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Abstract In this paper we review recent progress on
the analysis, experimental exploration, and application
of elastic wave propagation in weakly nonlinear media
andmetamaterials.We provide a detailed technical dis-
cussion overviewing twobroad areas of active research:
(1) discrete nonlinear periodic systems and metama-
terials, and (2) continuous nonlinear systems with a
focus on nonlinear guided waves. The specific intent
is to introduce the reader to asymptotic analysis meth-
ods currently being employed in the field of study, to
highlight their results to date, and to motivate follow-
on studies. Where appropriate, we include details on
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experimental explorations and envisioned applications,
both of which have received relatively sparse attention
to date.
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1 Nonlinear elastic waves in discrete periodic
structures, phononic crystals, and metamaterials

Treatment of nonlinearity in periodic structures and
metamaterials may arise from practical necessity. For
example, phononic devices designed to operate lin-
earlymay exhibit unusual or unexpected behaviorwhen
excited at high amplitudes. In such cases, assumptions
of infinitesimal strain (or displacement) are no longer
valid and the governing equations must be revisited to
account for geometric and/or material nonlinearities. It
is not surprising that phononic devices would be driven
at high amplitudes, such as in an effort to increase the
signal-to-noise ratio in bulk or surface acoustic wave
filters [1–4] or offset losses due to damping in addi-
tively manufactured metamaterials [5–7].

Alternatively, nonlinearity canbe intentionally intro-
duced into a periodic structure to enhance function-
ality, exploiting behavior nonexistent in linear meta-
materials. A fundamental discrete nonlinear system,
the monatomic chain with cubic stiffness, exhibits
complex and exploitable phenomena such as higher-
harmonic generation, invariantwaveform transmission,
and amplitude-dependent dispersion behavior as illus-
trated in Fig. 1. To achieve these effects, unit cells are
specifically tailored to have slender, lightweight struc-
tural members that support large displacements or rota-
tions or possess inherently nonlinear behavior such as
arising from magnetic fields. Figure2 displays recent
experimentswith intentional nonlinear unit cell designs
showcasing unique nonlinear behavior such as subhar-
monic attenuation zones [8], diode-like soliton trans-
mission [9], and second-harmonic generation [10].

1.1 Systems

Unit cells in nonlinear periodic structures and meta-
materials are typically characterized by nonlinear stiff-
ness; i.e., restoring forces that are not linearly propor-
tional to displacement. Nonlinear restoring forces arise
in both discrete media—where momentum is concen-
trated at localized lattice sites [11]—as well as con-
tinuous media such as layered periodic structures [12].

In discrete media, nonlinearity stems from the force-
displacement relationship of the massless springs or
other restoring elements. By contrast, nonlinearity in
continuous media can be traced to the material’s con-
stitutive stress–strain law (such as the asymmetric, non-
linear Neo-Hookean relationship [13]) or higher-order
terms in the strain–displacement relationship [14].

An important aspect of the description of nonlinear
periodic structures and metamaterials is the strength of
the nonlinearity. In general, nonlinear restoring forces
have been characterized as weakly, strongly, or essen-
tially nonlinear, in order of increasing strength of the
nonlinearity. A pragmatic method of classifying the
strength of the nonlinearity is to directly compare the
magnitude of nonlinear restoring force to that of the
linear evaluated at the given wave amplitude of inter-
est. Weak nonlinearities are small relative to the linear
terms, typically on the order of one-tenth or smaller.
Strong nonlinearities aremuchmore appreciable in size
compared to the linear terms, typically on the same
order or even larger than the linear forces. Essential
nonlinearities arise in the absence of all linear terms,
with its name suggesting that only nonlinear forces are
responsible for conducting the wave propagation.

1.1.1 Monatomic chain

The nonlinear monatomic chain serves as a prototypi-
cal system for the study of nonlinear wave propagation
in periodic structures. Figure3a displays a schematic of
this systemwith a unit cell outlined using a dashed box.
Discrete masses are coupled with linear and nonlinear
restoring forces. Common occurrences of nonlinearity
include quadratic and/or cubic stiffness. Such stiffness
may stem fromaTaylor Series expansion about an equi-
librium position for an arbitrary nonlinear interaction.
Studies of this system date back to the seminal work
of Fermi, Pasta, and Ulam in the 1950s [15]. It is well-
known that wave propagation in the linear monatomic
chain can be characterized completely by a band struc-
ture relating frequency and wavenumber. Due to the
periodicity of the lattice, the band structure itself is
periodic and has a well-known cut-off frequency above
which wave propagation is forbidden. As will be dis-
cussed in Sect. 1.3.1, the presence of stiffness nonlin-
earity in this lattice leads to amplitude-dependent shifts
of the linear band structure. This effect can be visual-
ized with an amplitude-dependent dispersion surface
as illustrated in Fig. 3b.
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Fig. 1 A monatomic chain
with cubic stiffness
nonlinearity is capable of
producing exotic
phenomena such as
higher-harmonic generation,
invariant waveform
transmission, and
amplitude-dependent
dispersion

Fig. 2 Recent experiments
demonstrating unique and
exploitable nonlinear
phenomena. a Subharmonic
attenuation zones in a chain
with slender beams [8]. b
Diode-like soliton
transmission in a network of
nonlinear rotators [9].
c.Second harmonic
generation in a lattice of
magnets [10]

1.1.2 Diatomic chain

The nonlinear diatomic chain contains two masses per
unit cell. Figure3c presents a schematic of this system
with the unit cell again outlined in a dashed box. Owing
to the second degree of freedom, the band structure pos-
sesses two branches: a lower acoustic branch character-
ized in the long wavelength limit by in-phase oscilla-
tion of both masses, and an upper optical branch char-
acterized by out-of-phase oscillation of both masses.
The frequency range between each branch, termed the
bandgap, contains only non-propagating evanescent
waves not typically depicted in the band diagram. The
bandgap’s extent depends on the impedance mismatch
experienced by a wave as it propagates through the
unit cell. As depicted in Fig. 3d, both the acoustic and

optical branch of the nonlinear diatomic band structure
shift with wave amplitude, which can be represented
using an amplitude-dependent band structure. Unlike
in a linear system where the band structure completely
characterizes wave propagation, in a nonlinear system
the amplitude-dependent band structure is non-unique,
and can, for example, be presented for constant ampli-
tude waves, constant intensity waves, or other such
choices. Herein, the preferred presentation is for con-
stant amplitude; however, the amplitude-dependent dis-
persion expressions derived throughout the manuscript
can be used to produce band structures obeying other
conventions.
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Fig. 3 Prototypical nonlinear periodic systems. a The nonlinear
monatomic chain consists of discrete masses coupled with linear
and nonlinear stiffness. b The dispersion behavior for a linear
monatomic chain becomes amplitude-dependent in the presence
of nonlinearity, giving rise to an amplitude-dependent disper-
sion surface. c The nonlinear diatomic lattice consists of alter-
natingmasses coupled with linear and nonlinear stiffness. dBoth
branches of a nonlinear diatomic chain shift with wave ampli-
tude, which can be represented using a dispersion surface

1.1.3 Locally-resonant chain

Liu et al. [16] introduced what is widely considered the
first elasticmetamaterialwherein each unit cell consists
of a primary mass coupled to a locally-resonant oscil-
lator. Their study demonstrated that locally-resonant
metamaterials are capable of low-frequency bandgaps
since the mechanism associated with bandgap forma-
tion is no longer geometric (e.g., Bragg scattering)
and instead is associated with the resonant vibration
of each oscillator. Nonlinear extensions of the locally
resonant chain were considered by [17–19] in which
nonlinearity arises from quadratic or cubic stiffness in
the primary chain and/or oscillator. In [20], Bukhari
and Barry considered the effect of an arbitrary num-
ber of resonators in each unit cell. Other studies have
considered hybridizations of the diatomic and locally-
resonant chain such as can be found in [21,22].

1.1.4 Two-dimensional lattices

Extensions of the nonlinear monatomic, diatomic, and
locally-resonant chains along two orthogonal direc-
tions have also been investigated. In these systems peri-
odicity is established by lattice vectors and the wave’s
propagation constants are resolved along the associ-
ated basis vectors. The simplest case for wave propa-
gation in these two-dimensional systems is the shear

lattice wherein the displacement of each mass is per-
pendicular to the plane of the lattice. Such systems have
been considered by [23–25]. The linear band structure
of these lattices is represented completely by a surface
relating the twopropagation constants to thewave’s fre-
quency.However, the dispersion surface can be reduced
to a curve by evaluating the surface along directions of
symmetry in the irreducible Brillouin zone [26]. Exam-
ination of the dispersion surface via isofrequency con-
tours reveals that select frequencies restrict the group
velocity to distinct directions, a phenomenon termed
beaming. As will be discussed in Sect. 1.3.1, beam-
ing exhibits amplitude-dependency in the presence of
nonlinearity.

1.2 Analysis methods

Exact wave propagation solutions in nonlinear peri-
odic structures and metamaterials are sparse. By con-
trast, a number of approximation techniques have been
successfully implemented in the analysis of such sys-
tems. Herein, we review primarily the multiple scales,
Lindstedt-Poincaré, and straight-forward perturbation
techniques, which have been applied to weakly nonlin-
ear systems, aswell as the harmonic balance and homo-
topymethods,which have been applied to strongly non-
linear systems.

1.2.1 Multiple scales

This perturbation technique addresses weak nonlinear-
ities and has been used to uncover amplitude-dependent
dispersion shifting [27,28] as well as plane wave phe-
nomena such as waveform invariance and stability
[25,29].

The equation of motion for the j th unit cell of
an arbitrary nonlinear periodic structure can be rep-
resented as,

Mẍ j +
+1∑

p=−1

[
εC(p)ẋ j+p + K(p)x j+p

]

+εfNL
(
x j , x j−1, x j+1

) = 0, j = −∞ . . . ∞, (1)

where x j , ẋ j , and ẍ j denote the position, velocity, and
acceleration of the j th unit cell’s degrees of freedom.
M denotes the unit cell’smassmatrix andC(p) andK(p)

denote the unit cell’s partitioned damping and stiffness
matrices, respectively. Nonlinear restoring forces are
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collected into the fNL vector. The linear damping and
nonlinear restoring force are ordered to be small using
the bookkeeping device ε.

Nonlinearity will be treated generally though cer-
tain aspects of quadratic and/or cubic stiffness will be
highlighted. For example, in a monatomic chain with
both quadratic and cubic stiffness, the nonlinear terms
appear as,

fN L = k2
(
x j−1 − x j

)2 − k2
(
x j+1 − x j

)2

+k3
(
x j − x j+1

)3 + k3
(
x j − x j−1

)3
, (2)

where xj and fNL degenerate to scalar quantities x j and
fN L , respectively, due to the occurrence of a single
degree of freedom in each unit cell. The co-existence
of quadratic and cubic stiffness may arise from a Tay-
lor expansion of an arbitrary nonlinear restoring force.
Note that quadratic stiffness captures asymmetries in
the stress–strain behavior such as that associated with
neo-Hookean materials.

The method of multiple scales introduces slow time
scales at which the system evolves,

t = T0 + εT1 + · · · + εnTn, (3)

where time derivative can be represented in operator
form as,

(̇) = D0() + εD1() + · · · + εnDn(), (4)

with Di () ≡ ∂
∂Ti

. Additionally, the solution sought is
expanded in an asymptotic series,

x j = x(0)
j + εx(1)

j + · · · + εnx(n)
j . (5)

A set of cascading, ordered equations arises by col-
lecting matching orders of ε. The first two equations
are,

ε0 : D2
0Mx(0)

j +
+1∑

p=−1

[
K(p)x(0)

j+p

]
= 0, (6)

ε1 : D2
0Mx(1)

j +
+1∑

p=−1

[
K(p)x(1)

j+p

]

= −2D0D1Mx(0)
j −

+1∑

p=−1

[
D0C(p)x(0)

j+p

]

−fNL
(
x(0)
j , x(0)

j−1, x
(0)
j+1

)
. (7)

The 0th-order equation admits a Bloch wave. A sin-
gle plane wave solution takes the form,

x(0)
j = 1

2
φAeiω0T0e−iμj + c.c., (8)

where ω0 and μ denote the wave’s frequency and
propagation constant (i.e., dimensionless wavenum-
ber), respectively; A the complex amplitude;φ thewave
propagation mode shape; and c.c. denotes the complex
conjugate of all preceding terms. An eigenvalue prob-
lemat zeroth-order results fromsubstitutingEq. (8) into
Eq. (6) such that the pair (ω0, μ) satisfies the lattice’s
linear dispersion relationship. The wave propagation
mode shape (or eigenvector)φ is evaluated accordingly.
The number of pairs (ω0, μ), or equivalently the num-
ber of eigenvectors, equals the number of degrees of
freedom in each unit cell.

It is beneficial to decompose the complex amplitude
A into polar form,

A = αeiβ. (9)

By virtue of satisfying Eq. (6), the complex amplitude
in Eq. (9) varies with respect to only the slow time
scales such that,

α = α (T1, T2, . . . , Tn) , (10)

β = β (T1, T2, . . . , Tn) , (11)

Recognizing the slow scale variation of these parame-
ters is critical for capturing amplitude-dependent dis-
persion shifts.

