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Using analytical and numerical means, we document a geometry-enabled phenomenon, termed herein
dispersion morphing, in which lattice stretching in rotator structures modifies the real and imaginary dis-
persion characteristics of the system. We then demonstrate diverse functionality derived from dispersion
morphing under adiabatic (static) and nonadiabatic (dynamic) lattice deformation, to include dramatic
changes in group velocity, refractive index, directivity, and amplification. The proposed rotator lattices
consist of in-plane rotators coupled by angled elastic linkages the location and spacing of which can be
easily reconfigured, allowing significant changes in the dispersion characteristics of the lattices. Under
adiabatic lattice deformation, we reconfigure the directivity and refractive index of the periodic struc-
ture and present a closed-form solution to achieve flat bands across the entire wave-number domain.
We also incorporate chirality in the unit-cell design to counteract pass-band shifting in the process of
dispersion morphing, such that a real-time wave manipulation becomes possible. For dynamic lattice
deformation, we model the lattice constant as (i) a step function of time and (ii) a harmonic function
of time. In the former scenario, we employ the concept of temporal interfaces and achieve on-demand
time delay of the propagation. In the latter scenario, we demonstrate a parametric amplification effect
with stretching-informed amplification parameters. We report strong agreement between our theoretical
analysis and numerical simulations, verifying the aforementioned findings. We believe that the versatile
adaptations of such rotator lattices and their rich dynamics may inspire next-generation reconfigurable and
multifunctional metamaterial devices.

DOI: 10.1103/PhysRevApplied.20.034057

I. INTRODUCTION

Elastic metamaterials are a class of structures engi-
neered with (typically) periodic arrays of unit cells exhibit-
ing unique mechanical properties not commonly found in
nature [1,2]. In the field of wave propagation, elastic meta-
materials have been found to exhibit exotic phenomena,
such as negative refraction [3–5], on-demand waveguid-
ing [6–9], band-gap-based filtering [10–13] and topologi-
cal protection [14,15], making them promising candidates
for vibration-control applications [16,17] and mechanical-
logic devices [18–20]. The key mechanism governing the
diverse forms of wave behavior is the dispersion relation-
ship(s) induced by the spatial periodicity of the lattice and,
in some cases, its combination with external modulation.

A conventional metamaterial design approach aims to
tailor the band structure of a material for a single pur-
pose. However, when the operating environment or the
demanded propagation pattern changes, redesign and fab-
rication become imperative. This necessity raises con-
cerns about the efficiency and cost-effectiveness of elastic
metamaterials. In recent years, there has been a grow-
ing demand for metamaterials with reconfigurable band
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structures, which adapt to diverse operating environments
without incurring excessive modifications or additional
costs. A typical active approach to enhance reconfigurabil-
ity is to include electrical components, e.g., piezoelectric
or electromagnetic devices, to modify material properties
and thus the dispersion. This approach relies on exter-
nally programmed controls and enables reconfigurable fre-
quency filtering [21–23] and interface and/or domain relo-
cation [24–26]. When external controls are restricted or not
desired, passive methods leveraging nonlinearity provide
moderate tunability in dispersion. In lattice structures with
monotonic nonlinear interactions, the dispersion curves
shift in frequency and/or wave number [27], enabling pass-
band extensions and amplitude filters [28]. In nonmono-
tonic nonlinear interactions, nonlinearity usually induces
bistable or multistable equilibria, with distinct band struc-
tures associated with each state. The band-structure recon-
figuration has been activated using spring deformation [29,
30], buckling [31–33], origami-based deformation [16],
and liquid capillarity [34]. However, these systems typi-
cally only allow transitions between a few distinct stable
states, limiting the degree of reconfigurability and thus
applicability.

In this study, we propose a class of stretchable rotator
lattices with large continuous reconfigurability enabling
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multifunctional applications. The stretchable lattices con-
tain an infinite number of stable equilibrium states with
smooth dispersion transitioning. We term this phenomenon
dispersion morphing. We pay particular attention to two
rotator designs utilizing rotational geometry, the unit cells
of which can be described as either symmetric or chi-
ral. The symmetric type represents a significant advance
over previous rotator-lattice designs [35,36] due to gen-
eralizations of the rotational geometry (i.e., the coupling
position and unit-cell spacing). Meanwhile, our chiral type
amounts to a rotator-lattice class that has not previously
been studied, which we employ to achieve real-time wave
steering, a feature only sparsely explored in the literature
[37,38]. In Sec. II, we provide a detailed description of
the two types of rotator lattices, with a particular empha-
sis on their morphed dispersion due to geometry changes.
Lastly, in Secs. III and IV, we implement adiabatic and
nonadiabatic lattice stretching in numerical simulations
and study anomalous wave-propagation patterns. These
studies suggest diverse applications for the proposed mul-
tifunctional rotator lattices with the potential to inspire new
wave-based devices.

II. LATTICE DESIGN

We next present the system descriptions of symmetric
rotator lattices (SRLs) and chiral rotator lattices (CRLs),
respectively. In the scope of this study, we investigate
both adiabatic (static) and nonadiabatic (dynamic) lattice
stretching. The lattice constant and equivalent torsional
stiffnesses are defined as functions of time. The disper-
sion analysis presented in this section focuses on the
effects of geometry variation under adiabatic conditions.
The analysis associated with nonadiabatic conditions is
presented in Sec. IV. The system parameters are adapted
from our previous experiment on rotator lattices [36]
and have been normalized for the sake of clarity and
presentation.

A. Symmetric rotator lattice

Figure 1(a) illustrates a 1D monatomic rotator lattice
wherein each rotator is pinned to an axis at its center and
connected to its neighbors by two pairs of pretensioned
springs. This structure exhibits up-down symmetry and is
therefore termed the symmetric rotator lattice (SRL). In
each unit cell, we define the rotational inertia I , spring stiff-
ness ks, undeformed spring length Ls, arm length r, and off-
set angle β0. The offset angle β0 describes the orientation
of arms with respect to the vertical direction (perpendicu-
lar to the lattice direction). The spacing between rotators
(measured from center to center), and thus the lattice con-
stant a(t), may be prescribed through static or dynamic
stretching. Appendix A details one design for doing so in
a 1D chain. In the following analysis, we define a normal-
ized lattice constant, α(t) ≡  a(t)/r. We note that the two
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rotator lattices examined in previous work [36] correspond
to two special cases of this generalized model with β0 =  0
rad and β0 =  π/2 rad and with no time dependence in the
lattice constant.

