) (B.4)

=
∑

p

c1pp

∑
h∈Vhp

⟨h, h̄|O1|h, h̄⟩
⟨hp, h̄p|O1|hp, h̄p⟩

eiτ(h−c/24)e−iτ̄(h̄−c/24) (B.5)

where we decompose a sum over all operators into a sum over primaries and a sum over
all descendents of a primary. Thus, we get an expression for the conformal block

Fg=1
1 (hp; τ)F

g=1
1 (h̄p; τ̄) =

∑
h∈Vhp

⟨h, h̄|O1|h, h̄⟩
⟨hp, h̄p|O1|hp, h̄p⟩

eiτ(h−c/24)e−iτ̄(h̄−c/24) (B.6)

In particular
Fg=1

1 (hp; τ ′)Fg=1
1 (h̄p; τ̄ ′) = Fg=1

1 (hp;−τ ′)Fg=1
1 (h̄p;−τ̄ ′) (B.7)

since complex conjugation gives a minus sign while τ 7→ −τ gives another minus sign, these
two minus signs cancel.

Thus the averaged product of two torus one-point functions is given by

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) =
∑
p,q

c1ppc1qqFg=1
1 (hp; τ)F

g=1
1 (h̄p; τ̄)Fg=1

1 (hq; τ ′)Fg=1
1 (h̄q; τ̄ ′)

(B.8)

= 2
∑

p

c2
1ppF

g=1
1 (hp; τ)F

g=1
1 (h̄p; τ̄)Fg=1

1 (hp; τ ′)Fg=1
1 (h̄p; τ̄ ′) (B.9)

= 2
∑

p

c2
1ppF

g=1
1 (hp; τ)F

g=1
1 (h̄p; τ̄)F

g=1
1 (hp;−τ ′)Fg=1

1 (h̄p;−τ̄ ′)

(B.10)

≈ 2
∣∣ ∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1

1 (hp; τ)F
g=1
1 (hp;−τ ′)

∣∣2 (B.11)

≈ 2 ⟨O1⟩L
T 2(τ,−τ ′) ⟨O1⟩L

T 2(−τ̄ ′,τ̄) (B.12)
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B.2 Calculating product of two torus two-point functions

The two-point function can be written as

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) = (qq̄)−c/24 Tr(qL0 q̄L̄0O1O2) (B.13)

= (qq̄)−c/24
∑

h,h̄,h′,h̄′

⟨h, h̄|ei(τ−v)L0e−i(τ̄−v̄)L̄0O2e
ivL0e−iv̄L̄0 |h′, h̄′⟩ ⟨h′, h̄′|O1|h, h̄⟩

(B.14)

=
∑
h,h′

⟨h, h̄|O2|h′, h̄′⟩ ⟨h′, h̄′|O1|h, h̄⟩ eiτ(h−c/24)e−iτ̄(h̄−c/24)eiv(h′−h)e−iv̄(h̄−h̄′)

(B.15)

=
∑

hp,hq

⟨hp, h̄p|O2|hq, h̄q⟩ ⟨hq, h̄q|O1|hp, h̄p⟩

×
∑

h∈Vhp ,h′∈Vhq

⟨h, h̄|O2|h′, h̄′⟩
⟨hp, h̄p|O2|hq, h̄q⟩

⟨h′, h̄′|O1|h, h̄⟩
⟨hq, h̄q|O1|hp, h̄p⟩

eiτ(h−c/24)e−iτ̄(h̄−c/24)

× eiv(h′−h)e−iv̄(h̄−h̄′) (B.16)

=
∑

hp,hq

c1pqc2pqFg=1
12 (hp, hq; τ, v)Fg=1

12 (h̄p, h̄q; τ̄ , v̄) (B.17)

Comparing these two results, we get an expression for the conformal block

Fg=1
12 (hp, hq; τ, v)Fg=1

12 (h̄p, h̄q; τ̄ , v̄)

=
∑

h∈Vhp ,h′∈Vhq

⟨h, h̄|O2|h′, h̄′⟩
⟨hp, h̄p|O2|hq, h̄q⟩

⟨h′, h̄′|O1|h, h̄⟩
⟨hq, h̄q|O1|hp, h̄p⟩

eiτ(h−c/24)e−iτ̄(h̄−c/24)eiv(h′−h)e−iv̄(h̄−h̄′)

