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Abstract

For a robot to personalize physical assistance effectively, it must learn user preferences that can
be generally reapplied to future scenarios. In this work, we investigate personalization of household
cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key
challenge is determining the proper place to put each object, as people’s preferences can vary greatly
depending on personal taste or cultural background. For instance, one person may prefer storing
shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that
can learn such preferences from just a handful of examples via prior interactions with a particular
person. We show that robots can combine language-based planning and perception with the few-shot
summarization capabilities of large language models (LLMS) to infer generalized user preferences that
are broadly applicable to future interactions. This approach enables fast adaptation and achieves
91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on
a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in
real-world test scenarios.

Keywords: service robotics, mobile manipulation, large language models

1 Introduction

Building a robot that provides personalized assis-
tance for physical household tasks is a long-
standing goal of robotics research. In this paper,
we investigate the task of tidying up a room:
moving every object on the floor to its “proper

place.” One of the challenges in performing this
task is determining the correct receptacle (“proper
place”) for every object. This is difficult because
where objects should go is highly personal, and
depends on cultural norms and individual pref-
erences. One person may want to put shirts in
a dresser drawer, another may want them on



shelves, and a third may want them hanging in a
closet. There is no “one size fits all” solution.

Classical approaches to the household cleanup
task ask a person to specify a target loca-
tion for every object (Rasch et al., 2019; Yan
et al., 2021), which is tedious and imprac-
tical in an autonomous setting. Other works
learn generic (non-personalized) rules about where
objects typically go inside a house by averag-
ing over many users (Taniguchi et al., 2021;
Kant et al., 2022; Sarch et al., 2022). Works
that focus on personalization aim to extrapolate
from a few user examples given similar choices
made by other users, using methods such as
collaborative filtering (Abdo et al., 2015), spa-
tial relationships (Kang et al., 2018), or learned
latent preference vectors (Kapelyukh and Johns,
2022). However, all of these approaches require
collecting large datasets with user preferences or
generating datasets from manually constructed,
simulated scenarios. Such datasets can be expen-
sive to acquire and may not generalize well if they
are too small.

Our approach is to utilize the summarization
capabilities of large language models (LLMs) to
provide generalization from a small number of
example preferences. We ask a person to provide
a few example object placements using textual
input (e.g., yellow shirts go in the drawer, dark
purple shirts go in the closet, white socks go in
the drawer), and then we ask the LLM to summa-
rize these examples (e.g., light-colored clothes go
in the drawer and dark-colored clothes go in the
closet) to arrive at generalized preferences for this
particular person.

The underlying insight is that the summa-
rization capabilities of LLMs are a good match
for the generalization requirements of personalized
robotics. LLMs demonstrate astonishing abilities
to perform generalization through summarization,
drawing upon complex object properties and rela-
tionships learned from massive text datasets. By
using the summarization provided by LLMs for
generalization in robotics, we hope to produce
generalized rules from a small number of exam-
ples, in a form that is human interpretable (text)
and is expressed in nouns that can be grounded
in images using open-vocabulary image classifiers.
Using an off-the-shelf LLM also avoids expen-
sive collection of user preference data and model
training.

Fig. 1 We study the task of household cleanup, where each
object on the floor must be picked up and put away while
following user preferences.

We investigate the proposed approach in a
real-world robotic mobile manipulation system
for household cleanup, which we call TidyBot
(Fig. 1). Before the robot begins cleanup, we ask
the user to provide a handful of example place-
ments for specific objects, which are passed to an
LLM to be summarized into a generalized set of
rules (personalized to that user) mapping object
categories to receptacles. The nouns of these gen-
eralized rules are provided to an open-vocabulary
image classifier in order to identify objects on the
floor and determine target receptacles for them
using the rules. The robot will then carry out
the cleanup task by repeatedly picking up objects,
identifying them, and moving them to their target
receptacles.

We evaluate our approach quantitatively on
both a text-based benchmark dataset and our real-
world robotic system. On the benchmark, we find
that our approach generalizes well, achieving an
accuracy of 91.2% on unseen objects across all sce-
narios in the benchmark. In our real-world test
scenarios, we find that TidyBot correctly puts
away 85.0% of objects. We also show that our
approach can be easily extended to infer gener-
alized rules for manipulation primitive selection
(e.g., pick and place vs. pick and toss) in addition
to inferring object placements.

Our contributions are: (i) the idea that text
summarization with LLMs provides a means for
generalization in robotics, (ii) a publicly released
benchmark dataset for evaluating generalization



of receptacle selection preferences, and (iii) imple-
mentation and evaluation of our approach on a
real-world mobile manipulation system.

This journal paper is an extended version of a
previously published conference paper (Wu et al.,
2023). The new material in this journal version
includes:

1. A user study that evaluates whether humans
prefer the preferences learned by our approach,
and whether human responses align with our
benchmark’s ground truth

2. Quantitative analysis of the perception com-
ponent of the real-world system, including
comparisons of different visual language models

3. Additional statistics of our benchmark show-
ing representation of different sorting criteria in
the dataset, along with a breakdown of baseline
results according to these criteria

4. A summary of the limitations of our system

Please see our project page at https://tidybot.
cs.princeton.edu for additional supplementary
material, benchmark dataset and code, and quali-
tative videos of our real-world system TidyBot in
action.