With the 0th-order equation known, the 1st-order
equation can be updated. This process is aided by trans-
formation to wave modal coordinates,

x(n)
j = �u(n)

j , (12)

where � denotes the modal matrix whose columns are
formed by the wave propagation mode shapes. Further-
more, the damping and nonlinear terms on the right-
hand side of Eq. (7) can be expanded in a Fourier
series

∑∞
l=0 f

(1)
l eil(ω0T0−μj). Substituting the coordi-

nate transformation and Fourier series into Eq. (7) and
then pre-multiplying by the Hermetian conjugate of the
σ th wave mode shape, φH

σ , yields decoupled modal
wave equations,

mσ D
2
0u

(1)
j + kσ u

(1)
j = −2imσ ω0D1

(
αeiβ

)
ei(ω0T0−μj)

+ φH
σ

∞∑

l=0

f(1)l eil(ω0T0−μj) + c.c.,
(13)

wheremσ and kσ denote themodalmass andwavenumber-
reduced stiffness ofmodeσ and u(1)

j denotes the associ-
atedmodal coordinate. Two classes of inhomogeneities
exist on the right hand side of Eq. (13): secular terms
with time and spatial dependence ei(ω0T0−μj), and non-
secular terms with dependence ehi(ω0T0−μj), h �= 1.
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10714 M. D. Fronk et al.

Secular terms must be removed to ensure uniform con-
vergence of the series solution in Eq. (5). For lattices
with both cubic andquadratic stiffness, all secular terms
contain eiβ such that their removal yields,

2imσ ω0 (D1α + iαD1β) = φH
σ f̃ (1)1 , (14)

where f̃ (1)1 = f (1)1 e−iβ . Consequently, the first-order
evolution equations for amplitude and phase are given
by,

D1α = 1

2mσ ω0
Im

(
φH

σ f̃ (1)1

)
, (15)

D1β = − 1

2mσ ω0α
Re

(
φH

σ f̃ (1)1

)
. (16)

With secular terms now eliminated, Eq. (13) com-
prises solely non-secular terms at ehi(ω0T0−μj)(h �= 1).
The effect of these inhomogeneities is the production
of multi-harmonic particular solutions, which can be
determined after introducing the solution form

u(1)
j =

∞∑

h=0

a(1)
h eih(ω0T0−μj) + c.c.. (17)

The complex amplitude of each multi-harmonic term
can be solved for algebraically using the method of
undetermined coefficients

a(1)
h = φH

σ f (1)h

− (hω0)
2 mσ + kσ

. (18)

Note that this particular solution can be transformed
back to physical coordinates using Eq. (12).

At higher orders, a similar procedure is carried-out.
The linear kernel of Eq. (7) is preserved and governs
successively higher orders of the series solution. On the
right-hand side, secular terms must be removed, yield-
ing higher-order evolution equations for amplitude and
phase. The remaining non-secular terms yield particu-
lar solutions resolving further themulti-harmonicmag-
nitudes and phases revealed at lower orders.

1.2.2 Lindstedt–Poincaré

TheLindstedt–Poincarémethod is another perturbation
technique that has been used, as with the method of
multiple scales, to predict amplitude-dependent shifts
to the dispersion curves of nonlinear lattices. Its basic
framework follows closely to that of themethod ofmul-
tiple scales and has been applied successfully to 1-D
[30] and 2-D [23] lattices.

The technique begins with the equations of motion
of a weakly nonlinear lattice expressed in matrix form.

A dimensionless time is introduced in terms of the fre-
quency ω,

τ = ωt. (19)

Referencing this dimensionless time, the equations of
motion of the lattice are then rewritten as,

ω2M
d2x j

dτ 2
+

+1∑

p=−1

[
K(p)x j+p

]

+εfNL
(
x j , x j−1, x j+1

) = 0, j = −∞ . . . ∞,

(20)

where the effect of viscous damping is omitted. An
asymptotic expansion is then introduced for both the
total solution and frequency ω,

x j = x(0)
j + εx(1)

j + · · · + εnx(n)
j , (21)

ω = ω0 + εω1 + · · · + εnωn . (22)

Substituting Eqs. (21) and (22) into Eq. (20), and col-
lecting matching orders of ε, again leads to a cascading
set of ordered equations. The first two are,

ε0 : ω2
0M

d2x(0)
j

dτ 2
+

+1∑

p=−1

[
K(p)x(0)

j+p

]
= 0, (23)

ε1 : ω2
0M

d2x(1)
j

dτ 2
+

+1∑

p=−1

[
K(p)x(1)

j+p

]

= −2ω0ω1M
d2x(0)

j

dτ 2

−fNL
(
x(0)
j , x(0)

j−1, x
(0)
j+1

)
. (24)

The solution to the O(ε0) equations are a Bloch wave,

x(0)
j = 1

2
φAeiτ e−iμj + c.c.. (25)

Updating the right-hand side of the O(ε1) equation,
secular terms arise with dependence ei(τ−μj) and must
be removed. This results in an algebraic equation deter-
mining the first-order frequency correction ω1.

Similar to the higher-order procedure of the method
of multiple scales, a particular solution can be deter-
mined at O(ε1). This multi-harmonic solution can then
be used in conjunction with the 0th-order solution to
update higher-order equations of the asymptotic anal-
ysis. Interestingly, the authors in [30] determined this
solution but neither extended the procedure beyond the
first order nor commented on the significance of the par-
ticular solution at O(ε1). However, as will be detailed
in Sect. 1.3.4, multi-harmonic solutions derived from
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higher-order perturbation analysis have been used to
predict invariant plane wave solutions.

As discussed in [27] there are two principle draw-
backs of this technique. The first is that it presumes
a single-frequency solution through the introduction
of τ . Thus, the Lindstedt–Poincaré technique cannot
readily handle wave–wave interactions or internal res-
onances (which the method of multiple scales can).
Furthermore, the Lindstedt–Poincaré method lacks a
mechanism to uncover time-varying amplitude behav-
ior such as that which would occur due to dissipation,
amplitude modulation, or instabilities.

1.2.3 Straight-forward expansion

The straight-forward expansion method, as implied by
its name, provides a relatively simple framework for
analyzing weakly nonlinear wave dynamics. Similar to
the method of multiple scales and Lindstedt–Poincaré,
the straight-forward expansion employs an asymptotic
expansion of the solution variable, but without expand-
ing time or frequency,

x j = x(0)
j + εx(1)

j + · · · + εnx(n)
j . (26)

Substituting Eq. (26) into Eq. (1), and matching
orders of ε, yields a set of cascading differential equa-
tions with the first two presented as,

ε0 : Mẍ(0)
j +

+1∑

p=−1

[
K(p)x(0)

j+p

]
= 0, (27)

ε1 : Mẍ(1)
j +

+1∑

p=−1

[
K(p)x(1)

j+p

]
= −

+1∑

p=−1

[
C(p,q)ẋ(0)

j+p

]

−fNL
(
x(0)
j , x(0)

j−1, x
(0)
j+1

)
. (28)

The solution of the 0th-order equation admits the
form of a Bloch wave,

x(0)
j = 1

2
φAeiωt e−iμj + c.c.. (29)

Updating the right-hand side of the O(ε1) equa-
tion produces inhomogeneous forcing terms, which
may contain multiple harmonics, including station-
ary forces (zero harmonics). It is convenient to use
method of undetermined coefficients and assume a par-
ticular solution x (1)

j with multiple harmonics corre-
sponding to the forcing terms. Substituting this solu-
tion back to Eq. (29) and equating terms at each har-
monics yields the unknown coefficients. Noteworthy,
the straight-forward expansion method is not able to

remove possible secular terms based on frequency
and/or amplitude correction, and hence does not derive
amplitude-dependent dispersion and stability. Typi-
cally, this method only applies to systems where the
expansion of the nonlinear forces does not include sec-
ular terms. This approach has been used, for example,
to demonstrate spatial evolution of generated higher
harmonics in a granular system [31].

1.2.4 Harmonic balance and homotopy methods

The asymptotic approaches of multiple scales and
Lindstedt–Poincaré are limited in their application to
weakly nonlinear lattices. By contrast, the harmonic
balance and homotopy methods offer the advantage
of applicability to strongly nonlinear systems. Such
approaches have successfully characterized amplitude-
dependent dispersion relationships for lattices with
strong stiffness nonlinearity [32,33].

The harmonic balance method begins with the
matrix equations of motion for the j th unit cell of a
lattice with strong nonlinearity

ω2M
d2x j
dτ2

= FNL
(
x j , x j−1, x j+1

)
, j = −∞ . . . ∞,

(30)

where FNL vector comprises both linear and nonlin-
ear restoring forces. Note that similar to the Lindstedt-
Poincaré approach, a dimensionless time is employed,
τ = ωt , where ω denotes the wave’s frequency.

The essential feature of theharmonic balancemethod
is the introduction of a truncated series composed of a
fixed number of harmonics,

x j = A

(
L∑

l=1

[cl cos (lμj − lτ) + sl sin (lμj − lτ)]

)
,

(31)

where A andμ denote the wave’s amplitude and propa-
gation constant, respectively. The unknown amplitude
vectors cl and sl are normalized such that their highest
component is unity

max {cl , sl} = 1. (32)

The method proceeds by substituting Eq. (31) into
Eq. (30) and determining the coefficient vectors cl
and sl via a Galerkin projection, reducing the set of
nonlinear differential equations to nonlinear algebraic
equations. Since the number of unknowns (harmonic
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coefficients, amplitude, frequency, and wavenumber)
exceeds the number of equations, a general solution
is unavailable. However, an approach for predicting
amplitude-dependent dispersion curves follows by fix-
ing the amplitude andwavenumber as known quantities
and then determining the nonlinear frequency of prop-
agation. Numerical algorithms, such as the Newton–
Raphson procedure, have been implemented to solve
the associated equations [32,33].

For the special case of strongly nonlinearmonatomic
lattices without linear restoring forces [32], the homo-
topy method (also referred to as He’s method) [34,35]
exhibits comparable results to the harmonic balance
method [32,33]. Homotopy methods rely on introduc-
tion of a homotopy parameter which smoothly tran-
sitions the governing equation(s) from one(s) with a
known solution (usually linear) to the desired nonlinear
equation(s). Thus the desired solution can be based on a
known solution and recovered by setting the homotopy
parameter to one. As such, the governing equations for
the strongly nonlinear lattice absent of linear restoring
forces are represented as,

d2u j

dt2
+ 0u j = p fN L

(
u j , u j±1

)
, (33)

where u j denotes the displacement, p denotes the
homotopy parameter and fN L holds nonlinear restor-
ing forces. The homotopy parameter appears in the
assumed series solutions for the plane wave frequency
and displacement field,

0 = ω2 + pω2
1 + p2ω2

2 + · · · , (34)

u j = u(0)
j + pu(1)

j + p2u(2)
j + · · · + pnu(n)

j . (35)

The expanded frequency and series solution is then
substituted into the governing equations and matching
orders of p are collected, yielding ordered equations,
the first two of which are,

d2u(0)
j

dt2
+ ω2u(0)

j = 0, (36)

d2u(1)
j

dt2
+ ω2u(1)

j + ω2
1u

(0)
j = fN L

(
u(0)
j , u(0)

j±1

)
.

(37)

Combining the solution to the linear oscillator in Eq.
(36) with imposed Bloch conditions yields the com-
pleted 0th-order solution for the lattice,

u(0)
j = A cos (ωt), u(0)

j±1 = A cos (ωt ± μ).

(38)

Substituting these expressions into Eq. (37) then results
in an updated 1st-order equation,

d2u(1)
j

dt2
+ ω2u(1)

j = −ω2
1A cos (ωt)

+ fN L (A cos (ωt), A cos (ωt ± μ)) .

(39)

The resulting nonlinear forcing term on the right-hand
side is periodic in time and thus can be expanded in a
Fourier series,

fN L (A cos (ωt), A cos (ωt ± μ)) =
M∑

m=1

cm cos (mωt),

(40)

where the mth coefficient is determined using orthog-
onality relations,

cm = ω

2π

∫ π
ω

− π
ω

cos (mωt) fN L

(A cos (ωt), A cos (ωt ± μ)) dt. (41)

Secular (i.e., unbounded) terms arise form = 1 requir-
ing that the corresponding right-hand side of Eq. (39)
be set to zero, yielding ω2

1 = c1
A . Thus, through sub-

stitution of this result into Eq. (34), a 1st-order accu-
rate nonlinear frequency can be determined after setting
p = 1,

ω = √−c1/A. (42)

The dispersion behavior at a specific wave amplitude
A is evaluated by varyingμ from 0 to π and computing
the frequency ω using Eq. (42). Such has been done for
strongly nonlinear, 1-D granular chains in [32].

1.3 Phenomena and applications

Nonlinear periodic structures andmetamaterials exhibit
behavior absent from their linear counterparts. As such,
nonlinearitymaybe intentionally introduced to an engi-
neered system to enhance operation and/or provide
additional functionality. In this section, we discuss phe-
nomena and applications uniquely-enabled by nonlin-
earity in periodic structures and metamaterials. Specif-
ically, we detail amplitude-dependent dispersion shift-
ing, extra-harmonic generation, waveform invariance,
and multistability. By highlighting this behavior and
making note of the associated applications proposed
in prior studies, we hope to inspire follow-on devel-
opments making full use of nonlinearity in periodic
structures and metamaterials.
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1.3.1 Amplitude-dependent dispersion

Stiffness nonlinearity appears as either softening or
hardening in the lattice’s underlying linear restoring
force. Thus, at higher amplitudes, the linear dispersion
relationship shifts to accommodate the effective gain
or loss of stiffness. Various studies have analytically
characterized amplitude-dependent adjustments to the
lattice’s linear dispersion relationship.