(B.18)

In particular we have

Fg=1
12 (hp, hq; τ ′, v′)Fg=1

12 (h̄p, h̄q; τ̄ ′, v̄′) = Fg=1
12 (hp, hq;−τ ′,−v′)Fg=1

12 (h̄p, h̄q;−τ̄ ′,−v̄′)
(B.19)

Thus the averaged product of two torus two-point functions is given by

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′)

=
∑

p,q,r,s

c1pqc2pqc1rsc2rsFg=1
12 (hp, hq; τ, v)Fg=1

12 (h̄p, h̄q; τ̄ , v̄)Fg=1
12 (hr, hs; τ ′, v′)Fg=1

12 (h̄r, h̄s; τ̄ ′, v̄′)

(B.20)

= 2
∑
p,q

|c2
1pq||c2

2pq|F
g=1
12 (hp, hq; τ, v)Fg=1

12 (h̄p, h̄q; τ̄ , v̄)Fg=1
12 (hp, hq; τ ′, v′)Fg=1

12 (h̄p, h̄q; τ̄ ′, v̄′)

(B.21)

= 2
∑
p,q

|c2
1pq||c2

2pq|F
g=1
12 (hp, hq; τ, v)Fg=1

12 (h̄p, h̄q; τ̄ , v̄)Fg=1
12 (hp, hq;−τ ′,−v′)Fg=1

12 (h̄p, h̄q;−τ̄ ′,−v̄′)

(B.22)
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≈ 2
∣∣∣∣∫ dhpdhqρ0(hp)ρ0(hq)C0(h1, hp, hq)C0(h2, hp, hq)Fg=1

12 (hp, hq; τ, v)Fg=1
12 (hp, hq;−τ ′,−v′)

∣∣∣∣2
(B.23)

≈ 2 ⟨O1(v,−v′)O2(0)⟩
L
T 2(τ,−τ ′) ⟨O1(−v̄′, v̄)O2(0)⟩

L
T 2(−τ̄ ′,τ̄) (B.24)

B.3 Averaged product of two torus one-point function in ∆ → 0 limit

Let us begin with our formula of the averaged product of two one-point functions

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) ≈ 2
∣∣∣∣∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1

1 (hp; τ)F
g=1
1 (hp;−τ ′)

∣∣∣∣2 (B.25)

where C0 is given by

C0(P1, P2, P3) =
Γb(2Q)√
2Γb(Q)3

Γb

(
Q
2 ± iP1 ± iP2 ± iP3

)
∏3

k=1 Γb(Q ± 2iPk)
(B.26)

Now we take the weight of O1 to zero i.e. ∆ = 2h = 2α(Q − α) → 0. Without loss of
generality we take α = ϵ → 0, so ∆ = 2ϵQ. More specifically iP1 = −Q

2 + ϵ so

C0(h1, hp, hp) = C0

(
i

(
Q

2 − ϵ

)
, P, P

)
= Γb(ϵ)2Γb(±2iP )√

2Γb(Q)Γb(2ϵ)Γb(Q ± 2iP )
(B.27)

Remember the definition of Γb in terms of double gamma function

Γb(P ) = Γ2(P |b, b−1)
Γ2
(

Q
2

∣∣∣b, b−1
) (B.28)

where

Γ2(w|a1, a2) =
eλ1w+λ2w2

w

∏
(n1,n2)∈N2,(n1,n2) ̸=(0,0)

e
w

n1a1+n2a2
− 1

2
w2

(n1a1+n2a2)2

1 + w
n1a1+n2a2

(B.29)

so as we take ϵ → 0
Γ2(ϵ|b, b−1) = 1

ϵ
(B.30)

and
C0(h1, hp, hp) =

√
2

ϵΓ2(Q|b, b−1)
Γb(±2iP )

Γb(Q ± 2iP ) (B.31)