To characterize the SRL dynamics, we introduce the
angular displacement θj (with counterclockwise rotation
being positive) for the j th rotator relative to the horizon-
tal positive direction [the black dashed line in Fig. 1(b)].
The governing equation of motion for the SRL unit cell is
nonlinear due to the rotational geometry. In the scope of
this study, we confine our attention to the propagation of
small-amplitude waves and isolate the linear terms from
higher-order terms by expanding the equation of motion
around the stable equilibrium θj =  0,

Iθj +  (2K1s(t)θj +  K2s (t)θj −1 + K2s(t)θj +1) +  O(2) =  0,
(1)

where  denotes a bookkeeping device tracking the order of
each term in the Taylor expansion; it can be set to 1 in
subsequent numerical-integration studies. The equivalent
linear torsional stiffnesses K1s(t) and K2s(t) depend on the
spring parameters (ks and Ls) and the rotational geometry
(r, α(t), β0). The explicit expressions for these equivalent
stiffnesses take cumbersome forms. For sake of brevity, we
document the general forms in Appendix B.

Adiabatic lattice stretching suggests a lattice deforma-
tion much slower than the wave dynamics such that the
dispersion relationship is assumed to be static and corre-
sponds to each value of the equivalent stiffnesses during
their evolution. Hence, we drop the time dependence in
all parameters for adiabatic analysis. Applying the Bloch
theorem [39] to Eq. (1) yields the linear (static) dispersion
relationship,

r

ω =  ±      
1

(2K1s +  2K2s cos μ), (2)

where ω and μ  denote the SRL frequency and dimen-
sionless propagation constant, respectively. Convention-
ally, we consider the positive frequency only. The prop-
agation constant is a nondimensional quantity, the range
of which in the first Brillouin zone remains fixed from
−π  to π regardless of changes in the lattice constant.
For later graphical illustration, we evaluate Eq. (2) using
a set of normalized system parameters presented in
Table I.

As such, we present a series of dispersion curves in
Fig. 1(c) corresponding to various offset angles at a value
of α equal to 2.8. At β0 =  0 rad, the SRL exhibits an
acoustic dispersion curve similar to that of a conventional
rectilinear monatomic chain. With increasing values of β0,
the dispersion curve deviates from the acoustic branch
and gradually morphs toward a flat band. At approxi-
mately β0 =  0.96 rad, the dispersion curve flattens out
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FIG. 1.     (a) A schematic of a one-dimensional (1D) symmetric rotator lattice (SRL) in its equilibrium position. The blue segments
represent elastic springs. (b) A schematic of the 1D SRL during motion. (c) Dispersion curves at different offset angles. (d) The cut-on
and cut-off frequencies at different normalized lattice constants. The inscribed plot magnifies the orange highlighted region. (e) The
group velocity at μ  =  π/2 for each offset angle [the marker colors match the dispersion curves in (c)]. (f) The group velocity at
μ  =  π/2 for each dispersion relation presented in (d).

across the entire wave-number domain. This emergence
of the flat band can be attributed to the elimination of
the equivalent torsional linear stiffness, K2s =  0, indicat-
ing that the rotators are decoupled from one another in
the linear regime, thus creating an acoustic vacuum [40].
Although higher-order interactions may exist, this con-
figuration prevents the propagation of Bloch waves and
exhibits pronounced energy-localization effects. Beyond
this critical offset angle, the dispersion curve undergoes
a transition from a positive-group-velocity branch to a
negative-group-velocity branch, which effectively alters
the sign of the relative refractive index according to Snell’s

law [41]. We define the group velocity as

cg =  
dμ  

=  −
K2s  sin(μ)

, (3)

where cg quantifies the velocity of energy propagation in
units of “unit cells (UCs) per second.” We purposely avoid
describing it using m/s, which factors in the lattice con-
stant, since the lattice constant is subject to change due
to stretching. Figure 1(e) illustrates the evolution of the
group velocity at μ  =  π/2 with respect to an increasing
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TABLE I.     The SRL parameters.

Parameter Value

I (kg m2) 1
r (m) 1
ks (N/m) 1
Ls (m)                                                                                    0.6

offset angle. The horizontal intercept locates the flat band
discussed above.

In addition to examining the effects of the offset angle on
the dispersion relationship, it is of great interest to investi-
gate the impact of adiabatic lattice stretching at fixed offset
angles, which mimics an acoustoelastic effect. Note that we
assume linearly elastic springs and uniform deformation at
all times. In Fig. 1(d), we describe the evolution of cut-on
and cut-off frequencies at β0 =  π/18, 5π/18, and π/2, as
functions of the lattice constant. We note that since the dis-
persion relation defined in Eq. (2) is a monotonic function,
the cut-on and cut-off frequencies fully define the range of
the pass band. At β0 =  π/18 and π/2, both the cut-on and
cut-off frequencies increase with an increasing lattice con-
stant, indicating an up-shifting pass band. The curves rep-
resenting the cut-on and cut-off frequencies do not intersect
in the range shown for α. At β0 =  5π/18, however, the
increasing cut-on and cut-off frequencies meet at α =  3.65
and switch thereafter, suggesting the emergence of a flat
band. This phenomenon is also captured in Fig. 1(f), where
the group-velocity curve crosses the horizontal axis. By
setting K2s =  0, we derive this critical lattice constant α�,

� sin(β0)(4r sin2(β0) +  Ls sin(β0) −  2r)
r(2 sin2(β0) −  1)

We note that a critical lattice constant only applies if the
offset angle β0 exceeds π/4. In cases where the offset angle
is smaller than π/4, stretching the lattice will not generate
a flat band. Conversely, Eq. (4) can be rearranged to yield a
critical offset angle, β� � (π/4,π/2], at a finite normalized
lattice constant α.

