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Abstract: As shown by Louko and Sorkin in 1995, topology change in Lorentzian signa-
ture involves spacetimes with singular points, which they called crotches. We modify their
construction to obtain Lorentzian semiclassical wormholes in asymptotically AdS. These
solutions are obtained by inserting crotches on known saddles, like the double-cone or mul-
tiple copies of the Lorentzian black hole. The crotches implement swap-identifications, and
are classically located near an extremal surface. The resulting Lorentzian wormholes have
an instanton action equal to their area, which is responsible for topological suppression in
any number of dimensions.

We conjecture that including such Lorentzian wormhole spacetimes is equivalent to
path integrating over all mostly Euclidean smooth spacetimes. We present evidence for this
by reproducing semiclassical features of the genus expansion of the spectral form factor,
and of a late-time two point function, by summing over the moduli space of Lorentzian
wormholes. As a final piece of evidence, we discuss the Lorentzian version of West-Coast
replica wormholes.
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1 Introduction and summary

Path integrals in Lorentzian signature are subtle. The difficulties arise from two aspects.
First, due to their oscillatory behaviour their convergence is often unclear. One can then
resort to Euclidean methods to perform the computations, and analytically continue af-
terwards. The physical interpretation as the inclusion of a state preparation makes this a
rather natural procedure. The second complication is how to describe Lorentzian topology
change in gravity.1

The simplest instance of this is perhaps the formulation of QFT as a worldline gravity
theory [1–3]. Interactions in the QFT are reflected by worldlines branching off. At a point
where a woldline branches off, the time function t is singular, because its gradient is ill
defined, and the einbein e(t) vanishes. One way to include topology change here is by
performing a further quantisation of the worldline theory, in which one considers operators
that create and end worldlines. This theory is then the usual interacting QFT, which lives
in the target space of the worldline theory.

The situation is not that much different when we replace worldlines by higher dimen-
sional manifolds with dynamical gravity, for instance string theory has 2d gravity on the
worldsheet. As in the worldline theory, when we allow for topology change of the Cauchy
slice, there is no well-defined time coordinate, and the metric g(t) degenerates at the times
where topology change occurs. Again, this can be overcome by performing a further quan-
tisation, usually called third quantisation in which one allows for operators that create and
destroy universes [1, 4–7]. The resulting theory in the case of 2d strings is called string field
theory, more generally one could speak of a universe field theory.2 Fields in this theory do
not live on spacetime, but on the generalization of targetspace, usually called superspace.

Because superspace is not the spacetime (unlike in the QFT example), observers such
as ourselves who live within a single universe cannot see superspace, making a description
in superspace physically less desirable. Only God-like observers that can oversee many
universes have access to it.

In this paper we want to revisit the issue of topology change in Lorentzian signature.
In particular we will develop a more second quantized picture for topology change in which
there are (almost) Lorentzian geometries that mediate the change of topology of a Cauchy
slice. This is more akin to the description of interacting QFT with singular worldlines, and
to Mandelstam’s interacting string picture [10] in 2d. This means we must take seriously
geometries with (mild) metric singularities [11–18].

The question that we set out to answer is: which such singular spacetimes are Lorentzian
wormholes in asymptotically AdS, replacing the role of Euclidean wormholes in real-time
calculations?

Many major open questions about quantum black holes are intrinsically Lorentzian in
nature, most notably the fate of an observer falling through a horizon, and relatedly the
nature of black hole interiors and the supposed singularity. Topology change is expected
to be important in answering these questions, see for instance [19, 20]. Thus, a better

1The analogue of this in QFT is to understand tunneling from a purely Lorentzian point of view.
2See recently [8, 9] for the universe field theory of JT gravity, which is a string field theory.
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understanding of Lorentzian wormholes seems to be a prerequisite for answering these
long-standing questions about black holes.

1.1 Summary and structure

We now summarize our main messages.

1. The role of Euclidean wormholes is replaced in the Lorentzian path integral by slit
geometries. These are obtained from the usual Lorentzian geometries by allowing
co-dimension-2 singularities with opening angle 2πn, which for n = 2 creates a pair
of pants locally [11]. Following [11] we call such a singularity a crotch. We discuss
how to take into account contributions due to crotches in the real-time path integral
in the context of asymptotically AdS in section 2.5. Crotches are specified by the
location of the co-dim-2 singular surface γ and contribute to the action as

e
−(n−1)A(γ)

4GN . (1.1)

After extremizing with respect to the embedding γ we obtain new real-time semiclas-
sical saddle point spacetimes where crotches are located at the dominant extremal
surface. We claim that counting (almost) Lorentzian crotch geometries is equivalent
to path integrating over all (mostly) Euclidean smooth spacetimes. The bulk of this
paper (section 3, section 4 and section 5) consists of three examples where we check
this conjecture.3

2. In the case of the spectral form factor, discussed in section 3, crotches sit at the
horizon on the double cone geometry of [21] (the black dots classically coincide with
the red dot, here we separated them for presentation purposes) and the temporal
locations of the crotches remain zero modes

Z1(+iT,−iT ) ⊃

step 1. slice

step 2. identify

genus 1 wormhole

t1

(1.2)

3Related (almost) Lorentzian geometries were recently discussed in JT gravity in [18], who focused
on spacetimes without asymptotic boundaries. Our focus is on spacetimes with asymptotic boundaries,
and our discussion is not limited to JT gravity. Gauge equivalence of these descriptions was a key point
in [18]. The constrained instanton method we present in section 2.5 explains why these geometries can at
all contribute to the JT path integral. The sense in which, for 2d gravity, this is a gauge-choice is explained
in appendix B. Namely the gauge-choice in question is a contour in the space of metrics modulo diffeos
which is very familiar from string theory. For higher dimensions it is not clear if one can think of this as a
gauge-choice in the technical sense, and therefore this is not something we want to emphasize.
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They give contributions of the form [22, 23]

Zg(β + iT, β − iT ) ∼ T 2g+1
[∫ ∞

Λg
dE e−2gS(E) e−2βE + negative area

]
. (1.3)

The first term in brackets is what we reproduce in this paper using semiclassical
saddles at fixed energy and in particular at positive area. We have introduced a
low energy cutoff Λg, below which the semiclassical approximation breaks down. The
constraint instanton method that we employ also allows for solutions at negative area,
which are again semiclassical, but we have not studied those in detail here. Notably,
in the semiclassical regime the total contribution for given energy is zero and only
picks up a non-zero piece at low energies [22]. A more detailed account of the exact
coefficient of T 2g+1 is beyond the scope of the current paper, but see section 6.

Furthermore, one can easily generalize this setup to any number of dimension. In
contrast, it is not clear how to recover this boundary prediction from a (almost)
Euclidean gravity calculations in d > 2.

3. The second example is the two-sided two point function at late times in dilaton
gravity [24–27]. In section 4 we show that the Euclidean gravitational path integral
(or ETH from the boundary point of view) predicts a genus expansion which converges
to a ramp-and plateau-type structure, analogous to (1.3) for the spectral form factor
(See also appendix A)

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
g
∼ T 2g−1

∫ ∞
Λg

dE e−2βE e−∆`(E) e−(2g−1)S(E) . (1.4)

We reproduce this structure by considering Lorentzian geometries with slits.4 The
usual Lorentzian pieces (two copies of the time-evolved TFD geometry glued at fu-
ture time T ) are replaced by the double-cone, with several additional crotches and
identifications

g = 2 geometry

ket R

ket L

OL

bra L

bra R

OR

identify

(1.5)

The distance between the left-and right boundaries is now a constant independent
of time, which is precisely equal to the length of the ER bridge `(E) in the TFD at
t = 0. So, there is a shortcut between the two asymptotic boundaries [24]. This is
discussed in section 4.

4Again there is a negative area piece that we did not write. Situation is similar to the spectrum form
factor case.
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4. In the case of gravitational matrix elements relevant for reproducing the Page curve
in the West-Coast model [12], the crotches accumulate near the black hole horizon,
which results in geometries where the interiors in different copies are swapped (again
the crotches in reality coincide with the red dot, representing the black hole horizon)

〈i|j〉grav 〈j|i〉grav ⊃

1. slice

2. identify

i

j i

j

(1.6)

This is discussed in section 5. That such swap geometries explain the Page curve in a
Lorentzian setup is certainly not a new statement [12–17]. What is new is that there
is a mechanism which explains why the crotches cling to the extremal surface. More
importantly, we can calculate the semiclassical answer form the resulting Lorentzian
saddles, and show that it reproduces the results of the Euclidean calculation of [12].5,6

Let us stress that the slit geometries are not extra contributions that are to be in-
cluded in addition to Euclidean wormholes, rather we conjecture that including them is
equivalent to including Euclidean wormholes. Notice that in both (1.4) and (1.3), the real-
time gravitational path integral is surprisingly efficient at reproducing complex boundary
predictions, more so than the Euclidean path integral.

The classical spacetimes which we found have no closed baby universes (in the sense
of a closed universe propagating in time, detaching from and attaching to a parent [5, 6]).
We comment more on this in the discussion section 6, were we also propose some open
questions.

In the case of the spectral form factor for JT gravity, the claim that counting all
(almost) Lorentzian crotch geometries is equivalent to path integrating over all (mostly)
Euclidean smooth spacetimes can be proven almost rigorously, even before comparing the
answers. For this we borrow the ideas of [18], who pointed out that Lorentzian spacetimes
with crotches appear naturally in JT gravity by going to lightcone gauge [10, 28–30]. We
discuss this in detail in appendix B.

5For instance in [17] several toy models are introduced and are also found to reproduce quantitative
features of the Page curve; however, as noted in the discussion of [17], the mechanism for putting the
crotches at the desired location is unclear. In this time-independent setup we do have such a mechanism,
namely the classical equation of motion.

6This match between Euclidean and Lorentzian calculations was also a central point of emphasis
in [13, 14].
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2 Lorentzian topology changing geometries

Even though time in quantum gravity is only well-defined on an asymptotic boundary
(where gravity is effectively turned off), the notion of a time function in the bulk spacetime
is still extremely useful.7 In particular, when we think about topology change in Lorentzian
signature, we often have in mind that a Cauchy slice undergoes some topological transition
as a function of some bulk time coordinate t. This means that we have picked a gauge in
which t is our time coordinate that runs orthogonal to our Cauchy slices and labels them.
Right at the topological transition, the time coordinate is ill-defined as its gradients vanish
there and the metric degenerates. In other words, the metric cannot be Lorentzian (and
non-degenerate) everywhere on any spacetime manifold with topology change.

Thus we should entertain Lorentzian metrics with (mild) singularities, where the metric
becomes non-invertible. There are (at least) two ways to do so. First, in the first order
(vielbein) formulation of gravity it is quite natural to not exclude configurations where
the vielbein vanishes at isolated points (or surfaces) [31].8 Second, one can regulate the
(mild) singularities by taking a limit from some metric which is Euclidean (and smooth)
very close to the (would-be) singularity [11]. In the rest of this paper we will explore this
second option. Interesting related recent work includes [13–18].

In this section, for simplicity of presentation, we will mostly consider 2d JT gravity.
In later sections we often consider generic gravity models.

2.1 We need singularities

As argued in [11], even though one cannot always find a Lorentzian metric on a 2d manifold,
one can find one that is almost Lorentzian, in the sense that only at certain isolated
points its signature changes. These metrics can be constructed by using a Morse function
f : Σ→ R which can be physically thought of as the time (or level) function f = t on the
manifold. Constant f defines the Cauchy slices.

In particular, given a Euclidean metric hab on Σ and a Morse function f , a Lorentzian
metric can be constructed as

gab = ∂cf∂dfh
cdhab − ζ∂af∂bf , ζ > 1 . (2.1)

The point is that f can have critical points, and it is clear that gab is singular at those
points, where topology change occurs. The location of these critical points are moduli and
will be important in what follows. Louko and Sorkin argued that one needs to regulate the
metric by making it slightly complex at the singular points, in order to make the (almost)
Lorentzian metric allowable [32, 33].

Perhaps the best way to characterize the (mildly) singular points is via the Gauss-
Bonnet theorem

χ = 2− 2g − n = 1
4π

∫
Σ

dx√g R+ 1
2π

∫
∂

du
√
hK . (2.2)

7Similarly in electromagnetism we love picking a particular gauge and do calculations.
8See the discussion section 6 for more about this.
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This being a topological invariant, the Euler character is conserved when we analytically
continue from a Euclidean metric to a complex metric, such as the (almost) Lorentzian
metrics we will be interested in [33]. Suppose now that we are interested in JT gravity
and consider smooth Lorentzian metrics with R + 2 = 0 everywhere. Because the metric
is Lorentzian, √gR is imaginary and so there is no way to increase (real) genus g using
smooth Lorentzian spacetime. The regulated Lorentzian spacetimes that Louko-Sorkin
described instead have √gR = i smooth + delta functions, with the delta functions (with
real coefficients) located at the points of topology change. Those can decrease the Euler
character, and thus allow us to have multiple asymptotic boundaries and wormholes.

In sections 2.2, 2.3 and 2.4 we discuss a few basic examples of Lorentzian AdS geome-
tries with such delta function sources.9 In particular in section 2.4 we describe the AdS
version of crotches, which are the key actors in our work. Then, in section 2.5, we discuss
the mechanism by which these singular geometries are picked up in the gravitational path
integral.

2.2 Example 1. Birth and death of baby universes

JT gravity has a simple solution in Lorentzian signature that describes the birth or the
death of a baby universe. Consider a compact spatial slice with the topology of a circle
with size b, then the Lorentzian geometry describing the death (or crunch) of this spatial
circle is

ds2 = −dt2 + cos(t)2 dx2 , x ∼ x+ b , Φ = C sin(t) , (2.3)

where t is our time coordinate which runs from 0 to π/2. At t = π/2 the metric is degenerate
√
g = 0, and √gR has a delta function source. We can use Gauss-Bonnet to determine its

strength. When we include the point at t = π/2, the spacetime has the topology of a disk,
with a geodesic K = 0 boundary at t = 0. Thus Gauss-Bonnet teaches us that √gR must
satisfy

1
4π

∫
Σ

d2x
√
gR = 1 = χdisk (2.4)

Away from the singular point this metric satisfies R+ 2 = 0, which results (as anticipated
above) in an imaginary contribution to the Euler character10∫

Σ/xsing
d2x
√
g R = −2b i , (2.5)

with xsing the singular point at t = π/2. The full spacetime satisfies (2.4), thus the
difference with (2.5) determines the strength of the source

√
g(R+ 2) = 2(2π + ib) δ(x− xsing) . (2.6)

9For other interesting recent examples of such (almost) Lorentzian singular geometries in JT gravity,
see [18], who focused on spacetimes without asymptotic boundaries. Our focus is on spacetimes with
asymptotic boundaries.

10The sign follows from a more careful analysis of a regularized version of this geometry. Very close to the
cone tip t = π/2 we do not see AdS curvature anymore, so the situation essentially reduces to the yarmulke
singularity of [11]. The metric can then be regularized in the same way as they did. More low-brow one
ends up using √g = i

√
−g.
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This is the same type of source as the one responsible for a Euclidean trumpet space-
time [34], we see that in Lorentzian signature this can source a baby universe death, which
is cone-like.

The geometry with t running from−π/2 to 0 is the time-reversed process of the creation
of a baby universe. The boundary condition should then be understood as one in the future
instead of an initial slice we considered above. The source of curvature is identical.

2.3 Example 2. Lorentzian black hole

Another geometry that does not satisfy R = −2 everywhere (which was recently also
discussed in detail in [35]) is the geometry relevant for calculating Z(iT ). It is the black
hole geometry with Rindler time t identified with period T . Away from the horizon ρ = 0
(the singular point of this identification) the black hole geometry

ds2 = dρ2 − 4A2 sinh(ρ)2dt2 , t ∼ t+ T , Φ = A cosh(ρ) , (2.7)

is a solution to the JT gravity equations of motion. Here A is a modulus of the solution
related to the ADM energy as A = E1/2. The strength of the conical source at ρ = 0 is

√
g(R+ 2) = 2(2π − i2AT ) δ(x) , (2.8)

Indeed, away from the defect, the metric has everywhere R = −2, and the extrinsic curva-
ture is K = coth ρ. The smooth pieces of spacetime again give an imaginary contribution
to Gauss-Bonnet,

i
∫

Σ/xsing
d2x
√
−g R+ 2i

∫
∂
du
√
−hK = −4iAT

∫ ρ∂

0
dρ sinh(ρ) + 4iAT cosh(ρ∂) = 4iAT (2.9)

Combined with the contribution from the delta function in (2.8) this gives the correct Euler
character χdisk = 1.