The multiple scales evolution equations provide
closed-form expressions for amplitude-dependent dis-
persion shifting valid at all frequencies. They accu-
rately describe the amplitude-dependent shifting in the
weakly nonlinear regime [24,25,27,29]. For undamped

lattices, Im
(
φH

σ f̃ (1)1

)
= 0 in Eq. (15) and thus α does

not vary with respect to T1. It follows from Eq. (16)
that β varies linearly with T1. For a monatomic chain
with both quadratic and cubic stiffness, the expression
for β reconstituted to the first-order is,

β = ε
3k3
4mω0

(cos 2μ − 4 cosμ + 3) α2T1 + O
(
ε2
)

.

(43)

After substitution into the Blochwave solution, Eq. (8),
this linearly-varying phase can be interpreted as an
amplitude-dependent dispersion shift,

x (0)
j = 1

2
αeiωT0e−iμj + c.c., (44)

where the total frequency can be expressed as,

ω = ω0+
ω1︷ ︸︸ ︷

ε
3k3
4mω0

(cos 2μ − 4 cosμ + 3) α2 . (45)

Hardening stiffness (k3 > 0) shifts the linear disper-
sion curve upwards whereas softening stiffness (k3 <

0) shifts the linear dispersion curve downwards. Addi-
tionally, the magnitude of the dispersion shift grows
quadratically with wave amplitude α. Thus, the cut-
off/cut-on frequencies for lattices can be raised or low-
ered as a function of wave amplitude. Figure4 plots the
amplitude-dependent band structures predicted bymul-
tiple scales for 1-D monatomic and diatomic chains.
Additionally, the amplitude-dependent band structure
is shown for the 2-D monatomic shear lattice using the
same multiple scales approach extended to two dimen-
sions [25].

It is important to note that this analysis technique
still predicts amplitude-dependent dispersion shifts for

damped lattices, although the expressions are less com-
pact. For example, the evolution equations for ampli-
tude and phase in Eqs. (15) and (16) remain coupled,
and an exponentially decaying amplitude slowly weak-
ens the magnitude of the dispersion shift over time. A
time-dependent dispersion shift that slowly converges
to the linear dispersion relationship effect was docu-
mented in [36] where the authors demonstrated this
effect for both linear and quadratic damping using
a multiple scales analysis. The same authors treated
fractional damping in [36] and also reported time-
dependent damping that decays to the chain’s linear
dispersion curve.

Furthermore, it has been shown that quadratic stiff-
ness does not produce secular terms at thefirst order and
hence does not contribute to amplitude-dependent dis-
persion shifting until higher orders [25,29]. Similarly,
other authors have used multiple scales to compare the
dynamic response of lattices with weak quadratic stiff-
ness to purely linear lattices [37]. In particular, they
commented-on the presence of higher-order amplitude-
dependent shifts in frequency away from the edges of
the irreducible Brillouin zone. One technology pro-
posed by this amplitude-dependent dispersion shifting
is an amplitude-dependent frequency isolator in which
individual frequency components can be isolated based
on an input gain applied by the device [30]. For exam-
ple, at low amplitudes a two-tone signal propagates
through a diatomic chain with cubic stiffness nonlin-
earity. However, at sufficiently high amplitudes, the
optical frequency component of the signal is blocked
due to shifting of the two branches of the band struc-
ture, and thus only the acoustic frequency component
transmits. Isolation of an optical frequency could be
achieved by lowering wave amplitude when the acous-
tic frequency signal is propagating near the branch’s
cut-off frequency.

Gonella et al. [19,28] modified the multiple scales
approach to capture amplitude-dependent wavenumber
shifts. They differentiate between the effects of either
initial or boundary excitations in nonlinear lattices. In
the former, an initial displacement profile prescribes
the wavenumber and the frequency of propagation is
corrected via the amplitude-dependent dispersion rela-
tionship. By contrast, a boundary excitation defines the
frequency and the wavenumber is then determined by
a separate nonlinear dispersion relationship. To allow
for either case in the multiple scales analysis, a spa-
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10718 M. D. Fronk et al.

Fig. 4 Amplitude-
dependent dispersion
shifting as predicted by
multiple scales. Hardening
nonlinearity shifts the
dispersion curve upwards
whereas softening
nonlinearity shifts the
dispersion curve
downwards. a Monatomic
chain with hardening cubic
stiffness. b Diatomic chain
with softening cubic
stiffness. c
Two-dimensional
monatomic shear lattice
with hardening cubic
stiffness

tiotemporal variable is first introduced,

θ j = μj − ωt, (46)

where μ and ω denote the plane wave’s propagation
constant and frequency, respectively. The series solu-
tion is then expressed in terms of this “fast” spatiotem-
poral variable and slow spatial and temporal scales,

x j = x(0)
j

(
θ j , J1, T1

)

+εx(1)
j

(
θ j , J1, T1

) + · · · + εnx(n)
j

(
θ j , J1, T1

)
,

(47)

where J1 ≡ ε j is analogous to the slow temporal scale
introduced in Eq. (3). Interestingly, Gonella et al. gen-
eralize the lattice equations of motion by expanding the
finite differences associatedwith linear restoring forces
to include a higher-order spatial derivative. Such addi-
tion appears in the first-order inhomogeneous terms.
For example, a cubically nonlinear monatomic chain
exhibits the following form at the first-order,

mD2
0x

(1)
j + 2k1x

(1)
j − k1x j+1 − k1x j−1

= −2ωm
∂2x (0)

j

∂θ j∂T1

+k1

(
∂x (0)

j+1

∂s
− ∂x (0)

j−1

∂s

)

+k3
(
x j+1 − x j

)3 + k3
(
x j−1 − x j

)3
. (48)

Elimination of the associated secular terms reveals evo-
lution equations for amplitude and phase as coupled
partial differential equations governed by space (J1)
and time (T1),

∂α

∂T1
+ λ

∂α

∂ J1
= 0, (49)

∂β

∂T1
+ λ

∂β

∂ J1
= ηα2, (50)

where λ and η are parameterized by linear and non-
linear stiffness terms, respectively. Solutions to the
coupled partial differential equations are sought in
accordance with the presence of an initial or bound-
ary excitation. The initial excitation approach yields the
previous amplitude-dependent dispersion relationships
expressed in Eq. (45). However, boundary excitation
yields an amplitude-dependent wavenumber correction
associated with a prescribed forcing frequency. While
the initial and boundary excitation predictions are sim-
ilar for relatively small wavenumbers, significant dis-
crepancies arise near the band edge. Specifically, the
wavenumber correction develops a jump, or kink, at
frequencies near the linear cut-off frequency. Early evi-
dence of these kinks dates to the work of Chakraborty
andMallik [38].Gonella et al. resolved these physically
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unrealistic results through an iterative approach to the
multiple scales procedure. They anticipated wavenum-
ber shifts in the 0th-order solution by replacing the orig-
inal propagation constant μ with one that includes an
undetermined first-order shift; i.e., μ → μ − εβ

J1
. Sub-

stituting this ansatz into the 0th-order solution,Eq. (45),
and then collecting and eliminating secular terms yields
a revised set of 1st-order evolution equations. Continu-
ing with the example system of the cubically nonlinear
monatomic lattice, the evolution equations now appear
as

∂α

∂T1
+ λ0 sin

(
μ − εβ

J1

)
∂α

∂ J1
= 0, (51)

∂β

∂T1
+ λ0 sin

(
μ − εβ

J1

)
∂β

∂ J1
= ηα2, (52)

where λ0 is parameterized by frequency and lin-
ear chain parameters. Note that these new equations
recover Eqs. (49) and (50) for smallwavenumber shifts;
i.e.,μ � εβ

J1
. By virtue of the boundary excitation phe-

nomenon, conditions are imposed on amplitude and
phase: α = α0, β = β0. A particular solution for
phase is also sought in the form of a wavenumber shift,
yet now the solution to the coupled set of equations
is transcendental. For example, assuming a particular
solution form of β∗ = C J1 in the cubically nonlinear
monatomic chain gives,

λ0C sin (μ − εC) = ηα2
0 . (53)

The solutions forC can be determined numerically and
give updatedwavenumber shifts. Interestingly, this cor-
rection is “clipped” at the linear cut-off frequency. No
amplitude-dependent shifts in wavenumber occur for
forcing frequencies above the lattice’s linear cut-off fre-
quency. Such a result was confirmed in [28] with direct
numerical simulation of the lattice equations of motion
whereby boundary excitation above the linear cut-off
frequency, yet below the nonlinear cut-off frequency,
for initial excitation produced evanescent waves.

Generalizing to two-dimensional shear lattices, the
direction of wave propagation is governed by disper-
sion surfaces, which can be reduced to curves when
evaluated along the �-X-M directions in the Brillouin
zone [11]. Stiffness nonlinearity shifts these surfaces,
resulting in the possibility of amplitude-dependent
beaming [23]. For example, in square shear lattices
with weak cubic stiffness, harmonic point forcing at
a low amplitude causes wave information to radiate
symmetrically outward. However, when the forcing is

applied at the same frequency and at higher ampli-
tudes, the band diagram shifts such that wave infor-
mation beams along 45◦ angles [23]. This amplitude-
dependent redirection of energymay inspire, for exam-
ple, nonlinear latticematerials that re-route large ampli-
tude waves that would otherwise damage structural
components or electronic sensors.

Inertial nonlinearities can also be treated by higher-
ordermultiple scales analysis as presented by Settimi et
al. [39]. Both quadratic and cubic nonlinear terms arise
in a systemswith inertial amplification. Kinematic con-
straints relate rigidly coupled masses within the unit
cell, yet the governing equations for the degrees-of-
freedom can still be expressed in matrix form. The
higher-ordermultiple scales procedure yields both non-
linear dispersion relationships and nonlinear wave-
forms. Invariant manifolds can be identified associated
with these nonlinear waveforms.

The Lindstedt–Poincaré method has recently been
employed to predict bandgap shifting in exotic sys-
tems. Bae and Oh [40] presented near-zero frequency
bandgap shift whereby the size of a quasi-static
bandgap could be tuned by both unit cell geometry
andwave amplitude. They considered a chain grounded
with transversely-loaded linear coil springs, and their
Lindstedt-Poincaré analysis was validated both numer-
ically and experimentally. An effective parameter anal-
ysis identified tunable negative mass associated with
the ultra-low frequency bandgap. He et al. [41] studied
a triatomic lattice with cubic stiffness originating from
pretensioned wires grounding eachmass. Interestingly,
the authors report a softening nonlinearity associated
with the strings and were able to increase bandgap size
by tensioning the string.

Dispersion relationships for continuous nonlinear
elastic systems (treated in more detail in Sect. 2) have
been derived in closed form as applied to homoge-
neous nonlinear media such as rods, beams, and plates
[42–45], as well as continuous media with periodically
spaced local resonators [14]. The general approach
is to derive the nonlinear equations of motion, intro-
duce frequency and wavenumber through a change of
variables, integrate the transformed equations, apply
amplitude-dependent initial conditions on wave phase,
and then solve for a relationship between frequency
and wavenumber. Notably, the assumption of a small
parameter isn’t necessary. For example, the equation
of motion governing a rod using a geometrically-
exact Green-Lagrange strain measure can be written
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as [14,46],

ü − c20u
′′ = 1

2

[
3c20

(
u′)2 + c20

(
u′)3]′

, (54)

where u(s, t) denotes the longitudinal displacement
while the operators (̇) and ()

′
denote temporal and

spatial derivatives, respectively. The constant c0 can
be interpreted as the rod’s non-dispersive wave speed

c0 =
√

E
ρ
, where E and ρ denote the material’s elastic

modulus and density, respectively.
Following the development presented in [14], a

nonlinear dispersion expression is sought relating fre-
quency ω and wavenumber κ . Thus, intermediate vari-
ables ū = u′, τ = ωt , and z = |κ| s + τ are defined
such that Eq. (54) transforms to,

ω2ūzz − c20κ
2ūzz = 1

2
κ2

[
3c20 (ū)2 + c20 (ū)3

]

zz
. (55)

Integrating Eq. (55) twice leads to,
(
ω2 − c20κ

2
)
ū − c20κ

2

2

(
3ū2 + ū3

)
= 0. (56)

Taking the positive root of Eq. (56) yields the strain-like
quantity,

ū (z) = −3

2
+ 1

2

√√√√
(
1 + 8ω2

c20κ
2

)
. (57)

Applying the variable transformations to sinusoidal ini-
tial conditions,

ū (0) = |κ| B, (58)

ūz (0) = 0, (59)

introduces the wave amplitude B, which upon substi-
tution into Eq. (57) yields the desired nonlinear disper-
sion relationship for the rod,

ω (κ; B) =
√
2 + 3B |κ| + (Bκ)2

2
ωin f . (60)

Here, ωin f denotes the frequency for non-dispersive
(infinitesimal strain) waves. It is noted that in arriving
at Eq. (56), non-zero integration terms (in the form of
polynomials in z) are set to zero as they are secular in
nature, a feature shared by the approaches described
in Refs. [14,42–44]. The method is thus a straight-
forward perturbation approach (see Sect. 1.2.3) in
which secular terms are disregarded. This can be com-
pared and contrasted with the Lindstedt–Poincaré and
multiple scales approaches described earlier where
analogous terms are removed rigorously using intro-
duced expansion quantities—see Sect. 2 for such a

treatment in the case of plates. Thus, the unstated limi-
tationof the approachpresented is that the displacement
field u(z) is non-physical, growing linearly in space and
time. This implies further that B is not simply the wave
amplitude, but instead the instantaneous wave ampli-
tude at z = 0. Nonetheless, the dispersion predictions
from this approach, for fundamental frequencies and
extra-harmonic generation, have exhibited close agree-
ment with numerical simulations at moderate to large
amplitudes when the instantaneous amplitudes taken
from the spatially- and temporally-evolving, simulated
waveforms are used to inform B [44].

