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We investigate numerical and experimental nonadiabatic relocation of a topological interface. We
construct a reconfigurable electroacoustic Su-Schreiffer-Heeger lattice using negative-capacitance (NC)
shunted piezoelectric patches attached to a host beam. Tuning the NC circuits allows us to create a
topological-interface state by varying the effective elastic modulus along the beam. We then use a micro-
controller to switch relays placed in the NC shunt circuits to move the interface by one unit cell. We present
the results for continuous and pulse inputs and show the shift of energy localization in the experiment.
Further, to distinguish topological protection, we simulate the nonadiabatic shifting of a trivial defect in a
discrete lattice. Numerical simulations indicate higher mean energy at the interface after shifting a topo-
logical state as compared to a defect state. Topological interfaces as shown in our experiment may have
interesting applications in acoustic communication, such as source switching and signal encoding.
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I. INTRODUCTION

Topologically protected modes (TPMs) are known for
their robustness to system disorder, a feature that makes
them attractive for applications in quantum computing,
photonics, and phononics [1-4]. Numerous studies in the
recent literature outline strategies to implement scattering-
free waveguiding and lossless transport of information
via TPMs in electromagnetic [5], acoustic [6], and elas-
tic [7] media by exploiting analogies with the quantum
Hall [8], spin Hall [9], and valley Hall [10] effects. An n-
dimensional topological insulator typically supports TPMs
to n — 1 dimensions. The topological phase-transition phe-
nomena in such systems are explained by models such as
the Su-Schrieffer-Heeger (SSH) model [11], the Thouless-
Kohmoto-Nightingale - den Nijs (TKNN) model [12], the
Haldane model [13], the Kane-Mele model [14], the
Bernevig-Hughes-Zhang model [15], and others [1,2].

The SSH model [16] is commonly used to explain
the formation of topological edge modes in effectively
one-dimensional (1D) systems. Although this model was
originally used to explain soliton formation in chains
of trams-polyacetylene [11], in the past decade it has
inspired theoretical and experimental explorations of topo-
logical electrical [17,18], photonic [19,20], and acoustic
systems [21]. In particular, in acoustics, researchers have
demonstrated edge, interface, and corner states in 1D and
two-dimensional (2D) SSH structures [21-23]. Further,
some have explored the effect of nonlinearities [24-26],
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while others have studied spatial and temporal modulation
[27-29] of lattice parameters on the appearance of edge
or interface modes. Topological edge modes have also
been compared to another class of surface states known
as Tamm modes [30—33], which occur at the termination
of periodic structures. While, in general, Tamm states are
not guaranteed topological protection, topological Tamm
states have been reported in the literature [34,35].

More recently, in the context of robust information
transport, topological pumping of edge states has been
actively explored. Inspired by the Thouless pump [36],
which describes quantized charge transport, researchers
have theoretically studied and experimentally demon-
strated the transition of edge states under the action of
an external bias [29,37,38]. Notably, topological pumping
makes use of an induced parametric variation such that
the parameter acts as a virtual dimension, thus bringing,
for example, 2D topological effects into 1D systems. For
successfully moving the localized energy from one edge
to another, topological pumping is required to be adia-
batic, wherein the rate of variation of the chosen parameter
has an upper bound. Further, to obtain a localization in
the middle (instead of the end) of a 1D system, the left
and right halves of the system would require different
pumping-parameter profiles. Here, to obviate the complex-
ity associated with the addition of a pumping parameter,
we explore nonadiabatic shifting of a topological-interface
mode in an electroacoustic SSH lattice. Specifically, we
demonstrate survival of the interface-amplitude maxima
under an instantaneous shift by a unit-cell distance. We
anticipate significantly lower energy loss (or decoherence)
due to the rapid and highly local change in the presence of
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FIG. 1. The unit cell of the reconfigurable electroacoustic SSH
beam, showing the negative-capacitance circuit.

topological protection. We present relevant details of the
experimental implementation and, by quantitative analy-
sis of the experimentally obtained results, we show the
movement of the localized amplitude. We compare the
movement of a topological state with a trivial defect state,
using numerical simulations to establish the more efficient
energy transport in the topological case. We believe that
our results may find interesting applications in acoustic
communication or acoustic tweezing.

