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ABSTRACT. Electrocardiogram (EMG) signals play a significant role in decoding muscle contraction
information for robotic hand prosthesis controllers. Widely applied decoders require large amount
of EMG signals sensors, resulting in complicated calculations and unsatisfactory predictions. By the

biomechanical process of single degree-of-freedom human hand movements, only several EMG signals
are essential for accurate predictions. Recently, a novel predictor of hand movements adopts a multistage
Sequential, Adaptive Functional Estimation (SAFE) method based on historical Functional Linear Model

(FLM) to select important EMG signals and provide precise projections.
However, SAFE repeatedly performs matrix-vector multiplications with a dense representation

3

16

- matrix of the integral operator for the FLM, which is computational expansive. Noting that with a
— properly chosen basis, the representation of the integral operator concentrates on a few bands of the

18 basis, the goal of this study is to develop a fast Multiscale SAFE (MSAFE) method aiming at reducing
1 computational costs while preserving (or even improving) the accuracy of the original SAFE method.
20 Specifically, a multiscale piecewise polynomial basis is adopted to discretize the integral operator for

21 the FLM, resulting in an approximately sparse representation matrix, and then the matrix is truncated

» to a sparse one. This approach not only accelerates computations but also improves robustness against

23
— with SAFE, while producing better sensor selection and comparable accuracy. In a simulation study,
A MSAFE shows stronger stability in sensor selection and prediction accuracy against correlated noise
2 than SAFE.

26

noises. When applied to real hand movement data, MSAFE saves 85%~90% computing time compared

L 1. Introduction
28

29 This paper aims at developing a fast computing algorithm for the adaptive functional estimation
30 method for robotic hand prosthesis controllers. Robotic hand prostheses equipped with a prosthesis
31 controller (PC), such as DEKA arm system [1, 2], could emulate the functionality of an intact hand
32 and assist transradial amputees (TRA) in their daily life activities. Electrodes are placed on multiple
33 muscles of the residual limb to collect electromyogram (EMG) signals, which contain the information
34 of muscle contraction magnitude and duration. For an able-bodied person the muscle contractions
35 activate the tendons and the bones to produce the hand movement. For a transradial person the

36 residual muscles can still contract and the prosthesis controller decodes the EMG signals to produce
37 I
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1 the hand prosthesis movements. However, for a transradial person many muscles are not accessible
~, for external EMG sensors placement. The key challenges are deciding on the number/places for the
35 EMG sensors and modeling the decoding of the EMG signals to movement.
4 A popular approach for prosthesis control is EMG pattern recognition, which usually uses re-
s dundant [3] or high-density electrodes [4] to capture sufficient neural information. Classification
s techniques are then employed to identify the patterns of hand/wrist motions from such abundant
~; data [5]. It has produced promising results and also brought many challenges, including the real-time
s processing cost of large amount of data and the extra noises introduced by additional sensors. On the
o other hand, a low-dimentional PC decoder with only 4 EMG signals has been shown to accurately
10 predict wrist/hand movement in [6]. The selection of these EMG signals is based on their prior
11 knowledge of the important muscles in the musculoskeletal structure of able-bodied (AB) subjects.
12 However, it would be much more challenging to select relevant EMG sensors for TRA subjects since
13 the musculoskeletal structure might be changed due to the loss of many muscles.
14 A functional estimation procedure called Sequential Adaptive Functional Estimation (SAFE) has
15 been proposed recently in [7] to select the EMG sensors and decode the EMG signals into wrist/hand
1 movement for TRA subjects. The statistical model proposed in SAFE uses multiple functional
17 covariates representing recent past behavior EMG signals, whose effects can vary with the recent
15 position (flexion or extension) of fingers and wrist, to predict the velocity or acceleration of a given
19 movement. An adaptive group Least Absolute Shrinkage and Selection Operator (group LASSO)
20 penalty [8, 9] is employed to select the EMG sensors, then a smooth ridge regularization consisting
21 of only the most relevant EMG sensors is used to replace the group LASSO penalty in the decoding
2 process. It could reduce the estimation bias caused by the group LASSO penalty [7]. It selects
23 very few relevant EMG sensors and uses them to decode the finger/wrist movement information
2, without sacrificing prediction accuracy. The adaptive procedure promotes the accuracy performance
25 in sensor selection and movement estimation. However, such adaptive approach involves heavy
2 cross validations. SAFE method uses the single-scale spline basis to estimate the predictors, which
27 generates dense coefficient matrices. Dense matrices could dramatically drag down the speed of the
25 computation. As experiments in [7] illustrate, SAFE costs tens of hours in a personal computer to get
2 final results on every single data set. This is a computational bottleneck for practical applications of
30 the SAFE method.
31 To overcome this computational burden of the single-scale spline basis SAFE method, we propose
3, in this paper a fast multiscale numerical scheme to solve the functional linear model. It has been
33 understood [10] that representation of integral operators could be numerically sparse under the so-
3, called multiscale method. Different from single-scale basis, multiscale basis extracts information of the
35 integral operator from different scale, which naturally leads us to coefficient matrices concentrating at
36 0. After a proper truncation, the resulting model remains precise while having sparse representation.
37 This sparsity could help accelerating the computational process. Also by the truncated multiscale
35 representation, we have noise partly filtered out from input data, which also boosters the multiscale
39 method against noise.
w0 Specially, following the idea of multiscale methods for integral equations [11, 12, 13], here we apply
41 the multiscale piecewise polynomial basis in discretization of the integral operators in the FLM model,
42 to obtain the proposed Multiscale SAFE (MSAFE) method. Such a multiscale basis has vanishing
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1 moments and shrinking supports, which results in a coefficient matrix with decaying entries. This
, property enables us to approximate the coefficient matrices by a sparse one and therefore accelerates
5 the calculation. After a proper truncation of the multiscale coefficient matrices, the computational
4 costs can be reduced significantly comparing to the single-scale spline basis SAFE method. Also,
5 the multiscale method is more robust against noise due to the truncation. As experiments on real
"¢ data reveal, MSAFE saves 85%~90% of computational time as SAFE method, while providing even
; better sensor selection and prediction errors. In simulation study, we test SAFE and MSAFE methods
s with correlated data, where MSAFE outperforms single-scale method. Such idea could be extensively