1.3.2 Amplitude-dependent decay of evanescent
waves

Regarding evanescent waves, the authors in [47] inves-
tigateddispersion shifts and amplitude envelopes specif-
ically when the frequency is above the nonlinear cut-
off frequency. In a simple monatomic lattice, they
assumed the real wavenumber remains unchanged
from propagating waves at the end of the Brillouin
zone, and demonstrated amplitude-dependent imagi-
nary wavenumbers; i.e., dispersion shifts in the imagi-
nary domain of the form,

ω = ω0 + ε
3k3|A|2
4mω0

(cosh(3μi )

+3 cosh(2μi ) + 3 cosh(μi ) + 1), (61)

where μi denotes the imaginary component of the
wavenumber, and |A| the wave amplitude. The 0th-
order frequency ω0 is related to μi by,

ω0 =
√
k1
m

(2 + 2 cosh(μi )). (62)

In contrast to a propagating wave, an evanescent
wave has non-uniform amplitude in space, and thus the
dispersion correction also changes along the propaga-
tion path. In the attenuation direction, the decreasing
amplitude in space mitigates the nonlinear effects, and
the far-field imaginary wavenumber converges to its
linear value. For hardening nonlinear stiffness, the non-
linear cut-off frequency is above its linear counterpart,
and the far-field imaginary wavenumber is nonzero,
resulting in a trivial transmission. The softening non-
linear stiffness, however, induces a nonlinear cut-off
frequency lower than its linear counterpart, and enables
an interesting amplitude saturation effect unique to the
nonlinear system.
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The saturation phenomenon occurs when a signal
falls in the nonlinear stopband and simultaneously the
linear passband.As thewave attenuates in the stopband,
the imaginary wavenumber decreases and converges
to its linear value (i.e., zero), effectively slowing and
eventually stalling the attenuation process. The wave
amplitude thus converges to a nonzero value,

Asat =
√
mωcuto f f (ω − ωcuto f f )

6εk3
,

(ω < ωcuto f f , εk3 < 0), (63)

where the excitation frequency ω is smaller than the

linear cutoff frequency ωcuto f f = 2
√

k1
m and εk3 < 0

denotes a softening nonlinearity. These results were
numerically validated by direct numerical integration
of the governing equationswith initial condition excita-
tion [47]. The authors also considered boundary excita-
tion and documented time-dependent dynamics, which
they related to the wavenumber clipping effect dis-
cussed earlier [28].

1.3.3 Extra-harmonic generation

A hallmark feature of wave propagation in nonlinear
media is the generation of extra-harmonics from exci-
tation at a single frequency. In the context of periodic
structures, such phenomenon has been explored using
analytical, computational, and experimental methods.
Of particular relevance toperiodicmedia is the situation
of the fundamental and its higher (or lower) harmonics
within the material’s band structure, and many stud-
ies have classified the effects of generating propaga-
tive (vis-à-vis evanescent), weakly dispersive (vis-à-
vis strongly dispersive), and inter-band (vis-à-vis intra-
band) harmonics.

In [48], second-harmonic generation in a statically-
compressed chain of beads is analytically predicted and
experimentally validated. Taylor expanding the nonlin-
earHertzian contact force between beads, the equations
of motion for a diatomic chain with weak quadratic
nonlinearity are derived. By equating the linear kernel
evaluated at the second harmonic to the nonlinear terms
evaluated at the fundamental, a linear system of equa-
tions is derived that reveals the coefficients associated
with fundamental and second harmonic displacement
terms. The generation and propagation of the second
harmonic is demonstrated to strongly depend on where
the driving frequency ω and its second harmonic 2ω

are located within the linear band diagram, particu-
larly whether they fall close to or within a bandgap.
For ω and 2ω are in the long wavelength limit, the fun-
damental amplitude decreases with distance while the
second harmonic first grows and then diminishes due
to dissipation. When ω and 2ω are within the passband
but away from the long wavelength limit, the group
velocity disparity causes the second harmonic ampli-
tude to oscillate slowly with unit cell index. If ω is
propagative but 2ω is evanescent, the second harmonic
amplitude first increases slightly but ultimately decays
very rapidly with distance. Ifω falls within the acoustic
branch and 2ω in the optical branch there is an out-of-
phase alteration between adjacent masses occurring at
2ω.

Sánchez-Morcillo et al. [31] employed separate ana-
lytical treatments for fundamental and second harmon-
ics occupying long-wavelengths (i.e., non-dispersive
case) and short-wavelengths (i.e., dispersive case).
Similar to [48], they analyze harmonic excitation at the
boundary of a pre-compressed chain of beads featuring
weak quadratic stiffness. The studied monatomic chain
has dimensionless equations of motion,

d2un(t)

dt2
= 1

4
(un+1 − 2un + un−1)

−ε

8
(un+1 − 2un + un−1)(un+1 − un−1).

(64)

For the non-dispersive case, a continuum approxi-
mation is employed and a straightforward expansion
Eq. (26) yields a set of cascading wave equations. The
0th-order (linear) wave equation admits a plane wave
solution, u(0) = cos(ωt − μx). At the next order, the
forcing term emerges as a spatial derivative of the nor-
malized nonlinear stress,

fnl = ∂

∂x

[
−1

8
(
∂u(0)

∂x
)2

]
= ∂

∂x
[σNL ], (65)

σNL = −ω2

4
[1 − cos(2ωt − 2μx)]. (66)

Direct substitution of Eq. (66) into Eq. (65) reveals
the oscillating second harmonic forcing. However, this
approach dismisses the stationary component of the
nonlinear stress which generates zero-frequency (DC)
offset in the chain of beads. The authors introduce arti-
ficial weak damping into the linear solution to solve
this problem,

u(0)(x, t) = cos(ωt − μx)e−αx . (67)
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By substituting Eq. (67) into Eq. (65) and perform-
ing a time averaging operation, the DC offset can be
decoupled from the oscillating terms and solved using
boundary conditions and evaluated in the limit α → 0,
〈
u(1)(s, t)

〉
= ω2x, (68)

where 〈˙〉 denotes averaging over time.
For the dispersive case, the straightforward expan-

sion applied to the finite difference equations yields a
similar set of ordinary differential equations. The lin-
ear solution is identical to the nondispersive case, and
the next-order solution comprises DC, forced oscilla-
tion (twice the frequency and wavenumber), and free
oscillation (satisfying the linear kernel) terms,

u(1)
n (t) = An + 1

2
B2ωe

i(2ωt−2μn)

+1

2
B ′
2ωe

i(2ωt−μ(2ω)n) + c.c. (69)

Substituting the solution back to the 1st-order wave
equation yields an algebraic equation for B2ω and a
sequence equation for An—to be solved by time aver-
aging. The free oscillation terms, B ′

2ωe
i(2ωt−μ(2ω)n +

c.c, are homogeneous solutions to the wave equation,
whose amplitude coefficient derives from boundary
condition. In the investigated boundary excited chain,
B ′
2ω = −B2ω, due to the absence of second harmon-

ics at the excitation boundary (n = 0). The authors
carry the analysis to the second order and derive the
spatial evolution of fundamental frequency and gener-
ated second harmonics. Bothω and 2ω are propagative,
and the fundamental and second harmonic amplitudes
oscillate with unit cell index with a phase difference of
π , as shown in Fig. 5a. If 2ω is evanescent, the second
harmonic amplitude increases slightly and saturates to
a stationary level along the propagation direction,while
the amplitude of the fundamental harmonic decreases
slightly and sustains at that level, as depicted in Fig. 5b.
Numerical simulations exhibit close agreement with
analytical predictions. The authors conclude that the
forced second harmonic makes a non-negligible con-
tribution to the amplitude of the fundamental frequency
at long distances.

In [49], wave propagation through a medium com-
posed of continuous layers separated by linear and
quadratic nonlinear springs is studied. A perturbation
analysis establishes the equations of motion and trans-
fer matrix approach determines the fundamental and
second harmonic solutions. The effects of a single

nonlinear interface and multiple consecutive nonlin-
ear interfaces are investigated. As with [48], the prop-
agation of the second harmonic differs qualitatively
dependingon its placementwithin the linear band struc-
ture. If both the fundamental and second harmonic lie
well-below the cut-off frequency, the second harmonic
amplitude grows with distance. If the second harmonic
is near the cut-off frequency, the second harmonic com-
ponent has a standing wave nature. If the first and sec-
ond harmonic occupy two distinct branches, the sec-
ond harmonic amplitude oscillates with specific wave-
lengths. If both the first and second harmonics are
within bandgaps, there is attenuation of the fundamen-
tal and local generation of the second harmonic, and
neither frequency component propagates. They also
remark on the possibility of phase-matching conditions
whereupon the second frequency also falls in the linear
band structure and possesses the same phase velocity
as the fundamental. Such a case is characterized by the
spatial growth of the second harmonic amplitude.

Frandsen and Jensen [50] examine third harmonic
generation in a diatomic chain with cubic nonlinear-
ity. Using the method of multiple scales, they ana-
lytically predict the magnitude of the third harmonic
generation by determining the particular solutions that
other studies have proposed to describe invariant waves
[25,29]. Close agreement is documented between ana-
lytical predictions and numerical simulations of the lat-
tice. In particular, they compare third harmonic genera-
tion for four different cases: fundamental and third har-
monic in the long wavelength, fundamental and third
harmonic in the acoustic band yet away from the long
wavelength limit, fundamental in the acoustic band and
third harmonic in the bandgap, and fundamental in the
acoustic band and third harmonic in the optical band.
Of particular note is that third harmonic generation is
stronger in the long wavelength limit and that third har-
monic generation still occurs, albeit moreweakly, if the
third harmonic falls in the bandgap. They remark on
their model’s inability to handle internal resonances.

Further richness has been revealed when the gener-
ated harmonics possess a differentmodal character than
that of the excitation. For example, Ganesh andGonella
[21] identify a so-called “modal mixing” phenomenon
in which sufficiently high amplitude excitation of a lat-
tice in a lower branch generates higher harmonics in
higher branches, eliciting enriched wave propagation
mode shape patterns. They demonstrate this finding in
an example lattice in which low amplitude excitation
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Fig. 5 Spatial evolution of
the DC mode, fundamental,
and generated second
harmonic. a The spatial
evolution when the second
harmonic is propagative.
The blue solid curves and
orange dots are theoretical
and numerical results,
respectively. b The spatial
evolution when the second
harmonic is evanescent. The
green solid curves and red
dots are theoretical and
numerical results,
respectively [31]

in the acoustic branch produces axial-type deforma-
tion, yet when the driving amplitude exceeds a critical
threshold, the optical mode is excited and shear-type
deformation at twice the driving frequency mixes with
the axial displacement at the fundamental. Figure6a
illustrates the spectral composition resulting from low
amplitude harmonic forcingwhereas Fig. 6b depicts the
“modal mixing” phenomenon due to high amplitude
harmonic loading. A similar mechanism was identi-
fied by Jiao and Gonella [51] in which driving a lattice
at a flexural mode yielded second harmonic genera-
tion at an axial mode. Figure6c and d displays exper-
imental results of a lattice subjected to flexural har-
monic loading. A strong flexural response at the fun-
damental is measured in Fig. 6c yet axial motion at the
second harmonic is also recorded in Fig. 6d. Wallen
and Boechler [52] reveal richness in the second har-
monic generation of 2-D hexagonally closed packed
lattices of microspheres. While excitation of a longitu-
dinal mode induces second harmonic activity exclu-
sively within the longitudinal mode, excitation of a
transverse-rotational mode produces second harmonic
activity at a longitudinal mode.

Subharmonic generation has also been studied,
albeit in a more limited fashion. Tournat et al. [53]
detail self-demodulation in which a high-intensity nar-
rowband excitation produces extra harmonics and sub-
sequent frequency mixing. A low frequency (as a result
of a frequency difference) sustains wave propagation

over longer distances compared to its higher frequency
counterparts.

1.3.4 Waveform invariance

Higher-order multiple scales can also be employed to
predict the existence of invariant plane wave solutions
inweakly nonlinear lattices,which are akin to nonlinear
normal modes in bounded media. The multi-harmonic
particular solution coefficients found inEq. (18) exhibit
neither spatial nor temporal dependence. Furthermore,
the particular solutions possess the same phase veloc-
ity as evidenced by the constant ratio of frequency
to wavenumber. Consequently, these solutions sug-
gest that nonlinear lattices admit a specific distribution
of spectral energy that propagates without growth or
decay of extra harmonics. Such a finding is particularly
striking given the dispersive nature of lattices. These
invariant plane waves share the shape-preserving char-
acter of solitons yet are spatially and temporally infinite
in extent (in contrast to the soliton’s signature compact
support).