II. RECONFIGURABLE ELECTROACOUSTIC
SSH STRUCTURE

Inspired by reconfigurable designs [39,40], we construct
the unit cell of the electroacoustic SSH lattice by bonding
two pairs of piezoelectric patches (piezos) to a host beam
as shown in Fig. 1. Each pair of piezos is symmetrically
placed about the host. While one pair of piezos is shorted,
the other pair is shunted via a negative-capacitance (NC)
circuit [41,42]. The circuitry shown in Fig. 1 reduces the
elastic modulus of the connected piezo according to the
formula [41]

21"
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Y=Y [1 —
where Y is the short-circuit Young’s modulus of the piezo,
k is the electromechanical coupling coefficient, and o =
Cheg/C, is the ratio of the NC to the intrinsic capacitance
of the piezo. The NC is related to the values of the passive
electrical components in the circuit as Cpeg = —CoR/R;.
Typically, a large Ry is used to ensure circuit stability [43].

We use the effective elastic modulus of the piezos to
construct a finite-element model of the unit cell with

only structural elements. We apply periodic boundary con-
ditions and compute the dispersion curves using finite-
element analysis [44] to identify a topological band gap.
It can be seen from Eq. (1) that the values of « closer to,
but less than —1, lead to a larger difference between the
shorted and shunted elastic modulus, which is ideal for
larger Bragg band gaps. Specifically, we use o = —1.15
with ¥y = 84 GPa and &k = 0.35, resulting in an effective
modulus of ¥ = 46 GPa. These values correspond to the
electrical and mechanical parameters used in our experi-
ments. Figure 2(a) shows the dispersion of the longitudinal
modes (dashed) and flexural modes (solid lines) with dom-
inant out-of-plane (z-direction) displacement of the unit
cell. We identify the Zak phase [45] of the flexural bands
surrounding the band gap around 30 kHz, by observing the
mode shapes of the inversion-symmetric unit cell at the
center and end of the first Brillouin zone [21]. The band
possessing the same symmetry for the mode shape has a
Zak phase of 0, while that possessing different symmetry
has a Zak phase of & [marked in Fig. 2(a); note the mode-
shape symmetries]. We find that the Zak phases of the
bands surrounding the gap switch (i.e., 71 — 0and 0 — )
as the shunted and shorted piezos are swapped to make a
second type of unit cell. This indicates a topological transi-
tion and suggests the presence of an interface mode within
the topological band gap [46]. We construct the interface
by repeating the two types of unit cells on either side of the
interface. By carefully choosing the total number of piezo
pairs along the beam, one can ensure that the mode shape
at the frequency within the topological gap has amplitude
localization only at the interface and not at the termination
of the periodic structure. To enable shifting of the inter-
face, we use relays between the piezo and shunt circuits.
Switching all the relays between two identified interface
positions allows movement of the interface as shown in
Fig. 2(b). Note that here we form an interface with neigh-
boring shunted piezos (i.e., effectively soft piezos), as this
results in an amplitude maximum in the topological mode
and we are interested in shifting this maximum by one unit
cell. An interface with neighboring shorted piezos (i.e.,
stiffer piezos) would result in zero amplitude at the inter-
face, while the maximum amplitude would occur at points
half a unit cell away from the interface [33,35]. Later,
we show through numerical simulations that both types of
interface have topological protection.

I11. SHIFTING A TOPOLOGICAL INTERFACE

Figure 2(c) documents the experimental setup detail-
ing the beam with attached piezos. We use a 1.016-mm-
(0.04-in.-) thick aluminum host beam to which 24 pairs
of rectangular piezos (Steiner and Martins Inc., Daven-
port, Florida, Part SMPL131W89T10) are vacuum bonded
to obtain a 12-unit-cell finite system with unit-cell spac-
ing a = 30 cm. The NC shunt circuits are realized using
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FIG. 2. (a) Dispersion curves of the infinite periodic struc-
ture. Only the in-plane flexural modes and longitudinal modes
(dashed) are displayed. The mode shapes at the center and end
of the Brillouin zone are presented to deduce the Zak phase of
the bands. (b) A schematic illustration of moving a topological
interface by one unit cell. (c) The experimental setup, depicting
the piezo beam along with the required electronics.