o applied in other integral models with ease.

10 For a fair comparison, in this paper we make several compromises on the proposed multiscale
11 method. On one hand, to solve the group LASSO model, SAFE applies the popular method introduced
12 in [14] by solving a smoothing model instead. Such method gives fast solution estimations of group
13 LASSO models with set of parameters, but could have significant deviation from the real global
14 solutions. Actually the group LASSO model is a special case of non-smooth convex optimization
15 problems, which were extensively studied in past decades, and many algorithms were developed

16 to solve such kind of problems with solid convergence analysis. For this type of non-smooth
1; convex optimization problems, one may refer to fixed-point proximity algorithms [15, 16], primal-
15 dual algorithms [17, 18] and alternating direction methods of multipliers [19, 20]. On the other
19 hand, the fast comprehensive method to solve integral equations is considered to be the multiscale
20 collocation method [21, 22], which, in addition to multiscale basis, utilizes the multiscale collocation
21 functionals in model discretization. Both multiscale basis and multiscale collocation functionals
22 contribute together to an even more sparse coefficient matrix. These new concepts however will
23 cause considerable changes to the SAFE method, and make it difficult to distinguish contributions
24 to the final improvement among all modifications. To demonstrate the advantage of the use of the
25 multiscale basis alone, in this paper we keep most of the original SAFE method intact, and only apply
26 the multiscale basis to the corresponding part of the SAFE method.

27 To summarize, this paper contributes to SAFE method in the following aspects. We substitute
25 the single-scale basis of the SAFE method with multiscale piecewise polynomial basis in the FLM
29 model, which systematically generates sparse coefficient matrices after proper truncation. Also, since
30 the widely-used R [23] package gglasso [24] for the group LASSO model is not accepting sparse
31 matrices, we modify corresponding functions in the package for maximum acceleration and fair
3, comparison. These together are combined to be the proposed Multiscale SAFE (MSAFE) method and
33 lead to the final improvement to the SAFE method.

34 The rest of this paper is organized as follows. We describe in Section 2 the functional linear model
35 and the original SAFE method for EMG-based hand-movement predictors. In Section 3, we introduce
36 the fast multiscale method, MSAFE, to solve integral models for sensor selection and movement
37 estimation in SAFE method. Section 4 contains the application of the proposed method on the real
35 data sets studied in [7]. To address the robustness of the proposed method against correlation, Section
39 5 shows the results on simulated data with correlated noises. Conclusions of this study are drawn in
4 Section 6. For simplicity of the presentation, we provide the mathematical derivations and technical
41 proofs of the multiscale analysis in Appendix.

42
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1 2. EMG-Based Predictor for Hand Movements

2 We briefly describe in this section the operating principles of the prosthesis controller with EMG
2 signals, and review the cutting-edge SAFE method which models the wrist/finger movement with
" historical FLM involving corresponding EMG signals.