Thus, we demonstrate that modifying either the offset
angle or the lattice constant under adiabatic conditions can
independently induce morphing of the dispersion curves
of the system into a flat band and thus cause a reversal
in the sign of the group velocity. Contrasting the mor-
phed dispersion curves in Figs. 1(c) and 1(d) reveals that
the reconfiguration of the offset angle morphs the dis-
persion curves at a relatively constant frequency range,
whereas reconfiguration of the lattice constant significantly
up-shifts and narrows the pass band.

B. Chiral rotator lattice

An alternative approach for constructing a 1D rota-tor
lattice is to incorporate chirality with asymmetric
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couplings along the lattice direction. We depict a 1D CRL
at its equilibrium position in Fig. 2(a), where we connect
neighboring rotators with pretensioned springs (of stiff-
ness kc and undeformed length Lc) on alternating sides
of the rotator chain. This serpentine connection represents
a chiral pattern in which adjacent rotators form pairs of
enantiomers. We denote the lattice spacing by α(t) and
a non-negative compromising angle by β (t). We show in
later analysis that this compromising angle β (t) is a func-
tion of the prescribed lattice spacing α(t). In addition to
the spring linkages, to maintain equilibrium, each rotator is
subject to an external torque applied from its base. These
torques, illustrated as black arrows, have constant magni-
tude, 00 , and alternating directions from one unit cell to
another,

0 j  =  (−1) j  00 . (5)

In practice, these constant torques can be delivered by
devices such as circular-patterned beams [42].

We define the angular displacement at each rotator, θj ,
from its equilibrium position, as depicted in Fig. 2(b),
and consider counterclockwise displacement as the posi-
tive direction. We then derive the governing equation of
motion of the CRL for small angles,

Iθj +  K0(t) +  (2K1c(t)θj +  K2c(t)θj −1 +  K2c(t)θj +1) −

0 j  +  O(2) =  0, (6)

where K1c(t) and K2c(t) are equivalent torsional stiff-
nesses with explicit forms documented in Appendix B.
The dc term K0(t) arises as a torque from the pretensioned
asymmetric springs,

K0(t) =  (−1) j  2kcrδ(t) cos β(t), (7)

where the spring deformation δ(t) takes the form of

δ(t) =  α(t)r −  Lc −  2r sin β(t). (8)

Similar to those in an SRL, under adiabatic lattice stretch-
ing, the stretch-induced changes in these stiffness terms can
be treated statically when compared to the wave dynam-
ics. We thus drop the time dependence of the system
parameters in the following analysis.

Since θj (t) is defined from the equilibrium position, the
dc terms K0 −  0 j  in Eq. (6) cancel out at the equilibrium
position, yielding

2kcr(αr −  Lc −  2r sin β) cos β −  00 =  0, (9)

which can be rearranged to derive the compromising angle
as a function of the lattice constant, β (α). It is con-
venient to evaluate this function numerically. Using the
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TABLE II.     The CRL parameters.

Parameter Value

I (kg m2) 1
r (m) 1
kc (N/m) 2
Lc (m) 2
00 (Nm)                                                                                0.4

We then solve for the (static) dispersion relationship and
the group velocity of a CRL:

r

ω =  ±      
1

(2K1c +  2K2c cos μ). (11)

cg =  
dμ  

=  −
K2c sin(μ)

. (12)

parameter in Table. II, we describe the evolution of β (α)
and the associated spring elongation δ(α) under adiabatic
lattice stretching in Fig. 2(c).

This illustration suggests that both the compromising
angle and the spring elongation rise when the lattice con-
stant increases adiabatically. In fact, the lattice stretching
primarily affects the compromising angle β until the angle
approaches its limit, π/2, after which we observe a rapidly
increasing spring deformation. Figure 2(d) provides the
resultant equivalent torsional stiffnesses.

With the dc terms removed and time dependence
dropped, we simplify Eq. (6):

Iθj +  (2K1cθj +  K2cθj −1 +  K2cθj +1) +  O(2) =  0. (10)

In Figs. 2(e) and 2(f), we observe a similar phenomenon
in which the lattice stretching morphs the dispersion curve
from a positive-group-velocity one to a flat band and then
a negative-group-velocity one. Different from the SRL, the
pass bands in the CRL maintain approximately the same
frequency band (ω =  1.5 rad/s) until much larger stretch-
ing shifts the pass band upward. This phenomenon can be
explained by Eq. (11) and the stiffness evolution depicted
in Fig. 2(d). We use the center frequency at μ  =  π/2 to
represent the location of each band. According to Eq. (11),
the center frequency, ω (μ  =  π/2) = 2K1c/I , is propor-
tional to K1c. This value, as illustrated in Fig. 2(d), varies
slowly with increasing stretching until α =  4.2, when it
starts to increase, matching the observation of pass-band
shifts in Fig. 2(f). Hence, we demonstrate that the dis-
persion morphing in the CRL avoids excessive pass-band
shifts observed in the SRL at low and medium levels of
lattice stretching.
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FIG. 2.     (a) A schematic of a 1D CRL at its equilibrium position. The system parameters are illustrated. (b) A schematic of a CRL
during motion. The compromising angle β and angular displacements θj and θj +1 are illustrated. (c) The evolution of the compromising
angle (blue curve) and spring elongation (red curve) as a function of the lattice constant. The blue and red curves correspond to the left
and right vertical axes, respectively. (d) The evolution of the equivalent torsional stiffness with respect to the lattice constant. (e) The
group velocity at μ  =  π/2 for each dispersion curve presented in (f). (f) Dispersion curves at different normalized lattice constants.
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III. TWO-DIMENSIONAL ADIABATIC LATTICE
STRETCHING

In this section, we extend the 1D design concepts for
SRLs and CRLs to two dimensions (2D) and investi-
gate stretching-informed directivity changes and refraction
steering.

