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Double Resonance is a powerful spectroscopic method that unambiguously assigns

the rigorous quantum numbers of one state of a transition. However, there is often

ambiguity as to the branch (∆J) of that transition. Spectroscopists have resolved

this ambiguity by using the dependence of the double resonance intensity on the

relative polarization directions of pump and probe radiation. However, published

theoretical predictions for this ratio are based upon a weak (i.e. non-saturating) field

approximation. This paper presents theoretical predictions for these intensity ratios

for cases where the pump field is strongly saturating in the two limits of transitions

dominated by homogeneous or of inhomogeneous broadening. Saturation reduces

but does not eliminate the magnitude of the polarization effect (driving the intensity

ratio closer to unity) even with strong pump saturation. For the case of an inhomo-

geneously broadened line, such as when Doppler broadened linewidth dominates over

]the power-broadened homogeneous line width, a large fraction of the low pump power

polarization anisotropy remains. This paper reports predicted polarization ratios for

both linear and circular pump and probe field polarizations. The present predictions

are compared with experimental measurements on CH4 ground state → ν3 → 3ν3

transitions recently reported by de Oliveira et al. and these are in better agreement

than with the weak field predictions.
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I. INTRODUCTION

Double resonance (DR) has long been one of the most powerful methods in the spectro-

scopist’s toolkit.1 DR is an intrinsically nonlinear spectroscopy that uses two coherent light

sources. At least one of these, the pump, creates a nonequilibrium population distribution

in a sample, and the other, the probe measures an absorption, emission, scattering, or ac-

tion spectrum of the resulting nonequilibrium sample. There are three states linked by two

transitions.2

Using DR greatly simplifies probe spectra3–12 and, if the pump transition is already as-

signed, allows the unambiguous assignment of the starting state of probe transitions, which

are otherwise difficult to determine when perturbations disrupt regular patterns in the spec-

tra. This disruption is often due to the breakdown of the separation of degrees of freedom,

such as vibration and rotation.13 DR is also useful where homogeneous or inhomogeneous

broadening creates substantial overlap between individual transitions. This can result, for

example, in a broad rotational contour without resolvable features.14–18 DR also allows the

selective population of states that have negligible thermal populations under available ex-

perimental conditions, allowing observation of novel spectroscopic transitions.19–24 Often,

probe transitions reach final states that have only weak or forbidden transitions from the

thermally well-populated lower states due to symmetry or propensity selection rules.25–30

One can largely eliminate inhomogeneous broadening in DR probe spectra by using nar-

row bandwidth pump lasers. The pump laser produces a Bennet hole31 in the velocity

distribution of the initial state and a corresponding Bennet hill in the upper state of the

pump transition. Probe spectra display sub-Doppler features the widths of which are on the

order of the homogeneous widths, which can be orders of magnitude smaller than Doppler

broadened widths.32,33

DR, especially using a pulsed pump source and a continuous wave (CW) probe field, has

been used to study elastic, reorientation, and inelastic collision rates and kernels.34–42 In

addition, Resonant 3-wave mixing, which is another form of DR spectroscopy, has been used

to measure enantiomeric excess of chiral molecules43–46 and to create an enantiomeric excess

in single rotational states.47

If the common level in the DR scheme is the lowest energy level (called V-type DR),

the DR signal is a narrow depletion of the background Doppler Broadened probe transi-
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tion. But, if the common level is not the lowest energy state, the pump creates new and

narrow absorption (ladder-type DR) or emission features (Λ-type DR) in the probe spec-

trum, depending upon whether the final state is higher or lower in energy than the pumped

(intermediate) state.

The very narrow width of DR transitions can be a drawback when one needs to sample

the probe spectrum over a broad spectral range (say 30 THz). The time required to search

such a spectral range is on the order of 10 times the detection time constant times the

ratio of the scan range divided by the width of the probe DR transitions. Detection of

probe transitions of a few MHz or smaller width requires either a very long scan time or

a very short detection time constant, which reduces the signal-to-noise ratio (SNR) of the

probe spectrum. In addition, the probe spectrum scan must to be repeated for each pump

transition studied. The recent demonstration of DR using a stabilized frequency comb for

the probe allows one to simultaneously sample the probe spectrum at the frequencies of tens

of thousands of comb teeth has dramatically reduced the time required to obtain DR probe

spectra over a broad spectral range.23,24,48

Selection rules greatly reduce the final states observed in double resonance using a par-

ticular pump transition. However, the total angular momentum quantum number, J , of the

final state of a probe transition remains ambiguous due to the ∆J = 0,±1 selection rule

for dipole transitions. The pump transition produces a nonequilibrium alignment of the

angular momentum projection quantum number, M , of the initial and final states,49. This

alignment produces a probe absorption strength depending on the relative polarization state

of the pump and probe fields, which was first reported by Frankel and Steinfeld (1975).50

The ratio of the DR signal strength with probe wave polarization parallel to that with it

perpendicular to the pump wave, gives a polarization ratio that is used to assign the value

of ∆J for the probe transition. One sensitive implementation of DR is polarization spec-

troscopy, which places nearly crossed polarizers for the pump and probe waves both before

and after the sample.51,52 The pump laser-induced sample dichroism and birefringence re-

sults in a change in the transmission of the probe beam that is observed on a greatly reduced

background intensity. This results in an increased signal-to-noise ratio when the probe field

is dominated by technical intensity noise. Another sensitive variation is polarization modu-

lation where a change in probe transmission is produced by polarization modulation of the

pump field.38,39
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When the pump transition is not saturated, the predicted polarization dependences of

the DR signals are easily derived from the dependence of pump and probe field transition

intensity on polarization and M . Formulas have been given in the literature11,25,53–56 but

they mostly neglect the effects of optical saturation. Significantly, one optimizes the strength

of DR transitions by working with sufficient pump power to have substantial saturation of

the pump transition. This produces a larger pump-induced disequilibrium of the sample;

predicted polarization ratios in these cases are useful. One of the few cases of the calculation

of polarization with strong pumping was published by Spano and Lehmann.57 They modeled

the polarization spectroscopy of a sample that is optically thick for the pump transition.