2.4 Example 3. Crotch geometries

The real meat of topology change however does not come from the geometries considered
thus far. For that we need a Lorentzian version of the pair of pants geometry. In flat space,
such a geometry can be easily constructed using the Morse function

f = x2 − y2, hab = δab , (2.10)

resulting in the Lorentzian metric

ds2 = (x2 + y2)(dx2 + dy2)− (2± iε)(xdx− ydy)2 (2.11)

The metric is singular at the critical point x = y = 0 of f and can be regularized to an
allowable metric as [11]

ds2 = (x2 + y2 + iσ)(dx2 + dy2)− (2± iε)(xdx− ydy)2 , σ → 0 . (2.12)

– 8 –
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Outside of x = 0 = y one can do the diffeomorphism u + iv = (x + iy)2/2 and the metric
reduces to Lorentzian flat space

ds2 = −(1± iε)du2 + dv2 , (2.13)

however, since the diffeomorphism is ill-defined at the origin, one finds via direct calculation
a delta function there with a negative sign

√
gR = −4π δ(x) . (2.14)

Such negative mass sources have the potential to increase the genus g.
To understand what this has to do with wormholes, notice that the space (2.11) is

actually a double cover of flat space (2.13) in coordinates u and v. The two covers (or
two sheets) are identified along a branch cut starting at the singular point u = v = 0 and
extending out to infinity, just like the complex function

√
z

identify

crotch
u = 0

v = 0v = 0

(2.15)

We can now make this into a pair of pants as Louko-Sorkin do by furthermore identifying
the line v = b on the second sheet with v = −b on the first sheet, and identifying v = a

on the first sheet with v = −a on the second sheet. Since these are geodesics (K = 0),
this cutting and gluing is a smooth operation. Louko and Sorkin called these types of
singularities (2.14) crotches, because in a pair of pants they are the crotch of the pants.

We can do something quite similar in JT gravity. Consider for instance the metric
of the Rindler patches of the TFD in conformal gauge (u is Rindler time, and the two
asymptotic boundaries are at v ∼ ±ε)

ds2 = −du2 + dv2

sinh2 v
. (2.16)

We now want to choose two semi-infinite lines on which we can cut the geometry, and then
make swap identifications that implement a crotch singularity

√
g(R+ 2) = −4π δ(x− xsing) . (2.17)

Indeed, any point on any spacetime looks locally like flat space. This implies that the
branch point of a swap identification is locally identical to the Louko-Sorkin crotch (2.12),
and it always has a singular source (2.14) (plus some smooth piece determined by the
curvature of the original manifold).

– 9 –
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However, unlike in flat space we can’t identify lines at just any constant v1 and v2,
this would give a kinked geometry because their extrinsic curvature does not add up to
zero. One way to proceed is to consider two mirrored half-lines, one at v = v0 and another
one at v = −v0. Cutting along the half-lines at these constant vs for u > 0 creates four
boundaries that can be glued. To see that this gives a smooth geometry, notice that when
calculating the extrinsic curvature with outward point normals, the sums of the extrinsic
curvatures needs to vanish. Consider v0 > 0. In the case at hand we have at v = −v0

K
(−)
L = + cosh(v0), K

(−)
R = − cosh(v0) , (2.18)

and at v = +v0

K
(+)
L = − cosh(v0), K

(+)
R = + cosh(v0) . (2.19)

So we glue the left boundary in the negative v region to the left boundary in the positive
v region and the same for the right boundaries, which results in a smooth geometry. In
fact, this identification will be part of our construction of higher genus wormholes on the
double-cone in section 3.11

When there are multiple crotches, the branchcuts can connect and form finite sized
slits, instead of semi-infinite lines. This is desirable, because in asymptotically AdS we
can not allow branchcuts going off to the asymptotic boundary (this is not allowed by
the boundary conditions). These slits represent “Lorentzian handles”, we discuss them in
more detail in the next sections, for instance in (3.14). Note that naively one might have
thought we therefore include four crotches, which would increase the Euler character by
4, but because of the gluing the final geometry only has two (additional) points where the
metric degenerates. See also (2.15), where we have two crotches, but they are identified so
we end up with a single delta function with coefficient −4π and hence the topology of a
pair-of-pants.

2.5 Constrained instantons and extremal surfaces

We have learned that we need to allow for AdS metrics with singular sources of the
type (2.17), in order to have Lorentzian topology change. The purpose of this section
is to explain why such configurations can contribute, and with which measure. This ques-
tion is sharpest in JT gravity, with action [36, 37]

IJT = −1
2

∫
Σ

d2x
√
gΦ (R+ 2)−

∫
∂Σ

du
√
hΦ (K − 1)− S0χ(Σ) . (2.20)

In Euclidean signature one can path integrate out the dilaton Φ and localize exactly on
smooth metrics [38–40] with

√
g(R+ 2) = 0 . (2.21)

If this were to remain true in Lorentzian signature, it would pose a problem. Indeed,
for instance even if we compute Z(iT ) we learned in section 2.3 that all Lorentzian black

11There is one important difference between the identifications one can make on the TFD, and the
identifications one can make on the double cone, namely the relative orientation of the slits. We clarify this
in appendix C.
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hole geometries that contribute have a conical source (2.8) on the horizon [35]. So, if we
think that we can rotate the contour of the path integral over metrics to count (almost)
Lorentzian spacetimes (instead of the smooth but generically complex spacetimes which
solve (2.21)), we had better picked up geometries with conical sources.

We next present a way to pick up such contributions. Our method is similar to the con-
strained instanton method that picks up wormhole contributions in [41–43]. We start with
resolving our confusions about the black holes contributing to Z(iT ), and then generalize
to crotches (2.17), see also [44].

The Euclidean black hole partition function is, schematically

Zdisk(β) =
∫ Dg

vol(diff) DΦ e−IJT (2.22)

We can insert a resolution of the identity

1 =
∫ ∞
−∞

dA 1∫
dx√g

∫
dx√g δ(A− Φ(x)) (2.23)

and write the delta function as

δ(A− Φ(x)) = 1
2π

∫ +∞

−∞
dα e(2π−iα)A e−(2π−iα)Φ(x) . (2.24)

Notice that in Euclidean signature, the partition function of a disk with a conical defect
can be written as [45]12

Z(β, α) =
∫ Dg

vol(diff) DΦ e−IJT
2π

γ(1− iα/2π + ε/2π)e
−(2π−iα)Φ(x) = eS0

2
√
πβ

exp
(
−α

2

4β

)
.

(2.25)
This means that inserting the right-hand side of (2.23) in (2.22) we can rewrite Zdisk(β) as13

Zdisk(β) = 1∫
dx√g

1
2π

∫ +∞

−∞
dα γ(1− iα/2π + ε/2π)

2π

∫ +∞

−∞
dAe(2π−iα)A eS0

2
√
πβ

exp
(
−α

2

4β

)

= 1
4πβ

∫ +∞

−∞
dα
∫ +∞

−∞
dAe(2π−iα)A eS0

2
√
πβ

exp
(
−α

2

4β

)
. (2.26)

Doing the integral over α first we obtain

Zdisk(β) = eS0

4πβ

∫ +∞

−∞
dAe2πA−βA2 = eS0

4π1/2β3/2 e
π2
β . (2.27)

12Technically speaking, this is the trumpet partition function [46] with a geodesic of real length b = α.
This is an analytic continuation of the defect to imaginary angles from all points of view [34, 45, 47]. In
the past people have symmetrized by including b = −α as source to describe the trumpet, however as
pointed out in [23] that is equivalent, as the dilaton path integral is insensitive to certain dilaton insertions,
see (5.36) in [23]. Also γ(x) = Γ(x)/Γ(1− x).

13In the second step we used the fact that because of the A integral, we can simplify pieces of the integrand
by evaluating them on α0 = −2πi, for which γ(1− iα0/2π + ε/2π) = 2π/ε. We also used the fact that the
volume of these spacetimes is given by 2β/ε, see for instance equation (5.24) in [23].
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Which is precisely the disk partition function of Euclidean path integral. On shell A equals
the horizon value of the dilaton Φh, i.e. the area, as we see in (2.23). This area is related to
the ADM energy as A = E1/2. This procedure is thus calculating the partition function in
microcanonical ensemble [44], before integrate over energy with the semiclassical density
of states e2πA+S0 = eS(A).

This procedure is redundant in evaluating Euclidean path integral. But as pointed out
in [35], this gives a way to think about the path integral for Lorentzian metrics. Indeed, if
we consider Lorentzian boundary condition Z(iT ), then after inserting the constrained in-
stanton identity (2.23) we have sources (2.24) in the path integral of precisely the type (2.8)
required to source Lorentzian black hole metrics (2.7). The path integral just picks up these
contributions and we again find

Zdisk(iT ) = 1
2πiT

∫ +∞

−∞
dAe2πA

∫ +∞

−∞
dα e−iαA eS0

2
√
πiT

exp
(

iα
2

4T

)

= eS0

4πiT

∫ +∞

−∞
dAe2πA−iTA2

. (2.28)

The integral over α is controlled by a saddle point α0 = 2AT , which is indeed precisely the
boost angle in (2.8) associated with the Lorentzian black holes of area A (2.7).

We should stress that the above argument is somewhat heuristic, in particular we
are being cavalier about contours of integration and convergence at intermediate steps.
For instance (2.24) makes sense for real values of the dilaton Φ, which is not the contour
for Euclidean JT (but it is for Lorentzian JT, and the classical saddle has of course also
a real dilaton), and relatedly the A integral in (2.26) is not convergent. Despite these
serious concerns, we still get the correct answer on the nose, thus we believe this procedure
is correct - especially in the Lorentzian setup. It would be interesting to understand the
change of contour from Euclidean to Lorentzian in more detail, a question of general interest
in gravity.

Now we generalize this method to pick up contributions from crotch geometries, in
generic models of 2d dilaton gravity. For the remainder of this work we will study classical
saddles.14 We can generalize (2.23) and (2.24) to

1 = 1
Vol

∫ +∞

−∞
dA

∫
dxsing

√
g

1
2π

∫ +∞

−∞
dα e−2π(n−1)A−iαA−(−2π(n−1)−iα)Φ(xsing) (2.29)

Classically, the α EOM force A = Φ(xsing). This introduces sources of curvature for every
fixed A and searching for classical solutions, leads to various pairs (α, n) which are con-
strained by consistency with Gauss-Bonnet and the asymptotic AdS boundary conditions.
We list these pairs below.

1. One boundary: α 6= 0 and n = 0. These are the geometry relevant for the calculation
of Z(iT ), or the birth and death of a closed universe as discussed above.

14It would be interesting, though probably quite teadious, to evaluate these Lorentzian path integrals
exactly, in particular including contributions from α 6= 0.
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2. Two boundaries: the base (connected) manifold is the double cone. The new classical
solutions are build using slits, which each consist of a pair of crotches. Each crotch
corresponds with n = 2 and α = 0 in the above equation.

3. More than two boundaries: the base (connected) manifold is a Lorentzian version
of the n-holed sphere obtained by taking n identical copies of some spacetime and
gluing them together cyclically, leading to an n-fold cover or n-replica geometry.15

Higher genus versions of these wormholes can be constructed by decorating with
n = 2 crotches.

From this list we see that we find metrics with swap-or replica-type identifications
when α = 0.16 The one remaining modulus is the location of the singularity xsing. We get
a contribution to the on-shell action from the piece −2π(n−1)A with on-shell A = Φ(xsing)
and the contribution −(n− 1)S0 from evaluating the Einstein-Hilbert action on the metric
with singular source (generalizing (2.17))

√
gR ⊃ −4π(n− 1) δ(x− xsing) . (2.30)

Aside from that, the on-shell action is that of the original geometry (before inserting
crotches). Hence, semiclassically each n-cover crotch contributes a factor∫

dxsing
√
g e
−(n−1)A(xsing)

4GN ,
A(xsing)

4GN
= S0 + 2πΦ(xsing) . (2.31)

Finally we impose the equation of motion associated with the location of the crotch xsing.
This implies that the classical solution is that the crotch singularities sit at an extremal
surface17

d
dxsing

A(xsing) = 0 ⇔ xsing = xextr , (2.32)

so that contribution to the on-shell action is the classical entropy associated with that
surface

e−Sinst = e
−(n−1)A(xextr)

4GN . (2.33)

The most important contribution will come from crotches at the dominant extremal surface.
This discussion has been on the level of pure 2d dilaton gravity, but it generalizes to any

gravitational theory. The on-shell gravity action for these singular geometries is always [35]
15One concrete example is to take n copies of the Lorentzian black hole (2.7) but where we make cyclic

identifications on the time slices t = 0 and t = T between ρ = 0 and ρ = ρsing, whilst keeping the old
identifications (making n boundaries) on those slices between ρ = ρsing and ρ = ∞. There is an n-cover
source with α = 0 at ρ = ρsing, and a n = 0 source with α = (n− 1)2AT at the origin ρ = 0. Alternatively
we can take n copies of (2.7), make slits on matching lines and impose cyclic identifications on those slits.
The endpoints of those slits are n-cover singularities with α = 0. In addition we have an α = 2AT and
n = 0 singularity at the horizon in each copy. Both constructions indeed reproduce the Euler character of
a n-holed sphere.

16The explicit examples presented in section 3 and section 5 should clarify these statements, should they
sound confusing. This comment also holds for the next few sentences.

17We will be a bit more careful below and include the √g factor.
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−(n−1)A(γsing)/4GN, with γsing a co-dim 2 surface where √g = 0, generalizing the crotches
of Louko and Sorkin.18

As compared to earlier similar discussions [13–17], we stress that at least within 2d
dilaton gravity (2.29) is an exact identity. We are not changing the value of the gravitational
path integral by inserting several copies of the identity (2.29). Rather, we should view this
as part of a contour rotation, analogous to the construction of [52]. It seems that there
are two natural contour choices for the path integral of metrics modulo diffeos, depending
on the choice it is more convenient to work with the left or right-hand side of (2.29). For
Lorentzian JT gravity the two choices are the following

1. Working with the left-hand side of (2.29) the JT path integral localizes exactly on
√
g(R+ 2) = 0 . (2.34)

This is convenient to work with when we choose the integration space to be smooth
but in general complex hyperbolic spacetimes. This calculation matches the standard
procedure of starting with a completely Euclidean path integral and analytically
continues the answer.

2. Working with the right-hand side, the path integral localizes on spacetimes with
singular sources such as (2.30), in this case the classical solutions are spacetimes
which are Lorentzian everywhere, and where the crotch singularities are located at
(either of the) extremal surfaces

√
g(R+ 2) = −4π

∑
i

(ni − 1) δ(x− xsing i) , xsing i ∈ xextr . (2.35)

We claim that counting these reproduces the same answer as the Euclidean calcula-
tions.19

To be clear the statements made thus far do not proof this claim, especially since we have
been heuristic about rotating various integration contours and convergence issues when
using (2.29).

For 2d dilaton gravity, one can show quite precisely that these two proposed contours
for the path integral of metrics modulo diffeos are equivalent, so we have a right to choose
one or the other. To show this we (mildly) modifying the ideas of [18], who pointed out that
these singular real-time spacetimes appear naturally when going to lightcone gauge. We
explain how our analysis for JT gravity in section 3 follows from that picture in appendix B.
The lightcone gauge analysis of appendix B is key because it tells us which moduli to count
for our crotch spacetimes, and especially which ones not to overcount. This is important
to find T 2g+1 in (1.3) and not T 3g+1, but more on this later.

18In cases where the slit between two crotches is spacelike, matter fields contribute the n-th Renyi entropy
−(n − 1)Sn(γsing) [17] and one must extremizing the generalized n-th Renyi entropy [48–51] to find the
classical location of the crotch.

19This is good, because Euclidean calculations with wormholes and replica wormholes have been
very successful in recent years in reproducing complex predictions from the boundary dual, see for in-
stance [12, 19, 21–25, 27, 53, 54].
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Before proceeding let us emphasize one key point of difference between what we will
be doing (option 2) and the usual lightcone gauge. Namely, by integrating in variables we
get solutions which are locally AdS2 with crotches, whereas in ordinary lightcone gauge
one ends up with locally flat spacetimes with crotches. Again, for more details on this see
appendix B.

The remainder of this paper consists of three examples where we’ll provide evidence
for this claim, namely we count semiclassical Lorentzian crotch spacetimes (option 2) and
compare with the Euclidean calculation (option 1).

3 Spectral form factor

Here we show how the ramp-plateau structure (1.3) is explained by semiclassical Lorentzian
wormhole geometries where 2-replica crotches accumulate at the (would-be) horizon of
the double-cone of [21]. In section 3.2 we consider JT gravity [36–40], and 2d dilaton
gravities with a more general action [47, 55, 56]. This is the most controlled setup, where
our counting of zero modes for the crotch locations is supported by the lightcone gauge
description of [18], as we discuss in appendix B. We then extrapolate this, and count the
same configurations in higher dimensional models, reproducing again (1.3), in section 3.3.20

We recap how (1.3) is derived in appendix A.1.

3.1 Double cone

Before discussion the semiclassical Lorentzian wormhole geometries that account for (1.3),
which (as we will demonstrate) are obtained by introducing slits (or crotches) in the double-
cone, let us recap the semiclassical double-cone geometry itself [21]. This is the “canvas”
on which we will built higher genus Lorentzian wormholes.

