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We investigate numerical and experimental nonadiabatic relocation of a topological interface. We

construct a reconfigurable electroacoustic Su-Schreiffer-Heeger lattice using negative-capacitance (NC)

shunted piezoelectric patches attached to a host beam. Tuning the NC circuits allows us to create a

topological-interface state by varying the effective elastic modulus along the beam. We then use a micro-

controller to switch relays placed in the NC shunt circuits to move the interface by one unit cell. We present

the results for continuous and pulse inputs and show the shift of energy localization in the experiment.

Further, to distinguish topological protection, we simulate the nonadiabatic shifting of a trivial defect in a

discrete lattice. Numerical simulations indicate higher mean energy at the interface after shifting a topo-

logical state as compared to a defect state. Topological interfaces as shown in our experiment may have

interesting applications in acoustic communication, such as source switching and signal encoding.

DOI: 10.1103/PhysRevApplied.18.054058

I. INTRODUCTION

Topologically protected modes (TPMs) are known for

their robustness to system disorder, a feature that makes

them attractive for applications in quantum computing,

photonics, and phononics [1–4]. Numerous studies in the

recent literature outline strategies to implement scattering-

free waveguiding and lossless transport of information

via TPMs in electromagnetic [5], acoustic [6], and elas-

tic [7] media by exploiting analogies with the quantum

Hall [8], spin Hall [9], and valley Hall [10] effects. An n-

dimensional topological insulator typically supports TPMs

to n − 1 dimensions. The topological phase-transition phe-

nomena in such systems are explained by models such as

the Su-Schrieffer-Heeger (SSH) model [11], the Thouless-

Kohmoto-Nightingale - den Nijs (TKNN) model [12], the

Haldane model [13], the Kane-Mele model [14], the

Bernevig-Hughes-Zhang model [15], and others [1,2].

The SSH model [16] is commonly used to explain

the formation of topological edge modes in effectively

one-dimensional (1D) systems. Although this model was

originally used to explain soliton formation in chains

of trans-polyacetylene [11], in the past decade it has

inspired theoretical and experimental explorations of topo-

logical electrical [17,18], photonic [19,20], and acoustic

systems [21]. In particular, in acoustics, researchers have

demonstrated edge, interface, and corner states in 1D and

two-dimensional (2D) SSH structures [21–23]. Further,

some have explored the effect of nonlinearities [24–26],

*michael.leamy@me.gatech.edu

while others have studied spatial and temporal modulation

[27–29] of lattice parameters on the appearance of edge

or interface modes. Topological edge modes have also

been compared to another class of surface states known

as Tamm modes [30–33], which occur at the termination

of periodic structures. While, in general, Tamm states are

not guaranteed topological protection, topological Tamm

states have been reported in the literature [34,35].

More recently, in the context of robust information

transport, topological pumping of edge states has been

actively explored. Inspired by the Thouless pump [36],

which describes quantized charge transport, researchers

have theoretically studied and experimentally demon-

strated the transition of edge states under the action of

an external bias [29,37,38]. Notably, topological pumping

makes use of an induced parametric variation such that

the parameter acts as a virtual dimension, thus bringing,

for example, 2D topological effects into 1D systems. For

successfully moving the localized energy from one edge

to another, topological pumping is required to be adia-

batic, wherein the rate of variation of the chosen parameter

has an upper bound. Further, to obtain a localization in

the middle (instead of the end) of a 1D system, the left

and right halves of the system would require different

pumping-parameter profiles. Here, to obviate the complex-

ity associated with the addition of a pumping parameter,

we explore nonadiabatic shifting of a topological-interface

mode in an electroacoustic SSH lattice. Specifically, we

demonstrate survival of the interface-amplitude maxima

under an instantaneous shift by a unit-cell distance. We

anticipate significantly lower energy loss (or decoherence)

due to the rapid and highly local change in the presence of
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FIG. 1. The unit cell of the reconfigurable electroacoustic SSH

beam, showing the negative-capacitance circuit.

topological protection. We present relevant details of the

experimental implementation and, by quantitative analy-

sis of the experimentally obtained results, we show the

movement of the localized amplitude. We compare the

movement of a topological state with a trivial defect state,

using numerical simulations to establish the more efficient

energy transport in the topological case. We believe that

our results may find interesting applications in acoustic

communication or acoustic tweezing.