2 Related Work

Household cleanup. Many recent works in
Embodied AI have proposed benchmarks or meth-
ods for completing household tasks in simulated
indoor environments (Kolve et al., 2017; Puig
et al., 2018; Shridhar et al., 2020, 2021; Szot et al.,
2021; Li et al., 2022; Srivastava et al., 2022; Li
et al., 2022). For household cleanup in particu-
lar, the object rearrangement task (Puig et al.,
2018; Batra et al., 2020; Szot et al., 2021; Ehsani
et al., 2021; Weihs et al., 2021; Gan et al., 2022)
requires an embodied agent to pick up and move
objects so as to bring the environment into a
specified state. Household cleanup has also been
studied in robotics works, in which instructions
for object rearrangement are specified via pointing
gestures (Rasch et al., 2019) or target layouts (Yan
et al., 2021). The drawback of these setups is
that a target location must be manually speci-
fied for every object to be manipulated, which
can require significant human effort. Prior works
have addressed this challenge by automatically

inferring object placements based on human pref-
erences for where objects typically go inside a
house (Taniguchi et al., 2021; Kant et al., 2022;
Sarch et al., 2022), eliminating the need to specify
where every individual object goes. However, these
works predict human preferences that are generic
rather than personalized. To handle the variability
in preferences across different users, other works
have used collaborative filtering (Abdo et al.,
2015), spatial relationships (Kang et al., 2018), or
learned latent preference vectors (Kapelyukh and
Johns, 2022) to predict object placements that
are based on personalized user preferences. These
methods require the collection of large crowd-
sourced datasets for human preferences, which can
be expensive. By contrast, our approach uses off-
the-shelf LLMs with no additional training or data
collection. We are able to directly leverage the
commonsense knowledge and summarization abil-
ities of LLMs to build generalizable personalized
preferences for each user.

Object sorting. Object sorting has been stud-
ied in robotics using approaches such as cluster-
ing (Gupta and Sukhatme, 2012), active learn-
ing (Kujala et al., 2016; Herde et al., 2018),
metric learning (Zeng et al., 2022), or heuristic
search (Huang et al., 2019; Song et al., 2020; Pan
and Hauser, 2021). These setups carry out pre-
specified sorting rules using physical properties
such as color (Szabo and Lie, 2012; Gupta and
Sukhatme, 2012; Kujala et al., 2016; Herde et al.,
2018; Huang et al., 2019; Dewi et al., 2020; Song
et al., 2020; Pan and Hauser, 2021), shape (Herde
et al., 2018), size (Gupta and Sukhatme, 2012;
Herde et al., 2018; Dewi et al., 2020), or mate-
rial (Lukka et al., 2014). Notably, they are not
able to sort based on semantics or commonsense
knowledge, nor are they able to automatically
infer sorting rules. More recently, Hgeg and Tin-
gelstad (2022) studied whether classification of
objects into general high-level categories can be
improved by using an LLM to take in an object
detector’s prediction and output a general cat-
egory for the object. In our work, we similarly
tap into the commonsense knowledge of LLMs
to reason about object sorting. However, whereas
their setup uses pre-specified sorting rules based
on a fixed set of categories, ours is able to infer
generalizable sorting rules automatically.
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LLMs for robotics. Large language models
(LLMs) have been shown to exhibit remarkable
commonsense reasoning abilities (Brown et al.,
2020; Nye et al., 2021; Rytting and Wingate,
2021; Wei et al., 2022a,b; Kojima et al., 2022;
Madaan et al., 2022). As a result, there has been
increasing interest in harnessing the capabilities
of LLMs to build more commonsense knowl-
edge into robotic systems. Many recent works
study how LLM-generated high-level robotic plans
(typically produced using the few-shot learning
paradigm (Brown et al., 2020)) can be grounded
in the state of the environment. This can be done
with value functions (Brohan et al., 2022; Lin
et al., 2023), semantic translation into admissi-
ble actions (Huang et al., 2022), scene descrip-
tion as context (Zeng et al., 2022; Mees et al.,
2022; Chen et al.,, 2022; Singh et al., 2022),
feedback (Huang et al., 2022; Yao et al., 2022),
or re-prompting (Raman et al., 2022). However,
these works assume a setup in which the LLM is
expected to output a single generic plan. This is
not a good fit for personalized household cleanup,
because a “one size fits all” plan would not
address the wide variability in user preferences.
Instead, our system generates personalized plans
that are tailored to the preferences of a par-
ticular user. Other works in robotics have used
LLMs for PDDL planning (Silver et al., 2022),
code generation for robotic control policies (Liang
et al., 2022), parsing navigation instructions into
textual landmarks (Shah et al., 2022), room clas-
sification (Chen et al., 2022), and tool manipula-
tion (Ren et al., 2022). These works all use LLMs
as a means of integrating commonsense knowledge
into robotic systems, which is also true in our case.
However, unlike these works, we additionally show
that the summarization ability of LLMs enables
generalization in robotics.

3 Method

We use the summarization capabilities of an off-
the-shelf LLM to generalize user preferences from
a small number of examples. Below, we describe
how we use the LLM to infer personalized rules
for both receptacle selection and manipulation
primitive selection, and also how we deploy the
approach on a real-world mobile manipulation
system for household cleanup.

3.1 Personalized receptacle selection

Our system first receives a few examples of object
placements reflecting the personal preferences of a
user. For instance, the user may specify that yel-
low shirts and white socks go in the drawer, while
dark purple shirts and black shirts go in the closet.
We provide these examples to an LLM, which then
infers personalized rules on where objects belong.
Specifically, the LLM (i) summarizes the examples
into general rules, and then (ii) uses the summary
to determine where to place new objects.
Following recent work (Zeng et al., 2022; Singh
et al., 2022), we convert the user examples into
LLM prompts that are structured as Pythonic
code. This prompt form is advantageous because
LLMs are trained on large amounts of code, and
it also provides a structured output that is easy
to parse. To represent the user examples, the
prompt first contains a list of objects present in
the scene and a list of potential receptacles (see
Appendix A for full prompt with in-context exam-
ples). This is followed by a series of pick and place
commands reflecting where the objects should be
placed according to the user. Then, we ask the
LLM to complete the last line, which is a code
comment summarizing what the preceding code
block does. Here is an example LLM completion
where the output from the LLM is highlighted:

objects = ["yellow shirt”, "dark purple shirt”,
"white socks”, "black shirt"]

receptacles = ["drawer”, "closet"]
pick_and_place("yellow shirt”, "drawer")
pick_and_place("dark purple shirt”, "closet")
pick_and_place("white socks"”, "drawer")
pick_and_place("black shirt"”, "closet”)

# Summary: Put light-colored clothes in the
drawer and dark-colored clothes in the closet.

In this example, the LLM summarized the pro-
vided object placements and inferred that light-
colored clothes go in the drawer while dark-colored
clothes go in the closet. These examples lead
to a generalized rule for where objects belong,
personalized to this particular user.