In JT gravity, the double-cone solution [21] with ADM energy E [41–43] is

ds2 = dρ2 − 4E sinh(ρ− iε)2dt2 , t ∼ t+ T , Φ = E1/2 cosh(ρ) . (3.1)

This is an allowable [11, 32, 33] (almost) Lorentzian spacetime since the metric determinant
has a positive real part everywhere

√
g = 2E1/2ε cosh(ρ) + 2E1/2i sinh(ρ) . (3.2)

With this regulator one finds that the metric is perfectly smooth everywhere, including at
the would-be horizon ρ = 0 (see also appendix C for a visualization of this regulator, and
more on the double cone topology)

√
g(R+ 2) = 0 . (3.3)

20The assumption behind the extrapolation seems physically mild, namely that each crotch occurs at an
identical instance of time in both wedges. In 2d, this is made rigorous via lightcone gauge, where essentially
the time coordinate in the bulk is gauge-fixed, and the time coordinate of the crotch is the time at which
the strings interact [10, 18, 28–30]. One should think of the single time coordinate for each crotch as the
time at which one baby universe is created or annihilated [5, 6]. Notice in particular also the factor T e−Sinst

associated with each such occurrence in equation (3.6) of [6], which we also have in (1.3). There is no T 2

because the crotch has just one time coordinate, it is one point. More on this later.
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With this understanding, we can drop the regulator ε in all equations henceforth. Note
that aside from the different regularization procedure, this is precisely two copies of a
Lorentzian black hole (2.7) with the same ADM energy E, a fact which will be crucial for
what follows. The holographic boundaries [39] are located at ρ = ±ρc ± `/2 with E = e−`

where indeed Φ = eρc/2 and ds = ±ieρc dt. This geometry thus looks like (we exaggerated
the separation between the holographic and coordinate boundaries)

t flow identify (3.4)

Naively these are not solutions to the JT equations of motion [42], however they
do become solutions when one introduces a Lagrange multiplier that fixes ` [41, 42] or
equivalently the ADM energy E in a manner that is very similar to the trick we used to get
singular sources in the Lorentzian path integral, see (2.23) and (2.29). For every E, (3.1)
is then a full-fledged solution to the equations of motion [42], and one ends up integrating
over all these solutions, analogous to how we had an A integral at the end in (2.27).21 So,
for any choice of boundary time T , there is a one-parameter family of (almost) saddles
labeled by E.

As Saad-Shenker-Stanford [21] explained the moduli space of saddles is in fact two-
dimensional, the other classical modulus is a twist mode associated with rotating the two
copies of the Lorentzian black hole relative to one another at the horizons. The volume of
these twists is T (because twisting with T returns the original setup).22

The on-shell action vanishes for these geometries [19] (because the ADM energy E is
equal on both sides, and the total boundary length vanishes identically). Introducing finite
temperature results in a non-zero on-shell action e−2βE . For the purposes of this paper we
will think about finite β as associated with a Euclidean preparation region, as one usually
does for the thermal state (this is analogous to for instance how Saad [24] thought about
finite β). In this case, the preparation looks like a gutter, or the bottom half of the double
trumpet [46] (the boundary locations ρ are the same as in (3.1))

ds2 = dρ2 + 4E cosh(ρ)2dτ2 , τ ∼ τ + 2β , Φ = E1/2 cosh(ρ) . (3.5)

The part between τ = 0 and τ = β is the gutter, and one can glue this smoothly in between
the t = T/2 and t = −T/2 slices of the double-cone (3.1), as these slices are geodesicsK = 0

21In a more detailed calculation, which we will leave out, the integration modulus ` replaces the integration
modulus b in the Euclidean calculation [24, 46] in a very precise manner with b = 2Te−`/2.

22This two-dimensional classical phase space (twists and length) is the same as the one discussed by
Harlow-Jafferis [57].
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with the same length ` + 2ρc, and with identical dilaton profiles Φ. This gutter will not
play any role in the remainder of this work, except for providing the on-shell action e−2βE ,
since we will choose to have all topology change occur in the purely real-time piece of the
geometry (not in the preparation region).23

Since the action does not depend on the twist, their volume simply comes out, and
we end up with the semiclassical contribution from the double-cone resulting in the inte-
gral [21]24

Z0(β + iT, β − iT )conn ∼ T
∫ ∞

Λ0
dE e−2βE . (3.6)

One of the key insights in [21] is that this construction is universal, meaning that we
can take Λ0 all the way to zero. Namely, for any gravity model in any number of dimensions
one can always create a double-cone by compactifying time and choosing a contour for the
radial coordinate that avoids the conical singularity where the two copies of the (rolled-up)
Lorentzian black holes meet.

The zero mode factor T will clearly always be there, and as clarified in more detail
in [43] the same goes for the on-shell action e−2βE and the integration modulus E (now
associated with a volume that was constrained first). Thus, semiclassically the double-cone
universally gives (3.6).25

The goal of this section is to find a similarly-universal generalization of the double-cone
geometry which gives the whole semiclassical ramp-plateau structure (1.3). We will first
consider the 2d gravity case.

3.2 Dilaton gravity models

Instead of specializing to JT gravity, we consider the generalized models of 2d dilaton
gravity [47, 55, 56, 58] characterized by a dilaton potential W (Φ) and with action

exp
(1

2

∫
dt dr√g(ΦR+W (Φ)) +

∫
∂

dt
√
hΦ(K − 1)

)
. (3.7)

Here the coordinate t is the physical coordinate used by boundary observers [39, 40]. In-
deed, in gravity bulk diffeo’s are redundancies but boundary coordinates are physical. We
consider these models with general W (Φ) for two reasons. First, all of them have pre-
cise matrix integral duals [47, 55], so that there are precise boundary [22] and Euclidean
bulk [23] calculations which reproduce the ramp-and plateau structure (1.3). So in these

23It is not a priori clear that this is a choice you can make. The proof of the pudding is in the eating, as the
final result is seemingly correct. After all, we do not know how the Lorentzian gravitational path integral
precisely works. We need to derive what the rules are, what we are doing in this work is claiming that
we found part of those rules, and providing evidence for them by comparing with independent Euclidean
calculations.

24The twist mode is slightly less obvious for finite β and after a more careful analysis [21] one eventually
finds the volume (β2 + T 2)1/2. As explained in the beginning of this section, we are interested only in the
double scaling limit T →∞ and eS0 →∞ with fixed ratio; with β remaining finite the volume then indeed
reduced to T again. Essentially as compared to the Lorentzian piece of geometry, the Euclidean region is
so tiny that it can be ignored for the twisting argument.

25In higher dimensions it is not obvious to prove that the E measure is flat. We will not address that
problem here, since we are interested in presenting a semiclassical approximation only. See [43].
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cases it is a sharp constraint that the purely Lorentzian gravity description should repro-
duce it too.26

Second, these models are more akin to higher dimensional cases, in that the importance
of classical saddles is more clear. In JT gravity with W (Φ) = 2Φ, one can simply integrate
out the dilaton exactly, which obscures the importance of on-shell dilaton configurations.
In realistic theories we have no such powers, and we should resort back to saddles and ex-
panding around them. The 2d models with generic W (Φ) can sometimes still be quantized
exactly, by expanding the potential perturbatively around 2Φ, but such an expansion is
not close to the classical behavior of this system, and this is not what we have in mind
here. We want to introduce a universal phenomenon that depends on saddles, and not on
the specific (enormous) amount of control that one has in the JT gravity setup.

In these models the Lorentzian black hole solutions replacing (2.7) are (the ρ coordinate
we introduced for future purposes) [58]

ds2 = −F (r)dt2 + 1
F (r)dr2 , Φ = r = Φh cosh(ρ) , F (r) =

∫ r

rh=Φh
dxW (x) . (3.8)

These satisfy the boundary conditions Φ = rc and ds = irc dt, and as in the JT case they
are sourced by a conical singularity at the horizon

√
gR ⊂ 4π

(
1− 1

β(Φh) i
∫

dt
)
δ(x− xextr) , β(Φh) = 4π

W (Φh) ,
∫

dt = T , (3.9)

which can be introduced in the path integral using the same constrained instanton
trick (2.23).27 Using the relation between the near-boundary metric and the ADM en-
ergy

F (rc)− r2
c = −2E(Φh) , 2E(Φh) = Φ2

h −
∫ ∞

Φh
dΦ(W (Φ)− 2Φ) , (3.10)

and plugging this into the action (3.7), one recovers the semiclassical approximation to the
black hole answer (2.17) (We have renamed A = Φh.) [58]

Z(iT ) ∼
∫

dAe2πA−iTE(A) ∼
∫ ∞
...

dE eS(E) e−iTE . (3.11)

In particular to recover the e2πA it is important to take into account the contribution from
the singular source. One also checks that dE(Φh) = 1/β(Φh) dS(Φh) and by inverting this
relation to S(E) one can match ρ(E) = eS(E) with the density of states for general dilaton
gravities given in (1.4) of [55].

The double cone is (as always) two copies of this spacetime [21, 43] where one replaces
ρ by ρ+ iε and considers −∞ < ρ < +∞. By inspecting the solution (3.8) for −1� ρ� 1

ds2 = −ΦhW (Φh)/2 (ρ− iε)2dt2 + 2Φh

W (Φh)dρ2 , (3.12)

26Of course, as already emphasized, with black holes being quantum chaotic, the boundary calculation
using e.g. periodic orbits should apply in any number of dimensions, hence the boundary gives a sharp
prediction in any case.

27In Euclidean signature these are fixed area states [44, 59].

– 18 –



J
H
E
P
1
0
(
2
0
2
3
)
0
0
5

we indeed see that this makes the metric allowable, with an imaginary part of √g that
changes sign at ρ = 0 as in (3.2), and one checks that with this ε regulator there is no
singular source in √gR anymore.

We now look for solutions to the same equations of motion and the same boundary
conditions, but where we allow for two Louko-Sorkin-type crotch singularities

√
gR ⊃ −4π

2∑
i=1

δ(x− xsing i) . (3.13)

We explained in section 2.5 that such configurations are picked up via a modification of
the fixed area mechanism, with the extra rule that one should extremize over the locations
xsing i in the end. One can construct such configurations by taking the usual double cone,
slicing it open along two mirroring slits, and swap-identifying the sides of the slits as follows:

step 1. slice

step 2. identify

genus 1 wormhole

t1T − t1

(3.14)

The endpoints of the right slit are (t1, ρ) and (t2, ρ), whereas for the left slit they are
(T − t1,−ρ) and (T − t2,−ρ). The reason for this particular choice will become clear.
We strongly emphasize that away from these endpoints (which as we will explain are the
locations of the crotches), this cutting an gluing does not change the smooth solution of
the metric and dilaton. To be very clear, the metric and dilaton on this spacetime is
everywhere (except at the singular points, see below) still given by (3.8).

ds2 = −F (r)dt2 + 1
F (r)dr2 , Φ = r = Φh cosh(ρ) , F (r) =

∫ r

Φh
dxW (x) . (3.15)

Indeed, smoothly cutting and gluing geometries in gravity requires two things, namely that
the surfaces (here lines) on which we glue have the same induced metric (here length along
the line) and the opposite extrinsic curvature. Because the two slits are each other’s mirror
image, and because the two sides of the double cone are two copies of the same black hole
(with the same energy E), this is satisfied. Very concretely, the curvature and induced
metric on these fixed r slices is (+ for right copy, − for left copy).

K = ± W (r)
2F (r)1/2 , ds = ±iF (r)1/2 dt , (3.16)
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The signs of K tell us to identify the left outside with the right inside, and vice versa. This
should be quite intuitive, if one comes in from the left, space is getting smaller, and it should
keep getting smaller after crossing this slit, in order to have a smooth identification.28

Close to each of the endpoints of the slits, which are pairwise identified, the geometry is
exactly the Lorentzian double-cover of Louko-Sorkin [11] which we described in section 2.429

identify

crotch
t = t1t = T − t1

r = r1r = r1

(3.17)

As explained there, the metric on these geometries is indeed unaffected except for mild
singularities at the endpoints on the slits with strength −4π (3.13).

Because of the opposite sign of √g on both sides of the double cone (3.12), we see that
the smooth part of √gR is exactly opposite on both sides of the cone. The same argument
holds for the boundary contribution to Gauss-Bonnet, which therefore picks up only the
contributions from the singular sources

χ = 1
4π

∫
d2x
√
g R+ 1

2π

∫
∂

dt
√
hK = −2 . (3.18)

This confirms mathematically that we have created a genus g = 1 wormhole.30 Physically,
one should see it clearly in (3.14): cutting the double-cone open on the slits creates two
“holes” with the topology of a circle, and identifying those “circles” makes a handle. (If
this is not yet clear enough, the pictures in appendix B should help.)

We note that, much like for branchcuts of complex functions, the actual trajectory
of the slits is not physical, the only thing that determines the geometry is actually the
location of the crotch singularities. Two crotches connecting to form one slit (the “top”
crotch and the “bottom” crotch) also do not need to sit at identical ρ coordinates (but
for each individual crotch, we do need the ρi coordinates left-and right to be opposite, to
satisfy the gluing rules).

Thus we have found solutions to the metric and dilaton equations with singular sources
with weight −4π (3.13) for all locations xsing i of the crotches. As explained around (2.29),

28The relative orientation by which we glue on the slits is determined by the fact that we should end up
with an orientable metric, this is discussed in more detail in appendix C.

29The left picture was flipped left-to-right as compared to the example in section 2.4, but locally that
does not affect the topology.

30To avoid all confusion, there is no such thing as “Lorentzian Gauss-Bonnet”. There is simply Gauss-
Bonnet, computing a topological invariant, which makes sense for all allowable metrics [33]. The well-defined
thing to write for all allowable metrics is √g.
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each crotch is weighed by an action

e−S0 e−2πΦ(xsing) , Φ(xsing) = Φh cosh(ρsing) . (3.19)

Away from the crotches the metric and the dilaton are still those of the double-
cone (3.15) and we simply have the usual double-cone contribution e−2βE which we ex-
plained around (3.6). The only remaining step to find classical saddles, as explained again
around (2.29), is to vary the area (or the dilaton) with respect to its location

d
dρsing

(
log

√
g(ρsing)− 2πΦh cosh(ρsing)

)
= 0 ⇔ ρsing ≈

1
(2πΦh)1/2 , (3.20)

such that the crotches sit classically (when Φh is large) at the would-be horizon of the
double cone. Thus our saddles look more like

genus 1 saddle

t1

t2

ρsing ≈ 0

Another important point is that since ρsing > 0 due to a one-loop effect, it does not secretly
disappear into the regulated Euclidean region of the double cone and causes an order of
limits issue.31 Moreover, notice that the temporal coordinate is an exact zero mode

d
dtsing

Φh cosh(ρsing) = 0 , (3.21)

so we have a saddle-point manifold parameterized by the crotches’ temporal locations, quite
analogous to the twist saddle-point manifold that one has for the empty double cone (which
is of course also still there). Nothing else in the problem depends on these time coordinates,
thus we just integrate over this saddle-point manifold. This (crucially!) produces a volume
factor T for each crotch.

Since all classical saddles have Φ(xsing) = Φh and since S0 + 2πΦh = S(E) the on-shell
contribution of each crotch becomes

T e−S(E) . (3.22)

Thus we find that, in this more refined version of the Lorentzian baby-universe picture [5, 6],
we should identify the instanton action with the area of the extremal surface at which the
topology change takes place

A(γextr)
4GN

= Sinst . (3.23)

31We thank Don Marolf for asking about this.

– 21 –



J
H
E
P
1
0
(
2
0
2
3
)
0
0
5

This provides a natural mechanism for topological suppression of other topologies in higher
dimensions too, as long as we consider classical black holes (with large areas), we will discuss
this below in section 3.3. Putting together the pieces we get the following semiclassical
contribution at g = 1

Z1(β + iT, β − iT )conn ∼ T 3
∫ ∞

Λ1
dE e−2S(E) e−2βE , (3.24)

matching (part of) the boundary prediction (1.3).32 To be clear, we still have the double-
cone moduli and on-shell action (3.6), we have simply included into this the crotch moduli
and on-shell action (3.22).

The generalization to higher genus is obvious. There is no constraint on how many
crotches one can include in the Lorentzian path integral, by simply inserting the iden-
tity (2.29) an arbitrary number of times. For every even number of crotches there are
classical solutions of the type discussed above. For instance, for genus g = 2 we have the
following geometries (classically the crotches all sit at ρsing i = 0, but that does not make
for the clearest figures, so we have pictured generic off-shell ρsing i here)

t4

t3

t2

t1

genus 2 wormhole

(3.25)

with modulo the identifications still the same metric and dilaton as on the original double
cone. Nothing changes, except that now we have 4 temporal locations of the crotches
marking zero modes, each crotch still contributes (3.22) and we obtain almost immediately

Z2(β + iT, β − iT )conn ∼ T 5
∫ ∞

Λ2
dE e−4S(E) e−2βE . (3.26)

Higher genus is a trivial generalization at this point and one reproduces the boundary
prediction (1.3)

Zg(β + iT, β − iT )conn ∼ T 2g+1
∫ ∞

Λg
dE e−2gS(E) e−2βE . (3.27)

So, what do we learn from this? First, the fact that we recover the boundary prediction
is evidence that we have indeed identified the correct Lorentzian version of wormhole

32As mentioned in the introduction it the full semiclassical result should give a vanishing coefficient of
the power of time. The contribution that cancels this one is a semiclassical geometry with negative area,
i.e. one ends the geometry at −Φh instead of Φh. We will discuss this more in section 6. We thank Adam
Levine for discussions on this. Similar formulas like this will appear below also and should be understood
in the same way. We decided to write the expressions this way because it emphasizes that our method also
reproduces the structure of the integrand.
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geometries. Second, we note that as compared to the Euclidean calculations [22, 23] it
was simpler to get the answer at semiclassical regime, except for one-loop factor that
doesn’t growth with time. What we are advocating for is that for (at least some) real-time
questions, it is perhaps more efficient to think about Lorentzian metrics with crotches,
than mostly Euclidean metrics.