To validate these solutions, direct numerical integra-
tion of the lattice equations of motion was carried-out
in [29]. The solver’s initial displacement and velocity
distribution corresponded to the multiple scales series
solution truncated to different orders. To measure the
invariance of a simulated waveform, the temporal vari-
ation of a spatial Fourier coefficient was tracked. The
study documented less variation of the second and third
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Fig. 6 Higher harmonic
generation exhibiting
different modal character
between the fundamental
and harmonics. a In a
nonlinear lattice system,
Ganesh and Gonella [21]
report “modal-mixing” via
higher harmonic generation
in which low amplitude
excitation retains spectral
energy at a single branch of
a band structure. b High
amplitude excitation of the
same lattice system
produces higher harmonics
in an upper branch of the
band structure culminating
in enriched wave
propagation mode shapes. c
Jiao and Gonella [51] report
harmonic flexural excitation
of a lattice yielding flexural
activity at the fundamental
and d axial second
harmonic activity

harmonics by including higher-order multiple scales
terms in the solver’s initial conditions. Figure7a and
b display the normalized reduction in the variance of
the second and third harmonics, respectively, by includ-
ing 2nd-order multiple scales initial conditions as com-
pared to 1st-order. Note that �2 and �3 denote dimen-
sionless parameters corresponding to the strength of
the quadratic and cubic nonlinearity, respectively.

In two-dimensional shear lattices, the invariant plane
wave solutions exhibit directional dependence. Direc-
tions with a higher magnitude of its multi-harmonic
solution coefficient experience a greater reduction in
its variance with the inclusion of higher-order mul-
tiple scales terms as supported by numerical simula-
tions [25]. Figure7c plots the magnitude of the third
harmonic solution coefficient obtained from multiple
scales for the diatomic lattice as a function of θ , the
angle of wave propagation relative to the lattice direc-
tion. Figure7d presents the reduction in the variance of
the third harmonic obtained in numerical simulations
of the acoustic branch of the diatomic lattice. Note
that directions with a higher magnitude of third har-
monic solution coefficient experience a larger reduction

in variance in numerical simulations. In the presence
of a larger “deficit” in the invariant spectral content,
these directions experience comparatively more tem-
poral variation.

Interestingly, the higher-order multiple scales anal-
ysis reveals select wavenumbers at which the multi-
harmonic solution is identically zero. This occurrence
suggests that the 0th-order solution propagates invari-
antly and therefore extra-harmonic generation ceases
at these special frequencies [54]. Numerical simula-
tions confirmed that extra harmonic production is dras-
tically smaller for plane waves injected at these unique
wavenumbers.

Multiple scales is also capable of resolving the
invariant nature of internally-resonant plane waves; i.e.
wave propagation modes with an exactly (or nearly)
commensurate relationship. While not strictly invari-
ant, internally-resonant plane waves undergo a slow-
scale energy exchange across all space and time. This
finding is predicated on the wave propagation modes
being sufficiently near neutrally-stable centers identi-
fied by multiple scales. Such phenomenon is analyti-
cally handled by injecting two plane waves at the 0th-
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Fig. 7 Invariant planewave solutions in nonlinear lattices. a The
inclusion of higher-ordermultiple scales terms in a solver’s initial
conditions yields a reduction in the variance of the third harmonic
in numerical simulations of the monatomic chain. b A reduction
in the variance of the third harmonic is also measured in simula-
tions of the monatomic chain. c For a two-dimensional diatomic
lattice, multiple scales predictions of the magnitude of the third

harmonic solution coefficient vary as a function of the angle of
wave propagation θ . d In numerical simulations, directions with
a larger magnitude of multi-harmonic solution coefficient expe-
rience a greater reduction in the variance of a given harmonic.
�2 and �3 denote dimensionless parameters corresponding to
the strength of the quadratic and cubic nonlinearity, respectively

order.

x(0)
j = 1

2
φ
(
ω0,A

)
Aeiω0,AT0e−iμA j

+1

2
φ
(
ω0,B

)
Beiω0,BT0e−iμB j + c.c. (70)

The frequency and wavenumber of the A wave and B
wave satisfy or nearly satisfy the n : 1 internal reso-
nance criteria,

ω0,B = nω0,A + εσω, (71)

μB = nμA + εσμ, (72)

where σω and σμ represent small detuning parame-
ters for the exact internally-resonant frequencies and
wavenumbers, respectively.With the twowave solution
introduced, secular terms arise at both eiω0,AT0e−iμA j

and eiω0,BT0e−iμB j resulting-in four evolution equa-
tions after the associated removal of secular terms:
D1αA, D1αB ,D1βA, and D1βB . This state space can
be reduced from four dimensions to three by defining

a relative phase term between the A and B waves,

γ ≡ βB + σωT1 − σμ J1 − nβA. (73)

A further reduction in the state space from three dimen-
sions to two can be accomplished by deriving an ellipti-
cal relationship between the A and B wave amplitudes,

rα2
A + α2

B = E, (74)

where the positive real-valued r depends on lattice
parameters and frequency, and the energy-like con-
stant E is determined by initial conditions. The lattice
dynamics can then be studied using a two dimensional
phase portrait, such as αB versus γ . A local fixed-point
analysis identifies neutrally stable periodic orbits: spe-
cific initial combinations of amplitude and phase that
undergo slow-scale energy exchange for all space and
time. This invariant behavior was validated by numeri-
cal simulations in which the temporal evolution of spa-
tial Fourier coefficients closely matched the multiple
scales predictions [55].
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Hussein and Khajetourian recently uncovered spa-
tially invariant waveforms in continuous thin rods
with alternating material properties [12]. Hardening
nonlinearity stems from the retention of higher-order
terms in the continuum’s Green-Lagrange strain. A
transfer matrix approach yields closed-form nonlin-
ear dispersion relationships whereupon a balancing
between hardening nonlinearity and softening disper-
sion enables the propagation of fixed profile nonlinear
traveling waves. Note that this balancing of disperison
and nonlinearity is similar to the mechanism behind
soliton formation [56].

The multiple scales analysis in [55] generally han-
dles either 2:1 or 3:1 internal resonances, either within
or between dispersion branches. It builds-upon a prior
study considering solely 2:1 internal resonances within
the same branch of amonatomic chain’s passband [57].
In this work, a local fixed point analysis also identifies
neutrally stable fixed points corresponding to periodic
wave energy exchange. They also distinguish between
phase drift and phase-locking solutions by examining
the slow-scale evolution of a spatio-temporal phase
term. A separatrix in the multiple-scales derived phase
portrait separates the two phenomena and suggests the
existence of emergent waveforms.

Lepidi and Bacigalupo [58] also present a multi-
ple scales treatment of internal resonances in non-
linear locally-resonant lattices, including interactions
between waves on different dispersion branches. Non-
linear dispersion relationships are derived after intro-
ducing a similar relative phase term as Eq. (73).
The authors draw similarities to these nonlinear band
structures and nonlinear normal mode analysis of
finite vibratory systems. Their multiple scales analy-
sis reveals admissible nonlinear waveforms such that,
as in [39], invariant manifolds can be identified. It is
important to note that some of these invariantmanifolds
correspond to stable periodic orbits as also predicted in
[55,57]. While 3:1 superharmonic internal resonance
was the principle focus of the study, there is an inter-
esting discussion on the existence of 1:1 resonant inter-
actions, or curve veering, of two distinct branches of a
locally-resonant band structure that coalesce at certain
parameter sets enabling the potential for strong energy
transfer.

1.3.5 Stability

The stability of wave propagation in nonlinear media
is of fundamental importance. In the context of peri-
odic media and metamaterials, stability is typically
studied in bistable lattice systems [59–63] wherein a
nonconvex curvature in the force displacement rela-
tionship enables “snap-through” behavior to occur. The
propagation of unidirectional transition waves [64,65]
have been observed in such systems. Bistabile poten-
tials have also been extended to 2-D lattices [66]. By
contrast, studies of waveform stability have generally
centered around localized solutions such as solitons
[67–69] and discrete breathers [70–73]. The stabil-
ity of plane waves in nonlinear periodic systems have
received very little attention. One practical implication
of such a study is the potential amplitude limit on band
structure shifting due to a loss of plane wave stability.

The higher-order multiple scales analysis presented
in Sect. 1.2.1 provides insight into the stability of
plane wave propagation in nonlinear lattices. Using
the higher-order evolution equations, wave amplitude
is reconstituted to the original time scale,

α̇ = εD1α + ε2D2α. (75)

Fixed-points can then be identified that satisfy,

α̇|α∗ = 0. (76)

Their stability can be assessed locally using the multi-
plier,

λ ≡ d

dα
α̇|α∗ , (77)

where λ < 0 signifies a stable fixed point, λ > 0 an
unstable fixed point, and λ = 0 signifies a neutrally
stable fixed point. For both themonatomic anddiatomic
lattices with quadratic and cubic stiffness, two fixed
points arise,

α∗ = 0,

√
ω0

εδ
, (78)

where δ is parameter associatedwith amplitude-dependent
dispersion shifting and depends functionally on lattice
parameters and frequency. The fixed point α∗ = 0 is
stable and has finite domain of attraction. Thus, suf-
ficiently small amplitude plane waves propagate in a
stable manner, decaying to zero amplitude over time
due to the light viscous damping in the lattice. How-

ever, the nonzero fixed point α∗ =
√

ω0
εδ

is unstable and

attracts larger waves under time reversal. These results,
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Fig. 8 Amplitude and
direction-dependent
stability in nonlinear
lattices. a In 1-D lattices,
multiple scales predicts that
plane waves propagate in a
stable manner at sufficiently
low amplitudes yet lose
stability at high amplitudes,
which is confirmed by
numerical simulations. b
Multiple scales analysis of
2-D shear lattices reveals
directionality of the fixed
points associated with a
transition from stable to
unstable plane wave
propagation. c Numerical
simulation of the 2-D shear
lattice exhibits
directionality of the stability
consistent with the multiple
scales predictions

taken together, signify amplitude-dependent stability
of plane waves in nonlinear lattices. It is worth not-
ing that, due to the presence of ε in the denominator,
the non-zero fixed-point is too large to be consistent
with the weak nonlinearity assumption inherent to the
multiple scales analysis [29]. However, it does qualita-
tively indicate amplitude dependent stability of plane
waves that was subsequently validated in direct numer-
ical simulations of the lattice equations of motion.

Figure8a displays simulation results for a number of
initial plane wave amplitudes. The stability of a given
plane wave was numerically monitored in each simu-
lation. Typical forms of plane wave instability revealed
by these numerical simulations include the formation
of incommensurate spectral content (generally asso-
ciated with large cubic stiffness) and the unbounded
growth of wave amplitude (generally associated with
large quadratic stiffness). If either such form of insta-
bility manifested then the waveform was considered
unstable. Note that plane waves propagate in a stable
manner for relatively low amplitudes until a critical
amplitude (�2,cri t or�3,cri t ) whereupon the simulated
waveform breaks down. This amplitude-dependent sta-
bility qualitatively confirms the behavior predicted by

the local fixed point analysis from the multiple scales
evolution equations.

In two-dimensional shear lattices, plane wave sta-
bility exhibits directionality. It was found in [25] that
propagation along the lattice direction was inherently
less stable than propagation along inclined directions.
This result stems from the growth in magnitude of the
non-zero fixed point when evaluated about wave propa-
gation angles inclined away from the lattice direction as
documented in Fig. 8b. Directions with larger non-zero
fixed points require higher amplitudes to observe an
instability and hence are considered more stable. This
directional stability also applies to the radiation ofwave
energy fromapoint source.Wave information extracted
from unstable directions are more prone to develop
incommensurate frequency content as supported by
numerical simulations. Figure8 presents results from
numerical simulations of a monatomic shear lattice
whereupon the percentage of spectral energy outside
the fundamental and harmonics (Es,δ) measured at the
end of a simulation of a given plane wave. The values
of Es,δ indicate the stability of a simulated waveform.
As presented in Fig. 8c, the directionality of the plane
wave stability observed in numerical simulations aligns
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with the multiple scales predictions. The counterintu-
itive finding of directional stability may inspire novel
mechanical encryption or structural health monitoring
strategies [25].

Higher-order perturbation analysis must be carried-
out to observe both fixed points. A first-order mul-
tiple scales analysis is insufficient for capturing the
amplitude-dependent stability. It is also important to
note that damping plays a critical role in identifying
the fixed points in Eq. (75). The evolution equations
for amplitude are zero for undamped systems and thus
indicate neutral stability. The presence of light damp-
ing enables the complete identification of fixed points
even though the fixed points themselves do not depend
on the damping coefficient.

1.4 Future work

In this section we identify open areas of investiga-
tion concerning nonlinear waves in discrete periodic
media and metamaterials; namely, experimental devel-
opments, technology and devices, and multi-physics
nonlinear periodic systems.