They found that when a strong pulse, of duration substantially shorter than the relaxation

time excites a dipole transition, the pulse evolves after propagation into an area-preserving

pulse similar to the self-induced transparency of a two-level system.58 Such a pulse produces

an even larger fractional alignment of the sample than that produced by excitation with

negligible saturation. However, their analysis is not applicable for DR with continuous wave

pump fields, which produce a steady-state response of the sample.57

This paper presents an analysis of the polarization dependence of DR signal strength

produced by the steady-state response of the sample with and without pump saturation.

After the development of the general steady-state case (section IIA), the case of unsaturated

pump transitions is developed for the case of linear pump and probe polarization (section

IIB). The focus is on the ratio of the DR signal strength with pump and probe fields with

parallel over perpendicular polarizations. This is followed by a derivation of the DR intensity

ratios when both pump and probe fields are circularly polarized with their electric fields co-

rotating divided by counter-rotating (section IIC). This is followed by the cases of saturation

of a pump transition dominated by inhomogeneous broadening for both linear and circular

polarized fields (section IID). The results for a saturated inhomogeneous broadened pump

transition are compared to experimental DR data on CH4 (section IIE). Lastly, the predicted

ratios are derived for cases of a saturation of a homogeneous broadened transition (section

IIE). The paper ends with a Summary of the principle results and some conclusions (section

III).

4



II. POLARIZATION DEPENDENCE OF PUMP TRANSITIONS

A. General Steady-State pumping case

Consider a DR signal that results from a pump transition between a pair of levels 1 and

2 and a probe transition between levels 2 and 3, and label the total angular momentum

quantum numbers for the three levels as J1, J2, and J3 respectively. Let the pump (probe)

transition be driven by waves a(b) with angular frequency and wavevector ωa,b and ~ka,b

respectively. Each J2,M state will contribute to the DR signal in proportion to its population

change caused by the pump laser, ∆ρ22(M,∆ω12). ∆ω12 is the detuning of the pump from

resonance. The J2,M signal contribution is also proportional to the absorption coefficient

of the probe laser by that state, S(M). Both ∆ρ22(M,∆ω12) and S(M) depend upon M

and the polarization directions of the pump and probe fields, respectively.

Both pump and probe strengths depend upon the respective transition dipole moment

matrix element, which has the form

〈i,M |~µ|j,M ′〉 · Ĝ = 〈i|µg|j〉 〈i,M |φgG|j,M ′〉 . (1)

Here, g specifies the direction of the transition dipole moment, µ, between states i and

j in the molecular frame, Ĝ specifies the direction of the optical electric field, E, in the

laboratory fixed frame, and 〈i,M |φgG|j,M ′〉 is the direction cosine matrix element, which

is the matrix element of ĝ · Ĝ. The transition direction cosine matrix elements are given

in Table 4.4 of Microwave Spectroscopy by Townes and Schawlow59 and reproduced here

in Table I for completeness. The direction cosine matrix elements contain three factors

but only the one that depends on J and M for each state, φG(J,M, J ′.M ′) is needed for

predicting the polarization dependence – the other two factors are independent of M and

the polarization state of the radiation field.

We first consider linear polarization of the pump and probe fields and an initially isotropic

sample. The total signals are independent of how we align the laboratory axes; we assign

the Z axis as the polarization direction of the pump wave and the Y axis as the propagation

direction of both pump and probe fields. With these assignments, we use φZ(J1,M, J2,M)

for the pump matrix element (as Z axis polarization gives a ∆M = 0 selection rules and, for

the probe, φZ(J2,M, J3,M) for parallel and φX(J2,M, J3,M ± 1) for perpendicular relative

polarizations (as X axis polarization gives a ∆M = ±1 selection rule)..
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We treat the pump transition as a separate two-level system for each M value. The

steady-state change in population in each M state of level 2 can be written in terms of the

equilibrium population density difference between levels 1 and 2, ρe11−ρe22; the population and

coherence (ρ12) relaxation rates of the pump transition, γ1, γ2; the pump Rabi frequency,

Ω12(M) = µ12(M)E/~, where E is the amplitude of the field driving the 1 ↔ 2 pump

transition; and the detuning from resonance, ∆ω12 = ωa−~ka ·~v− ω12 with ~v the velocity of

the absorber:59,60

∆ρ22(M,∆ω12) =
(ρe11 − ρe22)
2(2J2 + 1)

(Ω12(M)2γ2/γ1)

∆ω2
12 + γ22 (1 + (Ω12(M)2/γ1γ2))

. (2)

This describes a power broadened Lorentzian lineshape with half width half maximum

(HWHM) of γ2
√

1 + (Ω12(M)2/γ1γ2). We assume that the probe transition is unsaturated,

thus for each M value, the absorption strength S23(M)is proportional to φZ(J2,M, J3,M)2

for ‖ alignment and to φX(J2,M, J3,M + 1)2+φX(J2,M, J3,M − 1)2 for ⊥ alignment. The

total signal is modeled as the sum over M values of the product ∆ρ22(M,∆ω12)S23(M) and

then integrated over any inhomogeneous distribution of transition frequencies. Schwendeman61,62

pointed out that this is an approximation, but concluded that it holds if one neglects pure

M -changing collisions (elastic J-reorientation).

Rlin =
I‖
I⊥

(3)

=

∑
M

∫
∆ρ22(M,∆ω12)dω12)φZ(J2,M, J3,M)2d∆ω12∑

M

∫
∆ρ22(M,∆ω12)dω12) [φX(J2,M, J3,M + 1)2 + φX(J2,M, J3,M − 1)2] d∆ω12

.

If the transition is homogeneously broadened, there is only a single value of ∆ω12 and thus

no integration over detuning.