OPA445 operational amplifiers and passive components,
the nominal values of which are listed in Table 1. To
accommodate the variation of the capacitance of individ-
ual piezos (1.3—1.5 nF), resistance R; is constructed with
a 10-kS2 analog potentiometer connected in parallel with a
10-k2 passive resistance. By tuning the potentiometer of
each circuit, we obtain an operating point with « = —1.15.

TABLE I. Nominal values of the passive electrical elements in
the NC shunt circuits used in the experiment.

Label Value
Go 1.6 nF
R1 < 5kQ
Ry 4.7kQ
Ro 1 MQ

We use a four-relay module controlled by an Arduino
Uno (Arduino LLC, Boston, MA, USA) for timed reloca-
tion of the interface by one unit cell. At first, the system
is in the “interface-A” configuration, where the interface is
located at “location A” (x = 0). Switching the relays relo-
cates the interface to “location B” (x = a), which results in
the “interface-B” configuration [see Fig. 2(b)]. We excite
the system by providing an amplified input waveform to a
piezo at one end of the beam (near x = —6a) and we mea-
sure the velocities of points spaced %a apart on the beam
using a PSV-500 (Polytec GmbH, Waldbronn, Germany)
scanning laser Doppler vibrometer (SLDV) at a sampling
rate of 250 kHz. We focus our attention on the scan points
between x = 0 and x = 6a (the end away from the input) to
best capture and study the profile of the oscillation ampli-
tude. By providing sinusoidal input at single frequencies
between 25 kHz and 35 kHz, we identify 30.5 kHz as a
suitable operating frequency for our experiment. Figure 3
shows the amplitude profile of the measured velocity for
a harmonic input at 30.5 kHz. The amplitude maximum is
observed at the expected locations; i.e., at location A for
interface A and location B for interface B, and the decay
profile is consistent with that of the topological-interface
mode [24,33,35].

Any finite input pulse is dissipated as a consequence
of damping in our fabricated system, similar to any other
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FIG. 3. The profile of the measured velocity amplitude

between x = 0 and x = 6a for the two interface configurations.
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FIG. 4. The measured velocity as the interface is shifted (a) from location A to location B then back to A, (b) from location A to
location B once, and (c) between locations A and B every 25 ms. (d) The signal power corresponding to the velocity signals in (b)

evaluated in terms of the rms value.

practical structure. Additional damping is expected due to
the shunt circuits [47]. For the purpose of studying the
response to relocation of the interface, we first look at
the case when the interface is relocated before terminat-
ing the input. A synchronizing pulse from the SLDV is
used to trigger the relays by programming the microcon-
troller. Figure 4(a) shows the measured velocity at points
on one side of the first interface as the beam configura-
tion is changed from interface A to interface B and then
back to A before terminating the harmonic input. Accord-
ingly, the amplitude maximum can be seen to move from
location A to location B and then back to A. Figure 4(b)
shows the velocities measured at locations A and B as the
input is provided, starting at # = 100 ms, until # = 250 ms,
while the configuration is switched from interface A to
interface B at t = 150 ms. The root-mean-square (rms)
value of a signal is indicative of the signal power. The rms
value of the velocity signal, computed over small windows
(At = 0.2 ms), plotted in Fig. 4(c) suggests that the signal
power is exchanged as the interface is relocated. The spike
in signal power at the instant of switching is attributed to

the step response of the operational amplifiers, resulting
in transient dynamics in the beam during which the piezo
elastic modulus value settles to a new value. In addition to
a finite time delay inherent to the relays used in our experi-
ment, the settling time of the interface modes, which is the
time taken for the transient dynamics to dampen out, deter-
mines how fast the interface position can be moved. In our
experiments, we observe these times to be 2 ms and 1.5
ms, respectively, when moving the interface from location
A to location B. Further, the presence of continuous input
and proximity to the domain boundary may influence the
transient dynamics of the system. Figure 4(d) shows the
response to switching the interface between locations A
and B every 25 ms, while harmonic input at the topologi-
cal mode frequency is continuously provided. Clearly, the
maximum-amplitude shifts between the two interface loca-
tions follow the relocation pattern. The system can thus
be used to generate two out-of-phase signals with a single
input.