~° For an AB subject, the intended hand movement originates from active potentials in motor
-° neurons in cerebral cortex. Those neural signals conduct along motor neural pathway and infuse
 into corresponding muscle cells, which then cause muscle contractions to accomplish the intended
* movement. The terminal action potential measured from the muscle fibers is defined as motor unit
-~ action potential (MUAP), which is positively correlated to the magnitude and duration of muscle
" contractions. The EMG sensors placed on subject’s forearm could measure the sum of MUAPs across
" muscles, and therefore serve as effective indicators for predicting hand movements, for both AB
2 subjects and TRAs. The predicted hand movements are fingers/wrist flexions and extensions in
" different arm postures. Due to passive forces triggered by muscle relaxation, [7] showed graphically
" that finger movement can happen when no active EMG signal is recorded. [7] also noticed that there
are significant correlations among all EMG signals across the 30-seconds time window the data was

15

“ collected. It is possible to have multiple active EMG signals when performing one instance of finger
" flexion and extension. Based on these findings, SAFE predicts finger/wrist movement based on the
" recent past EMG signals and current finger/wrist position.

P We point out that there are two important issues in designing the prosthesis controller with EMG
- signals: the selection of most relevant EMG sensors and the decoding of EMG signals to wrist/finger
" movement. There are 20 muscles of the forearm controlling various movements of wrist and fingers
— of the hand [25]. For a more accurate and interpretable prosthesis controller with a rapid real-time
— response, we have to select the most important EMG signals and have an accurate and efficient
— algorithm to decode them into the wrist/finger movement. Both problems would rely on an accurate
— quantitative model of the relation between EMG signals and wrist/finger movement.

—  We will employ the flexible statistical model introduced in SAFE. In particular, the functional
?_ linear model (FLM) [26, 27, 28, 29, 30, 31], specially historical FLM [32] would be used to describe the
= velocity/acceleration of wrist/finger based on recent past EMG signals. We remark that historical
— FLM has received many successful applications in functional regression problems.

S [32] the authors use the finite element method to estimate the historical functional model.
1 This model considers a sample of curves y;(¢) that can be predicted by covariate curves x;(s) with
2 s5e [t —0,t] and & > 0 was estimated from the data. A speech production experiment is used to show
> the performance of the historical functional model. The data on different groups of muscles involved
" in the anatomy and physiology of speech was collected by EMG sensors. The curves y;(t) represent
»_ the accelerations of the center of the lower lip and the covariates x;(¢) represent the EMG signal
** associated with the depressor labii inferior muscle. In [33] the authors proposed a new method of
7 estimating the historical functional model of [32]. Their procedure combines regularization with
* L' and L*-norm penalties of the coefficients of the neighboring basis functions. The model is then
”_fit to a data set collected on a sample of boilermaker workers that studies the relationship between

40 . . . ..
— occupational particulate matter and heart rate variability.
41

42
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In [34] the recent functional linear model for sparse longitudinal data is studied. The longitudinal
predictor defined only in a sliding window into the recent past [t — 8;,7 — 8] for 0 < 6, < 6; < T has
an effect on the longitudinal response. This model is then applied to a primary biliary liver cirrhosis
longitudinal data where the relationship between serum albumin concentration and prothrombin time

5 is investigated. Historical functional models with a large number of functional and scalar covariates
s as in [35] and models with factor-specific random historical effects as in [36] are estimated by a
7 component-wise gradient boosting algorithm which is suitable for complex models. A fully Bayesian
s estimation approach based on the discrete wavelet-packet transformation was employed in [37].
B
0

[ e~ |-

We next briefly introduce the statistical model applied in SAFE method. Suppose we have K

measured and processed EMG signals and N instances of measurement at different time {#;}Y ;. For
11 1 <i<Nand1<k<K, we use Xj to denote the k-th historical EMG signal at i-th instance. We
12 would like to use them to predict y; := y(¢;), the response (velocity or acceleration) of the movement
13 at time f; along with position z;. The historical FLM employed in SAFE is
1 K
15 (1) ElyilXi1, Xio, . ... Xig,z] = Y, /yXik(T)}’k(T,Zi)dT, 1<i<N,
16 k=1""-
17 where .7 := [—§,0] with 8 > 0 defines the length of historical time window, Xy (1) == X (f; 4+ 1) is
15 the historical EMG signal at time #; and ¥ are the unknown bivariate kernels defined on .7 x &
10 with %(-,z) € L*(7) forany z € 2 and 1 < k < K. Here 2 C R is the range of position.
20 We will rely on the above model to select the most important EMG sensors and predict the

21 velocity/acceleration of movement. To select EMG sensors, a group LASSO regularization model [9]

22 could be applied in Eq. (1), resulting in the following model

B vilx 2

24 1

24 min i — Xie(T)%(7,2i)dT

. min ; yi k;/g ()% (T, 2)

% (2)

; K 2 ! 2 ! g
- S DRV PTG 7 a7
% k=1

29
. where H? .= W??2(.7 x %) is the Sobolev space of all functions possessing L? derivatives at least

S order2on 7 x %, fI? = [[7y o f2(t,2)dtdz, f' == 3*f /1%, and f! = d*>f/dz? for any f € H>.
. The non-negative constants fi, gx, ik for 1 < k < K control the penalty weights, and non-negative
., constants ¢;,¢. > 0 serve as global controllers of penalty weights on the norms of derivatives
U 12}K, and {| }/,'{{ZHZ},{K:], respectively. We remark that the magnitude of estimated s in Eq. (2)
.. measures the importance of the corresponding EMG signal. If the kernel ¥ is estimated to be 0, then
o the corresponding k-th EMG signal will be considered insignificant to the movement of interest.