In most CW gas-phase DR experiments, the pump Rabi frequencies, Ω12(M), are far

below the Doppler width of the pump transition, thus the pump burns a Bennet hole in

the velocity distribution of the lower energy state and creates a Bennet hill in the upper

energy state. If the pump transition is inhomogeneously Doppler broadened, with lineshape

function gD of width ∆ωD >> γ1,Ω12(M), the integral of Eq. 2 over detuning gives an

integrated steady-state population change for level 2

∆ρ22(M) =
π

2(2J2 + 1)
(ρe11 − ρe22)gD(ω − ω12)

(Ω12(M)2

γ1
√

1 + (Ω12(M)2/γ1γ2)
(4)
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B. Unsaturated pump transitions using Linear Polarized pump and probe

fields

In the limit of low saturation, Ω2
12(M) << γ1γ2 and Eq.4 reduces to

∆ρ22(M)→ π

2(2J2 + 1)
(ρe11 − ρe22)gD(ωa − ω12)|Ω12(M)|2/γ1. (5)

In this limit, the fraction pumped for each M is proportional to Ω2
12 and thus proportional to

the intensity and the square of the transition matrix element. In this limit, the absorption

coefficient of the probe is

α23(∆ω23) =
ω23

ε0c~
γ2

γ22 + ∆ω2
23

·
J2∑

M=−J2

µ23(M)2∆ρ22(M). (6)

Integrating over the probe detuning, we get an integrated absorption coefficient for the

unsaturated case:

IG =

∫
α23dω23 =

π2ω23

(J2 + 1)(ε0c)2~3γ1
(ρe11− ρe22)gD(ω−ω12)Ip ·

J2∑
M=−J2

µ23(M)2µ12(M)2. (7)

Using the axes assignments given above, for symmetric-top transitions J1, K1,M → J2, K2,M →

J3, K3,M
′, we have

J2∑
M=−J2

µ23(M)2µ12(M)2= µ2
12 µ

2
23 φJ(J1, J2)

2φg(J1, K1, J2, K2)
2φJ(J2, J3)

2 ×

φg′(J2, K2, J3, K3)
2

J2∑
M=−J2

φZ(J1,M, J2,M)2
∑
M ′

φG(J2,M, J3,M
′)2. (8)

In this equation, µ12 and µ23 are the transition dipole moment matrix elements in the

molecular frame for the pump and probe transitions, and G = Z or X depending on whether

the probe is polarized parallel to the pump, giving a signal I‖, or perpendicular to the pump,

giving a signal I⊥. When G = Z, the selection rule is M ′ = M , and when G = X, the

selection rule is M ′ = M ± 1.

For asymmetric-top molecules, we expand the rotational wavefunction for each state, with

quantum numbers i, Ji, τi,M as φ(i, Ji, τi,M) =
∑

K A(i, Ji, τi, K)φJi,K,M , where φJ1,K,M are

symmetric-top wavefunctions. In Eq. 8, we replace the terms
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φg(Ji, Ki, Jj, Kj)
2 ← |

∑
Ki,Kj

A(i, Ji, τi, Ki, )A(j, Jj, τj, Kj)|2φg(Ji, Ki, Jj, Kj)|2. (9)

However, these factors cancel in the calculation of the polarization ratio.

The DR signal strength for an arbitrary angle, θ, between pump and probe polarizations

is given by

I(θ) = I‖ cos2 θ + I⊥ sin2(θ) (10)

with

I
(
θm = cos−1(1/

√
3
)

= (I‖ + 2I⊥)/3. (11)

θm = 54.73◦ is known as the magic angle. The sum

φZ(J,M, J ′,M)2 + 2φX(J,M, J ′,M + 1)2 + 2φX(J,M, J ′,M − 1)2 (12)

is M independent and so, at the magic angle of relative polarization, the probe absorption

strength is proportional to the total population in the intermediate energy level J2, K2. Pure

collisional reorientation (M changing collisions), does not impact the DR signal strength with

the relative polarization set at the magic angle.

The ratio of I‖ and I⊥ depends only on the sum over M values, as all other factors are

independent of pump or probe polarization, thus the polarization ratio in the unsaturated

pump case is

Rus
lin =

I‖
I⊥

=

∑J2
M=−J2 φZ(J1,M, J2.M)2φZ(J2,M, J3,M)2∑J2

M=−J2 φZ(J1,M, J2.M)2 [φX(J2,M, J3,M − 1)2 + φX(J2,M, J3,M + 1)2]
.

(13)

Given the ∆J = 0,±1 selection rule for both pump and probe transitions, there are 9

possible cases. In each case, the ratio given in Eq. 13 is evaluated using the expressions

for φG given in Table I. The resulting analytical expressions (with sums over M evaluated

using Mathematica) are listed in Table II, both in symbolic form and numerical values for

J2 = 0−10. It is traditional to label molecular transitions with P,Q,R for transitions when

J for the upper state minus J for the lower states are equal to −1, 0,+1 respectively. These

labels change for the three different DR schemes: (ladder-type with E1 < E2 < E3, V-type

with E2 < E1, E3, and Λ-type with E2 > E1, E3. Missing entries in the table correspond to

dipole-forbidden pump or probe transitions.

8



J ′ = J + 1 J ′ = J J ′ = J − 1

φ(J, J ′)
[
4(J + 1)

√
(2J + 1)(2J + 3)

]−1
[4J(J + 1)]−1

[
4J
√

(2J − 1)(2J + 1)
]−1

φZ(J,M, J ′,M) 2
√

(J + 1)2 −M2 2M 2
√
J2 −M2

(φX or± φY)(J,M, J ′,M ± 1) ∓
√

(J ±M + 1)(J ±M + 2)
√

(J ∓M)(J ±M + 1) ±
√

(J ∓M + 1)(J ∓M − 1)

φrms(J, J
′)2 4

3(J + 1)(2J + 3) 4
3J(J + 1) 4

3J(2J − 1)

TABLE I: Table of nonzero direction cosine matrix elements taken from Townes &

Schawlow. The symmetric-top matrix element of

< J,K,M |ĝ · ĥ|J ′, K ′,M ′ >= φ(J, J
′)φg(J,K, J

′, K ′)∗φh(J,M, J ′,M ′) where ĝ is the

direction of the transition moment in the molecular axis system and ĥ is the direction of

the electric field in the laboratory fixed axis system. The root mean square values satisfy