A. Directivity engineering

In the 2D configuration illustrated in Fig. 3(a), we
define a pair of offset angles, β0.x and β0.y , characterizing
the arms connecting the horizontal and vertical springs,
respectively. The normalized lattice constants along the
horizontal and vertical directions are defined as αx and
αy , respectively. The governing equation of motion can be
derived as

Iθm,n +  (2K1s.x(t)θm,n +  K2s.x(t)θm+1,n

+  K2s.x(t)θm−1,n+1 +  2K1s.y (t)θm,n +  K2s.y (t)θm,n−1

+  K2s.y (t)θm,n+1) +  O(2) =  0, (13)

where (m, n) denotes the coordinates of the rotator of inter-
est and subscripts “.x” and “.y” identify the parameters in
the horizontal and vertical direction, respectively. In each
direction, the inter-rotator interaction is identical to that of
the 1D SRL and the equivalent torsional stiffnesses can be
derived using the same formulas documented in Appendix
B. Under adiabatic lattice deformation, we compute the
dispersion relationship,

ω =  
r

2K1s .x

 
+

 
2K2s.x

 
cos μx

 
+

 
2K1s.y

 
+  2K2s.y

 
cos μy

 
,

(14)

where μx  and μy  are the propagation constants along the
horizontal and vertical axes. The group velocities along
both directions are derived accordingly:

cg.x =  
∂ω 

=  −
sin(μx )K2s.x , (15)

x

cg.y =  
∂μy 

=  −
sin(μy )K2s.y . (16)

In Figs. 3(b)–3(f), we present a numerical study of a
2D SRL to demonstrate the diverse directivity patterns
induced by adiabatic dispersion morphing. The propaga-
tion patterns from a single source are simulated in MATLAB

via direct numerical integration of the governing equation,
Eq. (13), using the function ODE45.

The proposed 2D SRL example utilizes offset angles
β0.x =  β0.y =  5π/18 and initial (unstretched) lattice con-
stants, αx =  αy =  α =  2.8. The remaining system param-
eters correspond to those of the 1D SRL system, as given
in Table I.

PHYS. REV. APPLIED 20, 034057 (2023)

In Figs. 3(b)–3(d), we apply small adiabatic stretches
(≤  5%) along the horizontal direction, while considering
the same excitation frequency of 3.25 rad/s. We show
that this subtle change effectively shifts the dispersion
curve and generates distinct group-velocity contours. The
simulated propagation patterns transition from circular to
rectangular and eventually to angled beaming, verifying
the group-velocity contours.

In Fig. 3(e), we stretch the lattice horizontally toward its
critical lattice constant α� =  1.27α [recall Eq. (4)]. In the
dispersion diagram, we observe a significant upshift of the
pass band compared to Figs. 3(b)–3(d) but, more impor-
tantly, a plateau emerges from X to M (second-column
subfigure), indicating the presence of a flat band in the hor-
izontal direction. Accordingly, we consider an excitation
frequency ω =  3.55 rad/s in the pass band. The resultant
group-velocity contour (third-column subfigure) contains
only two points with zero horizontal components, which
implies that the propagation of Bloch waves is strictly
vertical. In fact, this flat band disables all the equivalent
linear horizontal couplings in the 2D lattice (K2s.x =  0)
and the 2D lattice can be interpreted as segmented vertical
stripes of monatomic chains; had higher-order terms been
included in the Taylor expansion, nonlinear stiffness terms
would appear and be nonzero, but their effect is negligible
for the amplitudes considered. The numerical simulation
confirms this phenomenon (fourth-column subfigure).

Symmetrically, a vertical stretch can induce similar
directivity reconfiguration. We show in Fig. 3(f) that a
vertical stretch approaching the critical lattice constant
α� =  1.27α contributes to a strict horizontal propagation.
As such, we demonstrate the vast potential of disper-
sion morphing for directivity engineering. The results in
Figs. 3(e) and 3(f) suggest a promising stretching-informed
bidirectional waveguide, which may find applications in
multiplexing and/or demultiplexing [18].

B. Real-time refraction steering

Another exemplary effect that arises from dispersion
morphing is the ability to change the refractive index. In
Sec. II B, we have demonstrated that an adiabatic stretch
in a CRL can alter the sign of the refractive index with-
out excessively shifting the pass band. In this section, we
use this property to engineer a real-time refraction-steering
device.

We construct a 2D interface system with an SRL as
the incident medium and a CRL as the receiving medium.
The 2D SRL, as shown in Fig. 4(a), utilizes offset angles,
β0.x =  β0.y =  0, identical to the side-arm-connected lattice
studied in Ref. [36]. The horizontal and vertical lattice con-
stants are assumed equal to each other at all times and
are represented by α(t). We employ the same rotator and
spring parameters in Table I. This 2D SRL, by design,
has a stretching-immune dispersion relationship, since its
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FIG. 3.     Directivity patterns for an adiabatically stretched 2D SRL. (a) The 2D SRL unit-cell design and the Wigner-Seitz cell
notation. (b)–(f) In each subfigure, from left to right, we show schematics of the lattice stretching, dispersion curve, group-velocity
contour, and numerically simulated energy-propagation pattern. In the dispersion diagram, the red dashed line indicates the excitation
frequency. The numerical simulation results illustrate the pixelated energy at each unit cell, normalized to be between 0 and 1. The
physical dimensions of the deformed unit cells are not illustrated.

equivalent stiffnesses are not a function of α(t):

K1s.x =  K1s.y =  2ksr2,

K2s.x =  K2s.y =  −2ksr2. (17)

In this way, its refractive index does not change with lat-
tice stretching. The governing equation of motion of the
incident medium is identical to Eq. (13) and the dispersion
relationship follows Eq. (14).

In the receiving medium [Fig. 4(b)], we specify a 2D
extension of a 1D CRL the refractive index of which
changes with lattice stretching. We adopt the same rota-
tor and spring parameters described in Table II and the
same dimensionless lattice constant as the incident SRL,
α(t). The external torque applied on each rotator, however,
doubles the value used in the 1D configuration: 02D =
200. In addition, we consider a light grounding damping
term (D =  0.1 N m s) at each rotator to dissipate transient
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(a) (c) (d) (f)
40

1 CRL
30

x
20

10

SRL

(e) (g)
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(b)
30

20

10
0

10 20 30 40 10 20 30 40

(h)

T
ime (Period)