5 This idea is applied to select the most important EMG sensors. In particular, we will follow the

— multistage procedure proposed in SAFE method. Let #© := {1,2,...,K} and we first solve Eq. (2)

38

o With fi = g = hy = 1for I <k < K to get estimators {71 }ee 0. We then define the active variable

—set A :={ke #°: 9 #0} and update the weights

40
AN T
(%),

E 1 ol !
£(3) Je =

1
, h,i:‘ , forallk e #.

1
9 gk:‘
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i Then we find the new estimators {#},. »1 by solving Eq. (2) with the active variable set .#"! and
the updated weights:

N
min Z
i=1

’}’kGHz,kGE%/I

2
3 2
4

yi— Y, /gXik(r)yk(r,z,-)dr

ke

w

(4)

o |~ o

2 2
TV MRYAA T ] 7 }
ke

_° The new active variable set could be defined in a similar way: .#2 := {k € ! : 97  0}. Suppose R
1% stages are repeated till certain stop criteria is met, then we arrive at the selected set of EMG sensors
' _¢'R. After the most relevant sensors .# X are determined, SAFE method suggests using the smooth
2 ridge regression model to get the final estimation of the kernels. That is, we will find the estimator of

5y for each k € # R by solving

14

2
15 N
i — X; )d
%(5) f}/keHr?’}(ré%/R l:ZI Yi kez}:{R/y zk(T)')/k(T,Zl) T
? 2 7112 7 112
0 + Z <¢HV/€H +¢IHYI,<JH +¢z”7]€,z” )}
— ke AR

— The regularization parameters ¢, ¢, ¢, > 0 are usually chosen by cross-validation method over certain
— candidacies. We point out that since the most relevant sensors have been chosen via Egs. (2) and (4)
— in the first stage, we should not apply any sparse regularization in the final stage of functional
— estimation. The smooth regularization in Eq. (5) could reduce the estimation bias caused by sparse
— penalty [38, 39].

— Itis direct to observe that the major computation cost of the method comes from solving Eq. (2).
S We need to sequentially solve the same model with different parameters f, gx, /i at each stage of
N the EMG signal selection. Moreover, cross validation is applied to choose the optimal regularization
— parameters A4, ¢, ¢, among candidates. These above mean that we need to solve Eq. (2) with different

29

-, constants repeatedly for a large number of times. It is necessary to develop a fast and efficient

o algorithm to numerically solve Eq. (2).

% 3. Multiscale SAFE Method

34 In this section we present the proposed fast multiscale SAFE (MSAFE) method to solve the models
35 Egs. (2) and (5). Specially, we will employ the multiscale basis functions introduced in [11, 21, 22],
36 which is widely used in developing fast algorithms for solving integral equations efficiently.

37 We remark that Egs. (2) and (5) are minimization problems over infinite-dimensional spaces of
38 functions, which requires discretization to solve them numerically. The original SAFE method uses
39 tensor products of orthogonal cubic spline bases to represent the unknown kernels ¥;’s. Such full-
40 supported single-scale basis suffers from high computational cost in two aspects. On one hand, such
41 full-supported basis requires integral in the full domain in every calculation, which causes heavy
42 computation when assembling coefficient matrices. On the other hand, each of the basis functions
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1 only extracts information from different part of the kernel function under the same scale. This results
, in coefficients of flatten distribution and therefore leads to dense matrices, which slow down the
3 computation at later-stages.

4 To overcome disadvantages of the single-scale basis, here we employ a multiscale piecewise

5 polynomial basis to discretize the integral operators in Egs. (2) and (5). As shown in the following
"¢ sections, the multiscale basis would systematically generate sparse coefficient matrices, which

~; therefore significantly improve the computational speed.

% 3.1. Multiscale Piecewise Polynomial Basis. We in this section briefly introduce the multiscale
. piecewise polynomial basis and its properties, then show in a simple numerical case that such basis
- could systematically yield sparse coefficient matrices. For simplicity of presentation, we leave the
. technical constructions and mathematical proofs of the multiscale piecewise polynomial basis in A.
; To overcome the disadvantages of full-supported single-scale basis, the multiscale basis improves
— in both the speed of generating coeflicient matrices and the sparsity of the resulting matrices.
" Multiscale piecewise polynomial basis functions, analogous to wavelets, have vanishing moment

15

— and are divided into different levels. Such basis functions are orthogonal between different levels,
16