φ2
rms =

∑J
M=−J φZ(J,M, J ′,M)2/(2J + 1) = 2

∑J
M=−J φX(J,M, J ′,M ± 1)2/(2J + 1) =

2
∑J

M=−J |φY (J,M, J ′,M ± 1)|2/(2J + 1)

ladder-type R then R R then Q R then P Q then R Q then Q Q then P P then R P then Q P then P

V-type P then R P then Q P then P Q then R Q then Q Q then P R then R R then Q R then P

Λ-type R then P R then Q R then R Q then P Q then Q Q then R P then P P then Q P then R

J1 = J2 − 1 J2 − 1 J2 − 1 J2 J2 J2 J2 + 1 J2 + 1 J2 + 1

J3 = J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1

J2
4
3

2(J2−1)
4J2+1

8J2
2+2

(J2−1)(6J2+1)
2J2+4
4J2+3

6J2
2+6J2−2

2J2
2+2J2+1

2J2−2
4J2+1

8J2
2+16J2+10

(J2+2)(6J2+5)
2J2+4
4J2+3

4
3

0 1.

1 1.3333 0. ∞ 0.8571 2. 0. 1.0303 0.8571 1.3333

2 1.3333 0.2222 2.6154 0.7273 2.6154 0.2222 1.0882 0.7273 1.3333

3 1.3333 0.3077 1.9474 0.6667 2.8000 0.3077 1.1304 0.6667 1.3333

4 1.3333 0.3529 1.7333 0.6316 2.8780 0.3529 1.1609 0.6316 1.3333

5 1.3333 0.3810 1.6290 0.6087 2.9180 0.3810 1.1837 0.6087 1.3333

6 1.3333 0.4000 1.5676 0.5926 2.9412 0.4000 1.2012 0.5926 1.3333

7 1.3333 0.4138 1.5271 0.5806 2.9558 0.4138 1.2151 0.5806 1.3333

8 1.3333 0.4242 1.4985 0.5714 2.9655 0.4242 1.2264 0.5714 1.3333

9 1.3333 0.4324 1.4773 0.5641 2.9724 0.4324 1.2357 0.5641 1.3333

10 1.3333 0.4390 1.4608 0.5581 2.9774 0.4390 1.2436 0.5581 1.3333

TABLE II: Ratio of unsaturated double resonance signal intensity for parallel :

perpendicular relative linear polarizations. J2 is the rotational total angular momentum

quantum number for the state common to the two transitions
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In the unsaturated limit, the polarization ratios are the same for homogeneously and

inhomogeneously broadened cases. We are not aware in the literature of explicit expressions

for the predicted DR polarization intensity ratio, I‖/I⊥, for all cases given in a single refer-

ence.. The expressions in Table II can be derived from those previously given in Table 5.1 of

the text Angular Momentum by Richard Zare,49. That table gives the degree of polarization

for fluorescence, which is an example of the Λ-type DR scheme but with spontaneous in-

stead of stimulated emission for the probe. Zare gave the polarization anisotropy defined as

P = (I‖−I⊥)/(I‖+I⊥). The expressions for P were converted to polarization ratios by using

I‖/I⊥ = (P + 1)/(P − 1) and found to agree with those given in Table II, after correcting

for the fact that Zare used what we have written as J1 in his expressions and we have used

J2. The use of J2 results in common expressions for all three DR schemes. If the sample is

optically thick for the pump, the unsaturated polarization ratio, Rlin, is unchanged. If the

probe transition is optically thick, Rlin gives the ratio of the pump field induced change in

the probe field absorbance.

C. Unsaturated pump transitions using Circular Polarized pump and probe

fields

DR polarization measurement using circular polarizations for the pump and probe fields

can be done.62 In that case, we align the Z axis to the direction of the propagation vectors of

the pump and probe fields. The pump and probe fields are assumed to be circularly polarized

with positive or negative helicity relative to their respective propagation directions. If the

pump and probe fields propagate in the same direction, we define the fields as co-rotating

if they have the same helicity and counter-rotating if they have opposite helicity. If they

propagate antiparallel, this assignment is reversed; they are co-rotating if they have opposite

helicity and counter-rotating if they have the same helicity. The nonzero direction cosine

matrix elements of the pump transition are

φ±(J1,M, J2,M ± 1) = (φX(J1,M, J2,M ± 1)± iφY (J1,M, J2,M ± 1))/
√

2

=
√

2φX(J1,M, J2,M ± 1). (14)

The positive sign is used for absorption from a wave of positive helicity or stimulated emission

from a wave of negative helicity. The negative sign is used for absorption from a wave of
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negative helicity or stimulated emission from a wave of positive helicity. If the probe co-

propagates with the pump, the same signs apply to the probe transition with J1, J2 replaced

by J2, J3. If the probe field counter propagates, we reverse these sign assignments. We can

always select the orientation of the Z axis so that the pump transition has a selection rule

J1,M → J2,M + 1. For ladder DR, we will then have the probe transition a selection rule

J2,M + 1 → J3,M + 2 for co-rotating fields and J2,M + 1 → J3,M for counter-rotating

fields. For V-type and λ-type DR, the probe transitions are J2,M + 1 → J3,M for co-

rotating fields and J2,M + 1→ J3,M + 2 for counter-rotating fields. The helicity of a wave

is reversed upon normal reflection from a mirror as well as its propagation direction, so the

same matrix elements apply for interactions with waves traveling in either direction. As a

result, one can use a double pass or even a linear enhancement cavity to increase the DR

signal strength assuming that the mirrors have negligible birefringence and dichroism.