1.4.1 Experimental developments

The literature concerning experimental exploration
of nonlinear metamaterials and periodic structures is
sparse, and as such, has yet to confirmmany of the theo-
retical findings in thefield–particularly those pertaining
to mechanical lattices with weak stiffness nonlinear-
ity. Manktelow et al. [74] indirectly verified amplitude-
dependent dispersion shifts using a periodic string in
which the system’s natural frequencies were identi-
fied with points on a dispersion curve. Monitoring
the changes in these natural frequencies then provided
the dispersion shifts. This demonstration, while use-
ful, was limited by modeling assumptions required
to represent the system in discrete form, and by an
amplitude limit upon which the periodic string whirled
instead of vibrating in-plane as desired. Another exper-
imental study of amplitude-dependent bandgap tuning
incorporated transversely-loaded compression springs
[40]; however, it was limited to low frequencies and
a small number of unit cells. The nonlinear wave
mechanics in granular media have also been experi-
mentally analyzed,with notable demonstrations of soli-
tarywave [75] andbreather [76] propagation in addition

tononlinear resonances [77].Other recent experimental
studies investigated nonlinear electromechanical meta-
materials showcasing effects such as piezoelectricity-
enabled wave attenuation [78,79] and long wavelength
frequency shifting [80].

Focused research is needed to devise ready-to-
deploymechanical nonlinear elementswithwell-defined
and tunable nonlinear properties rather than case-
specific or circumstantial nonlinear elasticity. Such
designswill enablemorewidespread testing andvalida-
tion of nonlinear phenomena: e.g., the desired strength
and type of nonlinearity would be readily tailored-
to and implemented-in experiments and device proto-
types. Since additive manufacturing techniques have
rapidly transformed the fabrication of linear metamate-
rials [81,82], such methods can similarly revolutionize
the fabrication of nonlinear metamaterials [83].

1.4.2 Technology and devices

We envision advancements in technology and devices
that showcase nonlinear periodic structures and meta-
materials. For instance, amplitude-dependent metama-
terials may inspire next-generation sensing, actuation,
and cloaking technology used in, for example, medical
and communications industries. Such settings may find
it appealing to filter, re-route, attenuate, or focus waves
as a function of their amplitude or energy. Scaling
nonlinear periodic structures to operate in the MEMS
regime may also prove to be a advantageous venue for
these processes. Amplitude-dependent metamaterials
may be exploited as discrete elements used to join ordi-
nary materials and operate as logic elements, limiters,
and switches in acoustic and elastic circuits. Indeed,
there is growing knowledge of and interest in mechan-
ical computation using metamaterials [84].

1.4.3 Multi-physics nonlinear periodic systems

Anunexplored direction in the study of nonlinearmeta-
materials and periodic media is integration with mul-
tiple physics domains. Analogous nonlinear systems
that have been studied in isolation include phonon
heat transfer [85–87], optical media [88–90], electri-
cal transmission lines [91–93], and magnonic crys-
tals [94–96]. A high degree of richness—and perhaps
technological development—would stem from cou-
pling elastic and acoustic nonlinear metamaterials and
phononic media to one or more of these other domains.
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This may require studies of reflection and transmis-
sion at linear-nonlinear and nonlinear-nonlinear meta-
material interfaces, which very few studies (particu-
larly asymptotic studies) have considered to date. Phe-
nomena such as amplitude-dependent dispersion shift-
ing, higher-harmonic generation, and waveform stabil-
ity may manifest in unusual and unexpected ways, and
it may be possible that new and transformative phe-
nomena might be uncovered in such coupled media.
Recent advancements in computational power would
enable efficient and large-scale simulations of nonlin-
ear multi-physics problems.

2 Nonlinear elastic waves in continuous media

In continuous media, nonlinearities may be associ-
ated with finite strains, a nonlinear elastic stress–strain
relationship, and/or boundary conditions (e.g., contact-
related phenomena connected to cracks and interfaces).
Depending on the source of nonlinearity, a variety of
wavefield distortions may arise. Consequently, local-
ized and distributed sources of nonlinearity display
different wavefield signatures that can be used for
later identification and characterization. In order to
employ nonlinear wavefield features for the above-
mentioned and other applications in practice, it is crit-
ical to develop analysis methods for elastic waves in
continuous nonlinear media. In this section, we review
recent theoretical developments for waves in nonlin-
ear continuous media. We start by overviewing the
analysis of a 1-D nonlinear problem, followed by a
2-D bounded system. In the latter case, we focus on
waves in nonlinear plates. For the presented examples
we explore quadratic and cubic material nonlinearities,
for the 1-D and 2-D systems, respectively, in addition to
quadratic strain inherent to nonlinear continuous sys-
tems. In all cases we demonstrate mechanisms behind
higher-harmonic generation and nonlinear shifting of
dispersion properties.

First, a special static component of the secondary
wavefield, generated in quadratic-nonlinear systems,
is thoroughly discussed to introduce the methods used
and the phenomena encountered. In particular, we
review the mechanism and properties of the DC (i.e.,
zero-frequency) wave mode.

2.1 Theory for a quadratically nonlinear 1-D medium

We start with a 1-D nonlinear wave propagation prob-
lem in a continuous medium governed by a quadratic
stress–strain relationship. Noting that concepts and
equations governing propagation of longitudinal waves
in elastic solids and nondissipative fluids are identical,
in [97] and subsequent contributions [98–100] analyti-
cal solutions for finite-amplitude waves propagating in
nonlinear solids were developed. For an example 1-D
system, equivalent to a single plane-wave mode propa-
gation in the bulk of material, the nonlinear wave equa-
tion in Lagrangian coordinates employs the nonlinear
Green-Lagrange strain [98,99],

ε = ∂u

∂x
+ 1

2

(
∂u

∂x

)2

, (79)

with u denoting the displacement and x the spatial
coordinate taken in the undeformed configuration. Sub-
sequently, the first Piola-Kirchoff stress is defined as
the derivative of the strain energy density U with
respect to the deformation gradient components F
(F ≡ 1 + ∂u/∂x in 1-D) as,

σ = ∂U

∂F
= ρc2

[
∂u

∂x
− β

2

(
∂u

∂x

)2
]

, (80)

where ρ denotes the density in the undeformed state
and β the acoustic nonlinearity parameter combining
the contributions of the nonlinear strain–displacement
relation, Eq. (79), and the material nonlinearity. For
an isotropic elastic solid, β = −(3 + ζ ) with ζ =
2(L+2M)/(λ+2μ), whereL andM areMurnaghan
third order elastic constants [99]. Using Eqs. (79) and
(80) in the equation of motion, ∂σ/∂x = ρ∂2u/∂t2,
yields,

ρ
∂2u

∂t2
= ρc2

[
∂2u

∂x2
− β

∂u

∂x

∂2u

∂x2

]
. (81)

It is characteristic of a quadratically-nonlinear sys-
tem, and clear from Eqs. (79) and (80), that the non-
linear stress (and strain) term will display the same
sign, regardless of the sign of the displacement gra-
dient. Namely, for positive and negative ∂u/∂x , the
nonlinear stress term of Eq. (80) will always be nega-
tive for β > 0. Hence, during the compression phase
of oscillatory motion, negative nonlinear stress will be
generated. For the tensile part of the motion, however,
the nonlinear part of the stress will also be negative,
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resulting in a continuous push and therefore building-
up of the constant (nonzero net) offset. The latter is
the consequence of the geometrical definition of the
Green-Lagrange strain, Eq. (79), and the fact that the
constitutive relation, Eq. (80), is derived as the defor-
mation gradient-derivative of the strain energy den-
sity function. It should be noted that different assump-
tions (e.g., the Ludwick-type constitutive relation of
quadratic type), may lead to sign-dependent terms (i.e.,
σ ∝ sign(ε)|ε|2) and therefore do not produce (or
substantially reduce) the constant displacement offset
[101,102].

As will be clear later, a solution of Eq. (81) requires
an additional consistency condition in the form of a
relation between the particle velocity ∂u/∂t and the
displacement gradient ∂u/∂x , which in general form
can be written as,

∂u

∂t
= f

(
∂u

∂x

)
, (82)

with f (∂u/∂x) being a continuous differentiable
function of the displacement gradient. Differentiating
Eq. (82) with respect to the time yields,

∂2u

∂t2
= f ′ ∂2u

∂t∂x
, (83)

while differentiating Eq. (82) with respect to the spatial
coordinate yields,

∂2u

∂t∂x
= f ′ ∂2u

∂x2
, (84)

where in Eqs. (83) and (84) the prime ′ denotes a deriva-
tive with respect to ∂u/∂x . Combining Eqs. (83) and
(84) results in

∂2u

∂t2
= (

f ′)2 ∂2u

∂x2
. (85)

Comparison of Eq. (86) with the analogous relation of
Eq. (81) allows for identification of f ′ as
(
f ′)2 = c2

(
1 − β

∂u

∂x

)
. (86)

Taking the positive square root of Eq. (86) (waves prop-
agating to the right) and integration with respect to
∂u/∂x gives the particle velocity (see Eq. (82)),

∂u

∂t
= 2c

3β

[(
1 − β

∂u

∂x

)3/2

− 1

]
. (87)

In Eq. (87) the casualty condition (i.e., zero displace-
ment gradient and velocity when no wave is present)
has been employed during the integration.

The relation embodied by Eq. (87) will be later
relevant for computing time-averaged stresses and
strains—key quantities in extracting the aforemen-
tioned zero-frequencywave component from the response.
Also, the condition Eq. (87) is later used as the con-
sistency condition in [99,100,103] for determining the
static displacement amplitude and slope (see Sect. 2.2).
The solution in [98] was given in terms of the radiation
stress and strain, while [97,99,100,103,104] provide
explicit static displacement formulas.

2.2 Solutions for the quadratically nonlinear 1-D
medium

Webriefly recall two solution approaches applied to the
nonlinear problem defined in Sect. 2.1 [Eq. (81)]. The
first one, proposed in [105], is based on a direct solution
in terms of particle velocity. The second, developed in
[99], was proposed within a classical straightforward
expansion perturbation framework.

The solution to Eq. (81) was first obtained by Fubini
[105] in terms of particle velocity. Assuming an exci-
tation by prescribed traction at x = 0 of the form

∂u

∂t
= B sin(ωt), (88)

and propagation ranges smaller than the discontinuity
distance, the Fubini solution [105] can be approximated
as [98],

∂u

∂t
= B sin(ωt − kx) + βkB2

4c
x sin(2ωt − 2kx) + ....

(89)

Clearly, the velocity solution of Eq. (89) indicates
the existence of a wave component at the fundamental
and second harmonic frequency. It is important to note
that the second harmonic frequency component grows
linearly with the propagation distance. This effect will
be discussed in detail later.

Analternative, perturbation-based solution approach
to Eq. (81) provides a different perspective on the dis-
placement solution to the same problem and will be
presented next [99]. Following the straightforward per-
turbation expansion, the solution to Eq. (81) is written
as,

u(x, t) = u1(x, t) + u2(x, t), (90)
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where |u1| � |u2|. Using Eq. (90) in (81) yields two
equations,

∂2u1
∂t2

= c2
∂2u1
∂x2

, (91)

∂2u2
∂t2

= c2
∂2u2
∂x2

− c2β
∂u1
∂x

∂2u1
∂x2

, (92)

to be solved sequentially for u1 and u2. Assuming a
general form of the solution to Eq. (91) as u1(x, t) =
g(t−x/c) (with g being a twice-differentiable function
of x and t), Eq. (92) can be written as [103],

∂2u2
∂t2

= c2
∂2u2
∂x2

+ c2G
(
t − x

c

)
, (93)

with G(s) = β/c3g′(s)g′′(s) and prime ′ denoting dif-
ferentiation with respect to the function argument s.
The solution to Eq. (92) can be written as,

u2(x, t) = β

2c2

∫ t−x/c

0+
g′(s)g′′(s)ds + φx + η

(
t − x

c

)
,

(94)

with φ and η to be determined (by the boundary condi-
tions and/or the consistency condition of Eq. (87) [99]).
Performing integration in Eq. (94) yields,

u2(x, t) = βx

4c2

([
g′ (t − x

c

)]2 − [g′(0+)]2
)

+φx + η
(
t − x

c

)
. (95)

Various conditions have been proposed in the literature
to find the parameters φ and η, including assuming
them equal to zero, assuming the static stress (involv-
ingφ) equal to zero, or forcing the solution to satisfy the
consistency condition, Eq. (87) [99]. This latter condi-
tion was employed in [98] and later in the perturbation
solution of [99].

Qu et al. [99] noted that the general solution of the
form of Eq. (95) predicts different harmonic compo-
nents dependingonwhether prescribeddisplacement or
prescribed traction boundary conditions are assumed,
and considered continuous mono-frequency [99] and
pulse excitations [103]. For the prescribed displace-
ment case, the excitation was applied in the form,

u(0, t) = u1(0, t) = AP(t) sin(ωt), u2(0, t) = 0,

(96)

while for the prescribed-traction excitation, the expan-
sion defined in Eq. (90) is re-written as σ = σ1 + σ2,

|σ1| � |σ2| with,

σ1 = ρc2
∂u1
∂x

, (97)

σ2 = ρc2
[

∂u2
∂x

− β

2

(
∂u1
∂x

)2
]

, (98)

and the boundary conditions as,

σ(0, t) = σ1(0, t) = σ1(t) = −ρcωAP(t) cos(ωt),
(99)

σ2(0, t) = 0. (100)

The function P(t) in (96) and (99) yields,

P(t) = Pc(t) = H(t), (101)

or,

P(t) = Pp(t) = H(t) − H(t − τ), (102)

for continuous, Pc, and wavepacket, Pp, signals,
respectively.