FIG. 4. An illustration of refraction steering on an SRL-CRL interface system. (a) The schematics of the incident SRL. The top
and bottom configurations denote the initial state and the stretched state of the lattice. (b) The schematics of the receiving CRL. The
top and bottom configurations denote the initial state and the stretched state of the lattice. (c) The band structure of the incident and
receiving media. The black dashed line denotes the excitation frequency. (d)–(g) The numerical simulated energy-propagation pattern
of the interface system under different lattice stretches. The pixelated energy distribution is normalized between 0 and 1. The white
line represents the interface between two media and the red arrows the direction of propagation. The boundary color of each subplot
matches the associated dispersion curve in (c). (h) The time history of the lattice constant under adiabatic stretching. The time is
measured in terms of the wave period T0.

forms of behavior associated with loading. The governing
equation can be gleaned from Eq. (10) as

Iθm,n +  (2K1c.xθm,n +  K2c.xθm,n−1 +  K2c.xθm,n+1

+  2K1c.yθm,n +  K2c.yθm−1,n +  K2c.yθm+1,n)

+  Dθm,n +  O(2) =  0. (18)

The subscript (m, n) represents the horizontal and vertical
indices of a rotator. We derive the dispersion relationship
accordingly:

an array of linear couplings with stiffness identical to the
vertical equivalent stiffness in the SRL: Kt =  K1s.y . In prac-
tice, these couplings can be realized by stacking one rotator
on top of another in the third dimension such that they
share the same rotation axis and then coupling them with a
linear torsional spring. This method avoids the incompati-
bility of two types of rotator connections in each lattice. As
such, we present the equations of motion for the boundary
rotators in SRLs and CRLs, respectively,

SRL boundary rotators :

ω =  
r

2K1c .x

 
+

 
2K2c.x

 
cos

 
μx

 
+

 
2K1c.y

 
+

 
2K2c.y

 
cos μy

 
.

(19)

Iθm,n�−1 +  (2K1s.xθm,n�−1 +  K2s.xθm−1,n�−1

+  K2s.xθm−1,n�−1 +  K1s.yθm,n�−1 +  K2s.yθm,n�−2

+  Kt(θm,n�−1 −  θm,n�)) +  O(2) =  0, (20)

Figure 4(c) depicts the dispersion curves of the SRL and
CRL at a selection of lattice constants.

To investigate refraction steering, we layer the two lat-
tices as shown in Fig. 4(d), and utilize a 45◦ incident
wave at frequency (ω =  2 2 rad/s). At the interface (ver-
tical coordinate n =  n�), the two media are connected by

CRL boundary rotators :

Iθm,n� +  (2K1c.xθm,n� +  K2c.xθm−1,n� +  K2c.xθm+1,n� +

K1c.yθm,n� +  K2c.yθm,n�+1 +  Kt(θm,n� −  θm,n�−1))

+  Dθm,n +  O(2) =  0. (21)
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During the wave propagation, we slowly stretch the lattice
system (both SRL and CRL) horizontally and vertically,
such that the lattice constants in both directions undergo
the same process of increasing, as illustrated in Fig. 4(h).
We use the wave period, T0 =  2π /ω =  2.22s, as the mea-
sure of time and document the increasing rate of the
lattice constants as 0.032 units per period, significantly
slower than the wave dynamics. Hence, we consider the
stretching process to be adiabatic. During the deformation,
the SRL unit cell admits the same shape with elongated
springs in both directions, shown in the bottom configura-
tion of Fig. 4(a). The CRL unit cell, however, undergoes
an equilibrium shift, which alters the rotational geometry,
as depicted in the bottom of Fig. 4(b). In the dispersion
diagram [Fig. 4(c)], we observe a similar phenomenon as
illustrated in Fig. 2(e), where the dispersion curve first
shifts down, with the pass band narrowed, and then rises up
as an optical branch with a negative group velocity in each
lattice direction. Since the dispersion curve of the incident
medium remains an acoustic type in this process, the lattice
stretching refracts the transmission at the interface from
positive to negative.

We illustrate refraction steering in numerical simula-
tions documented in Figs. 4(d)–4(g). At the initial configu-
ration (α =  2.1), the dispersion curves of the incident and
receiving media are overlaid on each other, as shown in
Fig. 4(c). With the impedance matching, we observe a full
positive transmission in Fig. 4(d). As the lattice stretches
in real time, this refraction starts to bend away from the
interface normal, as shown in Fig. 4(e). At α =  3.9, the
pass band of the receiving lattice shifts down and no
longer contains the excitation frequency, thus forbidding
any transmission in Fig. 4(f). Finally, Fig. 4(g) depicts a
negative refraction at α =  4.7, when the CRL pass band
rises and contains the excitation frequency again. There-
fore, we demonstrate a real-time refraction-steering device
utilizing adiabatic dispersion morphing in the 2D CRL.

IV. NONADIABATIC LATTICE STRETCHING

In this section, we apply nonadiabatic (dynamic) lat-
tice stretching to demonstrate the propagation-delay and
parametric amplification phenomena in SRLs.

A. On-demand propagation delay

We first propose a stretching-controlled signal-delay
device utilizing the nonadiabatic dispersion morphing in
a 2D SRL. We consider a 2D SRL with offset angles
β0.x =  β0.y =  π/4 and refer to Table I for the remaining
parameters. The equation of motion of this lattice takes a
form identical to Eq. (13).

We excite the system with a source array placed at the
bottom-left corner (S) of the 2D lattice and distribute two
receivers at the top-right corner (R) and at the center of
the lattice (c), respectively, as illustrated in Fig. 5(a). The

PHYS. REV. APPLIED 20, 034057 (2023)

source array emits a 45◦ finite signal at frequency ωA =
3.15 rad/s toward R.

During the propagation, we apply nonadiabatic stretches
of equal magnitude (α(t) =  αx (t) =  αy (t)) along both
the horizontal and the vertical directions, as shown in
Fig. 5(b). Different from the slow stretching described
in Fig. 4(h), these nonadiabatic stretches result in rapid
changes of the lattice constant. To facilitate analytical
exploration, we model the rapid change as instantaneous
increasing or decreasing, as illustrated in Fig. 5(c). As
depicted, the lattice constant rises from 2.8 to 5 at moment
t =  t1 and drops back at t =  t2. We label the α =  2.8 con-
figuration as state A and the α =  5 configuration as state
B. Within each state, the dispersion relationship, which we
present in Fig. 5(d), takes the form of Eq. (14). Since the
state transition at t1 and t2 is nonadiabatic, we employ a
temporal-interface model to formulate the wave dynamics
at these transitioning moments.