Next, we show that the localized amplitude moves by
one unit cell even in the case of finite-duration input. For
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FIG. 5.

(a) The measured velocity as the interface is shifted from location A to location B, while the input is terminated simultane-

ously. (b) The corresponding signal power evaluated in terms of the rms value. (c¢) The ratio of the signal energy before and after the
shift, Ry;/R;, computed in a 0.2-ms window marked by labels I and II in (b).
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FIG. 6. A numerically simulated temporal map of the displacement amplitude along a discrete lattice on moving (a) a hard interface,
(b) a trivial defect, and (c) a soft interface by one unit cell. The bottom panel in each subfigure shows the eigenfrequencies of the finite
system in each case while highlighting the topological- or defect-mode frequency.

this purpose, we begin with the configuration in which
the interface is at location A, provide input to establish
the amplitude localization, and then terminate the input
while simultaneously relocating the interface to location
B. Figures 5(a) and 5(b) depict the measured velocities
and the corresponding signal power [computed similarly
to Fig. 4(c)], respectively. Here, the input is exponen-
tially decayed and the interface is moved to location B
at + =500 ms. The integral of the signal power gives
an estimate of the energy in the signal. To compare the
signal energy at various locations before and after the inter-
face shift, we numerically integrate the signal power in a
At = 0.2 ms window around the time of shift. The time
of shift (+ = 500 ms) is marked by a dashed vertical line
and the windows before and after the shift are labeled as |
and II, respectively, in Fig. 5(b). Away from the bound-
ary, we expect the system damping to be uniform and,
therefore, any relative increase in the signal energy at a
location can be attributed to the interface shifting toward
that location. The ratio of the signal energy in the windows
t+ At and t — At, referred as Ry/Ry, is used as an indi-
cator of the shift in amplitude localization in the beam.
Figure 5(c) depicts the value of Ry /Ry at x =0, a, 2a,
and 3a. As the interface is changed to location B, the
ratio Ry;/R; is higher at location B and subsequent loca-
tions in the direction of relocation, thereby confirming the
shift of the amplitude maximum in the case of finite input.
We wish to emphasize that the value of Ry/R; may vary
with experiments depending on the input; however, the
trend must remain the same, i.e., the value of the indica-
tor is higher for the location toward which the interface is
moving.

IV. TOPOLOGICAL VERSUS TRIVIAL DEFECT

Energy or amplitude localization also occurs at a defect
in a periodic structure and the frequency of such a defect
mode lies within a band gap. However, in the absence
of topological protection, such a defect mode merges into
bulk modes with disorder in the system. We anticipate that
such a trivial defect mode does not contain the energy very
well for a small perturbation at the defect location. To dis-
tinguish the advantage of topological modes in the context
of moving a defect in periodic structures, we use numeri-
cal simulation of oscillations in a finite discrete SSH lattice
with unit mass and spring stiffness k; (intracell) and k;
(intercell). We consider a 20-unit-cell open-ended finite
periodic system with ten unit cells on either side of an
interface (or defect), such that the periodicity is only bro-
ken at the interface mass, which is connected to both its
neighbors via k;. For k; > ki, two frequencies can be iden-
tified in the eigenvalues of the finite system that fall in
the band gap of the periodic structure. One of these is in
the topological band gap and we refer to this topologi-
cal mode as the hard interface, while the other is in the
trivial band gap above the optical band of the SSH unit
cell and we refer to this as the (trivial) defect mode. For
ky < ki, only the topological band gap of the periodic sys-
tem hosts an eigenvalue and we refer to its mode shape
as the soft interface. The top panel in Figure 6 shows the
absolute displacement along the lattice when a finite pulse
at the defect-mode frequency is input at a mass next to
the interface and the interface is moved by one unit cell;
i.e., from x = 0 (vertical black dashed line) to x = a (ver-
tical red dashed line) at the time instance marked by the
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horizontal white dashed line. The bottom panels of Fig. 6
depict the eigenfrequencies of the finite structure (the topo-
logical or defect mode in color, whereas the bulk modes are
in gray), with solid and dashed lines for the system before
and after the interface shift. While the topological hard and
soft interfaces [Figs. 6(a) and 6(c), respectively] retain the
localization profile after the interface shift, the defect mode
[Fig. 6(b)] has more energy scattered into the bulk of the
structure, which suggests that under nonadiabatic condi-
tions, relocation of a topological state is more robust than
of a defect state. We discuss the effect of consecutive relo-
cations in the Supplemental Material [48]. Even though
the amount of energy at the new interface location may
vary with the system, topological protection ensures more
efficient energy transition between topological interfaces
compared with trivial defects.