Next, the summary is used by the LLM to
generate placements for novel, unseen objects.
The prompt consists of the summary from the
LLM summarization step (in the form of a code
comment), a list of the unseen objects, a list of
receptacles, and a partial pick and place command



for the first object. We then ask the LLM to pro-
vide a placement for each object by completing
the prompt:

# Summary: Put light-colored clothes in the
drawer and dark-colored clothes in the closet.

objects = ["black socks”, "white shirt”, "navy
socks”, "beige shirt"]
receptacles = ["drawer”, "closet"]

pick_and_place(”black socks"”, "closet")
pick_and_place("white shirt”, "drawer")
pick_and_place(”"navy socks”, "closet")
pick_and_place("beige shirt”, "drawer")

The output pick and place commands can then
be parsed to determine where each unseen object
should be placed.

3.2 Personalized primitive selection

Similar to the way we infer generalized rules for
receptacle selection, we can also infer generalized
rules for how to manipulate objects, again leverag-
ing the summarization capabilities of LLMs. First,
we provide a few examples of objects along with
their user-preferred manipulation primitive to the
LLM, and ask it to summarize. Here is an exam-
ple completion where the output from the LLM is
highlighted:

objects = ["yellow shirt”, "dark purple shirt”,
"white socks”, "black shirt"]
pick_and_place("yellow shirt")
pick_and_place("dark purple shirt"”)
pick_and_toss("white socks")
pick_and_place("black shirt")

# Summary: Pick and place shirts, pick and

toss socks.

The summary can then be used as a general-
ized rule to predict the appropriate primitive to
use for unseen objects:

# Summary: Pick and place shirts, pick and toss
socks.

objects = ["black socks”, "white shirt”, "navy
socks"”, "beige shirt”]

pick_and_toss("black socks")
pick_and_place("white shirt")
pick_and_toss("navy socks")
pick_and_place("beige shirt")

3.3 Real-world robotic system

Given generalized rules from LLM summarization,
we can now implement these rules on a robot

tasked with tidying up a household environment.
To do so, we use a perception system to local-
ize and recognize objects in the environment, and
a predetermined set of manipulation primitives
to move objects into receptacles. For our setup,
we use pick_and_place and pick_and_toss as our
primitives, as they are well-suited for household
cleanup. However, other sets of primitives could
also be used.

For each new user, the system will receive a
set of example preferences and run the previously
described LLM pipeline to get personalized rules
for the user. The rules contain a set of general-
ized object categories produced by summarization
(e.g., light-colored clothes, dark-colored clothes),
each of which is matched to a preferred recepta-
cle and manipulation primitive for that category.
The robot will tidy up the environment by itera-
tively performing the following steps until no more
objects remain on the floor: (1) localize the near-
est object, (2) classify the object into a generalized
category, (3) determine the appropriate receptacle
and manipulation primitive for the object using
generalized rules produced by the LLM, and (4)
use the manipulation primitive to put the object
into the receptacle. Fig. 2 provides a conceptual
illustration of this procedure, and Algorithm 1
outlines these steps in pseudocode.

Algorithm 1 System pipeline

IHPUtI Ereceptacle = {(017 Tl)a (027 T2)7 o }
Inpl“;: Eprimitive = {(017171), (027]92)7 e }
Sreceptacle = LLM'Summarize(Ereceptacle)
Sprimitive = LLM'Summarize(Eprimitive)
C = LLM.GetCategories(Sreceptacie)
robot.Initialize()
while True do
Iiop = GetOverheadImage()
o = ViLD.GetClosestObject(Itop)
robot.MoveTo(0)
Iogo = robot.GetEgocentricImage()
¢ = CLIP.GetCategory(Iego, C)
r = LLM.GetReceptacle(Sreceptactes €)
p = LLM.GetPrimitive(Sprimitive, €)
robot.PickUp(o)
robot.MoveTo(r)
robot.ExecutePrimitive(p)
end while




Overhead image Object detection  Closest object | Egocentric image

Receptacle: recycling bin
— Primitive: toss

CLIP |— category:can — LLM
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Object placement and primitive selection

Fig. 2 System overview. Once the user’s preferences have been summarized with an LLM, TidyBot will localize the closest
object on the floor, move to get a close-up view with its egocentric camera, predict the object’s category using CLIP, use the
LLM-summarized rules to select a receptacle and manipulation primitive, and then execute the primitive to put the object into
the selected receptacle, repeating this entire process until no more objects can be found on the floor.

One important aspect of our approach is that
the LLM summarization automatically provides
candidate categories to the perception system.
Nouns (or noun phrases) are extracted from the
summarization text as categories, and used as the
target label set for CLIP (Radford et al., 2021),
the open-vocabulary image classification model we
use. For example, the following LLM prompt will
extract the two general categories in the sum-
mary text (light-colored clothing and dark-colored
clothing):

# Summary: Put light-colored clothes in the
drawer and dark-colored clothes in the closet.
objects = ["light-colored clothing”,
"dark-colored clothing"”]

This combination of summarization and open-
vocabulary classification is critical to the auton-
omy of the system, as it enables the object classi-
fier to work with a small set of generalized object
categories. The approach is (i) robust as there are
only a small number of categories to differentiate
between, and (ii) flexible because it supports arbi-
trary sets of object categories for different users. In
contrast, without LLM summarization, the object
classifier would have to be able to recognize all
possible fine-grained object classes, which is much
more difficult. Alternatively, the user would have
to manually specify the list of objects present in
each target scene, which would be impractical for
an autonomous system.

4 Experiments

We investigate the performance of our proposed
approach with two types of evaluation. For the

first type of evaluation, we design a benchmark for
generalization of receptacle selection using text-
based examples, which enables direct comparison
to alternative approaches and ablation studies,
with quantitative metrics. For the second type
of evaluation, we deploy our approach in a real-
world mobile manipulation system for tidying up a
room based on user preferences. Unless otherwise
specified, the LLM we use is text-davinci-003, a
variant of GPT-3 (Brown et al., 2020). All LLM
experiments were run with temperature 0.