We analyze the temporal interface at t =  t1 as an exam-
ple. Right before the temporal interface (t →  t ), we
assume a Bloch-wave solution in the lattice domain,

θ −
n(t, r) =  Aei(ω

A
t−µ·r) , (22)

where µ  =  μx x +  μy y and r =  mx +  ny denote the
dimensionless wave vector (i.e., the 2D propagation con-
stant) and the dimensionless position vector, respectively,
and x and y denote unit vectors in the horizontal and verti-
cal directions. Right after the first temporal interface (t →
t+ ), the wave solution can be assumed to be a combination
of infinitely many Bloch waves, the spatial and temporal
frequencies of which obey the dispersion relationship at
state B,

θ +
n(t, r) =  

X
As ei (ω s t−µ s ·r ) , (23)

s

where As, ωs, and µs  are the amplitude, frequency and
dimensionless wave vector of the sth Bloch-wave solution
at state B. At t =  t1, the continuity in displacement and
velocity yields [38],

θm,n(t =  t1 , r) =  θm,n(t =  t1 , r), (24)

∂θm,n |t=t−  =  
∂θm,n |t=t+ . (25)

Substitution of Eqs. (22) and (23) into Eqs. (24) and (25)
yields µs  =  µ  and ωs =  ±ωB (µ) ,  where ωB (µ) is the fre-
quency at µ  at state B. This result suggests a preservation
on propagation constant but a change in frequency across
the temporal interface [38] as highlighted by the dashed
lines in Fig. 5(d). This frequency jump is numerically ver-
ified in the response at receiver C, shown in Figs. 5(e) and
5(f).
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FIG. 5. (a) A schematic of the SRL model, with the propagation direction, source S, receiver R, and center C marked. (b) The lattice
configuration at states A and B. (c) The lattice constant as a function of time. For numerical evaluation, t1 =  200 s and t2 =  300 s. (d)
The band structure at two states, A and B. The horizontal dashed lines indicate the wave frequency in each state. The vertical dashed
line represents the wave vector in both states. Group velocities at both configurations are evaluated. (e) The time response at C. (f) The
wavelet response at C. (g) The pixelated energy distribution along the transmission path [indicated in (a)] as a function of time. (h)
The time responses of the signal received at R. The receiving signal from a lattice without stretching is provided as a reference. (i) The
signal delay as a function of the stretching at state B.

Accordingly, Eq. (23) is simplified and only includes
two waves sharing the same wave vector but propagating
in opposite directions:

θ +
n =  A+ei(ωB t−µ·r) +  A−ei(−ω

B
t−µ ·r ) . (26)

The linear system described by Eqs. (24) and (25) also
yields the corresponding amplitude coefficients A +  and
A− :

A +  =  
ω 

2
+  ωA A, A −  =  

ω 
2
−  ωA A. (27)

Since ωB >  ωA >  0, as illustrated in Fig. 5(d), the for-
ward wave carries larger energy (A+ >  A− ). Typically,
after each temporal interface, the number of waves dou-
bles. In a single rectangular function that includes two state
transitions, as depicted in Fig. 5(c), the incident wave splits
into four (two forward and two backward). The two for-
ward waves, spaced slightly apart due to the propagation
during state B, exhibit different amplitudes. For time-delay
considerations, we confine our interest to the first for-
ward wave that arrives at receiver R. The amplitude of the
considered forward wave is given by

A + +  =  
ω 

2
+  ωB A+ =

(ω
4 

+  ωB)2 

A. (28)

Numerically evaluating this expression yields the ampli-
tude A + +  =  1.05A, matching qualitatively the numeri-
cal observation of 1.03A measured from the simulation.

Some discrepancy arises from (i) the numerical simula-
tion employing a center-frequency wave packet composed
of multiple frequencies, each having their own amplifica-
tion [unlike the single plane wave considered in Eq. (28)],
and (ii) the difficulty associated with separating the two
forward waves from each other.

In Fig. 5(g), we depict the energy flow along the trans-
mission path. The slowing effect during state B contributes
to a time delay in the propagation when compared to the
reference signal without the rectangular modulation on the
lattice constant, as depicted in Fig. 5(h). We compute the
time delay between two signals as

1 t  =  
cgA −  cgB (t2 −  t1), (29)

gA

where cgA and cgB represent the group velocity of the wave
vector at states A and B, respectively. We note that this
time delay is proportional to the difference of the two group
velocities and the duration of state B. By altering either
factor, one may control the time delay of a propagating
signal. Evaluating this quantity with the system parameters
yields a delay of 1 t  =  73 s, matching the observed delay
1 t  =  71.52 s measured in Fig. 5(h). In fact, larger stretch-
ing at state B leads to a higher and narrower pass band and
thus a longer time delay. At exceptionally large stretching,
the group velocity approaches zero, cgB →  0, freezing the
signal in space during state B. Thus the delay approaches

034057-10
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the duration of state B,

1 t  →  t2 −  t1. (30)

Lsα0λm

(α0 −  2)(r(α0 −  2) −  Ls))
(36)

We illustrate and numerically validate this trend in
Fig. 5(i), for a wide range of stretching. This ability to
reconfigure delay suggests straightforward application to
delay-line engineering [43] and logic devices [18,44].