One could wonder why we do not allow one crotch to have two temporal locations
(meaning backing off from using the same parameter ti for the locations of the singular
point on the left-and right copy). Physically this restriction seems sensible, one thinks of the
birth and death of a baby universe as taking place at one instance of time. Mathematically
we can actually also make this precise [18, 28–30]. This is key, as counting independent
ti (constrained by the fact that the glued spacetime should be smooth) would result in
incorrect T 3g+1 growth. So let us explain this more.

To appreciate this, one could think of the 2d Lorentzian spacetimes as 2d string world-
sheets. Then one can reformulate the spacetimes that we are considering as the lightcone
diagrams in Mandelstam’s interacting string picture [10]. Now the (unique) interaction
time ti is the lightcone time at which two open strings interact in a two-to-two open string
scattering process. Such lightcone diagrams are gauge equivalent to integrating over the
moduli space of smooth constant curvature Riemann surfaces. In appendix B we detail
the lightcone gauge description of JT gravity [18] and apply it to our current setup with
Lorentzian asymptotically AdS boundaries. We show how the parameters in our spacetimes
map to the moduli of Mandelstam’s lightcone diagrams, and we show in more detail that
the temporal locations of the crotches are zero modes for late times (beyond the current
on-shell approximation). In particular this is important to show that we are not over-or
undercounting the number of saddle-point geometries (though the match (1.3) is already
strong evidence).

This fact may come across as somewhat puzzling. Suppose we take the geometry (3.25).
Clearly we can consider different smooth solutions of the Einstein equations by moving the
left slits up-and down individually and independent of the right slits. Including such moduli
would correspond with counting independent ti. The lightcone gauge picture tells us that
we should not be counting such modes, if we want to integrate over the moduli space of
metrics modulo diffeos precisely once.33 A physical way to appreciate this, again, is the
fact that the crotch has one specific value of the Morse function (time) in this construction.
It is one point, not two independent points.

To be crystal clear, counting independent ti would be overcounting in the same sense
that counting Riemann surfaces which are related by Dehn twists would be overcounting
in the Euclidean calculation. We discuss the moduli space of crotch spacetimes and it’s
relation with standard lightcone diagrams in appendix B.2.34

33Although it is not immediately obvious which diffeos relate such metrics to the ones that we are counting.
34We should admit that this moduli counting is not completely airtight, as we need to make an assumption

of how to map our spacetimes to interacting string diagrams. We believe this assumption is mild, and that
the map is highly suggestive, nevertheless it is good to keep this caveat in mind. One further point worth
mentioning is that many of the moduli of the lightcone diagrams do not lead to simple classical solutions,
so in the classical analysis of this paper we are not including them. For more comments see section 6 and
appendix B.2.
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3.3 Higher dimensional gravity

The previous construction generalizes in a rather simple way to arbitrary gravity models
in higher dimensions. As mentioned around (3.6), for any gravity model there is a double-
cone saddle made up out of two copies of the Lorentzian black hole (with an iε prescription
which removes the would-be conical singularity at the horizon) [21], leading to the universal
structure (3.6) from a saddle-point analysis [21, 43].

We can represent one side of this double-cone (so the Lorentzian black hole) as a higher
dimensional “hollow doughnut”

ρt

x‖

identify

black hole

(3.28)

The red would-be horizon surface is null along the t direction (the picture should be thought
of as using Rindler-type coordinates), and has an area along the x‖ directions equal to the
black hole entropy for fixed charges J (and as always we consider fixed ADM energy E)

A(γ‖extr)
4GN

= S(E, J) . (3.29)

The real-time identification introduces some singularity at the horizon [35], though this
will not be our concern here.

Now we can consider the effects of allowing double-cover singularities in the Lorentzian
spacetime. Now, double-covers are associated with some co-dimension-2 singular surface
γsing.35 The cut associated with such a singular co-dim-2 surface can end at another singular
co-dim-2 surface, forming a co-dim-1 slit. That slit should then be swap-identified with
an identical slit in a second copy of the geometry, in order to qualify as a double-cover
geometry.

35Similarly, emitting a baby-universe at a real-time slice ti requires the metric to vanish (at least one
component) on such a co-dimension-2 surface. For instance, in 3d we require the metric to vanish on a
circle, such that a sphere is emitted.
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Concretely, the single slit geometries (analogous to g = 1 in 2d) in which we’re inter-
ested look like36

γsing 2 γsing 2
t t

γsing 1 γsing 1

1 slit wormhole

swap insides

(3.30)

If we consider again mirror-configurations, where the slits have precisely the same positions
in the two copies, then the metric (and all other fields for that matter) will again be smooth
across the surface of identification, and the Einsteins equations (and other equations of
motion) will be satisfied everywhere, except potentially at the singular surfaces γsing i.
Notice that we are gluing always outside-to-inside in this double cone setup. The physical
picture seems to be that you might think you are falling into your black hole, but you might
end up in someone else’s interior: you might have been swapped close to the horizon. In
an evaporating setup, this might mean you are teleported by a swap to the horizon of the
black hole created by the quantum computed that acts on the radiation [12].

But back to our technical problem now. The key point, explained by Marolf in [35] (fol-
lowing earlier work [13–17]), is that this procedure again does not change the on-shell action
of the spacetime, except for an additional weight for each crotch-type singularity γsing i

e
−
A(γsing)

4GN (3.31)

This follows because roughly speaking [35]

1
16πGN

∫
dx√gR+ · · · = −A(γsing)

4GN
+ double-cone answer , (3.32)

which is explained by the fact that the metric away from the crotches is identical to that
on the double cone, and because roughly speaking the type of curvature singularity is
essentially the same as in 2d [35]

√
gR = −4π

2g∑
i=1

δ(x⊥ − x⊥sing i) + double-cone answer (3.33)

As before the last step to get saddlepoints is to extremize with respect to the embedding
γsing (one can again include an analogous one-loop piece coming from the integral over all

36One could of course consider other topologies, for instance γsing does not need to be homologous to the
horizon, it could be some contractible circle outside of the horizon. However, those will not give rise to
saddles, because such contractible loops have no extremal area. Similarly, the surface does not need to be
this symmetric obviously, but the extremal ones (the saddles (2.32)) are.
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codimension two surfaces.)

d
dγsing

A(γsing) = 0 ⇔ γsing = γextr . (3.34)

In our case the only classically extremal such surface is the spacelike co-dimension-2 surface
that limits to the horizon of each of the copies of the Lorentzian black hole. In other words,
the slits attach to the horizon, like heat-shrink tubing

t4
t3

t2

t1

2 slit saddle

swap insides

(3.35)

The area of each of the curves is then equal to the area of the black hole horizon at fixed
ADM energy and fixed charges, such that even in higher dimensions the instanton action
equals the black hole entropy

S(E, J) = A(γextr)
4GN

= Sinst . (3.36)

Moreover the temporal location of the crotches at the horizon remains a zero mode, so the
weight of each crotch grows with time

T e−S(E) . (3.37)

That means we recover almost immediately the boundary prediction (1.3)

Zg(β + iT, β − iT )conn ∼ T 2g+1
∫ ∞

Λg
dE e−2gS(E) e−2βE . (3.38)

Physically this seems to mean that for late times these swap-slits clinging to the horizon
proliferate.37

So, what new things did we learn from this? Generally speaking, the lesson seems to
be that higher dimensional gravity may not be so out of control as we might have thought.

37It would be interesting to study the statistics of these configurations in some more detail. Intuitively,
one might expect the swap probability to saturate at 1/2. Indeed, in the lightcone gauge description of
appendix B, two slits never overlap, meaning we ought to restrict to t4 > t3 > t2 > t1 in the example (3.35).
However, because of the top-bottom identification there is a second option that should be included, where
we connect the crotch at t2 and t3 with a slit, and the crotch at t4 and t1 by another slit (which goes through
the top-bottom identification). In (3.35) this means one should also include the configuration where the
blue and red colors are interchanged. This means that for g > 0 the swap probability is exactly 1/2 at any
fixed instance of time (the g = 0 double cone is the exception because it involves no swaps).
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We learned that there is a topological suppression, because topology changing processes
(at least in this setup) are exponentially suppressed in the black hole entropy (3.36).

Second, and perhaps relatedly, we recover the boundary prediction from summing a
countable set of bulk geometries. This is surprising even for 3d gravity. In that case,
the double-scaled spectral form factor gives a precise prediction for the power series. The
spectrum that one should insert in (A.4) is

ρ(E, J) = eS0(J) 2
J1/2E1/2 sinh

(
(πE)1/2b

)
sinh

(
(πE)1/2/b

)
, S0(J) = (πJ)1/2

(
b+ 1

b

)
,

(3.39)
which has indeed an expansion in half-integer powers En+1/2.38 It would be interesting to
understand which Euclidean geometries are analytic continuations of our saddles, the guess
would be that they are just Σg,2 × S1 with all modular images. Do these give finite path
integrals reproducing these answers?39 Then what about the other 3-manifolds? If we do
not need them, then perhaps one should simply not include them. Notice that there are
toy-examples of 3d gravity where indeed only a very restricted set of 3-manifolds appears
in the bulk description [64, 65].

4 Two-point correlation function

The purpose of this section is to demonstrate that similar Lorentzian crotch (or slit) ge-
ometries explain the semiclassical behavior of the two-point function

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
, (4.1)

in the same late-time double scaling limit where T → ∞ and eS0 → ∞ with Te−S0

fixed. This had better been true, since the raison d’etre of the spectral form factor
Tr
(
e−(β+iT )H

)
Tr
(
e−(β−iT )H

)
is essentially to serve as a toy-model for this two-point func-

tion [66, 67]. We consider operators O that are dual in the bulk to a particle of mass ∆
and are interested in the probe approximation, where the particle does not backreact on
the geometry. In this regime, we are just computing the expectation value of

e−∆` , (4.2)

with ` the (regularized) distance between the two boundary points where operators O are
inserted.In this section we will consider 2d dilaton gravity exclusively.

38To see quantum chaos one should look at fixed charges [60, 61], this also includes fixed descendant labels
here [43]. The applicability of chaotic universality demands that we consider large charges eS0(J) →∞, this
simplifies the BTZ spectrum to this form with E the energy above extremality. In this double-scaling limit
the other handle-bodies (or modular images) do not contribute since they give contributions that scale with
a lower power of eS0(J) [47]. We use the usual

c = 1 + 6
(
b+ 1

b

)2

. (3.40)

39It was suggested in [62] that they diverge, but perhaps there is some clever way to avoid this as for the
wormhole in [63].
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Following similar logic as for the spectral form factor [22, 23], we demonstrate in
appendix A.2 that the two-point function behaves in the τ -scaling limit as

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
= T

2πQ∆(β)−
∞∑
g>1

(T/2π)2g−1

(2g − 2)(2g − 1)

∮
0

dE
2πi e

−βE M∆(E)
ρ0(E)2g−2eS0

. (4.3)

with
Q∆(β) =

∫ ∞
0

dE e−βEe−S0M∆(E) (4.4)

andM∆(E) given in (A.10).40 This has a similar ramp and plateau structure as the spectral
form factor, as predicted by Saad [24].

We will identify the semiclassical Lorentzian geometries that contribute to this observ-
able, making the choice that topology change takes place in the Lorentzian region.41 The
slit geometries which we’ll identify share the property that ` has an order one (not growing
with T ) value, and the probability of the geometries themselves grows as T 2g−1e−(2g−1)S0 .
This should be contrasted with the disk where ` grows linearly with T [27, 57, 68–70],
causing exponential decay of the correlator.

The physical picture is that all g > 0 Lorentzian geometries which we are led to include,
have the property that the t = T slice is reminiscent of the t = 0 slice of the original
TFD geometry, or a fixed Rindler-time slice of the double-cone (which is identical). The
order one ` is the size of the t = 0 ER bridge. This is reminiscent of statements made
in [19, 24, 71] that wormholes could rejuvenate the TFD, but with different quantitative
results. Our Lorentzian wormholes all rejuvenate to t = 0. This happens because we
compute

〈
e−∆`

〉
, which essentially projects out older TFDs.42 This does not happen when

one would compute 〈`〉, which we do not pursue here, but see comments in the discussion
section 6.

For our Lorentzian setup, we are interested in reproducing the semiclassical features of
this formula. So we will consider large black holes E � 1 and probe matter that does not
backreact on the geometry ∆ � E1/2. Using Stirling to approximate M∆(E) (A.10) this
results in the semiclassical approximation (again without the negative area contribution)

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
g
∼ T 2g−1

∫ ∞
Λg

dE e−βE e−∆`(E) e−(2g−1)S(E) , (4.5)

where we introduced
`(E) = − log(4E) , S(E) = 2πE1/2 . (4.6)

Here `(E) is (see below) the renormalized length of the ER bridge in the (fixed energy)
TFD at T = 0. This form of equation (4.5) remains valid for generic dilaton gravity models,

40Here we worked with E0 = 0, but one can easily generalize to non-zero E0.
41Again it is not obvious this is actually a choice one can make, it is part of our claim.
42More specifically in the τ -scaling limit any ` ∼ T projects out. In this sense it is not technically true

that our observable does not backreact on the geometries. For the same reason we do not have a sum over
paths [24], only the shortest geodesic contributes. So, we do not have contributions from the other geodesics
which are responsible for the quasinormal modes.
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where one should replace `(E) with the boundary-to-boundary length in the metric (3.8)
and the entropy becomes 2πΦh(E) with the relation (3.10).43

The two-point function in which we are interested is the two-sided two-point function
in the thermofield double state of the boundary theory

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
= 〈TFDβ | e+iT/2(HL+HR)OLOR e+iT/2(HL+HR) |TFDβ〉

(4.7)
The corresponding g = 0 geometry is obtained by first preparing the TFD two-sided geom-
etry at t = 0 and then Lorentzian time-evolving it to t = T/2, at which point two operators
OL and OR are inserted on both boundaries to probe the geometry. The same preparation
and Lorentzian time evolution applies to the bra, and the bra-and ket geometries are glued
together on the trajectory of the probe particle.44 The glued Lorentzian pieces of geometry
make a tent-shape:

OR OLOL

ket

X = π
2

X = 0
bra

σ = π
2

g = 0 geometry

identifyparticle

(4.8)

The metric and dilaton on these Lorentzian slices are

ds2 = dσ2 − dX2

sin(σ)2 , Φ = E1/2 cos(X)
sin(σ) , (4.9)

with the diverging boundary trajectory parameterized by boundary time t

tan(X/2) = tanh
(
E1/2t

)
, σ = π − ε dX

dt , (4.10)

The operators OL and OR are inserted on this boundary trajectory at t = T/2 and the
shortest geodesic between them is spacelike at constant global time X. For TE1/2 � 1
this length of the ER bridge grows linearly in time

`(E, T ) = −2 log(2ε)− log(4E) + 2E1/2T . (4.11)

On the classical saddle this gives the usual exponential decay exp(−2π∆T/β) of two-sided
correlation. Note for future reference that the (regularized) ER bridge length at T = 0 is

43Whilst we do not yet know the matrix elements OE1E2OE2E1 for generalized dilaton gravity, we do
know via ETH that they are smooth functions of ω so in this sense (A.9) and what follows remains true.
The fact that `(E) (being the saddle of OEEOEE) takes on the value of the boundary-to-boundary geodesic
in the TFD at T = 0 can be understood from the generalization of the discussion of the semiclassical
wavefunction around (2.13), (2.14) and (2.18) in [19].

44One could evolve further on both sides, but such additional pieces of geometry would cancel in the
bra-ket path integral.
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precisely `(E) = − log(4E), with classically E = π2/β2. The Lorentzian geometry is cut
off at X = 0 and glued to the Euclidean preparation region of the TFD, which is half of
the disk

ds2 = dρ2 + 4E sinh(ρ)2dτ2 , τ ∼ τ + β , Φ = E1/2 cosh(ρ) . (4.12)

One indeed checks the metric and dilaton glue smoothly, because at X = 0 we have
cosh(ρ) = 1/ sin(σ).

Next we want to construct the Lorentzian g = 1 geometry, which ought to be the real-
time equivalent of the handled disk. To do so we will use two guidelines. First, we know
that we can view the Euclidean handled disk as a wormhole with an extra identification of
a (geodesic) segment of the two boundaries of the wormhole. Second, comparing equations
we see that the same physics underlies the ramp-and plateau structure of the spectral form
factor and the two-point function.