II. RECONFIGURABLE ELECTROACOUSTIC

SSH STRUCTURE

Inspired by reconfigurable designs [39,40], we construct

the unit cell of the electroacoustic SSH lattice by bonding

two pairs of piezoelectric patches (piezos) to a host beam

as shown in Fig. 1. Each pair of piezos is symmetrically

placed about the host. While one pair of piezos is shorted,

the other pair is shunted via a negative-capacitance (NC)

circuit [41,42]. The circuitry shown in Fig. 1 reduces the

elastic modulus of the connected piezo according to the

formula [41]

Y = Y0

[

1 −
k2

(1 + α)

]−1

, (1)

where Y0 is the short-circuit Young’s modulus of the piezo,

k is the electromechanical coupling coefficient, and α =

Cneg/Cp is the ratio of the NC to the intrinsic capacitance

of the piezo. The NC is related to the values of the passive

electrical components in the circuit as Cneg = −C0R2/R1.

Typically, a large R0 is used to ensure circuit stability [43].

We use the effective elastic modulus of the piezos to

construct a finite-element model of the unit cell with

only structural elements. We apply periodic boundary con-

ditions and compute the dispersion curves using finite-

element analysis [44] to identify a topological band gap.

It can be seen from Eq. (1) that the values of α closer to,

but less than −1, lead to a larger difference between the

shorted and shunted elastic modulus, which is ideal for

larger Bragg band gaps. Specifically, we use α = −1.15

with Y0 = 84 GPa and k = 0.35, resulting in an effective

modulus of Y = 46 GPa. These values correspond to the

electrical and mechanical parameters used in our experi-

ments. Figure 2(a) shows the dispersion of the longitudinal

modes (dashed) and flexural modes (solid lines) with dom-

inant out-of-plane (z-direction) displacement of the unit

cell. We identify the Zak phase [45] of the flexural bands

surrounding the band gap around 30 kHz, by observing the

mode shapes of the inversion-symmetric unit cell at the

center and end of the first Brillouin zone [21]. The band

possessing the same symmetry for the mode shape has a

Zak phase of 0, while that possessing different symmetry

has a Zak phase of π [marked in Fig. 2(a); note the mode-

shape symmetries]. We find that the Zak phases of the

bands surrounding the gap switch (i.e., π → 0 and 0 → π )

as the shunted and shorted piezos are swapped to make a

second type of unit cell. This indicates a topological transi-

tion and suggests the presence of an interface mode within

the topological band gap [46]. We construct the interface

by repeating the two types of unit cells on either side of the

interface. By carefully choosing the total number of piezo

pairs along the beam, one can ensure that the mode shape

at the frequency within the topological gap has amplitude

localization only at the interface and not at the termination

of the periodic structure. To enable shifting of the inter-

face, we use relays between the piezo and shunt circuits.

Switching all the relays between two identified interface

positions allows movement of the interface as shown in

Fig. 2(b). Note that here we form an interface with neigh-

boring shunted piezos (i.e., effectively soft piezos), as this

results in an amplitude maximum in the topological mode

and we are interested in shifting this maximum by one unit

cell. An interface with neighboring shorted piezos (i.e.,

stiffer piezos) would result in zero amplitude at the inter-

face, while the maximum amplitude would occur at points

half a unit cell away from the interface [33,35]. Later,

we show through numerical simulations that both types of

interface have topological protection.

III. SHIFTING A TOPOLOGICAL INTERFACE

Figure 2(c) documents the experimental setup detail-

ing the beam with attached piezos. We use a 1.016-mm-

(0.04-in.-) thick aluminum host beam to which 24 pairs

of rectangular piezos (Steiner and Martins Inc., Daven-

port, Florida, Part SMPL131W89T10) are vacuum bonded

to obtain a 12-unit-cell finite system with unit-cell spac-

ing a = 30 cm. The NC shunt circuits are realized using
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FIG. 2. (a) Dispersion curves of the infinite periodic struc-

ture. Only the in-plane flexural modes and longitudinal modes

(dashed) are displayed. The mode shapes at the center and end

of the Brillouin zone are presented to deduce the Zak phase of

the bands. (b) A schematic illustration of moving a topological

interface by one unit cell. (c) The experimental setup, depicting

the piezo beam along with the required electronics.