— and have exponentially shrinking support as level increases. The shrinking support of the basis
; functions accelerates calculations of high level coefficients and, together with the vanishing moment
e and orthogonality, enables the multiscale basis to capture information of the kernel in different levels.
. These together result in a sparse coefficient matrix.

o Specifically, we let ML}, be the space of all piecewise polynomials of degree no more than p on [0, 1],
- with nodes at {i/ 2”}2 o- Such a multiscale piecewise polynomial space approaches space H as level
n increases, and has the property that M, ¢ M? ne1> Which could lead to a multilevel structured basis,
o, as briefly described below. At the first level Wy, we choose p + 1 basis polynomials of Mp At next
= level Wi, we choose p + 2 piecewise polynomials on M that are perpendicular to M. For higher
o level [ > 2, W could be generated by recursively scaling and shifting functions of W[_lz

27 vvl:{t%W:WevvlfbiE{ovl}}a

2 where

z () (x) = f(2x),  (Zf)x)=f(2x=1).
* Tt is direct to observe that every function in W, is perpendicular to M and has a support on an

i interval with length no more than 27+,
2 We point out that the introduced multiscale piecewise polynomial basis could be used to design

> fast algorithms for solving integral equations, such as the Fredholm integral equation of the first kind
34

. 1
() y(0) = [ K op(wde
36 0
37 when the unknown function v is represented by the basis functions in W;. We provide a brief
33 explanation below:

39 (I) The basis functions in W; have small supports and we only need to calculate integrals on small

40 intervals rather than [0, 1] when creating coefficient matrices of Eq. (6).
4 (I) The basis W, for [ > 1 are all perpendicular to M}, which means they have vanishing moment

42 p+ 1. The magnitude of coefficient matrix entries will decay as / increases. In particular, if
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FIGURE 1. Frequency histograms of coefficient matrix of integral equation Eq. (6) with

:
2
o spline basis and multiscale basis, on FC1 data set from [7]. Height of each bar indicates
Y the frequency of values failing into the corresponding x-interval. The multiscale
~ coefficients highly concentrate around 0, while single-scale spline coefficients do not.
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o (a) Frequency histogram of spline coefficients. (b) Frequency histogram of multiscale coefficients.
20
2
S kernel K in Eq. (6) is smooth enough, then entries of the corresponding coefficient matrix
0 would have an exponential decay. Therefore it could be approximated by a sparse matrix.
o Proposition 2 in A provides a theoretical justification of this property.

»s  Here we verify those properties with a numerical example. Suppose we would like to represent
26 the unknown function y by n level multiscale basis {w j}iz(f g Ui_o W, and discretize Eq. (6) at
2 different sampling times {t;}%' | as follows

= Y
® (7) i~ Y ¢ / K(,1)wi(t)de,  1<i<N.
=170

> We point out that the coefficient matrix
32

— 1
3 (8) A, = [/o K(ti,t)wj(t)dt: 1 <i<N,1<j<2%(p+1)
34

£ determines the computational cost of finding the coefficients ¢ := (¢;);. In other words, if the
36 coefficient matrix A, is sparse, it would be much more efficient to find c. We consider K(z,7) =
37 Xp(t—067) with 1 <k <16 and {1, 1.12? in Eq. (7), where Xj for 1 <k < 16 are the real EMG signals of
38 data set FC1 from [7]. We compare in Figures 1 and 2 the sparsity of the coefficient matrix generated
39 by the spline basis used in [7] and the multiscale basis defined in A. It is direct to observe from
40 Figures 1 and 2 that the coefficient matrices generated by the multiscale basis concentrates around 0,
41 decays rapidly as the level increases and is much more sparse than those generated by the single-scale
42 spline basis.
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FIGURE 2. Magnitude plots of coefficient matrices Eq. (6) for spline basis and multiscale

:
2

o basis. Columns correspond to the sampling time {¢; 1.12?, while rows mean different

o basis functions. Notice that matrices {X} ,lcil are combined in row for each basis

. respectively. There is a notable pattern of repeating in matrix of single-scale spline

o basis, which therefore has no sparse structure. For multiscale basis, most information

= of the kernel is extracted by the first few levels of basis functions, leading to a sparse

Y coefficient matrix.
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o (a) Coeflicient matrix from the spline basis. (b) Coefficient matrix from the multiscale basis.

25

26

Based on the explanation provided in ((I)) and Proposition 2 in A, we introduce the following
“ multiscale truncation strategy for Eq. (2). Theoretically the higher level n we consider, the more
= precise solutions we will get, but higher level brings heavy computation. Fortunately, the following

?_ theorem implies that with the multiscale basis, relatively high levels will have insignificant effect to
“ the coefficient matrix. This allows us to truncate the coefficient matrix, reducing computational costs
i while keeping coefficient matrices precise. The truncated A” of matrices A, for level 1 <m <n is
% defined by

34

5 ) [AY] i {

0, 2M(p+1)<j<2"(p+1).