We compare the predicted DR signal strength for the cases where the pump and probe

electric fields co-rotate or counter-rotate, with signal strengths denoted as Isame and Iopposite

respectively. Using the direction cosine matrix elements, the polarization ratios for ladder

DR are calculated to be

Rus
cir =

Isame

Iopposite
=

∑J2
M=−J2 φX(J1,M − 1, J2.M)2φX(J2,M, J3,M + 1)2∑J2
M=−J2 φX(J1,M − 1, J2,M)2φX(J2,M, J3,M − 1)2

. (15)

As the change in the M quantum number for stimulated emission is opposite that for ab-

sorption for fixed helicity, Rus
cir for V-type and Λ-type DR is the inverse of that given in

Eq. 15.

Table III gives the predicted non-saturated DR circular polarization ratios. It is evident

that circular polarization effects on DR signals are generally larger than for linear polariza-

tion effects. In particular, for linear polarization, the predicted ratios for probe transitions

with ∆J = ±1 approach each other as J increases, making discrimination difficult. For

circular polarization, the two ∆J = ±1 probe transitions are the most easily distinguished

assignments.

Zare’s text gives the degree of circular polarization,

C(J1) =
(Isame − Iopposite)
(Isame + Iopposite)

, (16)

for fluorescence in Table 5.2. Correcting for the inversion for emission vs absorption (equiv-

alently, changing the sign of C(J1)) Zare’s expressions were converted and compared to
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those given in Table III. The results agree, with the exception of the case that Zare labels

(R ↑ Q ↓). However, recalculating that C(J1) value using Zare’s eq. 5.124 shows that there

was a sign error in his printed table for that entry. With this correction, the two expressions

agree.

ladder R then R R then Q R then P Q then R Q then Q Q then P P then R P then Q P then P

V-type P then R P then Q P then P Q then R Q then Q Q then P R then R R then Q R then P

Λ-type R then P R then Q R then R Q then P Q then Q Q then R P then P P then Q P then R

J1 = J2 − 1 J2 − 1 J2 − 1 J2 J2 J2 J2 + 1 J2 + 1 J2 + 1

J3 = J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1

J2 6 3J2−3
3J2+2

(J2−1)(2J2−3)
12J2

2−2
3J2+6
3J2+1

(2J2+3)(2J2−1)
4J2

2+4J2+2
3J2−3
3J2+2

(J2+2)(2J2+5)
12J2

2+24J2+10
3J2+6
3J2+1 6.

0 1.

1 6 0. 0. 2.2500 0.5 0. 0.4565 2.2500 6

2 6 0.3750 0.0217 1.7143 0.8077 0.3750 0.3396 1.7143 6

3 6 0.5455 0.0566 1.5000 0.9000 0.5455 0.2895 1.5000 6

4 6 0.6429 0.0789 1.3846 0.9390 0.6429 0.2617 1.3846 6

5 6 0.7059 0.0940 1.3125 0.9590 0.7059 0.2442 1.3125 6

6 6 0.7500 0.1047 1.2632 0.9706 0.7500 0.2321 1.2632 6

7 6 0.7826 0.1126 1.2273 0.9779 0.7826 0.2232 1.2273 6

8 6 0.8077 0.1188 1.2000 0.9828 0.8077 0.2165 1.2000 6

9 6 0.8276 0.1237 1.1786 0.9862 0.8276 0.2112 1.1786 6

10 6 0.8438 0.1277 1.1613 0.9887 0.8438 0.2069 1.1613 6

TABLE III: Unsaturated double resonance signal polarization ratios for circularly

polarized radiation. For ladder double resonance, what is tabulated is the co-rotating /

counter-rotating polarization ratios. For V-type and Λ-type DR, what is tabulated is the

counter-rotating/ co-rotating polarization ratios. J2 is the rotational total angular

momentum quantum number for the state common to the two transitions

D. Saturated Inhomogeneously Broadened Pump Transitions

In steady-state, saturation of the pump and/or probe transitions generally reduces the

polarization effects because it reduces the degree of alignment produced by the pump beam

and/or reduces the impact of alignment on the probe absorption. We here consider the case

with only saturation of the pump transition.
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We start with the case where the inhomogeneous Doppler width is the dominant source

of broadening. This is the common situation in continuous wave excitation experiments as

it is difficult to achieve a Rabi excitation frequency greater than the Doppler width of the

transition, at least for thermal samples at near ambient temperatures or above.

For a strongly saturating pump wave, Ω2
12(M) >> γ1γ2, for all nonzero values of µ12(M).

We again assume that the inhomogeneous Doppler width is substantially larger than Ω12, γ1,

and γ2. Returning to Eq. 4, taking this limit, and integrating over the detuning gives, for

the population change in state 2:

∆ρ22(M)→ π

2(2J2 + 1)
(ρe11 − ρe22)gD(ωa − ω12)|Ω12(M)|

√
γ2/γ1). (17)

The population transferred to level 2 is proportional to |Ω12(M)| and thus to the square

root of the pump intensity. We thus get the following sums for DR transitions J1, K1 →

J2, K2,→ J3, K3 of symmetric-tops

J2∑
M=−J2

µ23(M)2|µ12(M)|= |µ12|µ2
23 φJ(J1, J2)|φg(J1, K1, J2, K2)|φJ(J2, J3)

2 ×

φg′(J2, K2, J3, K3)
2

J2∑
M=−J2

|φZ(J1,M, J2,M)|
∑
M ′

φG(J2,M, J3,M
′)2 (18)

As above, the case of an asymmetric-top is calculated by replacing the terms

|φg(Ji, Ki, Jj, Kj)| ← |
∑
Ki,Kj

A(i, Ji, τi, Ki, )A(j, Jj, τj, Kj)|2φg(Ji, Ki, Jj, Kj)|. (19)

These results lead to the expressions, in the limit of strong pump saturation:

IsatG =
π2ω23

2(J2 + 1)(ε0c)3/2~2
(ρe11 − ρe22)gD(ω − ω12)

sqrtγ2/γ1)
√

2Ip ·
J2∑

M=−J2

µ23(M)2|µ12(M)| (20)

and
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Rsat
lin =

I‖
I⊥

=

∑J2
M=−J2 φZ(J1,M, J2.M)φZ(J2,M, J3,M)2∑J2

M=−J2 φZ(J1,M, J2.M) [φX(J2,M, J3,M − 1)2 + φX(J2,M, J3,M + 1)2]
(21)

Rsat
cir =

Isame

Iopposite
=

∑J2
M=−J2 φX(J1,M − 1, J2.M)φX(J2,M, J3,M + 1)2∑J2
M=−J2 φX(J1,M − 1, J2,M)φX(J2,M, J3,M − 1)2

. (22)

Due to the fact that most of the factors |φZ(J1,M, J2,M)| and |φX(J1,M, J2,M + 1)|

are square roots of polynomials in J2 and M , the sums over M values do not lead to

compact expressions in the saturated case. The exceptions are the Q pump ratios for linear

polarization. However, it is straightforward to numerically calculate the relevant sums for

any chosen values of J1, J2, and J3. This was done and the results for linear and circular

polarization are presented in tables IV and V, respectively.