Now observe that Γb satisfies the following relations

Γb(w + b) =
√
2π

bbw− 1
2

Γ(bw)Γb(w) Γb(w + b−1) =
√
2π

b−b−1w+ 1
2

Γ(b−1w) Γb(w) (B.32)

so correspondingly

Γb(Q + 2iP ) = 2πb1+i2(b−b−1)PΓb(2iP )
Γ(1 + 2ibP )Γ(2ib−1P ) Γb(Q − 2iP ) = 2πb1−i2(b−b−1)PΓb(−2iP )

Γ(1− 2ibP )Γ(−2ib−1P )
(B.33)
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so

Γb(±2iP )
Γb(Q ± 2iP ) = Γ(1± 2ibP )Γ(±2ib−1P )

(2π)2b2 = 1
4 sinh(2πbP ) sinh(2πb−1P ) (B.34)

where we have used

Γ(1 + z)Γ(1− z) = zΓ(z)Γ(1− z) = zπ

sin πz
(B.35)

Γ(z)Γ(−z) = Γ(z)Γ(1− z)
−z

= − π

z sin πz
(B.36)

so

C0(h1, hp, hp) =
1

16ϵΓ2(Q|b, b−1) sinh2(2πbP ) sinh2(2πb−1P )
(B.37)

= Q

8∆Γ2(Q|b, b−1) sinh2(2πbP ) sinh2(2πb−1P )
(B.38)

From [3] equation (2.14) we know that

ρ(P, P̄ ) = ρ0(P )ρ0(P̄ ) = |4
√
2 sinh(2πbP ) sinh(2πb−1P )|2 (B.39)

so now we can simplify the product of two one-point functions

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) ≈
32Q2

∆2Γ2(Q|b, b−1)2

∣∣∣∣∫ dP Fg=1
1 (hp; τ)F

g=1
1 (hp;−τ ′)

∣∣∣∣2 (B.40)

Now we evaluate Γ2(Q|b, b−1) using the formula

ΓN (w|a1, . . . , aN ) = ΓN−1(w|a1, . . . , aN−1)ΓN (w + aN |a1, . . . , aN ) (B.41)

For N = 2
Γ2(w|a1, a2) = Γ1(w|a1)Γ2(w + a2|a1, a2) (B.42)

Then

Γ2

(
ϵ + b + 1

b

)
=

Γ2
(
ϵ + b

∣∣∣b, 1
b

)
Γ(ϵ + b|b) =

Γ2
(
ϵ
∣∣∣b, 1

b

)
Γ(b|b)Γ

(
ϵ
∣∣∣1b) (B.43)

Using

Γ(w|a) = aa−1w− 1
2

√
2π

Γ(a−1w) (B.44)

Γ(b|b) =

√
b

2π
Γ(1) =

√
b

2π
(B.45)

Γ
(

ϵ|1
b

)
=

√
b

2π
Γ(bϵ) (B.46)
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Recall that as w → 0

Γ(w) = 1
w

+ O(w0) Γ2(w|b, b−1) = 1
w

+ O(w0) (B.47)

so
Γ2

(
ϵ + b + 1

b

∣∣∣∣b,
1
b

)
=

1
ϵ

b
2π

1
bϵ

= 2π (B.48)

Therefore,

⟨O1⟩T 2(τ,τ̄) ⟨O1⟩T 2(τ ′,τ̄ ′) ≈
8Q2

∆2π2

∣∣∣∣∫ dP Fg=1
1 (hp; τ)F

g=1
1 (hp;−τ ′)

∣∣∣∣2 (B.49)

B.4 Saddle-point approximation in 3d

Saddle-point approximation was proven to work in an analogous situation in 2d (for details
see appendix A.3). In 2d, we calculate the averaged product of two two-point functions
and take the saddle-point approximation. We compare this result with contribution to two-
point function from disk with crosscap (see appendix A.3.1) and results are the same. We
then assume here that saddle-point approximation can be generalized to 3d even though
we do not have a direct exact calculation in this case.