With Lorentzian boundaries, the wormhole is replaced by the double-cone (3.4) glued
onto a gutter-shaped Euclidean preparation region (3.5). The above logic then suggests that
the handled disk should be replaced by the same double-cone but with an extra identification
between the two boundaries. We therefore are led to consider the following g = 1 geometry

g = 1 geometry

ket R

time flow

crotch
ket L

OL

bra L

bra R

OR

identify

(4.13)

Here the diagonals are glued to the Euclidean gutter-shaped preparation region (3.5), just
like for the double cone. The only difference with the double cone is that we’ve inserted one
additional crotch, the branchcut of which now extends out to the asymptotic boundary.
Classically, as always, the crotch will be located close to the would-be horizon (the red
dot). The swap identifications at the slit implement correctly the gluing of the left wedge
in the ket to the left wedge in the bra, and vice versa for the right wedges. When one then
inserts the operators OR and OL near the location where the slits intersect the asymptotic
boundaries, we see that this geometry indeed satisfies the boundary conditions implemented
by the two-sided two-point function (4.7).

In this geometry, one should think about a fixed bulk time slice t = t1 in the context of
the two-point function as the two slices t = +t1 and t = −t1 in the double cone (3.1), these
combine into a “cross” in (4.13). Bulk time flow corresponds to that cross becoming sharper,
as indicated in (4.13) by the little black arrows. One salient feature of this geometry is the
fact that all these time slices are identical, in particular the distance between the left-and
right boundaries is now a constant independent of time, which is precisely equal to the
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length of the ER bridge `(E) = − log(4E) in the TFD at t = 0. So, this g = 1 geometry
has created a shortcut between the two asymptotic boundaries [24]. The semiclassical
evaluation of the probe matter correlator on this geometry thus simply gives〈

e−∆`
〉
≈ e−∆`(E) , `(E) = − log(4E) . (4.14)

The on-shell action of this geometry is identical to that of the double-cone, except for an
extra factor e−S(E). This factor is the standard contribution (3.22) of the crotch, which
sits close to the (would-be) horizon. Since we have the same metric and dilaton as for
the double-cone away from the crotch, the remainder of the on-shell action can indeed
be copied.

To make it more obvious that this construction is the Lorentzian analogue of the
two-point function on a handled disk, we can choose to draw OL on the other side of
the identification. This makes it look as if we make the identification on the particle
trajectory (red)45

ket R

time flow

ket L

OL

bra L

bra R

OR

identify

(4.15)

This is the generalization of the Euclidean handled disk to a geometry that is “as Lorentzian
as possible”. Indeed if we cut the handled disk on the particle trajectory, we get a geometry
that looks like a wormhole with two boundaries, where on each boundary there is an
asymptotic segment and a geodesic segment, with a π/2 angle (in the no-backreaction
probe limit) between the two sections (as we have here too).

Another way to visualize this spacetime, which makes it more clear what has changed
as compared to the g = 0 tent geometry (4.8) is as follows

ket

tiny wormhole

gutter

OL

bra

OR

identify

g = 1 geometry

(4.16)

45One can check that the red trajectory behaves semiclassically as a geodesic, this is the dominant
contribution to a single particle path integral within some topological class and the action equals its length
`(E) times the mass ∆ of the particle. See the end of appendix B.4.
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Here we’ve over-exaggerated to size of the tiny Euclidean wormhole in the double cone at
ρ = 0, and we have included the Euclidean gutter-shaped preparation region (to which one
should glue the Lorentzian spacetime). The length of the (red) particle trajectory does not
grow with time T . When we make the blue identification we obtain topologically indeed a
(g = 1) handled disk (with one boundary).

So a portion of double-cone time evolution can be used to steal length of the ER bridge.
Just like the double cone, this geometry has two zero modes. Those are related with

the fact that both in the bra-and the ket on the right hand side of (4.7), we can choose
to redistribute the amount of time evolution with HL and with HR, as long as the total
remains ±T . In the g = 0 geometry (4.8) both these modes are redundancies, as they
are Rindler boosts in either the bra-or ket two-sided black hole. On the double cone, only
the mode associated with t translation in (3.4) is redundant [21], which in (4.15) would
move the left crotch down and the right crotch up. The mode associated with moving both
crotches up simultaneously is physical, and labels new solutions [21].46

In summary, we have a two-dimensional phase space of classical solutions. The twists
give a volume factor proportional to T and the energy integral is weighed by e−S(E)e−βE .
Thus we recover the g = 1 version of the boundary prediction (4.5)

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
1
∼ T

∫ ∞
Λ1

dE e−βE e−∆`(E) e−S(E) . (4.17)

At this point the higher genus generalization should be quite obvious. We can introduce
mirror slits which either connect the right bra to the left ket, or the left bra to the right
ket. For instance, at g = 2 one contributing geometry is

g = 2 geometry

ket R

ket L

OL

bra L

bra R

OR

identify

(4.18)

The crotches still cling to the horizon (3.20), giving them an action e−S(E), and their
temporal locations are still zero modes. Thus we almost trivially recover the prediction (4.5)

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
g
∼ T 2g−1

∫ ∞
Λg

dE e−βE e−∆`(E) e−(2g−1)S(E) . (4.19)

We remark that we can also think about fixed time slices of the double-cone as fixed
time slices of an eternal traversable wormhole [72]. We furthermore note that for g > 1

46For instance in (3.25) this also corresponds with moving all crotches up simultaneously, or rotating the
right side relative to the left side.
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there are configurations in (4.13) where one of the slits associated with the extra crotches
intersects with the slit that ends on the asymptotic boundary, as shown here:

g = 2 geometry

ket R

ket L

OL

bra L

bra R

OR

identify

(4.20)

One checks that this indeed also makes a smooth higher genus geometry. So there are
geometries where the probe particle goes through slits, and geometries where it does not.
For g > 1, precisely 1/2 of the geometries have the particle going through some slit. One
way to appreciate this is that when we draw 2g crotches on the double cone with a certain
time ordering, we are supposed to connect subsequent crotches by slits. But because of the
(approximate for finite β) rotation symmetry, this means that for any choice of 2g crotch
times ti we have two options; namely we first choose one crotch and connect it to either
the next, or to the previous crotch. This fixes how to connect the others. See footnote 37.

It would be interesting to understand what the physical implications are of the particle
going through slits or not, naively it appears to be quite harmless, but dynamical matter
might not behave as nicely around the crotches.

5 Gravitational matrix elements

As a third application of these slit geometries for Lorentzian physics, let us consider West-
Coast replica wormholes [12]. In that paper they consider the following entangled state as
function of k

|Ψ〉 =
k∑
i=1
|i〉grav ⊗ |i〉ref , (5.1)

where |i〉grav is a state associated with a black hole with EOW brane of mass ∆ and flavor
i behind the horizon, with a Euclidean preparation time β/2 which fixes the temperature
of the black hole. More in particular, they consider JT gravity with action

exp
(

S0χ+ 1
2

∫
d2x
√
gΦ(R+ 2) +

∫
asym

du
√
hΦ(K − 1)−∆

∫
brane

du
√
h

)
. (5.2)

The real-time EOW brane geometry associated with a pure state |i〉grav 〈i| was described
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in detail in [73]

ρgrav = |i〉grav 〈i| ⇔

t = +∞

t = −∞

σ = π

i

i

T = −π/2

T = +π/2

(5.3)

Here the metric and dilaton are the same as in (4.9). The EOW brane trajectory is known
explicitly47

cos(σ)
cos(T ) = ∆

(∆2 + E)1/2 , (5.4)

but in the regime where this EOW matter particle is just a probe ∆� E1/2, this simplifies
to σ = π/2.

To understand a bit better how this Lorentzian geometry is related with the Euclidean
preparation we can think about computing some real-time observable in the pure state (5.3)

Tr(ρgravO) = 〈i| O |i〉grav (5.5)

We can think of this path integral as consisting of three parts. The first piece is a Euclidean
preparation followed by back-in-time evolution to t = −∞, which we associate with the
ket. Then there is the real-time geometry (5.3) which goes from t = −∞ to t = +∞ and
in which we can carry out all experiments and measurements, in this case measuring O.
Finally in order to implement the bra (or final state) there is back-in-time evolution from
t = +∞ to zero, where one glues onto the second Euclidean preparation region. For the
purposes of this discussion we want to make the choice that no topology change can occur
in the preparation regions, or conversely that all of the topology change is restricted to
occur in the real-time geometry (5.3), which interpolates between some initial and some
final configurations at t = −∞ respectively t = +∞.

The point of [12] is that, despite appearances, states |i〉grav and |j〉grav with i 6= j are
not orthogonal (or not independent). In realistic theories of quantum gravity (which are
not dual to ensembles but to individual systems [34, 52, 74]) this means that there are
dynamical processes happening in the real-time geometry (5.3) which change the flavor of
the brane behind the horizon [75], such that 〈i|j〉grav 6= 0.

47We are using the same global AdS2 coordinates as in (4.9) but with X → T . We appologize to the
reader if this creates confusion.
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The model (5.2) is too crude to directly see such non-zero overlaps.48 Instead, this
model of gravity is an ensemble of theories, and it realizes the next best thing, namely the
expectation value of off-diagonal matrix elements vanishes 〈i|j〉grav = 0 but their variance
does not 〈i|j〉2grav 6= 0. In the Euclidean setup, this variance (and higher moments) is ex-
plained because of replica wormholes. Here we want to show how slit geometries accomplish
the same feat from a direct Lorentzian point of view.49

When we compute the variance 〈i|j〉2grav and we introduce (as we are used to by now)
mildly singular points in the JT gravity path integral by inserting the identity (2.29), we
can find an exact solution to

√
g(R+ 2) = −4π δ(x− xsing) , (5.6)

by inserting just one crotch on two copies of the geometry (5.3), as follows:

〈i|j〉grav 〈j|i〉grav ⊃

1. slice

2. identify

i

j i

j

(5.7)

Here we can make the double-cover slice on a geodesic that starts on the crotch and ends
(for instance) orthogonally on the EOW brane, effectively splitting the EOW brane in half.
If we make the same slice on two identical copies of this geometry (4.9) (which notably
enforces the ADM energies to be identical E1 = E2 for both copies!) then the configuration
where we make swap-identifications as shown in (5.7) remains a smooth solution with metric
and dilaton exactly (4.9), except for the singular source that we see very close to the crotch.

To compute the classical actions of these configurations, we first note that (because
aside from the crotches nothing changes) the action will be twice the on-shell action (at
fixed energy E) for one matrix element, augmented with the by-now standard contribution
from the crotch(es)

e−S0

∫
dxsing

√
g e−2πΦ(xsing) , Φ(xsing) = E1/2 cos(Tsing)

sin(σsing)
. (5.8)

48In the language of this paper, the slit saddle-point geometries that we are introducing always require
(at least) a second identical copy of the geometry to swap-identify with. One can evolve from an initial
state |i〉 ⊗ |j〉 to the final state |j〉 ⊗ |i〉 by swapping interiors, but not from |i〉 to |j〉, since the total charge
is not conserved. Dynamical branes as in [73] are not sufficient to resolve this, because brane nucleation
creates a pair with total charge zero.

49The contents of this section should be read as a minor improvement on (and application of) earlier
discussions in [12–17].
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The saddle-point equations that result from this have in this case a unique solution, the
crotch(es) are located at the black hole horizon50

d
dxsing

Φ(xsing) = 0 ⇔ Tsing = 0 , σsing = π

2 . (5.9)

Therefore the spacelike region being swapped is the entire black hole interior. It is of course
no accident that this region is identical to the island [76–78] in this scenario [12, 15–17].
Because the crotch is located near the black hole horizon, the suppression of this single-slit
geometry is

e−S(E). (5.10)

As we will see this suppression matches on the nose with the semiclassical limit of the
Euclidean replica wormhole amplitudes in [12].

Before proceeding we note that we should of course also allow configurations with
multiple crotches, creating a series of swaps. In the case of the variance 〈i|j〉2grav, an
even number of crotches results in a new “diagonal” contribution, and an odd number of
crotches results in an “off-diagonal” contribution (with one net swap). These corrections
correspond with higher genus configurations (involving handles) and are subleading in the
regime discussed in [12], but nonetheless they might still be important.

When we compute higher moments of matrix elements, other saddles appear which
are identical in construction as (5.7), except that they involve crotches which are n-fold
covers (2.30). Nothing much changes except that these geometries have all energies equal
E1 = E2 = · · · = En and that the n-cover crotches end up having an on-shell action

e−(n−1)S(E) . (5.11)

These n-cover crotches can also be viewed as a combination of (n−1) standard double-cover
crotches, the distinction is likely semantics.

The computation of the on-shell action is largely a Euclidean exercise, since (asides
from the crotch contributions) the Lorentzian pieces cancel. We present it as an application
of fixed area states [44, 59]. The combination of the two Euclidean preparation regions is
half of a disk with metric

ds2 = dρ2 − 4E sinh(ρ)2dτ2 , Φ = E1/2 cosh(ρ) . (5.12)

Here τ runs from 0 to β on half of the disk. The half disk is cut off at the equator by
a particle following a geodesic trajectory of length `(E) = − log(4E) − 2 log(2ε), which
intersects the boundary with a π/2 angle. Because of those straight angles, Gauss-Bonnet
for this geometry reads

1
2

∫
d2x
√
g R+

∫
asym

du
√
hK = π .

50One could argue that there is a zero mode in the location with volume proportional to β, but we are
not trying to track such subleading factors here. Also notice that the √g = 1/ sin2 σ does not change the
saddle point nor its value.
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Calculating the contributions due to the smooth part of the metric (as for the black hole
in section 2.3) we find that this geometry has a conical singularity which is roughly half as
strong as that for the full disk in (2.8)

√
gR ⊃ (2π − 4E1/2β) δ(x).

Combining the elements this leads to the following on-shell action for each bra-ket combi-
nation

eπE
1/2
e−∆`(E) e−βE ,

with half of the entropy appearing, because we had half of the defect. In total this gives
for the n-replica geometry

Zn ∼ eS0

∫ ∞
Λg

dE e(1−n)πE1/2
e−n∆`(E) e−nβE , (5.13)

which reproduces the exact Euclidean results of [76] after using Stirling on the Gamma
functions.

6 Concluding remarks

Combining the results of section 3 and 4 with (5.13) gives us confidence that we have iden-
tified correctly the moduli space of semiclassical Lorentzian wormhole geometries, which
was the main goal of our work. By itself it is not per se that interesting that one can re-
produce the Euclidean answers by counting only Lorentzian geometries, rather we believe
the interesting question is how. These comparisons, also with the boundary predictions,
are meant to teach us what the rules are for real-time gravity. Our evidence suggest that
this “moduli space of slit geometries” is part of those (universal) rules.

It is noteworthy, and perhaps surprising, that this space does not include any bona-
fide closed baby universes. One reason to have expected this is that closed AdS universes
crunch in real time, as we saw in section 2.2. This being said, we have not ruled out the
possibility to have contributions from closed universes to the path integral when considering
α 6= 0 in (2.29) [18]. However, if they exist, it is likely as off-shell contributions, over which
we have currently little control in general gravity models anyway. Topologically our slit
geometries do have closed cycles, but they are not closed universes propagating in time,
detaching from (and attaching to) parents [5, 6].

To end this work we list some (potentially) doable, interesting open problems.

1. The slit geometries seem to be quite efficient in reproducing “complicated” boundary
predictions. It would be nice to now use them to make new predictions. For instance,
one natural application would be to try and predict the firewall probability in the
setup of [19] at higher genus, and sum that series. There would now be contributions
from geometries which look like (4.15), but where the double-cone is evolved for a
time T1, at which point two t = 0 TFD geometries are glued into the crotches (after
opening them up), and evolved for a time T2 (with T1 + T2 = T ), before gluing the
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TFD in the bra to the TFD in the ket. The length now takes the value `(E, T2),51

hence the TFD can be rejuvenated by any amount of time by wormholes (as in [19]).

2. In similar spirit it might be valuable to revisit bulk reconstruction with these ge-
ometries in mind. One approach would be to use the light-cone construction of [25],
which seems natural for these spacetimes. Or even more low-brow, one could attempt
to compute a semiclassical approximation to the infalling two-point function at all
genus, and (attempt to) sum that series. One could also ask from the more algebraic
point of view how QFTs would behave around such peculiar causal structures.

3. Throughout the text we mentioned that we reproduced the boundary prediction.
Strictly speaking we focused on the semiclassical positive area solutions. However,
we know (see for instance (A.4)) that for the spectral form factor and the two-point
function semiclassically (i.e. high energy) the coefficient of T 2g+1 for g > 0 should
vanish.52

It is plausible that one can account for this cancellation by including the semiclassical
solution at A < 0. To see this note that when going from the A integral to an energy
integral, one goes from a contour on the real axis to one that wraps around the
positive real (energy) axis. Semi-classics on the contour above the axis gives the
results quoted in the main text and following the same analysis, the contour below
the real axis should give (for JT)

∼ T
∫ −√Λg

−∞
AdAe−2βA2 (

Te+2πA−S0
)2g

= −T 2g+1
∫ +∞

Λg
dEe−2βEe−2gS(E) (6.1)

and indeed cancels with the positive area contribution.

However, a more detailed analysis which includes both branches of the spectral den-
sity, and one-loop corrections, should result in replacing e−2gS(E) with the full disk
spectral density ρ0(E)−2g, as in (A.4). Whilst the contributions still cancel at high
energies, we see that the contour in the complex E plane needs to go around the
E = 0 region and we get a non-zero contribution from the key-holed region in the
contour integral similar to [22]. It would be worthwhile to try to work all this out in
detail. Notice that for the double cone g = 0, there are no constraint instantons and
so this issue does not arise and we just get the universal answer.