In the comparison of the tables for unsaturated and saturated pump conditions, it is

evident that, while pump saturation reduces the polarization effects, this reduction is modest

and polarization ratios can be used to unambiguously assign transitions. The polarization

ratios are independent of the optical depth of the pump transition as long as the steady-state

excitation remains strongly saturated throughout the length of the sample.

E. Comparison with Experimental Data

The author and collaborators performed IR-IR double resonance experiments in the spec-

tral range of the CH4 ground → ν3 → 3ν3 vibrational transitions.. A CW 3.3µm Optical

Parametric Oscillator generated the pump beam, and a 1.65 µm centered frequency comb the

probe beam. The pump transitions were strongly saturated with the pump Rabi frequencies

about an order of magnitude larger than the collisional dephasing rate. The results of a pre-

liminary experiment using a single pass, liquid N2 cooled cell were previously published.23,24

The newer experiments used an optical cavity for the probe radiation, greatly increasing

sensitivity.63

Table VI gives a list of double resonance transitions that were observed in this later work.

Each transition was measured with both parallel and perpendicular relative polarizations of

the pump and probe waves. The probe ∆J values were assigned based on combination dif-

ferences and also by comparison with highly accurate theoretical predictions.64 The observed

14



ladder R then R R then Q R then P Q then R Q then Q Q then P P then R P then Q P then P

V-type P then R P then Q P then P Q then R Q then Q Q then P R then R R then Q R then P

Λ-type R then P R then Q R then R Q then P Q then Q Q then R P then P P then Q P then R

J1 = J2 − 1 J2 − 1 J2 − 1 J2 J2 J2 J2 + 1 J2 + 1 J2 + 1

J3 = J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1

J2
2J2+4
3J2+4 2. 2J2−2

3J2−1

0 1.

1 1.3333 0. ∞ 0.8571 2. 0. 1.0148 0.9282 1.1547

2 1.3244 0.2363 2.5559 0.8000 2. 0.4 1.0449 0.8527 1.1634

3 1.3038 0.3514 1.8494 0.7692 2. 0.5 1.0682 0.8125 1.1690

4 1.2868 0.4194 1.6207 0.7500 2. 0.5455 1.0856 0.7873 1.1703

5 1.2739 0.4640 1.5089 0.7368 2. 0.5714 1.0990 0.7698 1.1759

6 1.2640 0.4954 1.4431 0.7273 2. 0.5882 1.1096 0.7570 1.1783

7 1.2562 0.5187 1.3998 0.7200 2. 0.6000 1.1182 0.7471 1.1802

8 1.2500 0.5365 1.3694 0.7143 2. 0.6087 1.1253 0.7392 1.1817

9 1.2450 0.5507 1.3468 0.7097 2. 0.6154 1.1312 0.7328 1.1830

10 1.2408 0.5621 1.3294 0.7059 2. 0.6207 1.1362 0.7275 1.1842

TABLE IV: Ratio of double resonance signals for parallel over perpendicular relative linear

polarization for strongly saturated inhomogeneously broadened pump transitions but

unsaturated probe transitions. J2 is the rotational total angular momentum quantum

number for the state common to the two transitions. The first transition listed is the

pump’ and the 2nd the probe.

and calculated polarization ratios exhibit significant quantitative differences, with observed

values systematically closer to unity. Such a bias towards unity can be expected from im-

perfections in the relative polarization states of the pump and probe lasers in addition to

collisional angular momentum reorientation. As that experimental setup no longer exists,

we will not speculate on the specific cause(s) of the deviations of the observed and predicted

polarization ratios. Never the less, the saturated pump wave predictions are generally closer

to the observed values than the unsaturated pump predictions. This demonstrates that

even with strong saturation of the pump transitions, which optimizes detection sensitiv-

ity, polarization ratios allow for unambiguous assignment of the ∆J for the observed DR

transitions.
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ladder R then R R then Q R then P Q then R Q then Q Q then P P then R P then Q P then P

V-type P then R P then Q P then P Q then R Q then Q Q then P R then R R then Q R then P

Λ-type R then P R then Q R then R Q then P Q then Q Q then R P then P P then Q P then R

J1 = J2 − 1 J2 − 1 J2 − 1 J2 J2 J2 J2 + 1 J2 + 1 J2 + 1

J3 = J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1

J2 = 0 1.

1 6. 0. 0. 2.25 0.5 0. 0.6531 1.5306 2.4495

2 4.4016 0.4936 0.0479 1.7071 0.8040 0.3876 0.5459 1.3439 2.5777

3 3.8908 0.6628 0.1234 1.4914 0.8967 0.5582 0.4930 1.2549 2.6562

4 3.6454 0.7477 0.1701 1.3761 0.9365 0.6542 0.4614 1.2028 2.7095

5 3.5030 0.7985 0.2005 1.3046 0.9571 0.7159 0.4403 1.1684 2.7482

6 3.4106 0.8323 0.2216 1.2559 0.9691 0.7589 0.4252 1.1440 2.7776

7 3.3461 0.8564 0.2371 1.2206 0.9767 0.7906 0.4139 1.1258 2.8008

8 3.2986 0.8745 0.2489 1.1938 0.9818 0.8149 0.4051 1.1117 2.8195

9 3.2623 0.8885 0.2581 1.1729 0.9854 0.8341 0.3980 1.1004 2.8350

10 3.2337 0.8997 0.2656 1.1560 0.9880 0.8497 0.3922 1.0912 2.8480

TABLE V: Double resonance signal polarization ratios using circularly polarized radiation

for strongly saturated inhomogeneously broadened pump transitions but unsaturated

probe transitions. For ladder double resonance, what is tabulated is the co-rotating /

counter-rotating polarization ratios. For V-type and Λ-type DR, what is tabulated is the

counter-rotating/ co-rotating polarization ratios. J2 is the rotational total angular

momentum quantum number for the state common to the two transitions. The first

transition listed is the pump; the 2nd the probe.