We already know from calculations in previous sections

⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′) =

2
∣∣∣∣∫ dh2dh3ρ0(h2)ρ0(h3)C0(h1, h2, h3)C0(h1, h2, h3)Fg=1

11 (h2, h3; τ, v)Fg=1
11 (h2, h3; τ ′, v′)

∣∣∣∣2
(B.50)

where
τ = iβ τ ′ = iβ v = i

β

2 − t v′ = i
β

2 + t (B.51)

Recall that

ρ0(h) ≈ exp
(
2π

√
c

6

(
h − c

24

))
(B.52)

and recall that the functions C0 are given by

C0(P1, P2, P3) =
Γb(2Q)√
2Γb(Q)3

∏
±1,2,3 Γb

(
Q
2 ±1 iP1 ±2 iP2 ±3 iP3

)
∏3

k=1 Γb(Q + 2iPk)Γb(Q − 2iPk)
(B.53)

so we can again define
P+ = P2 + P3 P− = P2 − P3 (B.54)

then the saddle points are at P+ = 0 and P− = 0, i.e. h2 = h3 = hp. In particular, we
should note that for the particular values of τ , τ ′, v, v′ that we are considering

Fg=1
11 (hp, hp; τ, v) = Fg=1

11 (hp, hp; τ ′, v′) (B.55)

Therefore, we have√
⟨O1(v, v̄)O2(0)⟩T 2(τ,τ̄) ⟨O1(v′, v̄′)O2(0)⟩T 2(τ ′,τ̄ ′) ≈

∣∣∣∣∫ dhpρ0(hp)C0(h1, hp, hp)Fg=1
11 (hp, hp; τ, v)

∣∣∣∣2
(B.56)

– 33 –



J
H
E
P
1
1
(
2
0
2
3
)
0
3
9

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J. Chandra, S. Collier, T. Hartman and A. Maloney, Semiclassical 3D gravity as an average
of large-c CFTs, JHEP 12 (2022) 069 [arXiv:2203.06511] [INSPIRE].

[2] A. Belin and J. de Boer, Random statistics of OPE coefficients and Euclidean wormholes,
Class. Quant. Grav. 38 (2021) 164001 [arXiv:2006.05499] [INSPIRE].

[3] S. Collier, A. Maloney, H. Maxfield and I. Tsiares, Universal dynamics of heavy operators in
CFT2, JHEP 07 (2020) 074 [arXiv:1912.00222] [INSPIRE].

[4] J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 04 (2021) 033
[arXiv:2006.08648] [INSPIRE].

[5] A. Maloney and E. Witten, Averaging over Narain moduli space, JHEP 10 (2020) 187
[arXiv:2006.04855] [INSPIRE].

[6] N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an
averaged holographic duality, JHEP 01 (2021) 130 [arXiv:2006.04839] [INSPIRE].

[7] C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions,
Phys. Lett. B 126 (1983) 41 [INSPIRE].

[8] R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

[9] A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015)
014 [arXiv:1402.6334] [INSPIRE].

[10] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[11] D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, Adv.
Theor. Math. Phys. 24 (2020) 1475 [arXiv:1907.03363] [INSPIRE].

[12] M. Srednicki, Chaos and Quantum Thermalization, cond-mat/9403051
[DOI:10.1103/PhysRevE.50.888] [INSPIRE].

[13] J. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.

[14] M. Banados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time,
Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[15] J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024]
[INSPIRE].

[16] J. Cotler and K. Jensen, AdS3 wormholes from a modular bootstrap, JHEP 11 (2020) 058
[arXiv:2007.15653] [INSPIRE].

[17] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions,
JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

[18] A. Ghosh, H. Maxfield and G.J. Turiaci, A universal Schwarzian sector in two-dimensional
conformal field theories, JHEP 05 (2020) 104 [arXiv:1912.07654] [INSPIRE].

[19] H. Maxfield and G.J. Turiaci, The path integral of 3D gravity near extremality; or, JT gravity
with defects as a matrix integral, JHEP 01 (2021) 118 [arXiv:2006.11317] [INSPIRE].