36

37 We notice that A,, is exactly the first 2”"(p + 1) columns of A; for all [ > m. To measure the difference
35 caused by truncation, we denote by ||A||2 the 2-norm for matrix A. Let C?|0, 1] denote the space of
30 all functions on [0, 1] possessing p-order continuous derivatives for p € N.

“ Theorem 1. If f € CP[0,1] and m € N, then for n > m there holds

41

z A=Ayl < 27,
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where ¢ > 0 is independent of n.

:
> Theorem 1 implies that with multiscale basis, the truncation would not cause great impact to the

 coefficient matrix, as long as m is sufficiently large. With such level m, we truncate the coefficient
A" in computation afterwards.

6 3.2. Multiscale SAFE Method. We thoroughly present the Multiscale SAFE method with multiscale
7 basis to discretize Egs. (2) and (5). It will produce sparse matrices in the discretized problems and
8 provide a much faster way to select the sensors and estimate the kernels than SAFE method.

9 In MSAFE, we represent the unknown function y; by a basis in the Cartesian product space
0 . =M ®S, where M has a multiscale basis {w;: 1 < j < (p+1)2"} and S is a cubic spline space
11 on [0, 1] with basis {s; : 1 <[ < g}. That is, we consider

1z (p+1 2" ¢

i Z Zbﬂkwj Sl lngK

14

iForlSiﬁNandlngK,deﬁne
16

_ 1

v (10) Al =) [ Zu(owi(e)de, 1)< (p+127 110,

18

7o where 2 := Xy(t; — 8-) and m < n is the selected truncation level discussed in previous paragraph.

20 5 That means the matrix A is already truncated according to strategy Eq. (9). For 1 <k < K, we set

2 [Ai- =7 (Ay)T for 1 <i< N and

2 ﬁk = V(Bk) with [Bk]jl = bjlk for 1 < ] < (p—|— 1)2”, 1<I< q,

23

-, Where 7" denotes the operator that stacks the columns of a matrix into a column vector. We then

-, discretize the FLM Eq. (2) with multiscale basis as

26
27 (11)

28

2 where Gy = fi% + ¢z %, + 0., Y = Gy R Gy, %y = Gy ®D,, and ¥, = Dy ® G,, with ‘®’
3 denoting the Kronecker product of two matrices. The gram matrices G,,, D,, € R(PH)2x(P+1)2" apnq
’1 Gy, Dy € R7%9 are given by

32

> (Gl = (wiswj),  [Duljy = (WJ’WJ> (Gl = (stys0), [Dly = (s7557).

* Since Gs are symmetric positive-definite, Eq. (11) could be easily reformulated as standard group
* LASSO model by variable substitution. We will then use the above Eq. (11) to select the most important

* sensors through the multistage approach described in Section 2.

" Once the most important sensors .# R are selected after R stages, we will use the following ridge
. regression model to estimate the corresponding coefficient of kernels f, for k € #X:

39

— 2

40

n (12) L, in Z ArBr—y
— BreR?"a(r+) ke R | |1 SR
42

Z AP —y

k=1

2 K
+A Y \/BIGiBk ¢,
=1

min
BreR2"a(p+1) keor

+ Y BIGB ¢

ke R
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1 where G := 0¥ + ¢;9,, + ¢,%; with parameters @, ¢, ¢, > 0. To solve Eq. (12), notice that the objective
~, function is a quadratic function, which means that Eq. (12) could be easily solved as a linear system.
3

4 4. Numerical Experiments

. We will implement the proposed MSAFE method on the real data sets [7] consisting of EMG and
6

— movement data from an AB subject’s right limb. We will also compare its performance with the
7

— original SAFE method proposed in [7]. Numerical results demonstrate that the proposed MSAFE
8

— method could achieve better or similar performance in sensor selection and prediction error with a
9

— significantly less computation time than SAFE. All experiments in this section are executed on R
10

— [23], within Windows 10 on an Intel Core i7 CPU @ 3.60 GHz and 16GB RAM.

11

2 4.1. Data Description and Preprocessing. We first briefly describe the data sets. We consider

3 two different patterns of movements, constant and random, and each of them contains 3 different
" movement data of finger and wrist, respectively. These give us 12 different data sets in total. There
15> are 15 EMG sensors placed on the subject’s limb. An external EMG signal unrelated to movement
¢ is also added to address the validity of sensor selection. Therefore in each data set, we will have 16
7 EMG signals {Xi(r) : 1 € T}}%, at 198 different sampling time T := {1;}}°%, where X, is the unrelated

'8 one. Moreover, the displacement of finger flexion/extension or wrist flexion/extension {z(¢) : t € T'}

19 at the corresponding times 7" are also collected.