4. It would be interesting to see the relation between the solution in this paper with the
semiclassical encounter contribution in [22]. In particular, it would be interesting to
compare the boundary to boundary correlation pattern from both sides.

51These geometries do not contribute to the two-point function in the double scaling limit, because the
on shell action of the matter probe e−∆`(E,T2) → 0 when T2 → ∞. It seems natural to gauge fix the
interior length to be the unique purely spatial bulk geodesic in this case. What this choice corresponds to
in the Euclidean setup is unclear, but by construction it is a physical observable, since we are working in a
gauge-fixed setting and within that setting this observable is well-defined.

52We thank Steve Shenker and Douglas Stanford for asking about this.
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5. Finally it would be interesting to understand the first order formulation better, where
one allows non-invertible vielbeins. By enlarging the gauge group of allowed diffeo-
morphisms one can think of such configurations as gauge-equivalent to non-singular
configurations [31].53 In the tractable settings of the 3d Chern-Simons formulation
of AdS3 gravity (or of the 2d BF formulation of JT gravity) allowing crotches naively
would seem to correspond to having contributions from other Euler classes (besides
the maximal one) for the gauge connection. Could one gauge-fix to another set of
connections that is not the Teichmuller component [62, 79, 80]? This approach would
also be natural in defining a canonically quantized theory of gravity that allows for
topology change.
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A Observables in the tau-scaling limit

Here we review and present a derivation of the τ -scaling limit of the spectral form factor as
was done in [81] and expanded on in [22, 23, 82, 83]. The basis idea is to take a Lorentzian
observable, for instance by analytically continuing a Euclidean one, depending on a time
T and sending T to infinity together with eS0 while keeping the ratio τ = T/eS0 fixed.

A.1 Spectral form factor

In [22, 23, 81, 82] it was shown that in this limit the spectral form factor exactly reduces
to the following folding integral

Z(β + iT, β − iT ) =
∫ ∞

0
dE e−2βEmin(T/2π, ρ0(E)) , (A.1)

in which the min function is nothing but Fourier transform of the sine-kernel

ρ(E1, E2) = δ(E1 − E2)ρ0(E)− sin2(πρ0(E)(E1 − E2))
π2(E1 − E2)2 , (A.2)

which is universal for all quantum chaotic system, when the energy E1 and E2 come
close [60]. Doing this folding integral predicts a genus expansion of the spectrum form fac-

53This should be equivalent to the claim we want to make, that including all Lorentzian geometries with
crotch singularities is equivalent to path integrating over all (mostly) Euclidean smooth spacetimes, see
also [18].
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tor with a non-zero radius of convergence, which reproduces the ramp-and plateau struc-
ture [22, 23]

Z(β + iT, β − iT ) = T

4πβ +
∞∑
g=1

Pg−1(β)T 2g+1 , (A.3)

where the degree g − 1 polynomial Pg−1(β) depends on the spectral curve

Pg−1(β) = − 1
(2π)2g+1(2g)(2g + 1)

∮
R

dE ρ0(E)−2g e−2βE . (A.4)

This contour around the real axis R can be reduced to a circle around the origin. In the mi-
crocanonical ensemble, with energy high enough so the path integral is still semiclassically
well controlled, all higher genus contribution cancel with each other, which is consistent
with the fact that microcanonical spectral form factor has a perfect linear ramp [22]. How-
ever, there are some contribution at low enough energy, where the path integral is not
dominant by semiclassical contribution, that give a non-cancelling answer. Those contri-
butions come into play when we integrate over energy.

We aim in section 3.2 to reproduce semiclassical features of (A.4) using Lorentzian
spacetimes. We will only partially succeed in this, in particular we will find the semiclassical
(large E) approximation

Pg−1(β) ∼
∫ ∞

Λg
dE e−2gS(E) e−2βE . (A.5)

For order one or small energies E, the semiclassical approximation in gravity is no longer
reliable, and one has to do the full path integral again.

A.2 Two-point function

In JT gravity the two point function takes the exact form [24–27]

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
(A.6)

=
∫ +∞

−∞
dE1 e

−(β/2+iT )E1

∫ +∞

−∞
dE2 e

−(β/2−iT )E2 ρ(E1, E2) e−S0 Γ(∆± iE1/2
1 ± iE1/2

2 )
22∆+1Γ(2∆) ,

where ρ(E1, E2) is the spectral two-point function of some random matrix theory with a
potential fine-tuned for JT gravity [46, 84]. In the Euclidean gravity calculation, this result
is obtained by summing over wormhole geometries, and matching those results order per
order with the random matrix theory expansion [24–27].

From the point of view of the dual quantum mechanics the shape of this equation
follows from the fact that the theory is chaotic, this implies in some sense both random
matrix statistics for the energies, as well as the ETH ansatz [85, 86] for operator matrix
elements [24, 26, 87–89]. The details require some input from gravity, namely the spectrum
and the kernel for the two-point function [24, 68, 79, 90–94]54

OE1E2OE2E1 = e−S0 Γ(∆± iE1/2
1 ± iE1/2

2 )
22∆+1Γ(2∆) . (A.7)

54We follow the convention of [90] for the signs in the Gamma functions, so this is a product of four
Gamma functions.
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For generalized dilaton gravities this kernel is not known,55 but fortunately here we will
only need its semiclassical approximation, and that we do know (see below). Once this
kernel gets computed on disk level, the genus expansion will work similarly and one will
recover (A.6), but with a different ρ0(E) and operator kernel. This fact also follows from
the boundary ETH prediction.

We want to study the τ -scaling limit of (A.6). The late time Fourier transform in (A.6)
localizes on the least analytic features of ρ(E1, E2)OE1E2OE2E1 as function of ω = E1−E2
(we furthermore introduce 2E = E1 + E2). Those features are universal [84], one ends up
approximating ρ(E1, E2) by the sine kernel

ρ(E1, E2)eff = δ(E1 − E2)ρ0(E)− sin2(πρ0(E)(E1 − E2))
π2(E1 − E2)2 . , (A.8)

and simply evaluates the operator matrix elements on the stationary phase saddle ω = 0
to OEEOEE . Fourier transforming the sine kernel [66] one then arrives at the exact double
scaled answer

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
=
∫ +∞

−∞
dE e−βE min(ρ0(E), T/2π) e−S0 M∆(E) . (A.9)

with

M∆(E) = Γ(∆)2

22∆+1Γ(2∆) Γ(∆± 2iE1/2) (A.10)

the τ -scaled matrix elements. One can also do the ω integral more rigorously without first
approximating OE1E2OE2E1 by its saddle, using contour deformation. The pole at ω = iε
of the sine kernel gives the above contribution, and one checks that the poles from the Γ
functions give contributions that decay in time, which thus indeed do not contribute in
this double scaling limit where T →∞.56

Thus, at fixed energy, we have a sharp ramp-to-plateau transition for the two-point
function as well. But, just like for the spectral form factor [22, 23, 83] this sharp transition
is smoothed out in the canonical ensemble, and we obtain a convergent genus expansion
in Te−S0 . To find that expansion, one can start by modifying the steps between (2.5) and
(2.6) in [23]

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
=
∫ T/2π

0
dρ0

∫ ∞
E(ρ0)

dE e−βE e−S0 M∆(E) . (A.11)

55It was claimed in [27] that this kernel is universal, but one can even see semiclasically that this gives
the wrong answer. The technical reason is that they did not include contributions from the particle winding
around the defects in the gas [47].

56Furthermore, in Euclidean gravity, contributions from the disk topology or from cases where we have
handles on either side of the worldline of the particle (but where the handle does not bridge over the
particle) can also be checked to decay in time, as power laws, see for instance [90, 95, 96]. Only connected
topologies, where wormholes connect both sides of the particle’s worldline (analogous to the Euclidean
geometries contributing to the spectral form factor) survive. This is why we end up with the same kernel
min(ρ0(E), T/2π) in this double scaling limit. To be clear, the contributions that survive are exclusively
those of the third type in figure 17 of [25], for a relation with the SFF geometries see figure 19 in [25].
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Taylor series of functions can be computed by contour integrals around the origin, therefore
we obtain ∫ ∞

E(ρ0)
dE e−βE e−S0 M∆(E)

=
∑
n=0

ρ2n
0

1
2πi

∮
0

dρ0

ρ2n+1
0

∫ ∞
E(ρ0)

dE e−βE e−S0 M∆(E)

= Q∆(β)−
∑
n=0

ρ2n
0

1
2n

1
2πi

∮
0

dE
ρ0(E)2n e

−βE e−S0 M∆(E) , (A.12)

where in the first step we used the fact that this function has only even Taylor coefficients
in ρ0 and in the second step we used integration by parts and defined the n = 0 term as

Q∆(β) =
∫ ∞
E0

dE e−βEe−S0M∆(E) (A.13)

The ρ0 integrals in (A.11) result in the expansion

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
= T

2πQ∆(β)−
∞∑
g>1

(T/2π)2g−1

(2g − 2)(2g − 1)

∮
0

dE
2πi e

−βE M∆(E)
ρ0(E)2g−2eS0

. (A.14)

Let us now see that this formula agrees with the gravitational calculation in the τ -
scaling limit and we can indeed interpret g as the genus. As mentioned above we can focus
on geometries where the wormhole bridges over the particle’s worldline. Using the formulas
from [24], we can write the genus g answer as

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
g

= e−(2g−1)S0

∫ ∞
0

b1db1b2db2Volg−1,2(b1, b2)

×
∫ ∞
−∞

d`e`ψTr,β/2+iT (b1, `)ψTr,β/2−iT (b2, `)e−∆`

(A.15)
It is convenient to write the wavefunctions ψTr as inverse laplace transforms of the trumpet
partition function,

ψTr,β/2−iT (b1, `) =
∫ ∞

0
dEe−(β/2−iT )EψE(`)

∫ i∞

−i∞
dβeβEZTr(β, b1) (A.16)

Plugging this back into (A.15) we see that we have two integrals over b1 and b2, two integrals
over auxiliary temperatures (lets call them β1 and β2), two energy integrals E1 and E2 and
an ` integral. The ` integral gives the usual factor of gamma functions and since we are
interested in large T these should be evaluated at coincident energies E1 = E2. For the
remaining integrals we see that the bi integrals together with the volumes and the trumpet
partition functions give the two boundary partition function Zg−1(β1, β2) at genus g − 1,

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
g

= e−(2g−1)S0

∫ ∞
0

dEe−βE Γ(∆)2Γ(∆± 2iE1/2)
22∆+1Γ(2∆)

× 1
2

∫ ∞
−∞

dω
∫ i∞

−i∞

dβ̃
2πi

∫ ∞
−∞

dT̃
2π e

β̃E+i(T̃−T )ωZg(β̃ + T̃ , β̃ − T̃ ) , (A.17)
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where we went to coordinates 2βi = β̃ ± T̃ . The integral over ω gives a delta function
setting T̃ equal to T and so we arrive at,

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
g

= 1
2

∫ ∞
0

dEe−βE Γ(∆)2Γ(∆± 2iE1/2)
22∆+1Γ(2∆)

∫ i∞

−i∞

dβ̃
2πie

β̃EZg(β̃ + T, β̃ − T ) (A.18)

For the final integral over β̃ we can use the expression in the τ -scaling limit as given in
D.2 in [22], which boils the genus g contribution to the two point function in the τ -scaling
limit down to,

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
g

= − (T/2π)2g−1

(2g − 2)(2g − 1)

∮
0

dE
2πi

e−βE

ρ0(E)2g−2eS0

Γ(∆)2Γ(∆± 2iE1/2)
22∆+1Γ(2∆) (A.19)

This indeed matches exactly with (A.14) and justifies the replacement of n with the geo-
metric quantity g − 1.

B Lightcone gauge calculations in JT gravity

In this appendix, we consider the light-cone gauge formulation of JT gravity [18] for the
geometries of section 3, explaining detailed procedures and discussing some possible sub-
tleties.57 This appendix will contain in particular

1. Formulating the JT path integral in lightcone gauge in section B.1. For this we’ll
use the second order formalism and fix to flat gauge (except at some isolated points),
and present different factors coming out of such gauge choice; namely a ratio of
determinants and a Liouville action.

2. Explaining the moduli space of lightcone diagrams in B.2. In particular we conjecture
the domain of integration by relating it to the closed string lightcone diagrams of [30].

3. Showing that (for the configurations in which we were interested in the main text)
the Liouville action does not contribute significantly in section B.3.

4. Showing that the ratio of determinants becomes independent of T in the tau-scaling
limit T →∞.

57As compared to [18] we add several new ingredients, notably the application to spacetimes with holo-
graphic boundaries (as compared to closed spacetimes in [18]) and the constrained instanton method, which
explains why the JT path integral can pick up contributions from spacetimes with (mildly) singular curva-
ture sources.
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B.1 General set up

Consider the JT path integral over metrics at fixed genus g (and ignore the boundary and
topological part of the JT action for now)

Fg =
∫ Dg

vol(diff) DΦ exp
(1

2

∫
d2x
√
gΦ(R+ 2)

)
(B.1)

We can manipulate this path integral by first putting in constraint instantons, namely we
insert several factors of (2.29) into the path integral. After that, we can gauge-fix the diffeos
by choosing a particular slice of metrics and including the Jacobian. More concretely, we
can fix to a conformal gauge g = e2ω ĝ. After such gauge fixing there is the usual Liouville
term and the action becomes

Fg =
∏
i

1
Vol

∫
dxsing i

√
g

1
2π

∫ +∞

−∞
dAi

∫ +∞

−∞
dαie(2π−iαi)A

∫
d(moduli)× Jacobian

∫
DωDΦ exp

(
− 26IL(ω) + 1

2

∫
d2x

√
ĝΦ
(
R̂− 2∆̂0ω + 2e2ω

)
+ (2π − iαi)Φ(xsing i)

)
(B.2)

One common gauge choice is to fix to Euclidean R̂ = −2 metrics, then we integrate over
the Weil-Petersson moduli and the Jacobian is known, see for instance [46].58 Light-cone
gauge [10] is a different choice where one fixes to flat metrics ĝ with R̂ = 0. The advantage
of this gauge is that there is no complicated fundamental domain, one just integrates over
all light-cone diagrams (as will be discussed more below). It was shown in [28–30] that
those diagrams cover moduli space precisely once.

The disadvantage, when it comes to JT gravity, is that the Jacobian is more compli-
cated, because the JT path integral always localizes on R = −2, such that the solution for
ω is nonzero. In lightcone gauge we can consider ĝ using coordinates dx2 +dy2 and the Ja-
cobian from the gauge-fixing is a scalar determinant,59 this can be thought of as due to the
ghosts that in bosonic string theory cancel 2 of the naively 26 families of oscillator modes.

Importantly, in the usual light-cone formulation [30] all the curvature is coming from
the conformal factor ω and R̂ = 0 everywhere, but in our formulation where we work
with constraint instantons, this is slightly different. Because the Φ(xi) introduce delta
functions in the curvature, it is more convenient to gauge fix to metrics which are flat
everywhere except at these xi. This ensures that the term

√
ĝΦR̂ in (B.2) cancels with the∑

i(2π − iαi)Φ(xi) term. This simplifies the conformal factor ω0 massively, on the saddle
58When gauge-fixing to Euclidean R̂ = −2 metrics ĝ = (dx2 + dy2)/y2, ω0 will localize to 0. Integrate

over ω and dilaton Φ gives ∫
F

d(Weil-Petersson)
det
(
−∆̂1 + 2

)
det
(
−∆̂0 + 2

) , (B.3)

where ∆̂0 is the scalar Laplacian y2(∂2
x + ∂2

y) on Euclidean AdS2. In the Weil-Petersson setup one would
not have introduced the sources in (B.2) of course, those were introduced with lightcone gauge in mind.

59Alternatively, the square root of the vector Laplacian is just the scalar determinant det
(
−∆̂1

)1/2
=

det
(
−∆̂0

)
.
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αi = 0 it becomes identical for all diagrams that we consider in section 3 (we discuss this
in more detail in section B.4.2)

e2ω0 = 1
sinh(x)2 . (B.4)

After doing the Φ path integral which localizes on metrics g satisfying (2.30) we are left
with a factor60

∫
crotches at xi

d(lightcone)
det
(
−∆̂0

)
det
(
−∆̂0 + e2ω0

) e−26IL(ω0) , (B.5)

where we left implicit the integrals over xi, Ai for clarity. The integral over αi has been
done using a saddle point approximation which sets αi = 0, because in the main text we
were interested in classical solutions. Off-shell, αi 6= 0 could be relevant [18], but we will
not consider it here (see also the discussion section 6).

B.2 Moduli space

We start this section by explaining what’s our coordinate system of the moduli space. We
will show that the positions of the crotches gives a natural triangulation of moduli space,
and discuss their measure. This should be viewed as a conjecture by an analog between
the light-cone moduli for closed strings [30] and our diagrams in section 3.