– 34 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP12(2022)069
https://arxiv.org/abs/2203.06511
https://inspirehep.net/literature/2051114
https://doi.org/10.1088/1361-6382/ac1082
https://arxiv.org/abs/2006.05499
https://inspirehep.net/literature/1800440
https://doi.org/10.1007/JHEP07(2020)074
https://arxiv.org/abs/1912.00222
https://inspirehep.net/literature/1768025
https://doi.org/10.1007/JHEP04(2021)033
https://arxiv.org/abs/2006.08648
https://inspirehep.net/literature/1801459
https://doi.org/10.1007/JHEP10(2020)187
https://arxiv.org/abs/2006.04855
https://inspirehep.net/literature/1800422
https://doi.org/10.1007/JHEP01(2021)130
https://arxiv.org/abs/2006.04839
https://inspirehep.net/literature/1800406
https://doi.org/10.1016/0370-2693(83)90012-6
https://inspirehep.net/literature/194389
https://doi.org/10.1016/0550-3213(85)90448-1
https://inspirehep.net/literature/204694
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1007/JHEP11(2015)014
https://arxiv.org/abs/1402.6334
https://inspirehep.net/literature/1282634
https://arxiv.org/abs/1903.11115
https://inspirehep.net/literature/1726905
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://arxiv.org/abs/1907.03363
https://inspirehep.net/literature/1742818
https://arxiv.org/abs/cond-mat/9403051
https://doi.org/10.1103/PhysRevE.50.888
https://inspirehep.net/literature/2008781
https://doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
https://inspirehep.net/literature/32290
https://doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/hep-th/0401024
https://inspirehep.net/literature/642216
https://doi.org/10.1007/JHEP11(2020)058
https://arxiv.org/abs/2007.15653
https://inspirehep.net/literature/1809686
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://inspirehep.net/literature/769256
https://doi.org/10.1007/JHEP05(2020)104
https://arxiv.org/abs/1912.07654
https://inspirehep.net/literature/1771397
https://doi.org/10.1007/JHEP01(2021)118
https://arxiv.org/abs/2006.11317
https://inspirehep.net/literature/1802357


J
H
E
P
1
1
(
2
0
2
3
)
0
3
9

[20] C. Yan, Crosscap Contribution to Late-Time Two-Point Correlators, arXiv:2203.14436
[INSPIRE].

[21] S. Collier, L. Eberhardt and M. Zhang, Solving 3d Gravity with Virasoro TQFT, SciPost
Phys. 15 (2023) 151 [arXiv:2304.13650] [INSPIRE].

[22] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity,
arXiv:1806.06840 [INSPIRE].

[23] F.J. Dyson, Statistical theory of the energy levels of complex systems. Part I, J. Math. Phys.
3 (1962) 140 [INSPIRE].

[24] D. Stanford, Z. Yang and S. Yao, Subleading Weingartens, JHEP 02 (2022) 200
[arXiv:2107.10252] [INSPIRE].

[25] E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88 (2016)
035001 [arXiv:1508.04715] [INSPIRE].

[26] P. Saad, Late Time Correlation Functions, Baby Universes, and ETH in JT Gravity,
arXiv:1910.10311 [INSPIRE].

[27] A. Blommaert, T.G. Mertens and H. Verschelde, Clocks and Rods in Jackiw-Teitelboim
Quantum Gravity, JHEP 09 (2019) 060 [arXiv:1902.11194] [INSPIRE].

[28] Z. Yang, The Quantum Gravity Dynamics of Near Extremal Black Holes, JHEP 05 (2019)
205 [arXiv:1809.08647] [INSPIRE].

[29] H.T. Lam, T.G. Mertens, G.J. Turiaci and H. Verlinde, Shockwave S-matrix from Schwarzian
Quantum Mechanics, JHEP 11 (2018) 182 [arXiv:1804.09834] [INSPIRE].

[30] T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal
Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].

[31] A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian Theory — A Wilson Line
Perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].

[32] L.V. Iliesiu, S.S. Pufu, H. Verlinde and Y. Wang, An exact quantization of Jackiw-Teitelboim
gravity, JHEP 11 (2019) 091 [arXiv:1905.02726] [INSPIRE].

[33] J.M. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys.
65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

[34] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum
mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

[35] J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09
(2018) 002] [arXiv:1611.04650] [INSPIRE].

[36] D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions
in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].

[37] D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10
(2017) 008 [arXiv:1703.04612] [INSPIRE].