Assuming prescribed displacement as the excitation,
g(x, t) = u1(x, t), the solution to Eq. (92) takes the
form,

uD2(x, t) = βx

4c2

([
g′ (t − x

c

)]2 − [g′(0+)]2
)

,

(103)

where φ = β[g′(0)]2/(4c2) and η = 0 from con-
sistency and boundary conditions, respectively, and
subscript D denotes prescribed displacement excita-
tion. Substituting Eq. (96) into Eq. (103) results in the
u2(x, t) formula for the prescribed displacement case,
composed of the static displacement and the second
harmonic components

uD2(x, t) = βk2A2

8
x [1 + cos(2ωt − 2kx)] P(t).

(104)

The first term in Eq. (104) is the linearly growing zero-
frequency component, while the second is the second
harmonic of linearly growing amplitude. Depending
on the particular selection of P(t), Eq. (104) describes
continuous wave or a pulse propagation through the
nonlinear medium. Combining Eq. (96) and Eq. (104)
according to Eq. (90) yields,

uD(x, t) = AP(t) sin(ωt)

+βk2A2

8
x [1 + cos(2ωt − 2kx)] P(t). (105)
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For the prescribed-traction case, we have,

g(x, t) = 1

ρc

∫ t−x/c

0+
σ1(s)ds. (106)

Using Eqs. (106), (99) and (97) in Eq. (95) yields the
u2-displacement for the prescribed traction case,

uT 2(x, t) = βx

4ρ2c4

[
σ1

(
t − x

c

)]2

− β

4ρ2c3

∫ t−x/c

0+
[σ1(s)]

2 ds, (107)

where subscript T denotes prescribed traction excita-
tion and the parameters φ and η were determined from
boundary conditions as,

φ = β

4ρ2c4
[
σ1(0

+)
]2

, (108)

η = − β

4ρ2c3

∫ t

0+
[σ1(s)]

2 ds. (109)

Using Eq. (99) in Eq. (107) gives the secondary wave-
field composed of the static and second-harmonic terms
of the form,

uT2(x, t) = βk2A2

8
[P(t)(2x − ct) − cτH

(
t − τ − x

c

)

− c

2ω

(
sin(2kx − 2ωt)P(t) + sin(2ωτ)H

(
t − τ − x

c

) )

+x cos(2kx − 2ωt)P(t)]. (110)

Noting Eq. (90), the total solution to the nonlinear
problem under traction excitation can be written as,

uT (x, t) = −A sin(kx − ωt)P(t)

+βk2A2

8
[P(t)(2x − ct)

−cτH
(
t − τ − x

c

)

− c

2ω

(
sin(2kx − 2ωt)P(t)

+ sin(2ωτ)H
(
t − τ − x

c

) )

+x cos(2kx − 2ωt)P(t)]. (111)

Clearly, all the solutions to the quadratic-nonlinear
problem—withbothdisplacement and traction excitation—
exhibit the linear component at frequencyω and nonlin-
ear terms at 0 and 2ω (up to the first order of expansion).

It can be noted from the solution to the 1-D
quadratic-nonlinear problem, Eqs. (105) or (111),
that—apart from the second harmonic wave—a com-
ponent of zero frequency arises. Indeed, it appears

for systems with nonlinearities of even type (e.g.,
quadratic nonlinearities), that upon excitation by a pri-
mary wave of frequency ω,—among other—harmonic
waves at double the fundamental frequency are gen-
erated. Depending on the particular type of nonlin-
earity, an additional ω − ω component, excited at
zero frequency, may also arise. This component is fre-
quently referred to as the DC (direct current), static,
or the zero-frequency mode and results in static dis-
placement, strain and stress. The static wave compo-
nent was of interest for electromagnetic and acous-
tic waves in fluids as pointed out in works even prior
to the paper of Rayleigh [106]. The topic was further
investigated by Brillouin [26], Fubini [107],Westervelt
[108] and Blackstock [109]. Over next years there have
been many theoretical and experimental investigations
reporting on the radiation stress, that were summarized
in a number of reviews, e.g. [110–112].

In classical nonlinear systems, the static displace-
ment mode follows as a consequence of the geometri-
cal and (classical) material nonlinearity, both described
by positive-only terms proportional to the square of the
primary wave displacement. Alternative definitions of
the stress–strain (or force-displacement) relations that
depend on the sign of the strain (or displacement)—
and therefore do not produce the offset for nonlinear
problems (e.g., the Ludwick-type quadratic nonlinear-
ity) may be also considered [101,102].

It is known that this static displacement relates to the
acoustic-radiation-inducted strain [98,99] and to the
acoustic (Boussinesq) radiation stress [113]. Despite
being realized a long time ago that in nonlinear sys-
tems a static displacement component may be gen-
erated, and that a number of works were devoted to
analytical, numerical and experimental studies of this
effect, there is an ongoing debate on certain aspects of
the solutions, including the definition of the radiation
strain, the source of energy for the DC mode devel-
opment and propagation, the shape in spatial and time
domains, and the dependency on transducer type and
size. The authors expect further research efforts will be
devoted to the DC component, particularly for nonlin-
ear periodic media, where almost no consideration has
been given to date.

2.3 Theory for nonlinear guided waves in plates

In this section we extend the discussion of nonlinear
elasticwaves in continuousmedia to guidedwaves; i.e.,

123



Elastic wave propagation in weakly nonlinear media 10733

wave patterns arising due complex interactions of bulk
waves with material interfaces and boundaries in struc-
tures and their components. Propagation characteristics
of these waves are more complex than the bulk wave
cases considered so far. This section also addresses
generation of higher harmonics, internal resonances,
and amplitude-dependent effects using the example of
guidedwaves in plates. It should be noted, however, that
each type of guidedwave displays individual properties
and not all conclusions from this section generalize.

In plates, where longitudinal and shear partial wave
components are coupled by two parallel traction-free
surfaces, waves of certain wavevectors interfere con-
structively, leading to Lamb wavemodes. Lamb waves
are multimodal and dispersive; i.e., the modal veloc-
ity depends on frequency. Example dispersion char-
acteristics for a 1mm-thick aluminium plate (λ =
6.05× 104 MPa, μ = 2.59× 104 MPa, and ρ = 2700
kg/m3) are shown as a wavenumber-frequency and,
equivalently, velocity-frequency plots in Fig. 9a and b,
respectively. Dispersion characteristics constitute the
phase-frequency properties of a plate. The amplitude-
frequency characteristics, known as excitability plots,
are shown for the same plate in Fig. 9c (out-of-
plane actuation and reception direction was assumed).
When the plate material is nonlinear, higher-harmonic
guided wave modes are generated whose properties are
amplitude-dependent. Due to the complex dispersion
properties, both generation and interaction of higher
harmonics differs from those of non-dispersive media.
We introduce and discuss these concepts in the follow-
ing sections.

2.3.1 Problem formulation

We review the formulation assuming a zero-curvature,
thin structure with two parallel, traction-free bound-
aries. The material is assumed hyperelastic and its
stress–strain relationship is elastically nonlinear.Despite
small (but finite) deformations, we invoke the nonlin-
ear strain formulation. It should be noted that, in gen-
eral, other (e.g., out-of-plane) nonlinear interactions
may arise and require a full 3-D analysis (see e.g.
[114,115]).

The elastodynamic equilibrium equation for a non-
linear bulk medium is given as [116],

ρ
∂2XXX

∂t2
= ∇ · σσσ , (112)

whereρ denotes the density in the undeformed configu-
ration, XXX = [u v]T is the particle displacement vector
in 2-D space andσσσ is the first Piola-Kirchoff stress ten-
sor. The spatial derivatives in Eq. (112) are taken with
respect to the undeformed coordinates. For a complete
displacement-based description of wave motion, Eq.
(112) is supplemented by constitutive and geometric
relationships.

Assuming waves of small, but finite amplitudes, the
Green-Lagrange strain tensor is considered,

εi j = 1

2

(
∂Xi

∂Dj
+ ∂X j

∂Di
+ ∂Xk

∂Di

∂Xk

∂Dj

)
, (113)

where Xi denote i th component of the particle displace-
ment vector and Di represents i th spatial direction.

The nonlinear stress–strain relationship is derived
from the strain energy density function given by [117,
118],

W = λ

2
I 21 + μI2 + A

3
I3 + BI1 I2 + C

3
I 31

+E I1 I3 + F I 21 I2 + GI 22 + H I 41 , (114)

where I1, I2 and I3 denote the strain tensor invariants,
λ and μ the Lamé constants, and A− H denote higher
order elastic constants. Terms up to fourth-order in dis-
placements are retained. Particular components of the
first Piola-Kirchoff stress tensor are obtained by differ-
entiating the strain energy density functionwith respect
to the deformation gradient tensor components, as in
Sect. 2.1, and can be found in [116,119].

Combining Eqs. (112), (113) and the formulas for
the stress tensor components, grouping the terms and
introducing non-dimensional time, τ = ωt , yields

ρω2 ∂2XXX

∂τ 2
− a1a1a1

∂2XXX

∂x2
− a2a2a2

∂2XXX

∂y2
− a3a3a3

∂2XXX

∂x∂y
= ε fN LfN LfN L ,

(115)

where fN LfN LfN L is the nonlinear force vector containing
terms related to the nonlinear part of the stress tensor.
Matrices a1a1a1, a2a2a2 and a3a3a3 are given by,

a1a1a1 =
[
λ + 2μ 0

0 μ

]
, a2a2a2 =

[
μ 0
0 λ + 2μ

]
,

a3a3a3 =
[

0 λ + μ

λ + μ 0

]
. (116)

In Eq. (115), a book-keeping parameter, ε, is intro-
duced to facilitate an asymptotic analysis. Equation
(115) governs the wave motion in an infinite, (hyper-
elastic) nonlinear elastic medium. Confining the wave
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Fig. 9 Dispersion a, b and excitability c characteristics for
an example 1mm aluminium plate (λ = 6.05 × 104 MPa,
μ = 2.59 × 104 MPa, and ρ = 2700 kg/m3), shown in (a) the

wavenumber-frequency domain and (b) the velocity-frequency
domain. Only the first five modes are labelled

propagation between two stress-free surfaces (i.e., the
Rayleigh-Lamb problem definition) requires adequate
boundary conditions.

The set of stress-free boundary conditions for the
plate problem is given by,

σi j n j = 0, at y = ±h, i = 1, 2; (117)

where nnn = ±[0 1]T denotes the surface outward-
pointing normal vector and 2h the plate thickness. Not-
ing that the stress–strain relation contains nonlinear
terms, Eq. (117) can be rewritten in the displacement
form as,

± b1b1b1
∂XXX

∂x
± b2b2b2

∂XXX

∂y
= ±εg(±)

NLg(±)
NLg(±)
NL , for y = ±h, (118)

where b1b1b1 and b2b2b2 are given by,

b1b1b1 =
[
0 μ

λ 0

]
, b2b2b2 =

[
μ 0
0 λ + 2μ

]
, (119)

and g(±)
NLg(±)
NLg(±)
NL results from the nonlinear components of the

first Piola-Kirchoff stress components.
Equations (115) and (118) define the nonlinear

Rayleigh-Lamb wave propagation problem for a non-
linear plate in 2-D space.
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2.3.2 Solution for a nonlinear plate

The nonlinear plate problem, defined by Eqs. (115)
and (118), cannot be solved exactly and instead
requires an approximate solution approach. In [119],
a simple perturbation technique was employed to find
higher harmonics generated in a quadratic-nonlinear
plate. Alternatively, in [45], an asymptotic approach
based on the Lindstedt–Poincaré perturbation was used
for quadratic and cubic nonlinear plates to deter-
mine amplitude-dependent dispersion similar to that
reviewed for discrete periodic systems. We briefly
review the solution procedure presented in [45].

Expansions are introduced for the displacement field
and the frequency,

XXX = X0X0X0 + εX1X1X1 + ..., ω = ω0 + εω1 + ..., (120)

where subscripts 0 and 1 refer to the order of approx-
imation. Using Eq. (120) in Eqs. (115) and (118), and
collecting terms of same powers of ε, yields a sequence
of linear plate problems, for which the first two orders
can be written as

ε0 : ρω2
0
∂2X0X0X0

∂τ 2
− a1a1a1

∂2X0X0X0

∂x2

−a2a2a2
∂2X0X0X0

∂y2
− a3a3a3

∂2X0X0X0

∂x∂y
= 0, (121)

ε0 : ±b1b1b1
∂X0X0X0

∂x
± b2b2b2

∂X0X0X0

∂y
= 0, for y = ±h, (122)

ε1 : ρω2
0
∂2X1X1X1

∂τ 2
− a1a1a1

∂2X1X1X1

∂x2

−a2a2a2
∂2X1X1X1

∂y2
− a3a3a3

∂2X1X1X1

∂x∂y
= −2ω0ω1ρ

∂2X0X0X0

∂τ 2
+ f (1)

NLf (1)
NLf (1)
NL ,

(123)

ε1 : ±b1b1b1
∂X1X1X1

∂x
± b2b2b2

∂X1X1X1

∂y
= ±g(1)

NLg(1)
NLg(1)
NL

(±), for y = ±h.

(124)

Equations (121)–(124) can be solved sequentially,
noting that the nonlinear forcing terms in Eqs. (123)–
(124) depend only on the previous-order solutions. The
zeroth-order problem, Eqs. (121) and (122), is a clas-
sical Rayleigh-Lamb problem that may be solved for
dispersion characteristics—for simple material setups,
e.g., isotropic, homogeneous, linear-elastic systems—
using the method of potentials [120,121]. For more
complexmaterials, solutions can be generated using the
partial wave technique [122]. Subsequent higher-order
problems are linear and inhomogeneous. Their solution
yields both generated higher harmonics and amplitude-

dependent dispersion shifts. Both these aspects will be
briefly reviewed.