We explain this by treating the g = 2 example (3.25). The g = 2 crotch spacetimes are
characterized by 4 interaction times t1,i < t1,f < t2,i < t2,f at which crotches are inserted61

genus 2

t1,i

t1,f
t2,i

t2,f t1,i

t1,f

t2,i

t2,f

(B.6)

The relation of this geometry with (3.25) is explained in appendix C. The locations of the
interaction vertices on this diagrams are fixed by several constraints. The constraint that
the lengths and curvatures on the slits in (B.16) matches, fixes tj,f−tj,i and also constrains
the radial coordinates to satisfy

rn,i + r̄n,i = 0 , rn,i < 0 and rn,f + r̄n,f = 0 , rn,f < 0 . (B.7)
60The ratio of determinants compares a massless scalar particle on the light-cone diagram with a massless

particle on the same light-cone diagram but with some nontrivial potential e2ω0 .
61One can imagine configurations with t2,i > t2,f , but those are actually indistinguishable from some

of the configurations that we count here. Indeed, upon exchanging r2,i and r2,f as well as t2,i and t2,f
one obtains an identical Riemann surface. Therefore we can limit ourselves to the ordering discussed here
t1,i < t1,f < t2,i < t2,f .
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Here the un-barred coordinates are in the right-wedge of the spacetime. We glue the black
dotted lines to each others as well as the blue ones, the orientation (arrows) is fixed by
orientability of the resulting geometry, see also appendix C. This orientation forces us to
order interaction times oppositely in the two wedges. We can choose thus for instance
T − tint for the left interaction times and tint for the right interaction times. That one
variable tint labels the left-and right times of the crotch (instead of having two independent
times) is part of the conjectured analogy with the lightcone diagrams of [30] which we will
now detail.62

Now we try to conjecture a integration measure and fundamental domain of our dia-
gram, by viewing them as open string diagrams [30]. Given the constraints on the orien-
tation in (B.6) we are led to believe that the analogy with lightcone diagrams works by
thinking of the left-and right wedges of the double cone as two separate open strings, which
one obtains by cutting (B.6) on the horizon.63

We then have two open string diagrams of ∞ (spatial) length (since the conformally
flat r coordinate runs from −∞ to 0 in the right wedge) which are each others mirrored
image (to make this analogy we have here flipped the left wedge, such that both sides share
common interaction times tint)

t1,i

t1,f

t2,i

t2,f

(B.8)

We should think of this as just a special case of two open strings with identical lengths
a/2 with a→∞. As mentioned in [30], the moduli space and measure of such open string
diagrams can be obtained by “cutting open” closed string lightcone diagrams. Assuming
that this analogy we’ve made is correct, we will follow this procedure to find the measure
and integration range on our diagrams. Let us therefore briefly recap the closed string
lightcone moduli.

Associated with every extra wormhole (the top hole in the picture below) there are 6
extra light-cone moduli. The two obvious ones are the interaction times ti and tf . Besides
this there is the circumference a1 of one of the closed strings during the period between
the interactions (the second modulus is fixed a2 = a − a1 because the total length is a
conserved quantity). The remaining 3 moduli are twists τ , τ1 and τ2 along the three closed

62In the language of Louko-Sorkin [11] light-cone gauge is indeed like choosing a global time coordinate
(or Morse function). We are leaving a twist freedom [21] implicit here that shifts the origins of left-and
right times relative with respect to each other.

63This seems in phase with the fact that also in the computation of the determinants on the double cone
in appendix B.4 one can treat both wedges as essentially decoupled.
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strings that are involved.

τ1 τ2

τ

(B.9)

As was shown in [28–30], to cover the moduli space of metrics modulo diffeos, one should
count all such closed string diagrams once with the flat measure

dti dtf da1 dτ dτ1 dτ2 . (B.10)

To map this to open string moduli one cuts these diagrams along the seem (which
means we follow a timelike geodesic). Let us first consider τ1 = τ2 = 0. Then open string
diagrams with τ = 0 respectively finite τ are obtained by cutting the two diagrams below
on the red lines (the seems)

a1

τ

cut→ (B.11)

We see that the role of the moduli a1 and τ is to determine the spatial locations ri and r̄i
of the crotches on the open string (with the current choice τ1 = τ2 = 0 the final locations
of the crotches are identical to the initial ones). One recovers a flat measure on ri and r̄i

ri = a1
2 + τ , r̄i = a1

2 − τ ⇒ da1 dτ = dri dr̄i . (B.12)

In our solution space αi = 0 there are only AdS2 solutions when ri + r̄i = 0 as mentioned
in (B.7), thus one can think of the JT path integral over Φ as introducing a factor δ(ri+ r̄i).

What is left is to determine the roles of τ1 and τ2 in terms of open strings. Consider
first the axial twists τ1 + τ2 = 0. One outgoing open string gets shortened by τ1 − τ2 and
the other has increased its length by τ1− τ2 = L. AdS2 solutions (for αi = 0) exist only for
L = 0 so one can think of the JT path integral over Φ as introducing a factor δ(L). The
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final mode τ1 = τ2 has the effect of tilting the slit, as we see below

cut→ (B.13)

One finds dτ1 dτ2 = drf dL and so combining all the elements we see that the measure for
our crotches-on-the-double-cone diagrams of section 3 is flat

d(moduli) = dti dtf dri drf . (B.14)

We were told [28–30] to count all of these diagrams to cover the moduli space of metrics
modulo diffeos once. This flat measure was expected intuitively for the locations where
baby universes are born and die in for instance [5, 6]. The Φ path integral only fires when
the coordinates of these singularities in the lightcone diagrams match with the coordinates
xsing i of the dilaton sources in (B.2). The final result is therefore simply an integral over
possible locations xsing i of crotches as we did in the main text.

Of course, in principle one still has to deal with the ratio of determinants and the Liou-
ville action in (B.5) as an extra factor in the integrand. In the remainder of this appendix
we will show that neither contributes significantly for the purpose of our discussion in the
main text.

B.3 Liouville action

First we discuss the Liouville factor in B.5. For the AdS double cone geometry, we have
the metric64

ds2 = 1
sinh(r)2

[
dr2 − (1 + iε cosh(r) sgn(r))2dt2

]
= 1

sinh(r)2 dŝ2 . (B.16)

Note that we put the iε prescription explicitly in this section in order to choose the right
branch when calculating

√
−ĝ. The allowability condition [11, 33] tells us that the branch

choice one should make is√
−ĝ = 1 + iε cosh(r) , r > 0 (right)

= −1 + iε cosh(r) , r < 0 (left)
(B.17)

64Another coordinate system we use in the main text is (3.1)

ds2 = dρ2 − sinh(ρ+ iε)2dt2 , t ∼ t+ T . (B.15)

They are equivalent upon the coordinate transformation sinh(ρ) = −1/ sinh(r). We have absorbed
2E1/2T → T . Since we are also interested in semiclassical black holes E � 1 this redefinition is harmless
for our purposes here.
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We should compute the Liouville action in both wedges and sum them. For convenience,
we redefine the radial coordinate in the left wedge r̃ = −r > 0. We can thus write out the
Liouville action as65

IL(ω0) = 1
2

∫ T

0
dt
∫ ∞

0
dr
√
−ĝ (ĝµν∂µω0∂νω0 + R̂ ω0) (right)

+ 1
2

∫ T

0
dt
∫ ∞

0
dr̃
√
−ĝ (ĝµν∂µω0∂νω0 + R̂ ω0) (left) (B.18)

The conformal factor is identical in both wedges, indeed ω0 = − ln sinh(r) (right) and
ω0 = − ln sinh(r̃) (left). However

√
−ĝ is opposite in both wedges. We have furthermore√

−ĝR̂ = −2iε cosh(r)sgn(r) . (B.19)

One can then safely take ε→ 0 everywhere. Because of the opposite signs of
√
−ĝ in both

wedges, one finds that the total Liouville action vanishes on the double cone

IL(ω0) = 0 . (B.20)

On the crotch geometries one finds some mild dependence on ω0(rsing i) from the source
terms in

√
ĝR̂, but it does not significantly affect the classical locations of the crotches nor

their on-shell actions, both of which were important in the main text. We expect to have
similarly mild dependence on rsing i from the ratio of determinants in (B.5), to which we
turn next.

The key point is that there is no time T dependence coming out of either one, in the
tau-scaling limit where T →∞.

B.4 Determinants

Here we compute the ratio of determinants that appears as integration kernel in (B.5) for
the spacetimes relevant in section 3. In this section we always work with the flat metric ĝ,
we’ll drop all the hats for notational comfort below.

B.4.1 Warming up with the double-cone

We start by discussing the calculation of determinants on the double cone geometry, when
there are no crotches. The metric is (B.16) and with ∆ the Laplacian on this metric we
want to show that

det(−∆)
det
(
−∆ + 2/ sinh2(r)

) , −∆ = −∂2
r + ∂2

t , (B.21)

goes to 1 for T → ∞, confirming that this gives no contributions in our double scaled
regime of interest. Whilst we have not explicitly indicated the iε regularization of (B.16)
at r = ±∞ in (B.21), it will play an important role.

65There are no boundary terms because we have Dirichlet boundary conditions on ω0 and since R̂ is flat
(except at isolated points) the constant r slices close to the boundary have K̂ = 0.
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This problem can be tackled in the most naive way, by simply computing the spectra
λ1 and λ2 of respectively the differential operators −∆ and −∆+2/ sinh2(r) and explicitly
computing

det(−∆)
det
(
−∆ + 2/ sinh2(r)

) = exp
(∑

i

log(λ1 i)−
∑
j

log(λ2 j)
)
. (B.22)

Both determinants are to be computed using Dirichlet boundary conditions because we fix
the metric and dilaton fluctuations to vanish at the holographic boundaries r = 0. We
will show below that, due to the iε regularization, the eigenfunctions of both operators
of interest will exponentially decay towards the would-be horizon r = ±∞. This means
that on this flat double cone (B.16), there are independent modes in the left-and right
wedges, there is no additional boundary condition or matching condition to be enforced at
the would-be horizons. The determinants then factorize in the product of determinants in
each wedges. In each wedge we can then compute the ratio first in Euclidean, and then
analytically continue respectively as β = ±iT , with the sign being determined by that
in (B.16) [33].

To solve for the eigenvalues λ1,j and λ2,j , note that the potential doesn’t depends on
t. So we can use separation of variables

φn,k(r, τ) = e
i 2π
β
nτ
fk(r) (B.23)

For the first determinant we have with k non-negative (otherwise we have an over-complete
basis)

− ∂2
rfk(r) = k2fk(r) , λn,k = k2 +

(2πn
β

)2
, (B.24)

imposing vanishing boundary condition at r = 0, we have the orthonormal solutions

fk(r) =
√

2
π

sin(kr) . (B.25)

Similarly for the second determinant, for the differential equation

(−∂2
r + 2/ sinh2(r))fk(r) = k2fk(r) , λn,k = k2 +

(2πn
β

)2
, (B.26)

we have orthonormal solutions that satisfy Dirichlet boundary conditions at r = 0 with k
non-negative

fk(r) =
√

2
π

coth(r) sin(kr)− k cos(kr)
(1 + k2)1/2 . (B.27)

These are related with Mehler functions as fk(r) = sinh(r)1/2P
−3/2
−1/2+ik(cosh(r)). Their

orthonormality relation is an example of the Mehler-Fock transformation, a sort of similar
transform as the Kontrovich-Lebedev transform for modified Bessel functions.

For every finite r with ε → 0 the differential equations are as above, and so are the
wavefunctions. This fixes the spectrum to λn,k = k2 + (2πn/β2). Now we should look at
the opposite regime |r| � ln(1/ε) and see if perhaps the behavior of the wavefunctions in
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this regime further restricts the spectrum, for instance by demanding a matching condition
between both wedges. This turns out not to be the case. The potential in the bottom
determinant can be ignored in this regime, and both differential equations reduce to

(λn,k + ∂2
r + ∂r)φn,k(r, τ) = 0 , (B.28)

the solutions of which are exponentially decaying towards |r| = ∞. So we require no
matching condition, or any extra boundary condition at the horizon. The implications of
this were discussed below (B.22)

Both modes (B.25) and (B.27) have continuous spectra, because of the infinite volume
of spacetime. To compute their spectra reliably, as is conventional for quantum mechanical
systems in infinite space, we should start with a finite space and then take the volume to
∞. The volume divergences will cancel in our ratio (B.21). Thus we consider a Dirichlet
cutoff at r = R ∼ log(1/ε) and eventually take R→∞.

For the first set of modes (B.25) the quantization condition is

sin(kR) = 0 ⇒ km = m
π

R
. (B.29)

The spectrum in the limit R→∞ follows from Newton’s definition of integrals
∞∑
m=0
→
∫ ∞

0
dk 1

dk/dm , (B.30)

and we recover the known volume scaling of the density of states for quantum mechanics
on a line

ρ1(k) = 1
dk/dm = 1

km+1 − km
= R

π
. (B.31)

For the second set of modes (B.27) the quantization condition is at large R

cos(kR)k − sin(kR) coth(R) = 0 ⇒ tan(kmR) = km , (B.32)

The density of states is again determined via (B.30). Notice that we can write

δk = km+1 − km = tan(km+1R)− tan(kmR) = tan(δkR)(1 + kmkm+1) , (B.33)

in which we used the trigonometric identity for tan(α− β). Now for large R, note that the
solution is such that δkR ∼ π. So we have

δk = (δkR− π)(1 + k(k + δk)) ⇒ ρ2(k) = R

π
− 1
π

1
k2 + 1 (B.34)

We are now ready to compute the ratio of determinants (B.16), using (B.22) (this is
for just one wedge at the moment)

det(−∆)
det
(
−∆ + 2/ sinh2(r)

) = exp
( +∞∑
n=−∞

∫ ∞
0

dk(ρ1(k)− ρ2(k)) log
(
k2 +

(2πn
β

)2))

= exp
( 1
π

+∞∑
n=−∞

∫ ∞
0

dk 1
k2 + 1 log

(
k2 +

(2πn
β

)2))
(B.35)

= exp
( 1
π

+∞∑
n=−∞

log
(

1 + 2π|n|
β

))
. (B.36)
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Using Hurwitz Zeta function regularization we can compute the infinite product

∞∏
n=1

(an+ b) = a−1/2−b/a
√

2π
Γ(1 + b/a) ⇒

∞∏
n=1

(
1 + 2πn

β

)
=
(2π
β

)−1/2−β/2π √
2π

Γ(1 + β/2π)
(B.37)

Using Stirling for large β this reduces to eβ/2π.66 Analytically continuing β = ±iT and
multiplying the ratio of determinants from both wedges, we confirm that the ratio exactly
cancels in our double scaling limit where T →∞, completing the proof

det(−∆)
det
(
−∆ + 2/ sinh2(r)

) → e−iT/π2+iT/π2 = 1 . (B.39)

B.4.2 Slit geometries

To calculate the ratio of determinants on geometry with slits, we fist need to check the
solution for the conformal factor e2ω0 . The metric is everywhere (B.16)

ds2 = dr2 + dx2

sinh(r)2 , x ∼ x+ β , (B.40)

where eventually one analytically continues β = iT . The solution

e2ω0 = 1
sinh(r)2 . (B.41)

for the conformal factor holds on all crotch geometries as we will now show.
As mentioned before, the light-cone diagrams we are interested have the property√

ĝR̂ = −4π
∑

crotches
δ(x− xi)δ(r − ri) , (B.42)

and by definition of course g = e2ω0 ĝ. Solutions to this are double covers of flat space, so
if we write

ds2 = dr2 + dx2 = dz dz̄ , (B.43)

then a crotch at xc = 0 can be obtained by doing the coordinate transformation w2 =
i(rc − z) where w = x + iy . Notice that when we travel around w = 0 and w picks
up an argument 2π that z picks up an argument 4π, or more appropriately the z plane
covers only half of the w plane, since turning 2π around the crotch in z coordinates is
only half a rotation around the origin in the complex w plane, and we need to make a
second rotation to came back to our starting point. The full geometry, obviously, is most
accurately described using the uniformizing w coordinate. If we use the z coordinates, the

66One might be worried about Stokes phenomena, we can also first analytically continue β = ±iT , include
the contribution from the other wedge and take T →∞ in the end. By doing that we get(2π

iT

)− 1
2−

iT
2π

√
2π

Γ
(
1 + iT

2π

) ( 2π
eiπiT

)− 1
2−

eiπiT
2π

√
2π

Γ
(
1 + eiπiT

2π

) . (B.38)

For large T this behaves like 1− e−T → 1.
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geometry is flat locally everywhere, but there is a square root branchcut that we can lay
from rc to rc + i∞ and if we go through it we (smoothly) go onto the second sheet. To
study the geometry in w coordinates we should consider the regularized version

ds2 = 4(x2 + y2 + γ)(dx2 + dy2) , γ → 0 , (B.44)

which has Re(
√
ĝ) > 0 everywhere. Note that this metric is exactly flat (and in particular

non-singular) at the origin. Using this metric one recovers indeed the delta function source
in the full geometry

√
ĝR̂ dx dy = −4π 1

π

γ

(x2 + y2 + γ)2 dx dy → −4π δ(x)δ(y) dx dy . (B.45)

We have for this regularized metric

∆̂ = ∂w∂w̄

|w|2 + γ
= |z − zc|
|z − zc|+ γ

4∂z∂z̄ , (B.46)

which vanishes when z = zc but equals the flat space Laplacian elsewhere. The JT action
evaluated on the light-cone metrics is

1
2

∫
d2w
√
gΦ(R+ 2) + 2π

∑
crotches

Φ(wc) =
∫

d2w
√
ĝΦ(e2ω0 − ∆̂ω0) , (B.47)

such that the dilaton path integral localizes to solutions which satisfy√
ĝ (e2ω0 − ∆̂ω0) = 0 . (B.48)

Our proposed solution exactly satisfies 4∂z∂z̄ω0 = e2ω0 everywhere so this equation is
satisfied if √

ĝ
γ

|w|2 + γ
= 0 , (B.49)

which is the case because
√
ĝ = 4(|w|2 + γ) so indeed this goes to zero everywhere. So

because
√
ĝ vanishes on the crotches, our solution holds everywhere.