F. Double Resonance Polarization Ratios for Saturated and Homogeneously

Broadened pump transitions

For the sake of completeness, we now treat the case of pump saturation of predominantly

homogeneously broadened transitions. As mentioned above, the same polarization ratios

are predicted for homogeneously and inhomogeneously broadened unsaturated transitions.

In the homogeneously broadened case, the steady-state ∆ρ22(M) is proportional to

x(M)/2(1 + x(M)) with, for linear polarization,

x(M) = S φZ(J1,M, J2,M)2/φrms(J1, J2)
2 (23)
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Pump Probe Wavenumber Final Term Value Probe Polarization Saturation Unsaturated

trans trans cm−1 cm−1 Intensity Ratio Prediction Prediction

P(2F2) R(1) 5948.267590(3) 8978.704010(3) 2.26(5) 0.91(4) 1.0148 1.0303

P(2F2) R(1) 5964.06227(2) 8994.49869(2) 0.081(3) 1.01(7) 1.0148 1.0303

P(2F2) R(1) 5979.042972(3) 9009.479392(3) 0.56(1) 0.98(4) 1.0148 1.0303

Q(2F2) Q(2F1) 5928.61142(2) 8978.70401(2) 0.56(3) 1.50(10) 2.0000 2.6154

Q(2F2) Q(2F1) 5944.40608(2) 8994.49868(2) 0.103(3) 1.55(6) 2.0000 2.6154

Q(2F2) R(2F1) 5958.673574(6) 9008.766169(6) 2.38(6) 0.83(5) 0.8000 0.7273

Q(2F2) Q(2F1) 5959.386797(5) 9009.479392(5) 0.89(2) 1.84(7) 2.0000 2.6154

R(2F2) R(3F1) 5913.18732(2) 8992.78303(2) 0.062(4) 1.1(1) 1.3038 1.3333

R(2F2) R(3F1) 5918.14141(1) 8997.73712(1) 0.096(4) 1.05(7) 1.3038 1.3333

R(2F2) R(3F1) 5923.94848(1) 9003.54418(1) 0.44(2) 1.19(6) 1.3038 1.3333

R(2F2) R(3F1) 5924.26536(2) 9003.86107(2) 0.175(5) 1.10(8) 1.3038 1.3333

R(2F2) Q(3F1) 5929.170466(3) 9008.766172(3) 4.7(1) 0.44(7) 0.3514 0.3077

R(2F2) P(3F1) 5929.883687(4) 9009.479393(4) 0.85(2) 1.61(4) 1.8494 1.7333

R(2F2) R(3F1) 5932.279186(9) 9011.874892(9) 0.100(3) 1.21(9) 1.3038 1.3333

R(2F2) R(3F1) 5935.245195(3) 9014.840901(3) 0.74(2) 1.36(5) 1.3038 1.3333

TABLE VI: Comparison of observed and predicted polarization intensity ratios for ground

state → ν3 → 3ν3 double resonance transitions of methane. Experimental values are

taken from de Oliveria et al.63 The probe intensity is the integrated probe absorption of

the sub-Doppler feature in units of 10−9 cm−2.

and, for circular polarization,

x(M) = 2S φX(J1,M, J2,M)2/φrms(J1, J2)
2 (24)

S is the saturation parameter, which is the ratio of the pump rate, neglecting saturation,

divided by the population relaxation rate, and

φrms(J1, J2)
2 =

J2∑
M=−J2

φZ(J1,M, J2,M)2/(2J2+1) = 2

J2∑
M=−J2

φX(J1,M−1, J2,M)2/(2J2+1)

Expressions for φrms are given in Table I.

Even in the limit of highly saturating pump intensity, the polarization ratios do not go

to unity, except for a J1 = J2 + 1 pump transition, as the selection rules for the J1 = J2 or

J2 − 1 cases prevent pumping all M values of state 2. Below, in tables VII and VIII, the
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predicted S →∞ polarization ratios values for different ∆J values for the pump and probe

transitions are given. In all cases, the high J limit of the highly saturated polarization ratios

go to unity, as in that limit, the non-pumped M values represent a negligible fraction of the

total.

Figures [1-3] show the linear polarization ratios as a function of S for the three probe

transitions when homogeneously broadened R(5), P (5), and Q(5) pump transitions are used.

Figures [4-6] show the circular polarization ratios for the same pump transitions. Tables IX

and X report the values of the saturation parameter, S, that results in a polarization ratio

halfway between the unsaturated and the S → ∞ values for the linear and circular polar-

ization DR experiments respectively, Note that the J2 = 1, J1 = J3 = 0 entry is empty for

the linear polarization case, because the polarization ratio, in that case, is ∞, independent

of S

J2 − J1 = 1 J2 − J1 = 0 J2 − J1 = −1

J3 − J2 = 1 (2J2+1)(J2+3)
2J2

2+4J2+3
8J2+10
8J2+13 1

J3 − J2 = 0 J2−1
J2+2

4J2+2
4J2−1 1

J3 − J2 = −1 J2+1
2J2−2

2(J2−1)(4J2+1)
8J2

2−3J2+1
1

TABLE VII: Polarization DR signal ratio, parallel: perpendicularly polarized waves, for a

homogeneously broadened pump transition in the limit of saturation parameter →∞. J2

is the total angular momentum quantum number of the state common to both transitions.