B. Parametric amplification

In addition to the instantaneous lattice stretching inves-
tigated above, we also examine the effects of a harmonic
modulation on dispersion morphing. We note that this
type of periodic deformation is ubiquitous in physical
systems: e.g., breathing mechanisms and thermal fatigue.
For simplicity, we consider a 1D SRL with β0 =  π/2,
as depicted in Fig. 6(a). The harmonic modulation acts
synchronously on all lattice spacing such that α(t) =
α0(1 +  λm cos(ωmt)), where λm and ωm are the modula-tion
amplitude and frequency, respectively. The reference
amplitude α0 is set to be 2.8 and the modulation ampli-
tude is denoted as being small (λm  1). The small
parameter  allows us to Taylor expand the equivalent stiff-
ness expressions and quantify the stretching-induced time
dependence in a hierarchical order,

At the two leading orders, the periodic stretching results
in equivalent harmonic stiffnesses. The higher-order terms
(containing higher harmonics of the modulation fre-
quency) have negligible magnitude at small modulation
amplitude and are thus omitted in the following analysis.
We now formulate the solution to Eq. (1) with harmonic
stiffness in Floquet form [21,45],

n = + ∞

θj =  C (p̂neinωmt) ei(ω t−μj ) , (37)
n = − ∞

where C denotes the wave amplitude and p̂n denotes the nth
Fourier coefficient. Substituting Eqs. (31)–(37) into Eq. (1)
and collecting harmonic terms at nωmt yields

n = + ∞

I (ω +  nωm)2p̂neinωmt

n = − ∞

n = + ∞ n = + ∞

=  U p̂neinωmt +  V p̂nei(n+1)ωmt

n = − ∞ n = − ∞

K1s(t) =  2ksr2      1 −  
r α(t) −  2

)(α(t) −  1

n = + ∞

+  V p̂nei(n−1)ωmt, (38)
n = − ∞

=  2ksr
2(1 −  

r α0(1 +  λm cos(ωmt)) −  2
)

×  (α0(1 +  λm cos(ωmt)) −  1)

=  k1(1 +  X cos(ωmt)) +  O(2), (31)

K2s(t) =  2ksr
2 1 −  

r α(t) −  2
=  2ksr

2      1 −  
r α0(1 +  λm cos(ωmt)) −  2

=  k2(1 +  Y cos(ωmt)) +  O(2), (32)

where

k1 =  2ksr2      1 −  
r α0 −  2

)(α0 −  1 , (33)

α0λm(rα0 −  4rα0 +  4r +  Ls)
(α0 −  2)(rα0 −  Ls −  2r)(α0 −  1)

k2 =  2ksr2      1 −  
r α0 −  2 

, (35)

where U = 2k1 + 2k2 cos(μ) and V = k1X + k2Y cos(μ). To
remove the time dependence in Eq. (38), we compute the
inner product with einωmt, yielding a quadratic eigen-value
problem for ω (with the associated Hill determinant [46]),

I (ω2 +  2nωmω +  n2ω2 )p̂n =  Up̂n +  V(p̂n−1 +  p̂n+1),
(39)

where n � (−∞, ∞) is an integer. The solution to this
equation describes a frequency-periodic dispersion spec-
trum [21]. To facilitate numerical evaluation, we truncate
the series, n � {−1, 0, 1} and obtain a 3 ×  3 matrix the
eigenvalues of which reveal the dispersion characteris-
tics in our time-modulated lattice. We justify the truncated
selection of n in Appendix C.

In Fig. 6(b), we compute dispersion relationships for
four pairs of modulation frequencies and amplitudes. Blue
denotes real frequency components while red denotes
imaginary components. Unlike time-invariant systems, the
time modulation generates a series of dispersion curves
shifted from the static set. When the real components
of frequency meet, they morph into a sectional flat band
where the eigenfrequencies become complex. These com-
plex eigenfrequencies appear as pairs of complex conju-
gates and lead to exponential growth of the wave amplitude
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FIG. 6. (a) A schematic of the harmonic time-modulated 1D SRL. (b) Dispersion diagrams at various modulation amplitudes and
frequencies. The blue curves represent the real component of the eigenfrequency and correspond to the vertical axis on the left of each
subplot. The red curves denote the imaginary component and correspond to the vertical axis on the right of each subplot. The horizontal
axis denotes the propagation constant in the first Brillouin zone from 0 to π . (c) The excitation signal used in numerical simulations.
(d),(e) 2D fast-Fourier-transform (FFT) results (200 ≤  t ≤  400 s, 1 ≤  j ≤  100) for the 1D lattice subject to the signal depicted in (c):
(d) real; (e) imaginary. The border colors (orange and green) correspond to the modulation amplitudes and frequencies with the same
border colors as in (b). The associated dispersion curves are superposed on the FFT results in white [Re(ω)] and red [Im(ω)]. The left
vertical axis corresponds to the real component of the frequency and the right one to the imaginary component.

in time, known as parametric amplification [21,47]. The
dominant growth emerges at a pair of frequency and prop-
agation constants (ω�, μ�) with maximal imaginary magni-
tude |Im(ω�)|. We show in Fig. 6(b) that the location of this
critical pair can be reconfigured by adjusting the modula-
tion frequency and amplitude. Specifically, the modulation
frequency regulates the frequency location of the flat band
ω� =  ωm/2—similar to parametric resonance, where the
excitation frequency and a natural frequency are related by
a factor of 2 [48]—and the modulation amplitude deter-
mines the length of the flat band and the growth rate
(i.e., the magnitude of the imaginary frequency). We note
that including more terms (n =  ±2, ±3, . . .) in the series
[Eq. (39)] generates larger matrices and more dispersion
branches at higher frequencies. These dispersion branches
are not in the excitation-frequency range in which we are
interested. We provide more discussion in Appendix C.

Using the multifrequency signal shown in Fig. 6(c), we
apply a finite torque signal (y (t)) at a boundary mass of
the 1D SRL with a frequency content centered around ω =
1.25 rad/s,

y (t) =  0.01e−0.025(t−20)2 
cos(ωt), (40)

and simulate its propagation in the time-modulated lattice
using direct numerical integration. To avoid unbounded
growth, we introduce grounded viscous damping D =
0.08 N m s at each rotator. In Figs. 6(d) and 6(e), we con-
duct a 2D fast Fourier transform (FFT) to analyze the

dominant wave form in the lattice associated with two
sets of modulation parameters, highlighted in orange and
green borders in Fig. 6(b). In each subfigure, we recog-
nize the critical frequency-propagation pair on the flat band
where the imaginary component of the eigenfrequency is
maximized, confirming the theory.