4.1 Benchmark dataset

In order to evaluate the proposed approach and to
quantitatively compare it to alternatives, we cre-
ated a benchmark dataset of object placements.
The benchmark is comprised of 96 scenarios, each
of which has a set of objects, a set of recepta-
cles, a set of example “seen” object placements
(preferences), and a set of “unseen” evaluation
placements, all specified as text. The task is to
predict the placements in the “unseen” set given
the examples in the “seen” set.

The benchmark scenarios are defined in 4 room
types (living room, bedroom, kitchen, pantry
room), with 24 scenarios per room type. Each sce-
nario contains 2-5 receptacles (potential places
to put objects, such as shelves, cabinets, etc.),
4-10 “seen” example object placements provided
as input to the task, and an equal number of
“unseen” object placements (distinct from the
seen examples) provided for evaluation. There are
2 seen and 2 unseen object placements per recep-
tacle. In total, there are 672 seen and 672 unseen
object placements, which cumulatively reference
87 unique receptacles and 1,076 unique objects.



Table 1 Representation of sorting criteria in benchmark

Category Attribute Function Subcategory Multiple

86/96 27/96 24/96 31/96 17/96

Success on this benchmark is measured by the
object placement accuracy: the number of objects
placed in the correct receptacle divided by the
total number of objects. We evaluate accuracy sep-
arately for seen and unseen objects, to tease apart
memorization versus generalization. For each, we
compute the accuracy per scenario, and then aver-
age the results across all scenarios to produce the
numbers shown in the tables.

Since different people may sort items in the
home in many different ways, our benchmark con-
tains a diversity of preferences with several kinds
of sorting criteria represented in the dataset:

e Category: Sort objects based on general cate-
gories (e.g., put clothes here and toys there)

e Attribute: Sort objects based on object
attributes (e.g., put plastic items here and metal
items there)

¢ Function: Sort objects based on function (e.g.,
put winter clothes here and summer clothes
there)

® Subcategory: Sort objects such that a specific
(subordinate) subcategory is separated from
the general (superordinate) category (e.g., put
shirts on the sofa and other clothes in the closet)

e Multiple categories: Sort objects from multi-
ple categories into one receptacle (e.g., put both
books and toys on the shelf)

We show in Tab. 1 the representation of dif-
ferent sorting criteria in our benchmark dataset,
indicated by the fraction of the 96 scenarios to
which each criteria applies. Note that multiple
sorting criteria may apply to a single scenario.

4.2 Baseline comparisons

In our first set of experiments, we use the bench-
mark to provide quantitative evaluation of our
approach compared to several alternatives. The
results are in Tab. 2. We also show in Tab. 3 the
same results but broken down by the sorting crite-
ria described in Sec. 4.1. Since the main challenge
is to generalize from objects in the examples (seen)
to those in the evaluation set (unseen), we consider

Table 2 Comparisons to baselines

Method ‘ Accuracy (unseen)
Examples only 78.5%
WordNet taxonomy 67.5%
RoBERTa embeddings 77.8%
CLIP embeddings 83.7%
Summarization (ours) 91.2%

a variety of baseline generalization approaches and
report placement accuracy metrics only for unseen
objects.

The following paragraphs describe each base-
line and provide a discussion of how the perfor-
mance compares to that of our proposed approach.

Examples only. The first baseline provides a
direct comparison to a system like ours if it did
not use summarization. The LLM is given a list
of objects, receptacles, and example placement
preferences, along with a list of unseen objects
for a new scene. Then, the LLM is asked to
directly infer the proper placements (highlighted
text) for unseen objects in the new scene, without
summarization as an intermediate step:

objects = ["yellow shirt”, "dark purple shirt”,
"white socks”, "black shirt"”]

receptacles = ["drawer”, "closet"]
pick_and_place("yellow shirt”, "drawer")
pick_and_place("dark purple shirt”, "closet”)
pick_and_place("white socks"”, "drawer")
pick_and_place("black shirt”, "closet”)

objects = ["black socks”, "white shirt”, "navy
socks", "beige shirt"]

receptacles = ["drawer”, "closet"]
pick_and_place("black socks”, "drawer")
pick_and_place("white shirt”, "closet”)
pick_and_place(”navy socks”, "drawer")

pick_and_place("beige shirt”, "closet")

The prediction accuracy of this method for
unseen objects (78.5%) is significantly worse than
that of our method (91.2%). Since the main dif-
ference between this method versus ours is that
our method leverages summarization, this result
presents strong evidence for our main hypothesis
— id.e., summarization is useful for generalization.
This finding is also consistent with recent work
showing that LLMs perform better when they are
asked to output intermediate steps of reasoning
before the final answer (Nye et al., 2021; Wei



Table 3 Comparisons to baselines by sorting criteria

Method ‘ Category Attribute Function Subcategory Multiple
Examples only 80.1% 72.7% 75.7% 77.0% 81.5%
WordNet taxonomy 69.1% 59.8% 61.4% 71.3% 74.1%
RoBERTa embeddings 78.6% 75.5% 71.8% 71.7% 87.5%
CLIP embeddings 84.6% 79.8% 85.5% 84.7% 87.9%
Summarization (ours) 91.0% 85.6% 93.9% 90.1% 93.5%

et al., 2022a). When looking at the predictions, we Table 4 Ablation studies

find that this baseline approach generally predicts

object placements that are sensible but may not Method | Seen  Unseen

be consistent with the user’s preferences. Commonsense 45.0%  45.6%

WordNet taxonomy. This baseline uses a hand-
crafted lexical ontology called WordNet (Miller,
1995) to generalize placements from seen to
unseen objects. For each unseen object, we place
it in the same receptacle as the most similar seen
object, where similarity is measured using the
shortest path between two objects in the taxon-
omy. Since WordNet is a hand-crafted taxonomy,
it does not contain all possible object names. For
the 694 objects in our benchmark that are miss-
ing from WordNet, we manually mapped each of
them to the closest WordNet object name. Even
with the manual mapping, the performance of
this WordNet baseline for unseen objects (67.5%)
is far worse than that of our method (91.2%).
This shows that LLM summarization provides
better generalization than using the hierarchy pro-
vided by a hand-crafted ontology. When looking
at the breakdown in Tab. 3, we see that this
baseline performs worse on the two criteria that
are not related to object categorization (attribute
and function). We hypothesize that WordNet is
not able to generalize well along these dimen-
sions because it was constructed mainly based on
semantic relationships between categories.