OPA445 operational amplifiers and passive components,

the nominal values of which are listed in Table I. To

accommodate the variation of the capacitance of individ-

ual piezos (1.3–1.5 nF), resistance R2 is constructed with

a 10-k� analog potentiometer connected in parallel with a

10-k� passive resistance. By tuning the potentiometer of

each circuit, we obtain an operating point with α = −1.15.

TABLE I. Nominal values of the passive electrical elements in

the NC shunt circuits used in the experiment.

Label Value

C0 1.6 nF

R1 < 5 k�

R2 4.7 k�

R0 1 M�

We use a four-relay module controlled by an Arduino

Uno (Arduino LLC, Boston, MA, USA) for timed reloca-

tion of the interface by one unit cell. At first, the system

is in the “interface-A” configuration, where the interface is

located at “location A” (x = 0). Switching the relays relo-

cates the interface to “location B” (x = a), which results in

the “interface-B” configuration [see Fig. 2(b)]. We excite

the system by providing an amplified input waveform to a

piezo at one end of the beam (near x = −6a) and we mea-

sure the velocities of points spaced 1
2
a apart on the beam

using a PSV-500 (Polytec GmbH, Waldbronn, Germany)

scanning laser Doppler vibrometer (SLDV) at a sampling

rate of 250 kHz. We focus our attention on the scan points

between x = 0 and x = 6a (the end away from the input) to

best capture and study the profile of the oscillation ampli-

tude. By providing sinusoidal input at single frequencies

between 25 kHz and 35 kHz, we identify 30.5 kHz as a

suitable operating frequency for our experiment. Figure 3

shows the amplitude profile of the measured velocity for

a harmonic input at 30.5 kHz. The amplitude maximum is

observed at the expected locations; i.e., at location A for

interface A and location B for interface B, and the decay

profile is consistent with that of the topological-interface

mode [24,33,35].

Any finite input pulse is dissipated as a consequence

of damping in our fabricated system, similar to any other
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FIG. 3. The profile of the measured velocity amplitude

between x = 0 and x = 6a for the two interface configurations.
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FIG. 4. The measured velocity as the interface is shifted (a) from location A to location B then back to A, (b) from location A to

location B once, and (c) between locations A and B every 25 ms. (d) The signal power corresponding to the velocity signals in (b)

evaluated in terms of the rms value.

practical structure. Additional damping is expected due to

the shunt circuits [47]. For the purpose of studying the

response to relocation of the interface, we first look at

the case when the interface is relocated before terminat-

ing the input. A synchronizing pulse from the SLDV is

used to trigger the relays by programming the microcon-

troller. Figure 4(a) shows the measured velocity at points

on one side of the first interface as the beam configura-

tion is changed from interface A to interface B and then

back to A before terminating the harmonic input. Accord-

ingly, the amplitude maximum can be seen to move from

location A to location B and then back to A. Figure 4(b)

shows the velocities measured at locations A and B as the

input is provided, starting at t = 100 ms, until t = 250 ms,

while the configuration is switched from interface A to

interface B at t = 150 ms. The root-mean-square (rms)

value of a signal is indicative of the signal power. The rms

value of the velocity signal, computed over small windows

(�t = 0.2 ms), plotted in Fig. 4(c) suggests that the signal

power is exchanged as the interface is relocated. The spike

in signal power at the instant of switching is attributed to

the step response of the operational amplifiers, resulting

in transient dynamics in the beam during which the piezo

elastic modulus value settles to a new value. In addition to

a finite time delay inherent to the relays used in our experi-

ment, the settling time of the interface modes, which is the

time taken for the transient dynamics to dampen out, deter-

mines how fast the interface position can be moved. In our

experiments, we observe these times to be 2 ms and 1.5

ms, respectively, when moving the interface from location

A to location B. Further, the presence of continuous input

and proximity to the domain boundary may influence the

transient dynamics of the system. Figure 4(d) shows the

response to switching the interface between locations A

and B every 25 ms, while harmonic input at the topologi-

cal mode frequency is continuously provided. Clearly, the

maximum-amplitude shifts between the two interface loca-

tions follow the relocation pattern. The system can thus

be used to generate two out-of-phase signals with a single

input.