The zeroth-order problem governs dispersion char-
acteristics (i.e., wavenumber-frequency pairs) for prop-
agating plate modes [121]. These linear Lamb wave
modes, X0X0X0, are given by,

X0X0X0 = 1

2
αφ(S,A)φ(S,A)φ(S,A)e+i(kx+τ) + c.c., (125)

where c.c. stands for the complex conjugate of all pre-
ceding terms and α denotes the wave amplitude. The
vector φ(S,A)φ(S,A)φ(S,A) represents the linear Lamb wave mode
displacement profiles across the plate thickness, with
S or A denoting symmetric or anti-symmetric through-
the-thickness modes.

The zeroth order solution pairs (ω0, k) are obtained
by using Eq. (125) in Eqs. (121) and (122) and solving
the corresponding eigenproblem forω0 given k, or vice-
versa. The eigenfunctionsφ(S,A)φ(S,A)φ(S,A) can be found in litera-
ture; e.g., in [121]. No explicit analytical formulas exist
for the dispersion curves of Lamb waves, k(ω0), and
thus the solutionsmust be obtained numerically. Exam-
ple dispersion characteristics, presented in the form of
wavenumber-frequency and velocity-frequency plots,
are provided in Fig. 9a and b. TheRayleigh-Lambprob-
lem can be also solved for its amplitude characteristics;
i.e., excitability curves [123], as shown in Fig. 9c.

The nonlinearity leads to volumetric and boundary
forcing terms at higher orders, Eqs. (123)–(124). Con-
sequently, the solutions of the forced problem lead to
the secondary wavefield composed of higher-harmonic
Lamb wave modes. Next, particular features of higher-
order problems will be briefly reviewed.

Higher-harmonic generation
Higher harmonic Lamb waves are excited due to the
nonlinear forcing terms in Eqs. (123)–(124). Their par-
ticular form can be derived from the constitutive rela-
tion that follows from the polynomial-form of the strain
energy density function, Eq. (114), and contains linear,
quadratic, cubic and possibly other higher-order terms
[117]. Expanding the nonlinear volumetric force, f (1)

NLf (1)
NLf (1)
NL ,

and surface traction, g(1)
NLg(1)
NLg(1)
NL in a Fourier series yields,

f (1)
NLf (1)
NLf (1)
NL =

∑

m

C (1)( f )
mC
(1)( f )
mC
(1)( f )
m e+mi(kx+τ) + c.c., and

g(1)
NLg(1)
NLg(1)
NL =

∑

m

C (1)(g)
mC
(1)(g)
mC
(1)(g)
m e+mi(kx+τ) + c.c. (126)

where particular forms ofC (1)( f,g)
1C
(1)( f,g)
1C
(1)( f,g)
1 are lengthy and will

not be explicitly presented here. The same form of the
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expansion can be applied to higher perturbation expan-
sion orders ε2, ε3, etc. We note that Eqs. (123)–(124)
are linear and inhomogeneous, therefore classical solu-
tions techniques can be applied for determining higher-
order displacement fieldsX1X1X1,X2X2X2, etc.Dependingon the
particular application, the modal expansion approach
[119] or direct harmonic solution [45] can be employed
for this purpose.

Specific harmonics generated at higher order per-
turbation expansions depend on the order of nonlinear-
ity in the constitutive relationship. Assuming that an
excitation applied to the plate generates a single Lamb
wave mode of frequency ω0 and wavenumber k (i.e.,
a wavefield of the form of Eq. (125) exists through-
out the plate), the quadratically nonlinear stress–strain
relation will result, to first approximation, in the static
(DC) component and the second harmonic wave (at
2ω0),

X1X1X1 ≈ α(0)φφφ(0) + α(2)φφφ(2)e+2i(kx+τ) + c.c., (127)

while the cubic nonlinearity will generate a forcing at
the fundamental frequency ω0, and the third harmonic
(3ω0),

X1X1X1 ≈ α(1)φφφ(1)e+i(kx+τ) + α(3)φφφ(3)e+3i(kx+τ) + c.c..

(128)

It should be noted that the secondary wavefield solu-
tions, as given by Eqs. (127) and (128), can be decom-
posed into individual Lamb wave modes of wavenum-
bers kn at the respective frequencies, as proposed by
Auld [122] and employed in [119]. Each individual
Lambwavemode of wavenumber kn , excited as a com-
ponent of the secondary wavefield oscillates with the
spatial periodicity Ln , known as the dispersion length
[119], where

Ln = 2π

|kn − mk| , (129)

with m = {2, 3, ...M} depending on the polynomial
form of the nonlinearity. Clearly, when kn → mk then
Ln → ∞, and the cumulative effect of linear amplitude
growth with the propagation distancemay be observed.
The latter is known as the internal resonance (or syn-
chronism) and will be discussed later.

For the same order of magnitude of higher-order
elastic constants, the quadratic nonlinearity gener-
ates secondary wavefields of nominally higher magni-
tudes than the cubic nonlinearity. We note that higher-
harmonic generation for the multi-modal and disper-
sive plate system is complex and depends on the type

of nonlinearity, symmetry of respective modes (excit-
ing and excited), and presence of synchronism or inter-
nal resonance [119,124]. A cubically nonlinear con-
stitutive relationship gives rise to excitations at ω0

and 3ω0 at the first order of expansion ε1. The latter
forcing component excites the third harmonic wave.
The forcing term at the fundamental frequency ω0 is
secular (resonant) and results in amplitude-dependent
shifts in dispersion characteristics. We summarize this
phenomenon after discussing internally resonant Lamb
waves.
Internally resonant Lamb wave modes
When a secondary wavefield component falls onto a
dispersion branch (i.e., the mth harmonic (mω0,mk)
coincides with the solution to the Rayleigh-Lamb prob-
lem), the phase velocity matching between the two
modes occurs. This results in the two waves propa-
gating with the same speed and constructively inter-
fering. As a consequence, linear growth of a higher
harmonic wave may occur (see Eq. (129)). This sit-
uation is illustrated in Fig. 9a and b, where the dis-
persion curves for a 1mm aluminium plate are pre-
sented. For the selected S1 primary mode propagating
in a quadratic-nonlinear material, the generated second
harmonic S2 mode has the same phase velocity as the
primary wave, thus internal resonance may occur. The
red circles mark the interacting primary and secondary
modes. Please note that the matching phase velocity,
clearly seen in Fig. 9b, is equivalent to the two modes’
operating points (frequency-wavenumber points on the
dispersion branches) lying on a line with ω0/k = C ,
in Fig. 9a, where C denotes a constant.

It was observed in [122], and later analyzed in
[114,115,119], that in order to excite a secondary
guided wave mode, the power flux (forcing) from the
primary to the secondary mode must be non-zero.
While the power flux is defined as the inner product
of the forcing and the velocity profile of the mode, the
above condition refers to these two quantities being
nonorthogonal. These considerations have been sum-
marized in [115], where it was concluded that either a
symmetric or antisymmetric primary mode can only
excite symmetric secondary modes in a quadratic-
nonlinear medium since the forcing is of quadratic
(hence symmetric) form. In summary, an effective exci-
tation of higher harmonics (i.e., linearly growing sec-
ondary waves) may occur under two conditions that
must be satisfied simultaneously: (1) phase velocity
matching and (2) non-zero power flux between the

123



Elastic wave propagation in weakly nonlinear media 10737

primary and secondary waves. Formally, these forcing
terms are resonant at higher-order perturbation expan-
sions and their detailed analysis is possible through,
for example, the multiple scales perturbation approach
(see Sect. 1.2.1) with detuning [124]. It may be noted
that the aforementioned conditions for synchronism are
sufficient for continuous guidedwaves. If awavepacket
is instead considered, an additional condition for the
group velocity matching needs to be enforced for the
linear growth of the higher harmonic wave component
[115], as expected.
Nonlinear dispersion shifts
As the homogeneous plate problem (Eqs. (121) and
(122)) has non-trivial solutions, and so have the higher-
order problems (since they share the same linear ker-
nel), the right-hand side forcing cannot be arbitrary and
it is therefore necessary to determine restrictions that
will allow the problem to be solvable. In other words,
termson the right-hand sides ofEqs. (123)–(124) canbe
secular [119,124], requiring formulation of solvability
conditions.

In [45], solvability conditions are constructed via a
self-adjoint linear operator formalism and introduction
of an inner product, subsequently requiring all reso-
nant forcing terms to vanish. From the expansions of
the forcing terms, Eq. (126), only the terms C (1)( f,g)

1C
(1)( f,g)
1C
(1)( f,g)
1

(i.e., at the primary wave frequency and wavenumber)
are required for solvability at ε1. Using expansions
Eqs. (126), (123) and (124) can be transformed as,

−ρω2
0X1X1X1 + k2a1a1a1X1X1X1 − a2a2a2

∂2X1X1X1

∂y2

−ika3a3a3
∂X1X1X1

∂y
= 2ω0ω1ρX0X0X0 +C (1)( f )

1C
(1)( f )
1C
(1)( f )
1 , (130)

±ikb1b1b1X1X1X1 ± b2b2b2
∂X1X1X1

∂y
= ±C (1)(g)

1C
(1)(g)
1C
(1)(g)
1 , y = ±h, (131)

where e+i(kx+τ) dependency has been assumed and
dropped in the following notation. It follows from the
analysis in [45] that the forcing must satisfy.
∫ +h

−h
X0X0X0

H (2ω0ω1ρX0X0X0 +C (1)( f )
1C
(1)( f )
1C
(1)( f )
1 )dy

+[
X0X0X0

HC (1)(g)
1C
(1)(g)
1C
(1)(g)
1

]
±h = 0, (132)

at the first order of expansion. Consequently, the non-
linear frequency correction, ω1, must satisfy,

ω1 = −
∫ +h
−h C (1)( f )

1C
(1)( f )
1C
(1)( f )
1

,Hφφφdy + [
C (1)(g)
1C
(1)(g)
1C
(1)(g)
1

,Hφφφ
]
±h

ω0ρα
∫ +h
−h φφφHφφφ

dy. (133)

Fig. 10 Nonlinear amplitude-dependent disperion curves for a
cubic-nonlinear 1mm aluminium plate [45] (λ = 6.05 × 104

MPa, μ = 2.59 × 104 MPa, E = F = G = H = 30 × 104

MPa, ρ = 2700 kg/m3, scaling for shifts = 10)

The nonlinear dispersion relationship is recovered
using Eqs. (120), (132) and (133); namely, k(ω) =
k(ω0 + εω1). It is clear that Eq. (133) defines an
amplitude-dependent frequency shift away from the
otherwise linear dispersion relationship. These shifts
depend on the form ofC (1)( f,g)

1C
(1)( f,g)
1C
(1)( f,g)
1 , and thus on the forcing

terms f (1)
NLf (1)
NLf (1)
NL and g(1)

NLg(1)
NLg(1)
NL . Hence, the nonlinear dispersion

curves depend not only on the primary wave ampli-
tude, but also on the frequency and the mode symme-
try. Example nonlinear dispersion curves for the same
1mm aluminum plate as the results shown in Fig. 9a–c,
as analyzed in [45], are presented in Fig. 10.

2.4 Future work

The reviewed literature on nonlinear, continuous sys-
tems has primarily concerned analysis methods, partic-
ularly for weakly nonlinear continuous systems. Appli-
cations of such continuous systems, unlike their dis-
crete counterparts, has received little attention. Con-
sequently, exploration on the application of nonlinear,
and potentially periodic, continuous systems exploiting
amplitude-dependent dispersion and bandgap behavior
is an open research area. In terms of analysis, gener-
alizing the analysis of Lamb modes to periodic non-
linear plates is non-trivial, and will likely require a
hybrid analytical-numerical approach. Strongly non-
linear continuous systems will also require alternative
solution methods and may lead to still further interest-
ing applications, such as non-reciprocal materials, or
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materials with extended bandgap regions due to sub-
and super-harmonic resonances [8,13].

As wave propagation in 1-D and 2-D systems is typ-
ically investigated due to their lower problem complex-
ity, higher-dimensional setups (e.g., 2.5-D and 3-D)
offer additional inspiration for research explorations.
Nonlinear periodic, anisotropic and/or inhomogeneous
systems, whether in bulk, half-space or plate configu-
rations, are of particular interest. Such dispersive and
multi-modal systems may exhibit tunable dispersion
characteristics with bandgaps and/or non-reciprocal
bands and complex wave–wave interactions that may
inspire new or enhanced devise functionality.

3 Concluding remarks

This review has provided the reader with a detailed
and unified overview of asymptotic analysis methods
currently being applied to the study of wave propa-
gation in weakly nonlinear discrete and continuous
elastic media, to include their important results and
open questions. The review also detailed experimental
studies and applications, both of which are nascent in
the area of discrete and continuous periodic nonlinear
media. While it is envisioned that the field will con-
tinue to develop and refine analysis methods for study-
ing wave propagation in weakly nonlinear media, par-
ticularly as concerns periodic continuous media, there
is an opportunity for researchers to transition behavior
observed only in the nonlinear regime (e.g., self-tuning
dispersion andbandgaps; stability transitions; andother
amplitude dependency) to sensing, actuation, cloaking,
physical computing, and communications technology.
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