Text embedding. This baseline uses pretrained
text embeddings to assist with generalization. For
each unseen object, we place it in the receptacle
provided for the most similar seen object, where
similarity is defined by cosine similarity between
encoded object names in the RoOBERTa (Liu et al.,
2019) or CLIP (Radford et al., 2021) embed-
ding space. For RoBERTa, we use the pretrained
Sentence-BERT (Reimers and Gurevych, 2019)
model from the SentenceTransformers library.
Specifically, we use the all-distilroberta-v1

Summarization 91.8% 91.2%
Human summary | 97.1%  97.5%

variant which is a distilled (Sanh et al., 2019) ver-
sion of the RoBERTa (Liu et al., 2019) model
that is fine-tuned on a dataset of 1 billion sen-
tence pairs. For CLIP, we use the pretrained model
provided by OpenAl. In either case, the general-
ization performance for predicting placements of
unseen objects does not reach the performance
of our proposed summarization approach (77.8%
for RoOBERTa and 83.7% for CLIP, versus 91.2%
for ours). Although text embeddings trained on
large datasets encode many types of object simi-
larities, particularly for related object categories,
they may not encode the object attributes rele-
vant to the preferences of a particular user (e.g.,
light objects go here, heavy object go there). In
contrast, our summarization approach is able to
correctly encode a larger variety of user prefer-
ences.

4.3 Ablation studies

In the second set of experiments, we use the
benchmark to evaluate the performance of sev-
eral variants to our method. The goal of these
experiments is to compare its performance to
alternatives with far less information (using only
common sense, without preferences) or far more
information (using human-generated summariza-
tions). We also study the impact of using different
LLMs. The benchmark metrics for both seen and
unseen objects are provided in Tabs. 4 and 5.

Commonsense. Our first ablation study mea-
sures how well an LLM can perform the bench-
mark tasks using only commonsense reasoning —



Table 5 Comparison of different LLMs

Commonsense | Summarization
Model

seen  unseen | seen  unseen
text-davinci-003 | 45.0% 45.6% | 91.8% 91.2%
text-davinci-002 | 41.8% 37.5% | 84.1% 75.7%
code-davinci-002 | 41.4% 39.4% | 88.6% 83.2%

PaLM 540B 45.5% 49.6% | 84.6% 75.7%

i.e., without using the preferences at all. For each
benchmark scene, we give the LLM the list of
objects and list of receptacles, and then ask it
to generate object placements (highlighted text)
without using the provided user preferences:

# Put objects into their appropriate receptacles.

objects = ["black socks”, "white shirt”, "navy
socks”, "beige shirt"]

receptacles = ["drawer”, "closet"]
pick_and_place("black socks”, "drawer")
pick_and_place("white shirt”, "closet")
pick_and_place("navy socks”, "drawer")

pick_and_place("beige shirt”, "closet")

This baseline performs poorly, even for seen
objects (45.0%), due to the high variability of
object placement preferences in the benchmark.
The predicted object placements are sensible but
are not reflective of the particular user’s prefer-
ences. In contrast, our method can learn pref-
erences from examples via summarization and
performs much better for both seen and unseen
objects (91.8% and 91.2%).

Human summary. This ablation studies how
the summaries provided by the LLM compare
to summaries crafted manually by a human. For
each benchmark scenario, a human-written sum-
mary was used by the LLM (in place of the
LLM-produced summary) to predict object place-
ments for the test objects. The results achieved
with this “oracle” summarization are better than
the LLM summarization by 6% for both seen
and unseen objects. This result suggests that the
LLM summarizations are already quite good, and
that improvements to LLM summarization could
enable further gains for our method in the future.

Different LLMs. Table 5 reports our per-
formance on the benchmark using different
LLMs. We find that text-davinci-002 and
code-davinci-002 (Chen et al., 2021), which are
older variants of GPT-3, are not as good as

Scenario 6 of 24 *

Preferences Option A Option B
bed bed bed

+ dress shirt « dress pants
« tuxedo jacket « evening gown

« evening gown

laundry basket

laundry basket laundry basket

* cargo pants
« hoodie « cargo pants « dress pants
+ leggings « sweatpants « sweatpants

O optionA
O Option B

O A and B equally preferred

Fig. 3 Example user study question. This screen-
shot shows an example survey question from our user study.
On the left are preferences, on the right are two placement
options corresponding to the two methods being compared.
The participant is asked to select the option that is best
aligned with the given preferences.

the newest one (text-davinci-003). In particu-
lar, there is a much larger gap between seen and
unseen objects. This is because the older mod-
els are more likely to generate summaries that
list out individual objects in the seen set, which
does not generalize well to the unseen objects.
For PaLM 540B (Chowdhery et al., 2022), we find
that while it shows slightly higher performance
on commonsense reasoning, it does not do as well
as text-davinci-003 on summarization, particu-
larly in scenarios where there is a larger number
of receptacles to choose from.

4.4 Human evaluation

To evaluate whether humans prefer the prefer-
ences learned by our method, we conduct a user
study based on the scenarios in our benchmark
dataset. The study asks participants to compare
the object placements generated by our method to
those of CLIP embeddings, which is the strongest
baseline. The study has 2 objectives:

1. Evaluate whether humans prefer the object
placements generated by our LLM summariza-
tion method over those of the CLIP embed-
dings baseline

2. Evaluate whether human-preferred object
placements align with the ground truth place-
ments in our benchmark



Table 6 User study results by sorting criteria

Method ‘ Category Attribute Function Subcategory Multiple ‘ Overall
CLIP embeddings 19.7% 23.7% 11.2% 22.6% 21.2% 19.1%
Summarization (ours) 47.4% 41.9% 60.0% 46.1% 40.6% 46.9%
Equally preferred 32.9% 34.4% 28.8% 31.3% 38.2% 34.1%

Study setup. We recruited 40 participants (24
males and 16 females) consisting of affiliates from
author institutions and asked them to fill out an
online survey. Each participant was assigned 24
scenarios randomly selected from the 96 scenarios
in the benchmark. Each scenario in the bench-
mark is evaluated by 10 participants, giving 960
evaluations in total.