V. CONCLUDING REMARKS

In summary, we experimentally demonstrate the nona-
diabatic shifting of a topological interface in an electroa-
coustic Su-Schrieffer-Heeger beam. The amplitude profile
along the beam follows the movement of the interface.
The actuation of relays resulting in the shift of the inter-
face is simultaneous with turning off of the input. A
trivial defect that also results in localization is not robust
under such nonadiabatic shifts [49]. The robustness of
topological interfaces on relocation may find interesting
applications; for example, in acoustic tweezing to move an
object isolated between two interfaces [50] or in acoustic
communication by encoding different interface positions.

ACKNOWLEDGMENTS

S.K. thanks Dr. Ahmed Allam and Dr. Christopher
Sugino for useful technical discussions related to the fab-
rication of the piezo-bonded beam and the experimental
setup. This material is based upon work supported by the
National Science Foundation under Grant No. 1929849.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation.

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and super-
conductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] L. Lu, J. D. Joannopoulos, and M. Soljaci¢, Topological
photonics, Nat. Photonics 8, 821 (2014).

[4] F. Zangeneh-Nejad, A. Alu, and R. Fleury, Topological
wave insulators: A review, C. R. Phys. 21, 467 (2020).

[5] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M.
Kargarian, A. H. MacDonald, and G. Shvets, Photonic
topological insulators, Nat. Mater. 12, 233 (2013).

[6] R.Fleury, A. B. Khanikaev, and A. Alu, Floquet topological
insulators for sound, Nat. Commun. 7, 1 (2016).

[7] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Topolog-
ically protected elastic waves in phononic metamaterials,
Nat. Commun. 6, 1 (2015).

[8] K. v. Klitzing, G. Dorda, and M. Pepper, New Method for
High-Accuracy Determination of the Fine-Structure Con-
stant Based on Quantized Hall Resistance, Phys. Rev. Lett.
45, 494 (1980).

[9] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[10] A. Rycerz, J. Tworzydlo, and C. Beenakker, Valley fil-
ter and valley valve in graphene, Nat. Phys. 3, 172
(2007).

[11] W. Su, J. Schrieffer, and A. J. Heeger, Solitons in Polyacety-
lene, Phys. Rev. Lett. 42, 1698 (1979).

[12] D.J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall Conductance in a Two-Dimensional
Periodic Potential, Phys. Rev. Lett. 49, 405 (1982).

[13] F. D. M. Haldane, Model for a Quantum Hall Effect with-
out Landau Levels: Condensed-Matter Realization of the
“Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

[14] C. L. Kane and E. J. Mele, Z, Topological Order and the
Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802
(2005).

[15] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum
spin Hall effect and topological phase transition in HgTe
quantum wells, Science 314, 1757 (2006).

[16] J. K. Asboth, L. Oroszlany, and A. Palyi, A short course
on topological insulators, Lect. Notes Phys. 919, 166
(2016).

[17] Y. Hadad, J. C. Soric, A. B. Khanikaev, and A. Alu, Self-
induced topological protection in nonlinear circuit arrays,
Nat. Electron. 1, 178 (2018).