So we are being asked to compute a ratio of determinants with a “simple” and universal
potential67

det(−∆)
det
(
−∆ + 2/ sinh(r)2

) . (B.52)

67For contrast, without a constrained instanton construction responsible for source terms in the ac-
tion [18], the JT path integral localizes on Euclidean √g(R+ 2) = 0 surfaces and this same equation would
become √

ĝ (e2ω0 − ∆̂ω0) + 2π
∑

crotches

δ(x− xc)δ(y − yc) = 0 . (B.50)

Locally near each crotch this admits the familiar (and singular) solution

ω0 = 1
2 log |w − wc|2 . (B.51)

In this scenario the evaluation of the determinants looks utterly hopeless since the potential term would
depend sensitively on the locations of the crotches via this ω0, and would be quite complicated.
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In the remainder of this section we want to argue that this becomes independent of T
for T → ∞ (our regime of interest in the main text). The argument is quite simple.
Each determinant can be written as the exponential of a single particle path integral on
the slit geometry. Time dependence comes from paths that wind around at least two
crotches, those depend on the time differences between the crotches. However, for late
times the length of those paths is proportional to T , and thus extremely large. The cluster
decomposition principle says that the contribution of long paths in quantum mechanics
decays to zero, if the length of the path goes to infinity. Thus those paths actually do
not end up contributing to the determinants for late times. As a result, the ratio of
determinants becomes T independent.

In the remainder we make this more concrete, by following these steps

1. We can expand the ratio of determinants perturbatively in V (r), the task is then to
compute the free propagator on the slit geometries, which is a single particle path
integral.

2. Cluster decomposition still holds on the slit geometries, this means that contributions
from long paths are suppressed. For late times, all paths that are time-dependent
are long. So in the double scaling limit there is no time dependence.

3. Off-shell, shorter paths can produce r dependence. In the main text though, we
consider on-shell geometries where the crotches sit at r = ∞. This means that all
short paths are in a region where essentially V (r) = 0. This also holds for the long
paths. So on-shell the determinants cancel.

For the first step we use the cluster expansion

det(−∆)
det(−∆ + V (r)) = exp

(
Tr log(−∆)− Tr log(−∆ + V (r))

)
= exp

(
−
∫ ∞

0

dt
t

(
Tr e∆t − Tr e(∆−V (r))t

))
= exp

( ∞∑
m=1

(−1)m

m

∫ ∞
0

dt1· · ·
∫ ∞

0
dtm Tr e∆t1V . . . e∆tmV

)
. (B.53)

Here the trace is the trace over the single particle Hilbert space68

TrO =
∫

dx 〈x| O |x〉 (B.55)

Inserting complete sets of states we get

Tr e∆t1V . . . e∆tmV =
∫

dx1 V (x1)· · ·
∫

dxm V (xm)K(t1, x1, x2) . . .K(tm, xm, x1) (B.56)

68For the double cone without crotches one can also write very explicitly

TrO =
+∞∑

n=−∞

∫ ∞
0

dk ρ1(k) 〈n, k| O |n, k〉 =
∏
i

Oλi . (B.54)

This reduces to (B.55) after inserting a complete set of position states and using the fact that the wave-
functions 〈x|n, k〉 = φn,k(x) are complete.
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This features the heat kernel on the slit geometry.

K(t, xi, xf ) = 〈xi| e∆t |xf 〉 (B.57)

We can do the ti integrals finally to get propagators∫ ∞
0

dtK(t, xi, xf ) = G(xi, xf ) = 〈xi|
1
−∆ |xf 〉 . (B.58)

So we arrive at the following Feynman diagram decomposition of our ratio of determinants

det(−∆)
det(−∆ + V (r)) = exp

( ∞∑
m=1

(−1)m

m

∫
dx1 . . .

∫
dxmG(x1, x2)V (x2) . . . G(xm, x1)V (x1)

)
,

(B.59)
so we have free propagation of particles on our geometries, but they can scatter off the
potential, which gives rise to Feynman weights V (x) for a scattering at position x.

Now we want to compute these propagators. As a warm up let’s consider the double
cone again

K(t, xi, xf ) =
+∞∑

n=−∞

∫ ∞
0

dk ρ1(k)φn,k(xi)∗ φn,k(xf ) exp
(
− k2t− 4π2n2

β2 t

)

=
+∞∑

w=−∞

β

4πt exp
(
− `w(xi, xf )2

4t

)
+ images , (B.60)

where `w(xi, xf )2 = (ri − rf )2 + (xi − xf + wβ)2 we used Poisson summation and did the
integral over k explicitly. The images are three other identical expressions where we choose
all signs for ±ri and ±rf and add a sign prefactor ±±. This corresponds with the image
charges that implement the Dirichlet boundary conditions at r = 0. From this we find

G(xi, xf ) = β

2π

+∞∑
w=−∞

log
(
`w(x̄i, xf )2/`w(xi, xf )2

)
(B.61)

with `w(x̄i, xf ) the length of the geodesic from an imagine charge at x̄i. We want to argue
that the semiclassical generalization of this is

G(xi, xf ) ∼
∑
γ

log(`γ(x̄i, xf )/`γ(xi, xf )) , (B.62)

with γ all topologically inequivalent trajectories, and `γ(xi, xf ) the length of the shortest
path of a certain topology. Before demonstrating (B.62), let us explain why this would be
useful. For that, we would like to show that the contribution of a certain class of paths
γ vanishes when `γ(xi, xf ) → ∞ regardless of the specific dependence of `γ(xi, xf ) on the
coordinates xi and xf and the moduli of the path. By definition

`γ(x̄i, xf ) ≤ `γ(xi, xf ) + `(xi, x̄i) , `(xi, x̄i) = 2ri , (B.63)

such that indeed for `γ(xi, xf )→∞ for fixed xi

log(`γ(x̄i, xf )/`γ(xi, xf )) ≤ log(1 + 2ri/`γ(xi, xf )))→ 0 . (B.64)

– 55 –



J
H
E
P
1
0
(
2
0
2
3
)
0
0
5

This is essentially the cluster decomposition principle: contributions from long paths are
suppressed. Thus if we show that (B.62) holds true, we have shown essentially that in the
double scaling limit the ratio of determinants is time-independent. The reason is that time
dependence can only come from paths which wind around at least two crotches, this would
depend on the time difference between the crotches. But in the double scaling limit T →∞
essentially all configurations have all crotches separated by order one fractions of T , thus
paths winding around multiple crotches have lengths of order T . In other words, all those
paths are extremely long, and thus their contributions to the propagator can be neglected.
This means that there is essentially no T dependence in the ratio of determinants.

On more complicated geometries it is no longer practical to compute (B.60) exactly,
however what we can do is find a semiclassical approximation, which looks a lot like (B.60).
For this we can use the Gutzwiller trace formula [60] (when the spacetime is a hyperbolic
Riemann surface, this is the Selberg trace formula), which comes down to approximating
a quantum mechanical path integral by (a sum of all) classical saddles, with a one-loop
determinant.

For a massive particle the path integral for the propagator reads

G(xi, xf ) =
∫ xf

xi

Dx(σ) exp
(
−m

∫ 1

0
dσ
(
gµν

dxµ

dσ
dxν

dσ

)1/2)
∼
∑
γ

e−m`γ(xi,xf ) , (B.65)

where the second piece is the Gutzwiller trace approximation and `γ(xi, xf ) is the length of
a geodesic γ connecting xi and xf . Baring focal points in the geometry, we should think of
γ in Euclidean signature as labeling topologically distinct classes of paths, like winding w.
This organization of the path integral into topologically distinct paths can be done before
computing anything.

Consider now our slit geometries. In the single particle path integral (B.65) there will
for instance be contributions from paths x(σ) that wind around crotches several times,
go through slits etcetera. The path integral decomposes into a sum over γ labeling topo-
logically distinct classes of paths (paths in one class are homologous). A novelty of slit
geometries is that many classes do not contain a geodesic. Geodesics in flat space are
straight lines, thus geodesics do not wind around crotches for instance. An example of
such a class γ of paths x(σ) is

class of paths x(σ) ⊂ γ without geodesic

slit

xi
xf

x(σ)

(B.66)

Nevertheless, the path integral (B.65) obviously gets contributions from all classes. Even
for classes γ without a true geodesic, the path integral (B.65) restricted to paths x(σ) ⊂ γ
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would still be dominated by the paths with the shortest length, because the action m`(x(σ))
strongly favors short paths. Because of this the contribution from a class γ to (B.65)
vanishes when the length of the shortest path in a class diverges `γ(xi, xf )→∞.

We now argue that this remains true for m2 = 0, by arguing that a version of the
Gutzwiller trace approximation on slit geometries gives (B.62), which we’ve already showed
vanishes for `γ(xi, xf )→∞. For this we will use the equivalent Polyakov-type action69

G(xi, xf ) =
∫ xf

xi

Dx(σ)
∫
De(σ) exp

(
−
∫ 1

0
dσ
( 1

4egµν
dxµ

dσ
dxν

dσ + em2
))

∼
∑
γ

∫ ∞
0

de
e

exp
(
− `γ(xi, xf )2

4e + em2
)
∼
∑
γ

e−m`γ(xi,xf ) . (B.67)

The second line is true for geodesic trajectories, where the classical solution is ds/dσ =
`γ(xi, xf ) and we have gauge-fixed e(σ) to its zero mode. The first equation on the second
line remains true for m2 = 0

G(xi, xf ) ∼
∑
γ

∫ ∞
0

de
e

exp
(
− `γ(xi, xf )2

4e

)
, (B.68)

and essentially reproduces (B.60).
We want to prove that this remains true for any class of trajectories γ in which there

is no geodesic. Consider thereto trajectories of the following type, for instance

almost everywhere geodesic dominant path

x0

xi
xf

xi
xf

`1 `2 `γ 1
`γ 2 (B.69)

These trajectories are geodesic almost everywhere, except that at certain special points σ0
the particle gets a kick. Such kicks remind us of the singularities we had to allow in the
geometry itself in the main text. We can take them into account for particles in the same
way. For this it is most convenient to use the phase space path integral formulation (and
specialize to our flat metric) for the propagator, with action70

exp
(
−
∫ 1

0
dσΠr∂σr + Πτ∂στ − e(Π2

τ + Π2
r −m2)

)
(B.70)

Using similar methods as in the main text we can introduce charges Qr and Qτ

1 =
∫ 1

0
dσ0

∫ ∞
0

dr0
1

2πi

∫ +i∞

−i∞
dQr e−Qrr(σ0)+Qrr0 , (B.71)

69Integrating out e(σ) reproduces the earlier Nambu-Goto type action, and the zero mode of e(σ) is
integrated only from 0 to ∞ because we compute the propagator, not matrix elements of the WdW con-
straint [2, 3].

70Notice the WdW Hamiltonian and its relation with the Laplacian ∆ of targetspace [2, 3]. If we integrate
out r and τ the momenta localize to constants and we see indeed that the non-zero Fourier modes of e(σ)
are redundant.
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which introduce kinks in the particle trajectory. Indeed, classically the momentum jumps

Πr(σ0 + ε) = Qr + Πr(σ0 − ε) , Πr = 1
2e∂σr , (B.72)

We consider fixed Qr and will vary it only in the end. On-shell, x0 = x(σ0). We denote the
length of a straight trajectory between xi and x0 by `1, and that of the straight trajectory
between x0 and xf by `2, then with ds/dσ = `1 + `2 we have σ0 = `1/(`1 + `2). Those
straight trajectories are

x1 = xi + σ

σ0
(x0 − xi) , x2 = x0 + σ − σ0

1− σ0
(xf − x0) , (B.73)

Resulting in the momenta

Πr 1 = 1
2eσ0

(r0 − r1) , Πr 2 = 1
2e(1− σ0)(rf − r2) , (B.74)

such that
Π2
r 1 + Π2

τ 1 = 1
4e2σ2

0
`21 , Π2

r 2 + Π2
τ 2 = 1

4e2(1− σ0)2 `
2
2 . (B.75)

The total on-shell action then reduces (after inserting σ0 = `1/(`1 + `2)) to

exp
(
−
∫ σ0

0
dσ e(Π2

τ 1 + Π2
r 1)−

∫ 1

σ0
dσ e(Π2

τ 2 + Π2
r 2)
)

= exp
(
− (`1 + `2)2

4e

)
. (B.76)

Without any topological obstructions (such as crotches), the extremum is of course the
case without a kink, since then the total length `1 + `2 is minimal. With a constraint, such
as in (B.69), the dominant path is the one with minimal total length `γ 1(xi) + `γ 2(xf ) =
`γ(xi, xf ).

At any rate, we have confirmed that (B.68) holds also as approximation in classes of
paths γ that have no real geodesics in them, and which require the particle to get kicks at
the crotches. This suffices to demonstrate (B.62) (we omit the standard computation of
the one-loop determinant ∼ 1/e). Thus cluster decomposition holds, and the determinants
become independent of T in the double scaling limit, because all T dependent paths are very
long and end up not contributing to the propagator. Here is an example of a representative
long path x(σ) of some class γ for which `γ(xi, xf ) = 2(τ2 − τ1) + `γ 1(xi) + `γ 2(xf )→∞,
because upon double scaling τ2 − τ1 →∞.

long paths

τ1

τ2

xi
xf

x(σ)

slit

G(xi, xf ) ⊃ (B.77)
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The contribution from this class γ of paths x(σ) to the propagator behaves as (B.62),
and thus indeed vanishes. The only finite contributions are from paths in (B.59) that
remain close to one crotch, and wind around it a few times. This gives a contribution that
depends on the radial position of that crotch. In the classical configurations of the main
text however, that radial coordinate is extremely large, such that V (r)→ 0. Thus for those
configurations the ratio of determinants exactly cancels.

C Unwrapping the double cone

The purpose of this (colour book style) appendix is to clarify in more detail that the
standard double cone picture (3.4) is equivalent to the unwrapped picture for the double
cone that we use for instance in (B.6). A second purpose is to explain the subtle differences
between the identifications that one can make to built wormholes on the TFD, discussed
in section 2.4, versus those that we use on the double cone in section 3.2. We start
with the usual picture for the double cone, where one considers the TFD metric ds2 =
dρ2 − 4E sinh(ρ)2dt2 with an additional identification in Rindler time (3.1) t ∼ t+ T [21]

t flowidentify (C.1)

If we wrap this up we get a visualization of two cones, with Rindler time flowing in the
same direction (from red to blue) on both sides (see also figure 2 in [97])

(C.2)

Let us twist the right cone by π, this does not change the topology (twists never do)

(C.3)

Now we should remember that in the double cone metric the point ρ = 0 is actually
regularized as [21] ds2 = dρ2 − 4E sinh(ρ− iε)2dt2. This makes the metric Euclidean very
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close to ρ = 0, and topologically has the effect of “opening up” the conical points (red
dots), creating a tiny smooth wormhole connecting the two cones. So, a more accurate
visualization of the double-cone topology is71

identify

tiny wormhole

(C.4)

So, topologically this is just a g = 0 wormhole connecting the two boundaries. One can
now “unwrap” this last picture to obtain the representation of the double cone that we
often used in appendix B

identify (C.5)

One reason why this last type of picture can be useful, is because it is visually easy to
check that a certain identification results in an orientable surface. In particular we see that
the following type of identification on the double cone (considered in section 3.2) results in
an orientable spacetime

(C.6)

This is easy to see because it maps to a g = 1 version of (B.6), which is clearly orientable.
If one would flip the orientation (black arrow) on one of the slits, the identification would
not result in an orientable spacetime, so that does not occur in (for instance) JT gravity.

71The twist modulus is also very clear here, rotating both sides relative to one another.
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We would like to contrast this to the identifications one can make on the TFD geometry.
The TFD geometry has essentially the same metric ds2 = dρ2−4E sinh(ρ)2dt2 in its Rindler
wedges, but it does not have the same iε regularization of the point ρ = 0, nor does it have
an identification t ∼ t + T . As a consequence, the orientable identifications on the TFD
are as follows (see also section 2.4)

(C.7)

Notice the orientation of the slits (black arrows), which is “the oposite” as on the double
cone, despite the two having almost the same metric. The point is that the two are
topologically different very close to the horizon. In the double-cone case there is actually
a tiny wormhole, in the TFD case there is not. Topologically, it is easiest to contrast (C.7)
for the TFD with (C.5) for the double cone.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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