Next, we show that the localized amplitude moves by

one unit cell even in the case of finite-duration input. For
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this purpose, we begin with the configuration in which

the interface is at location A, provide input to establish

the amplitude localization, and then terminate the input

while simultaneously relocating the interface to location

B. Figures 5(a) and 5(b) depict the measured velocities

and the corresponding signal power [computed similarly

to Fig. 4(c)], respectively. Here, the input is exponen-

tially decayed and the interface is moved to location B

at t = 500 ms. The integral of the signal power gives

an estimate of the energy in the signal. To compare the

signal energy at various locations before and after the inter-

face shift, we numerically integrate the signal power in a

�t = 0.2 ms window around the time of shift. The time

of shift (t = 500 ms) is marked by a dashed vertical line

and the windows before and after the shift are labeled as I

and II, respectively, in Fig. 5(b). Away from the bound-

ary, we expect the system damping to be uniform and,

therefore, any relative increase in the signal energy at a

location can be attributed to the interface shifting toward

that location. The ratio of the signal energy in the windows

t + �t and t − �t, referred as RII/RI, is used as an indi-

cator of the shift in amplitude localization in the beam.

Figure 5(c) depicts the value of RII/RI at x = 0, a, 2a,

and 3a. As the interface is changed to location B, the

ratio RII/RI is higher at location B and subsequent loca-

tions in the direction of relocation, thereby confirming the

shift of the amplitude maximum in the case of finite input.

We wish to emphasize that the value of RII/RI may vary

with experiments depending on the input; however, the

trend must remain the same, i.e., the value of the indica-

tor is higher for the location toward which the interface is

moving.

IV. TOPOLOGICAL VERSUS TRIVIAL DEFECT

Energy or amplitude localization also occurs at a defect

in a periodic structure and the frequency of such a defect

mode lies within a band gap. However, in the absence

of topological protection, such a defect mode merges into

bulk modes with disorder in the system. We anticipate that

such a trivial defect mode does not contain the energy very

well for a small perturbation at the defect location. To dis-

tinguish the advantage of topological modes in the context

of moving a defect in periodic structures, we use numeri-

cal simulation of oscillations in a finite discrete SSH lattice

with unit mass and spring stiffness k1 (intracell) and k2

(intercell). We consider a 20-unit-cell open-ended finite

periodic system with ten unit cells on either side of an

interface (or defect), such that the periodicity is only bro-

ken at the interface mass, which is connected to both its

neighbors via k2. For k2 > k1, two frequencies can be iden-

tified in the eigenvalues of the finite system that fall in

the band gap of the periodic structure. One of these is in

the topological band gap and we refer to this topologi-

cal mode as the hard interface, while the other is in the

trivial band gap above the optical band of the SSH unit

cell and we refer to this as the (trivial) defect mode. For

k2 < k1, only the topological band gap of the periodic sys-

tem hosts an eigenvalue and we refer to its mode shape

as the soft interface. The top panel in Figure 6 shows the

absolute displacement along the lattice when a finite pulse

at the defect-mode frequency is input at a mass next to

the interface and the interface is moved by one unit cell;

i.e., from x = 0 (vertical black dashed line) to x = a (ver-

tical red dashed line) at the time instance marked by the
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horizontal white dashed line. The bottom panels of Fig. 6

depict the eigenfrequencies of the finite structure (the topo-

logical or defect mode in color, whereas the bulk modes are

in gray), with solid and dashed lines for the system before

and after the interface shift. While the topological hard and

soft interfaces [Figs. 6(a) and 6(c), respectively] retain the

localization profile after the interface shift, the defect mode

[Fig. 6(b)] has more energy scattered into the bulk of the

structure, which suggests that under nonadiabatic condi-

tions, relocation of a topological state is more robust than

of a defect state. We discuss the effect of consecutive relo-

cations in the Supplemental Material [48]. Even though

the amount of energy at the new interface location may

vary with the system, topological protection ensures more

efficient energy transition between topological interfaces

compared with trivial defects.

V. CONCLUDING REMARKS

In summary, we experimentally demonstrate the nona-

diabatic shifting of a topological interface in an electroa-

coustic Su-Schrieffer-Heeger beam. The amplitude profile

along the beam follows the movement of the interface.

The actuation of relays resulting in the shift of the inter-

face is simultaneous with turning off of the input. A

trivial defect that also results in localization is not robust

under such nonadiabatic shifts [49]. The robustness of

topological interfaces on relocation may find interesting

applications; for example, in acoustic tweezing to move an

object isolated between two interfaces [50] or in acoustic

communication by encoding different interface positions.
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