[18] T. Kotwal, F. Moseley, A. Stegmaier, S. Imhof, H. Brand,
T. KieBling, R. Thomale, H. Ronellenfitsch, and J. Dunkel,
Active topolectrical circuits, Proc. Nat. Acad. Sci. 118,
e2106411118 (2021).

[19] G. Caceres-Aravena, B. Real, D. Guzman-Silva, A. Amo,
L. E. F. Torres, and R. A. Vicencio, Experimental observa-
tion of edge states in SSH-stub photonic lattices, Phys. Rev.
Res. 4, 013185 (2022).

[20] C. Jorg, C. Dauer, F. Letscher, M. Fleischhauer, S. Eggert,
S. Linden, and G. von Freymann, et al., Limits of topologi-
cal protection under local periodic driving, Light: Sci. Appl.
8,1(2019).

[21] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Zhang, and C.
T. Chan, Geometric phase and band inversion in periodic
acoustic systems, Nat. Phys. 11, 240 (2015).

[22] X.Li, Y. Meng, X. Wu, S. Yan, Y. Huang, S. Wang, and W.
Wen, Su-Schrieffer-Heeger model inspired acoustic inter-
face states and edge states, Appl. Phys. Lett. 113, 203501
(2018).

[23] A. Coutant, A. Sivadon, L. Zheng, V. Achilleos, O.
Richoux, G. Theocharis, and V. Pagneux, Acoustic Su-
Schrieffer-Heeger lattice: Direct mapping of acoustic
waveguides to the Su-Schrieffer-Heeger model, Phys. Rev.
B 103, 224309 (2021).

[24] R. K. Pal, J. Vila, M. Leamy, and M. Ruzzene, Amplitude-
dependent topological edge states in nonlinear phononic
lattices, Phys. Rev. E 97, 032209 (2018).

054058-6



SHIFTING OF A TOPOLOGICAL...

PHYS. REV. APPLIED 18, 054058 (2022)

[25] R. Chaunsali, H. Xu, J. Yang, P. G. Kevrekidis, and G.
Theocharis, Stability of topological edge states under strong
nonlinear effects, Phys. Rev. B 103, 024106 (2021).

[26] R. Chaunsali and G. Theocharis, Self-induced topological
transition in phononic crystals by nonlinearity manage-
ment, Phys. Rev. B 100, 014302 (2019).

[27] M. L. Rosa, R. K. Pal, J. R. Arruda, and M. Ruzzene, Edge
States and Topological Pumping in Spatially Modulated
Elastic Lattices, Phys. Rev. Lett. 123, 034301 (2019).

[28] E. Riva, M. I. Rosa, and M. Ruzzene, Edge states and topo-
logical pumping in stiffness-modulated elastic plates, Phys.
Rev. B 101, 094307 (2020).

[29] Y. Xia, E. Riva, M. 1. Rosa, G. Cazzulani, A. Erturk,
F. Braghin, and M. Ruzzene, Experimental Observation
of Temporal Pumping in Electromechanical Waveguides,
Phys. Rev. Lett. 126, 095501 (2021).

[30] Z. He, S. Peng, M. Ke, J. Shi, K. Deng, H. Zhao, Z. Liu,
W. Wen, and P. Sheng, Acoustic surface-guided modes
in phononic crystals, EPL (Europhys. Lett.) 104, 34005
(2013).

[31] H.-X. Wang, C. Liang, Y. Poo, P.-G. Luan, and G.-Y.
Guo, The topological edge modes and tamm modes in Su-
Schrieffer-Heeger LC-resonator circuits, J. Phys. D: Appl.
Phys. 54, 435301 (2021).

[32] D. Liao, Z. Yue, Z. Zhang, H.-X. Wang, Y. Cheng, and X.
Liu, Observations of Tamm modes in acoustic topological
insulators, Appl. Phys. Lett. 120, 211701 (2022).