For each scenario, we provide (i) example
placements of “seen” objects indicating user pref-
erences, and (ii) placements of “unseen” objects
from both our LLM summarization method and
the CLIP embeddings method (example shown in
Fig. 3). The participant is then asked to specify
which of the two object placement options better
aligns with the given preferences, or if they are
equally preferable. For the convenience of the par-
ticipants, we highlight the object placements that
differ between the two methods. We randomize the
order of scenarios as well as the order of meth-
ods for each scenario (the participant is unaware
of which option goes with which method). For
some of the scenarios, both methods give the exact
same object placements, so we preselect the third
“equally preferred” option and exclude them from
the surveys given to participants.

Results. Our results across all 960 evaluations are
shown in Tab. 6. Overall, we find that our LLM
summarization method is preferred over the CLIP
embeddings baseline 46.9% of the time, whereas
the baseline is preferred 19.1% of the time, and
both methods are equally preferred 34.1% of the
time. When considering the results broken down
by sorting criteria, we find that our method per-
forms particularly well relative to the baseline
for the function criteria (e.g., formal vs. casual
clothes). Even though the corresponding bench-
mark accuracy is relatively high (CLIP embed-
dings in Tab. 3), the baseline method usually
sorts by object category (as described in Sec. 4.2)
which can lead to egregiously wrong placements
(e.g., store dress pants with sweatpants) when the
intended sorting criteria is function.
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We ran a statistical analysis with the following
null hypothesis (HO): There is no significant differ-
ence between the preference for our method versus
the baseline method. In other words, the mean
fraction of time participants prefer our method
over the baseline is equal to 0.5. For each study
participant, we calculated the fraction of time our
method was preferred over the baseline method
across the 24 scenarios for that participant. For
scenarios where both methods were equally pre-
ferred, we gave them both equal weight. We then
conducted a paired t-test, and found a significant
difference between our method and the baseline
method, with a calculated t-statistic of 9.93 (df
= 39), p < 0.001, indicating strong evidence to
reject the null hypothesis and suggesting that the
observed difference in human preference between
our method and the baseline is unlikely to have
occurred due to random chance.

We also evaluate how well the participant
responses align with the ground truth in our
benchmark. For each scenario, we identify which
of the two methods is closer to the benchmark
ground truth based on unseen object placement
accuracy on that scenario. We then calculate
the percent of human responses that prefer the
method that is closer to the ground truth. Over-
all, across the 40 participants, we find that human
responses were aligned with benchmark ground
truth 82.2% 4 7.7% of the time, or 95.4% 4+ 4.1%
if “equally preferred” is treated as a wildcard.

4.5 Real-world experiments

In our final set of experiments, we test the
proposed approach on a robot performing a
cleanup task in the real world (Fig. 1). The
robot base is a holonomic vehicle capable of
any 3-degree-of-freedom motion on the ground
plane. This maneuverability comes from the vehi-
cle’s Powered-Caster Drive System (Holmberg
and Khatib, 2000), which consists of four caster
wheels that are powered to roll and steer as
needed to achieve the desired vehicle motion. The



robot manipulator is a Kinova Gen3 7-DoF arm
mounted on top of the mobile base with a Robotiq
2F-85 parallel jaw gripper as its end effector.
The robot is placed inside a room with various
objects and receptacles on the floor and is then
tasked with picking up all the objects and putting
them into the correct receptacles according to user
preferences. The preferences are provided as a set
of textual examples for a particular user (as in the
benchmark). As described in Sec. 3.3 and illus-
trated in Fig. 2, the robot iteratively locates the
closest object on the floor, navigates to it, rec-
ognizes its category, picks it up, determines the
appropriate receptacle for the object, navigates to
the receptacle, and then puts the object inside.

Implementation. The robot uses two overhead
cameras for 2D robot pose estimation (z, y, 6)
and 2D object localization (z, y). The pose of
the robot base is estimated using ArUco fiducial
markers (Garrido-Jurado et al., 2014) mounted
on its top plate (see Fig. 1). The object loca-
tions are detected in the overhead camera using
ViLD (Gu et al., 2021), while the receptacle loca-
tions are hard-coded for each scenario. We found
that these design choices work well for our mobile
robot system. However, other pose trackers and
object detectors could also be used instead.

To navigate in the scene, the robot calcu-
lates the shortest collision-free path to the target
position using an occupancy map that includes
obstacles in the scene such as receptacles. It then
uses the pure pursuit algorithm (Coulter, 1992) to
follow the computed path.

After the robot arrives at the closest object, it
uses a camera mounted on its base (and pointed
forward at the ground) to take a close-up, cen-
tered image of the object, then determines the
object category using cosine similarity between
text and image features in the CLIP embedding
space (Radford et al., 2021). The set of object
categories in the LLM summary is automatically
extracted and used as the target label set for
CLIP. Note that without these categories from
LLM summarization, a human would have to man-
ually specify a list of fine-grained object classes
potentially present in the target scene in order to
use CLIP for object classification.

After the object category is identified, the sys-
tem uses the LLM summarization to predict the
appropriate receptacle and manipulation primitive
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for the object. The robot then moves the object
into the receptacle with a sequence of two high-
level manipulation primitives: (i) pick and (ii)
place or toss. The “pick” primitive uses the grip-
per to grasp at the center of the detected object.
The “place” primitive moves the gripper to a loca-
tion just above the selected receptacle and drops
the grasped object in. The “toss” primitive swings
the robot arm and releases the gripper with tim-
ing that results in tossing (Zeng et al., 2020) of
the grasped object into the selected receptacle.