20 We next describe the preprocessing of the raw data of EMG signals and displacement in the
21 convenience of numerical implementation. The displacement data {z; := z(#;) }2? and historical EMG
22 signals Sy = {Xi(t) : t € [t; — 8,4 N T} with window size 6 = 1/3 for 1 <k <16and 1 <i< 198 are

2 extracted from the raw data at 198 sampling time {#;}/°% C T. To get the corresponding movement

2 velocity {7 (#;)}23, six-order spline basis with third-order regularization are used to get a fit 2(¢) out
® of data {z(t) : # € T}, then {y; := 2'(#;) } 1°3 could be computed explicitly. As for the integral Eq. (1),
2 MSAFE uses continuous piecewise linear functions to interpolate the discretely sampled EMG data
7 {Xy(t) :t € [t;— 8,4;] N T}, and gets approximations of the continuous signals { Zj(t) : t € [0, 1]}
# for 1 <k<16and 1 <i< 198 with explicit formulas. The integral Eq. (1) and the matrices A; for

? 1<k <16inEgs. (11) and (12) can then be approximated.
30

31 4.2. Experiment Setups. In MSAFE, we will represent the kernels y;(f,z) for 1 < k < 16 in the space
n S = M3 ® S0, where M3 denotes the multiscale piecewise cubic polynomial space of level 2 (see
3 more details in A) and Sy is cubic spline space with dimension 10. We point out that the resulting
u space . for MSAFE is of dimension 160, which is larger than the one of SAFE method. Actually
35 SAFE method adopts the space Sjo ® Syo.

3 We start with the sensor selection. The tuning parameters A, ¢;, ¢, in the sensor selection Eq. (11)
37 are set in such a way that logA takes values from —20 to 0 with step 0.25 and log ¢;,1og ¢, ranges
3 from — 10 to 0 with step 2.5. We will use 5-fold cross validation to select them in each of the following
3 stages. The sequentially updated parameters { f;, gk,hk},iil in Eq. (11) are initialized to be 1. We
2 use the R package gglasso to solve Eq. (11) with the initial values at the first stage. We then get
41 an active variable set # "' and update the values of { fy, gk, it} }Cil according to Eq. (3). The second
4 stage model Eq. (11) will be solved with the updated values of { fk] ) g,](, h,l( }}Cil and the active variable
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, set ', We repeat this process for 5 stages and obtain the final active variable set .#> with both
> methods.

5 We next continue with the kernel estimation. Specifically, we will solve Eq. (12) with the active
, variable set .#>. For SAFE method, ¢ = 0 as claimed in [7] and for MSAFE, we set candidates ¢ such
5 thatlog,g¢ € {—1,—2,—3,—4,—5} for cross validation. In both methods, candidates of ¢, ¢, for
¢ cross validation and other setups are kept identical to the ones in sensor selection part, respectively.
;7 We remark that the SAFE method in [7] represents the kernels y; in S19 ® Sj9. We already showed
8

9

0

2

3

4

s in Figure 2 that the coefficient matrices generated by the multiscale basis are much more sparse than
o those generated by the spline basis. In other words, the coefficient matrices in the proposed MSAFE
10 method have a majority of entries close to 0. Furthermore, Figure 2 indicates that the additional
sparsity that is not modeled by truncation strategy Eq. (9), and the spline term in Eq. (10) could
contribute to some extra sparsity as well. In regard of these, we further truncate those small entries
13 in Ay’s, only keep 10% of entries to be nonzero in those coefficient matrices A;’s.

14 During this study, the latest version of gglasso package does not take sparse matrices. To have
15 a fair comparison with SAFE and fully demonstrate advantages of multiscale basis, we delve into
16 the Fortran codes of the package, implement the sparse matrices multiplication (see e.g. [40]) and

17 incorporate it into functions from the package gglasso.

18
., 4.3. Experiment Results. We will compare the performance of the proposed MSAFE method with

-, original SAFE in the following aspects: the selected sensors, the prediction error with the estimated
o, kernels, and the total computational time in sensor selection and kernel estimation. More precisely,
+, the prediction error for a specified method and data set is defined by

2l Iy (0—2)°
” MSE=2) ) TR
i=1jeF t

1

3

25

26 where F; identifies the i-th test fold of the 5-fold cross validation, {y;} jef; are the actual responses
27 for testing, and {J;} jef, are the predicted values of the kernels estimated on corresponding training
28 folds.

2 Anatomy of hand movements provides us the most important sensors’ placement related to the
30 finger/wrist flexion/extension movements. Let % := J#F U #f denote the index set of those most
31 relevant sensors to the movement of interest, where % and %% split %" into groups corresponding to
32 flexion and extension. It was claimed in [7] that for finger movement, ¢z = {12} and #¢ = {5,7}; for
33 wrist movement, #r = {8,10,11,14} and 7z = {2,7,13,15}. Notice that sensors {1,3,4,6,9,16}
34 are irrelevant to the movements of interest.