[33] T. Chen, Y. Yu, Y. Song, D. Yu, H. Ye, J. Xie, X. Shen,
Y. Pan, and Q. Cheng, Distinguishing the topological zero
mode and Tamm mode in a microwave waveguide array,
Ann. Phys. 531, 1900347 (2019).

[34] J. Henriques, T. Rappoport, Y. V. Bludov, M. Vasilevskiy,
and N. Peres, Topological photonic Tamm states and the
Su-Schrieffer-Heeger model, Phys. Rev. A 101, 043811
(2020).

[35] L. Wang, W. Cai, M. Bie, X. Zhang, and J. Xu, Zak phase
and topological plasmonic Tamm states in one-dimensional
plasmonic crystals, Opt. Express 26, 28963 (2018).

[36] D. Thouless, Quantization of particle transport, Phys. Rev.
B 27, 6083 (1983).

[37] I. H. Grinberg, M. Lin, C. Harris, W. A. Benalcazar, C.
W. Peterson, T. L. Hughes, and G. Bahl, Robust tempo-
ral pumping in a magneto-mechanical topological insulator,
Nat. Commun. 11, 1 (2020).

[38] W. Cheng, E. Prodan, and C. Prodan, Experimental Demon-
stration of Dynamic Topological Pumping across Incom-
mensurate Bilayered Acoustic Metamaterials, Phys. Rev.
Lett. 125, 224301 (2020).

[39] A. Darabi, M. Collet, and M. J. Leamy, Experimental
realization of a reconfigurable electroacoustic topological
insulator, Proc. Nat. Acad. Sci. 117, 16138 (2020).

[40] A. Darabi, E. Kliewer, and M. J. Leamy, Reconfigurable
acoustic multiplexer/demultiplexer using time division,
Appl. Phys. Lett. 119, 113501 (2021).

[41] M. Date, M. Kutani, and S. Sakai, Electrically controlled
elasticity utilizing piezoelectric coupling, J. Appl. Phys. 87,
863 (2000).

[42] E. Fukada, M. Date, K. Kimura, T. Okubo, H. Kodama,
P. Mokry, and K. Yamamoto, Sound isolation by piezo-
electric polymer films connected to negative capacitance
circuits, IEEE Trans. Dielectr. Electr. Insul. 11, 328
(2004).

[43] J. Marconi, E. Riva, M. Di Ronco, G. Cazzulani, F. Braghin,
and M. Ruzzene, Experimental Observation of Nonrecipro-
cal Band Gaps in a Space-Time-Modulated Beam Using a
Shunted Piezoelectric Array, Phys. Rev. Appl. 13, 031001
(2020).

[44] CcOMSOL MULTIPHYSICS®v. 5.5, www.comsol.com, COM-
SOL AB, Stockholm, Sweden.

[45] J. Zak, Berry’s Phase for Energy Bands in Solids, Phys.
Rev. Lett. 62, 2747 (1989).

[46] M. Xiao, Z. Zhang, and C. T. Chan, Surface Impedance and
Bulk Band Geometric Phases in One-Dimensional Systems,
Phys. Rev. X 4, 021017 (2014).

[47] N. W. Hagood and A. Von Flotow, Damping of
structural vibrations with piezoelectric materials and
passive electrical networks, J. Sound Vib. 146, 243
(1991).

[48] See the Supplemental Material at http://link.aps.org/supple
mental/10.1103/PhysRevApplied.18.054058 for a brief dis-
cussion on consecutive relocations of the interface.

[49] R. L. Thomes, D. Beli, and C. De Marqui Jr., Space-time
wave localization in electromechanical metamaterial beams
with programmable defects, Mech. Syst. Signal Process.
167, 108550 (2022).

[50] C. Schmidt, A. Palatnik, M. Sudzius, S. Meister, and K.
Leo, Coupled topological interface states, Phys. Rev. B 103,
085412 (2021).

054058-7



	I. INTRODUCTION
	II. RECONFIGURABLE ELECTROACOUSTIC SSH STRUCTURE
	III. SHIFTING A TOPOLOGICAL INTERFACE
	IV. TOPOLOGICAL VERSUS TRIVIAL DEFECT
	V. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	. References