Real-world evaluation. Using this mobile robot
system, we ran tests on 8 real-world scenarios as
shown in Fig. 4, each with its own set of 10 objects,
2-5 receptacles, 4-10 “seen” examples indicating
preferences for which objects should go into which
receptacles and which primitive should be used
to put them there, as well as 10 “unseen” test
objects. Across all 8 scenarios, 70 unique “unseen”
test objects (Fig. 5) and 11 unique receptacles
(Fig. 6) are represented.

For each scenario, we asked the robot to per-
form 3 runs of the cleanup task and measured
its success throughout operation. Overall, the
system was able to put 85.0% of the objects
into the correct receptacle during these tests.
For qualitative examples, please refer to the sup-
plementary material and additional videos at
https://tidybot.cs.princeton.edu.

Looking at the results in more detail, there
were 240 objects to be cleaned up in total (8
scenarios, 10 objects per scenario, 3 runs per sce-
nario). We observed that the overhead camera
was able to localize 92.5% of the objects, and the
object classifier correctly identified the object cat-
egory for 95.5% of the localized objects. Given the
predicted object category, the LLM selected the
appropriate receptacle and manipulation primi-
tive for 100% of localized objects. Additionally,
the robot succeeded in executing the chosen prim-
itive for 96.2% of the localized objects. In terms
of speed, the robot took on average 15-20 seconds
to pick up and put away each object.

Visual language model (VLM) evaluation.
In this section, we perform a quantitative compar-
ison of different visual language models (VLMs)
within our real robot system. Recall that for each
object successfully localized by the overhead cam-
era, the real robot will first use its egocentric
camera to take a close-up image of the object


https://tidybot.cs.princeton.edu

Fig. 4 Real-world scenarios. We evaluate our mobile manipulation system in 8 real-world scenarios, encompassing a wide

variety of objects and receptacles.

Fig. 5 Real-world objects. 70 unique “unseen” test
objects are represented in our real-world scenarios.

Fig. 6 Real-world receptacles. 11 unique receptacles
are represented in our real-world scenarios.

before picking it up. This image is given to a VLM
to determine the category of the object. To con-
duct our analysis, we save all egocentric images
from our real world evaluation (222 in total across
all test runs) and annotate them.

To evaluate a VLM, we run all 222 images
through the model and determine the fraction of
images in which the centered foreground object is
correctly recognized. We compare along two axes:
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Table 7 Comparison of different VLMs

| CLIP  ViLD OWL-ViT
Summarized categories | 95.5% 76.1%  45.9%
Scenario object names | 70.7% 59.9% = 24.8%
All object names 52.3% 36.5%  18.5%

(i) model type and (ii) vocabulary used for the
target label set. The model types we consider (all
open-vocabulary) are (i) CLIP (Radford et al.,
2021), which was the image classifier used in our
final system, and two alternatives, (ii) ViLD (Gu
et al., 2021) and (iii) OWL-ViT (Minderer et al.,
2022). The vocabulary options we consider are
(i) the set of categories output by LLM sum-
marization (e.g., clothing, fruit, ...), which was
used in our final system, (ii) a list of human-
annotated names for all objects in the current
scenario (e.g., blue jeans, apple, ...), and (iii) a
list of human-annotated object names across all
scenarios (instead of just one scenario). Note that
the human-annotated options for the vocabulary
are for analysis only, as it would be infeasible to
ask a human to annotate every object encoun-
tered during robot operation. Results are shown
in Tab. 7.

Looking at the results comparing different
VLMs (columns of Tab. 7), we find that CLIP
performs the best out of all the models. One
reason is that CLIP will always output a pre-
diction, whereas the object detectors (ViLD and
OWL-VIT) will sometimes detect no objects in
the image. Additionally, ViLD and OWL-ViT are
derived from CLIP, and it is possible that the



process of adapting the models to localize bound-
ing boxes degrades their performance on object
classification.

Qualitatively, the main failure mode of CLIP is
reporting the class of an object in the background
rather than that of the foreground object. This is
expected since CLIP performs an image-wide clas-
sification. We also observe that CLIP is often not
able to consider noun phrases as complete units.
For example, the phrase “white socks” may match
strongly with anything that looks white.

For ViLD and OWL-VIiT (both object detec-
tors), we use the bounding box closest to the
center of the image as the detection, since the
egocentric camera is pointed directly at the pick
location on the floor. We expected that this
localization would improve accuracy since fore-
ground objects can be isolated from background
objects (unlike with CLIP). However, we find that
quantitatively, both ViLD and OWL-ViT perform
worse than CLIP. Qualitatively, ViLD works well
with small rigid objects, but struggles with larger
deformable objects (such as clothes or stuffed
animals), outputting many extraneous detections
corresponding to parts of objects. Additionally, for
both ViLLD and OWL-ViT, we find that the fore-
ground object is sometimes not detected at all,
even though it is always prominently placed in the
center of the image.

When looking at results for different vocab-
ularies (rows of Tab. 7), we find that using the
categories from the LLM summary performs the
best. This is partly because the VLM has to differ-
entiate between a much smaller number of options
(2-5 categories vs. 10 or 65 object names). Note
again that the use of object names is not actually
feasible in a real system due to the human anno-
tation burden. By contrast, our use of LLM sum-
marized categories allows the system to directly
generalize to novel objects as the VLM only needs
to correctly identify the closest category rather
than what the specific object is.

4.6 Limitations

LLM summarization. While LLMs are gen-
erally able to summarize preferences well, we
find that there are still cases in which the gen-
erated summary is not quite right. The most
common failure mode is when the generated sum-
mary simply lists out the seen objects rather
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than summarizing into categories. Summaries of
that nature are too specific and do not general-
ize well to unseen objects. Another failure mode is
when the LLM summarizes receptacles by group-
ing them together (e.g., top drawer and bottom
drawer might be summarized as drawers), result-
ing in poor performance when using the summary
for receptacle selection.

Real-world system. Our implementation of the
real-world system contains simplifications such as
the use of hand-written manipulation primitives,
use of top-down grasps, and assumption of known
receptacle locations. These limitations could be
addressed by incorporating more advanced primi-
tives into our system and expanding the capabil-
ities of the perception system. Additionally, since
the mobile robots cannot drive over objects, the
system would not work well in excessive clutter. It
would be interesting to incorporate more advanced
high-level planning, so that instead of always pick-
ing up the closest object, the robot could reason
about whether it needs to first clear itself a path
to move through the clutter.