J2 − J1 = 1 J2 − J1 = 0 J2 − J1 = −1

J3 − J2 = 1
2J2

2+7J2+9
(J2(2J2+1)

4J2
2+12J2+11

(2J2+1)(2J2+1) 1

J3 − J2 = 0 (J2−1)(J2+3)
J2(J2+2)

(J2+2)(2J2−1)
(J2+1)(2J2+1) 1

J3 − J2 = −1 (J2−1)(2J2−3)
J2(2J2+1)

(2J2−2)
(2J2+1) 1

TABLE VIII: Polarization ratios, co- : counter-rotating waves, for ladder-type DR signal

stengths for Homogeneously broadened pump transition in the limit of saturation

parameter →∞. J is the total angular momentum quantum number of the state common

to both transitions. For V-type and Λ-type DR, the ratios should be inverted.
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ladder R then R R then Q R then P Q then R Q then Q Q then P P then R P then Q P then P

V-type P then R P then Q P then P Q then R Q then Q Q then P R then R R then Q R then P

Λ-type R then P R then Q R then R Q then P Q then Q Q then R P then P P then Q P then R

J1 = J2 − 1 J2 − 1 J2 − 1 J2 J2 J2 J2 + 1 J2 + 1 J2 + 1

J3 = J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1

J2 = 1 2.0000 2.0000 1.9541 2.0000 2.0000 0.5502 0.5835 1.2506

2 0.9213 0.9377 0.9030 1.3278 0.9288 1.5002 0.7924 0.8975 1.3969

3 1.1211 1.1877 1.0847 1.7102 1.0027 1.9302 0.9743 1.1458 1.5106

4 1.2688 1.3904 1.2250 1.9762 1.0431 2.206 1.1173 1.3474 1.6015

5 1.3840 1.5583 1.3374 2.1697 1.0703 2.3947 1.2334 1.515 1.676

6 1.4772 1.7001 1.4300 2.3167 1.0904 2.5315 1.3299 1.6568 1.7381

7 1.5544 1.8216 1.5076 2.4321 1.1062 2.6353 1.4116 1.7787 1.7908

8 1.6197 1.9270 1.5739 2.5253 1.1189 2.7167 1.4817 1.8847 1.8361

9 1.6758 2.0195 1.6312 2.6022 1.1294 2.7824 1.5427 1.9779 1.8755

10 1.7245 2.1014 1.6812 2.6666 1.1382 2.8366 1.5962 2.0605 1.9100

TABLE IX: Pump saturation parameter, S, required for the linear polarization ratio to be

halfway between unsaturated and the S →∞ limit

III. SUMMARY AND CONCLUSIONS

This work presents expressions for the predicted changes in DR signal strength as a func-

tion of relative pump and probe polarizations. These results are applicable to a wide range of

DR experiments performed with the pump population transfer in the steady-state limit. It is

found that, even with a strongly saturated pump field, most of the polarization anisotropy is

retained in the case of an inhomogeneously broadened pump transition, due to the different

power broadened widths of different M projection states. This allows polarization ratios to

be used to unambiguously assign the ∆J values for the probe transitions. Combined with

the assignment of the pump transition, this allows determination of the final state term

value, symmetry, and total angular momentum quantum numbers for each observed probe

transition. The relative polarization dependence is further reduced when a homogeneously

broadened transition is strongly saturated. Even there, in most cases, polarization effects

remain for low to modest J values due to the fact that not all possible M values of the

intermediate state can be pumped.

19



ladder R then R R then Q R then P Q then R Q then Q Q then P P then R P then Q P then P

V-type P then R P then Q P then P Q then R Q then Q Q then P R then R R then Q R then P

Λ-type R then P R then Q R then R Q then P Q then Q Q then R P then P P then Q P then R

J1 = J2 − 1 J2 − 1 J2 − 1 J2 J2 J2 J2 + 1 J2 + 1 J2 + 1

J3 = J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1 J2 + 1 J2 J2 − 1

J2 = 1 2.0000 2.0000 2.0000 1.9541 2.0000 2.0000 0.5502 0.5835 1.2506

2 0.9213 0.9377 0.9030 1.3278 0.9288 1.5002 0.7924 0.8975 1.3969

3 1.1211 1.1877 1.0847 1.7102 1.0027 1.9302 0.9743 1.1458 1.5106

4 1.2688 1.3904 1.2250 1.9762 1.0431 2.2060 1.1173 1.3474 1.6015

5 1.3840 1.5583 1.3374 2.1697 1.0703 2.3947 1.2334 1.5150 1.6760

6 1.4772 1.7001 1.4300 2.3167 1.0904 2.5315 1.3299 1.6568 1.7381

7 1.5544 1.8216 1.5076 2.4321 1.1062 2.6353 1.4116 1.7787 1.7908

8 1.6197 1.927 1.5739 2.5253 1.1189 2.7167 1.4817 1.8847 1.8361

9 1.6758 2.0195 1.6312 2.6022 1.1294 2.7824 1.5427 1.9779 1.8755

10 1.7245 2.1014 1.6812 2.6666 1.1382 2.8366 1.5962 2.0605 1.9100

TABLE X: Pump saturation parameter, S, required for the circular polarization ratio to

be halfway between the unsaturated and S →∞ limits

IV. ACKNOWLEDGEMENTS

The author recognizes Steven L.Coy for conversations on this topic over many years and

his and Aleksandra Foltynowicz’s encouragement to publish these results. He acknowledges

many helpful suggestions on the manuscript, made by Robert Field, which substantially

improved the document. He also acknowledges support for the US National Science Foun-

dation.

20



0 5 10 15 20 25 30

Saturation Parameter

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
a

ti
o

 o
f 

P
a
ra

lle
l 
o

v
e
r 

P
e
rp

e
n
d

ic
u
la

r 
D

R
 s

ig
m

a
ls Linear Polarization Ratios for pumping R(5) transition

R probe

Q probe

P probe

FIG. 1. Probe linear polarization ratios as a function of saturation parameter for R(5) pump

transition
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