V. CONCLUDING REMARKS

Using symmetric and chiral rotator systems, we have
explored dispersion morphing under adiabatic and nonadi-
abatic stretching. Under axial-lattice stretching, these lat-
tices possess infinitely many stable configurations, allow-
ing a high degree of reconfigurability for enabling flexible
adaptations. Informed by adiabatic dispersion relation-
ships, we have demonstrated bidirectional waveguiding
and real-time refraction steering under static and qua-
sistatic stretching. For nonadiabatic stretching, we have
employed a temporal interface model and a Floquet-based
Fourier expansion to analyze wave propagation under
step and harmonic stretching. We have demonstrated on-
demand propagation delay and, in extreme cases, propaga-
tion freezing. For small harmonic stretching, we have ana-
lytically and numerically demonstrated parametric ampli-
fication. Follow-on work from this study could include
investigation of spatial-temporal modulation of rotator sys-
tems [35,36] and experimental demonstrations, which can
be carried out in a straightforward manner similar to
experiments detailed in Ref. [36].
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APPENDIX A: AN EXPERIMENTAL DESIGN FOR
THE ROTATOR LATTICES

In this appendix, we propose an experimental design
for a stretchable rotator lattice, which aims to enhance
the visualization of the lattice structure and facilitate
future experimental validation. Figure 7 illustrates a
parallelogram-based mechanism built from T-slotted fram-
ing rails and pivots. The lengths of two edges of the
parallelogram are fixed and denoted as s1 and s2. An array
of additional rails are uniformly distributed inside the par-
allelogram, enabling the construction of a 1D rotator lattice
along one diagonal axis (the blue dashed line). Figure
7 depicts five rotators as an illustration, while the intro-
duction of more rails inside the parallelogram structure

PHYS. REV. APPLIED 20, 034057 (2023)

allows for the inclusion of more rotators. This mechanism
allows prescribed rotator-lattice stretching using morphing
of the parallelogram geometry. For example, one may fix
the top-left corner of the parallelogram and prescribe the
motion of the bottom-right corner. The lengths of both
diagonals change during morphing and the lattice con-
stant changes accordingly. We assume that the rigidity of
the parallelogram structure is much higher than the inter-
rotator coupling and thus the spacing between rotators can
change uniformly and simultaneously. Further, this paral-
lelogram structure has the potential to accommodate 2D
rotator lattices as well, which we plan to explore in future
investigations.

APPENDIX B: EQUIVALENT TORSIONAL
STIFFNESS

In this appendix, we present the explicit forms for the
equivalent torsional linear stiffnesses K1s(t) and K2s(t) in
an SRL and K1c(t) and K2c(t) in a CRL. The SRL linear
stiffnesses take the form

K1s(t)

=  
2ksr2((2 cos2 β0 +  α sinβ0 −  1)G 2 −  r (−4 cos4 β0 +  (5α2 −  8α sinβ0 +  8) cos2 β0 +  α(α2 +  8) sin β0 −  5α2 −  4))

,G 2

(B1)

K2s(t) =  
2ksr2     (−2 cos2 β0 +  1)G 2 −  Ls (4 cos4 β0 +  (4α sinβ0 −  α2 −  8) cos2 β−0 −  4 sinβ0α +  α2 +  4) 

,
2

(B2)

G =  α2 −  4α sinβ0 −  4 cos2 β0 +  4, (B3)

FIG. 7.     The conceptual design of a 1D rotator lattice incorporating five rotators. The schematic at the top right describes a
parallelogram-based mechanism, where the lattice constant a can be reconfigured via changes in the s3 diagonal length.
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where the time dependence on the right-hand side has
been suppressed for the sake of brevity. In the CRL, the
equivalent torsional stiffnesses, K1c and K2c, are equal to

PHYS. REV. APPLIED 20, 034057 (2023)

exactly half the expressions of K1s(t) and K2s(t), respec-
tively, after the parameter replacements ks →  kc, Ls →  Lc

and β0 →  β:

K1c(t)

=  
kcr2((2 cos2 β +  α sinβ −  1)G 2 −  r (−4 cos4 β +  (5α2 −  8α sinβ +  8) cos2 β +  α(α2 +  8) sin β −  5α2 −  4))

,G 2

(B4)

K2c(t) =  
kcr2((−2 cos2 β +  1)G 2 −  

r 
(4 cos4 β +  (4α sinβ −  α2 −  8) cos2 β −  4 sin βα +  α2 +  4))

, (B5)
2

G =  α2 −  4α sinβ −  4 cos2 β +  4. (B6)

APPENDIX C: HIGHER TRUNCATION NUMBER
N AND FREQUENCY-PERIODIC DISPERSION

SPECTRUM

In this appendix, we describe the frequency-periodic
dispersion spectrum introduced in Eq. (39), with a higher
truncation number N =  max(n). We consider a modulation
frequency ωm =  2 rad/s and amplitude λm =  0.02. Fig-
ures 8(a)–8(c) illustrate the band structure computed using
Eq. (39) for N =  1, 2, and 5. Consistent with the discus-
sion in Sec. IV B, the dispersion merging and the resul-
tant flat bands occur at ω� =  2|n| −  1/2ωm. Typically, a

higher truncation number N resolves dispersion branches
at higher frequencies, which maintains a periodic pattern
in the frequency. Since the signal considered in Fig. 6(c)
is well below the second flat band, our primary inter-est
is the shape of the first dispersion branch. Figures 8(d)
and 8(e) illustrate a detailed view of the first branch
computed using different values of N , where we observe
nearly identical results (real and imaginary). Thus, we
conclude that a truncation number N =  1 is sufficient to
capture the flat-band amplification effect for the study in
Sec. IV B.

(a)
Re

12
Im

(b)
Re Im

(c)
Re Im

(d)
0.00         2.0

N = 1 N = 2 N = 5
10

8

1.5

–0.05
1.0

–0.10
0.5

6

4

2

0
0 0 0

0.0
(e)

–0.15

–0.20

–0.25
0

N = 1

N = 2

N = 5

–0.05

–0.10

–0.15

–0.20

–0.25

FIG. 8. (a)–(c) The frequency-dependent dispersive spectrum truncated at (a) N =  1, (b) N =  2, and (c) N =  5, respectively. The
horizontal axis of each figure is the propagation constant μ.  The blue curves represent the real component of the eigenfrequency and
correspond to the left vertical axis; the red curves represent the imaginary component of the eigenfrequency and correspond to the
right vertical axis. (d) A comparison of the first dispersion branches (real frequency) obtained using N =  1, N =  2, and N =  5. (e) A
comparison of the first dispersion branches (imaginary frequency).
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