5 Conclusion

In this work, we showed that the summarization
capabilities of large language models (LLMs) can
be used to generalize user preferences for per-
sonalized robotics. Given a handful of example
preferences for a particular person, we use LLM
summarization to infer a generalized set of rules to
manipulate objects according to the user’s prefer-
ences. We show that our summarization approach
outperforms several strong baselines on our bench-
mark, and we also evaluate our approach on a
real-world mobile manipulator called TidyBot,
which can successfully clean up test scenarios with
a success rate of 85.0%. Our approach provides
a promising direction for developing personalized
robotic systems that can learn generalized user
preferences quickly and effectively from only a
small set of examples. Unlike classical approaches
that require costly data collection and model
training, we show that LLMs can be directly used
off-the-shelf to achieve generalization in robotics,
leveraging the powerful summarization capabili-
ties they have learned from vast amounts of text
data.
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Appendix A LLM prompts

This section contains the full prompts used for all
LLM text completion tasks. Each prompt consists
of 1-3 in-context examples in followed by a
test example that we ask the LLM to complete.
The portion of the test example that is generated
by the LLM is highlighted. We use the same in-
context examples across all scenarios in both the
benchmark and the real-world system. For each
scenario, only the final test example is modified.
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A.1 Summarization for receptacle
selection



objects = ["jacket”, "candy bar”, "soda can"”,
"Pepsi can”, "jeans"”, "wooden block”, "orange",
"chips"”, "wooden block 2", "apple"]

receptacles = ["recycling bin”, "plastic storage
box", "black storage box"”, "sofa"”, "drawer"]
pick_and_place("”jacket"”, "sofa")
pick_and_place("candy bar", "plastic
box")

pick_and_place("”soda can”, "recycling bin")
pick_and_place("Pepsi can”, "recycling bin")
pick_and_place(”jeans"”, "sofa")
pick_and_place("wooden block”, "drawer")
pick_and_place("orange"”, "black storage box")
pick_and_place("chips”, "plastic storage box")
pick_and_place("wooden block 2", "drawer")
pick_and_place("apple”, "black storage box")

# Summary: Put clothes on the sofa, snacks in
the plastic storage box, cans in the recycling
bin, wooden blocks in the drawer, and fruits
in the black storage box.

storage

A.2 Receptacle selection

# Summary: Put clothes on the sofa, snacks in the
plastic storage box, cans in the recycling bin,
wooden blocks in the drawer, and fruits in the
black storage box.

objects = ["jacket”, "candy bar", "soda can”,
"Pepsi can”, "jeans"”, "wooden block”, "orange",
"chips"”, "wooden block 2", "apple"]

receptacles = ["recycling bin”, "plastic storage
box", "black storage box"”, "sofa”, "drawer"]
pick_and_place("”jacket"”, "sofa")
pick_and_place(”candy bar"”, "plastic storage
box")

pick-and_place("”soda can”, "recycling bin")
pick_and_place("Pepsi can”, "recycling bin")
pick_and_place("”jeans”, "sofa")
pick_and_place("wooden block”, "drawer")
pick_and_place(”orange"”, "black storage box")
pick_and_place("chips”, "plastic storage box")
pick_and_place("wooden block 2", "drawer")
pick_and_place("apple”, "black storage box")
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A.3 Summarization for primitive

selection
objects = ["jacket”, "candy bar”, "soda can”,
"Pepsi can”, "jeans"”, "wooden block”, "orange",

"chips"”, "wooden block 2", "apple"]
pick_and_place("”jacket")
pick_and_toss("candy bar")
pick_and_toss("”soda can")
pick_and_toss("Pepsi can")
pick_and_place(”jeans")
pick_and_place("wooden block™)
pick-and_toss("orange")
pick_and_toss("chips")
pick_and_place("wooden block 2")
pick_and_toss("apple”)

# Summary: Pick and place clothes and wooden
blocks, pick and toss snacks and drinks.



A.4 Primitive selection

# Summary: Pick and place clothes and wooden
blocks, pick and toss snacks and drinks.
objects = ["jacket”, "candy bar”", "soda can”,
"Pepsi can”, "jeans"”, "wooden block”, "orange",
"chips"”, "wooden block 2", "apple"]
pick_and_place("”jacket")

pick_and_place("”jeans")

pick_and_place("wooden block™)
pick_and_place("wooden block 2")
pick_and_toss("candy bar")

pick_and_toss("”soda can")

pick_and_toss("Pepsi can")
pick_and_toss("orange")

pick_and_toss("chips")

pick_and_toss("apple”)

A.5 Category extraction for
real-world system

# Summary: Put clothes on the sofa, snacks in the
plastic storage box, cans in the recycling bin,
wooden blocks in the drawer, and fruits in the
black storage box.

objects = ["clothing”, "snack”, "can"
"wooden block"”, "fruit"]

)
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A.6 Receptacle selection for
real-world system

# Summary: Put clothes on the sofa, snacks in the
plastic storage box, cans in the recycling bin,
wooden blocks in the drawer, and fruits in the
black storage box.

objects = ["clothing”, "snack”, "can", "wooden
block”, "fruit"]

receptacles = ["recycling bin”, "plastic storage
box", "black storage box", "sofa", "drawer"]
pick_and_place(”clothing”, "sofa")
pick_and_place("snack”, "plastic storage box")
pick_and_place(”can"”, "recycling bin")

pick_and_place("wooden block”, "drawer")
pick_and_place("fruit”, "black storage box")



A.7 Primitive selection for
real-world system

# Summary: Pick and place clothes and wooden
blocks, pick and toss snacks and drinks.
objects = ["clothing”, "snack”, "can",
block”, "fruit"]
pick_and_place(”clothing”)
pick_and_place("wooden block™)
pick_and_toss("snack")
pick_and_toss("can")
pick_and_toss("fruit")

"wooden
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