[38] V.V. Belokurov and E.T. Shavgulidze, Exact solution of the Schwarzian theory, Phys. Rev. D
96 (2017) 101701 [arXiv:1705.02405] [INSPIRE].

[39] T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal
Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].

[40] A. Kitaev and S.J. Suh, Statistical mechanics of a two-dimensional black hole, JHEP 05
(2019) 198 [arXiv:1808.07032] [INSPIRE].

– 35 –

https://arxiv.org/abs/2203.14436
https://inspirehep.net/literature/2058998
https://doi.org/10.21468/SciPostPhys.15.4.151
https://doi.org/10.21468/SciPostPhys.15.4.151
https://arxiv.org/abs/2304.13650
https://inspirehep.net/literature/2654452
https://arxiv.org/abs/1806.06840
https://inspirehep.net/literature/1678263
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://inspirehep.net/literature/42424
https://doi.org/10.1007/JHEP02(2022)200
https://arxiv.org/abs/2107.10252
https://inspirehep.net/literature/1889547
https://doi.org/10.1103/RevModPhys.88.035001
https://doi.org/10.1103/RevModPhys.88.035001
https://arxiv.org/abs/1508.04715
https://inspirehep.net/literature/1388530
https://arxiv.org/abs/1910.10311
https://inspirehep.net/literature/1760427
https://doi.org/10.1007/JHEP09(2019)060
https://arxiv.org/abs/1902.11194
https://inspirehep.net/literature/1722528
https://doi.org/10.1007/JHEP05(2019)205
https://doi.org/10.1007/JHEP05(2019)205
https://arxiv.org/abs/1809.08647
https://inspirehep.net/literature/1695193
https://doi.org/10.1007/JHEP11(2018)182
https://arxiv.org/abs/1804.09834
https://inspirehep.net/literature/1670217
https://doi.org/10.1007/JHEP08(2017)136
https://arxiv.org/abs/1705.08408
https://inspirehep.net/literature/1601018
https://doi.org/10.1007/JHEP12(2018)022
https://arxiv.org/abs/1806.07765
https://inspirehep.net/literature/1678675
https://doi.org/10.1007/JHEP11(2019)091
https://arxiv.org/abs/1905.02726
https://inspirehep.net/literature/1733867
https://doi.org/10.1002/prop.201700034
https://doi.org/10.1002/prop.201700034
https://arxiv.org/abs/1704.05333
https://inspirehep.net/literature/1592007
https://doi.org/10.1016/j.nuclphysb.2016.08.002
https://arxiv.org/abs/1607.00694
https://inspirehep.net/literature/1473712
https://doi.org/10.1007/JHEP05(2017)118
https://arxiv.org/abs/1611.04650
https://inspirehep.net/literature/1498126
https://doi.org/10.1016/j.nuclphysb.2017.06.012
https://arxiv.org/abs/1702.08902
https://inspirehep.net/literature/1515398
https://doi.org/10.1007/JHEP10(2017)008
https://doi.org/10.1007/JHEP10(2017)008
https://arxiv.org/abs/1703.04612
https://inspirehep.net/literature/1517533
https://doi.org/10.1103/PhysRevD.96.101701
https://doi.org/10.1103/PhysRevD.96.101701
https://arxiv.org/abs/1705.02405
https://inspirehep.net/literature/1598490
https://doi.org/10.1007/JHEP08(2017)136
https://arxiv.org/abs/1705.08408
https://inspirehep.net/literature/1601018
https://doi.org/10.1007/JHEP05(2019)198
https://doi.org/10.1007/JHEP05(2019)198
https://arxiv.org/abs/1808.07032
https://inspirehep.net/literature/1689177

	Introduction
	Torus one-point function wormhole
	Delta->0 limit
	Lorentzian torus limit

	Torus two-point function wormholes
	Large time-separation limit
	Single-boundary quotients of a torus wormhole
	Semi-classical gravity calculation
	CFT calculation


	Comments on RT symmetry
	JT gravity
	Introduction
	Product of two one-point functions
	Product of two two-point functions
	Crosscap


	Calculation details
	Calculating product of two torus one-point functions
	Calculating product of two torus two-point functions
	Averaged product of two torus one-point function in Delta->0 limit
	Saddle-point approximation in 3d