35 Table 1 shows the performance of SAFE and MSAFE in sensor selection, cross validation mean
36 square error, and the computational time for each data set. It is direct to observe that the proposed
37 MSAFE method selects the same sensors as SAFE in most of the data sets. For finger movement
38 data sets, both methods select exactly the same sensors. For wrist movement data sets, MSAFE
39 method tends to select fewer but more important sensors. For example, for Constant #3 data of wrist
40 movement, sensor 9 is incorrectly chosen by SAFE and is successfully filtered by MSAFE.

41 Moreover, the cross validation mean square errors of MSAFE are almost the same as those of
42 SAFE in every data set. However, as Figure 3 reveals, the overall computational time of MSAFE is



Submitted to Journal of Integral Equations and Applications - NOT THE PUBLISHED VERSION

FAST MULTISCALE FUNCTIONAL ESTIMATION IN OPTIMAL EMG PLACEMENT FOR ROBOTIC PROSTHESIS CONTROLLERS3

TaBLE 1. Performance metrics for sensor selection at the final stage for constant (top

three rows) and random (bottom three rows) finger and wrist movement patterns,

:
2
S and the CV MSE means and time costs for each of the data sets.

! Finger Movement Wrist Movement

; Data set | Method Sg:lected CV MSE | Time (min) Selected CV MSE | Time (min)
o ensor Sensor
7 Const #1 SAFE 7,12 7.794e—-2 | 504.77 2,11,15 | 3.931e-2 | 527.56
8 MSAFE 7,12 7.161e—2 47.15 8,15 4.389¢—2 68.94
9 Const #2 SAFE 7,12 9.937e—2 | 525.92 11,15 4.807e—2 | 734.18

10 MSAFE 7,12 8.298e—2 43.72 11,15 4.857e—-2 88.16
E Const 43 | SAFE 7,12 | 1.012e—1 | 669.36 2,9,11,15 | 5.066e—2 | 886.07

1 MSAFE 7,12 9.279e—2 76.38 11, 15 6.015e—2 113.03
13 Rand #1 SAFE 7,12 2.021e—1 358.54 8,11,15 | 1.136e—1 699.47
. MSAFE 7,12 2.048e—1 54.80 8,15 1.181e—1 120.06

s Rand #2 SAFE 5,7,12 | 1.725e—1 593.23 2,8,11,15 | 1.095e—1 | 1345.79

" MSAFE | 5,7,12 | 1.434e—1 103.17 11, 15 1.204e—1 201.87
P Rand #3 SAFE 7,12 1.749e—1 725.37 11, 15 8.222e-2 | 615.27
— MSAFE 7,12 1.749e—1 122.47 11, 15 8.473e—2 65.81

18

19

» remarkably less than that of SAFE in every data set; MSAFE costs only about 10%~15% time of that

»1 in the SAFE method. These results confirm that the multiscale polynomial basis used in MSAFE have
,»» brought a huge advantage in computational cost, while maintaining the prediction accuracy.

23

"y 5. Simulation Study

»_ This section tests the robustness of SAFE and MSAFE in sensor selection against the impact of
% covariance misspecification, based on simulated data with correlated noises studied in [7]. We use
?_ the data set FC3 and the corresponding estimated kernels 7 and f;, from SAFE method to generate
% the responses. Specially, we generate data by

— 1

2 (13) vi= Y, | Xe(ti—8t)(t.z)dT + ¢,

31 k=7,1270

1<i<N,

2 where X;’s and t;’s are from data set FC3 in [7], {7 and §, are estimated kernels of FC3 by SAFE
“ method, {&}Y, are zero-mean multivariate Gaussian noises with covariance matrix £ € R¥*N such
34

~— that

3 COV[EZ‘,SJ'] :G;% |:5ij+96Xp <—(i—j)2/n2):|.

E Here 6 > 0 is related to the dominant sources of dependence, 17 > 0 controls the correlation decay
38 where larger values imply slower correlation decay, and oj, > 0 is chosen such that X; = G}%(l +0)
39 equals the standard deviations of CV MSE means from the SAFE method on FC3 data set. The
40 simulation experiment runs over factors 6 € {0.25,10,100} and i) € {10,100}, and J = 100 individual
41 sets of noises on each scenario. We use the same setting as [7] and will compare the performance of
42 MSAFE with SAFE. We set the number of stages R = 2 for both methods.
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FIGURE 3. CV MSE means and standard deviations for the optimal tuning parameters
of the last selection stage (top panel) and the time cost (bottom panel). MSAFE has
comparable prediction error than SAFE, while time plots illustrate the advanced
efficiency brought by multiscale basis.
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For the generated J different sets of noises, we will report the following quantities in Table 2.

CV Mean Square Error
. 0. .
CV Mean Square Error

O SAFE
0O MSAFE

O SAFE
0O MSAFE

I

1

1

1
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Time (min)
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6?0

1

4?0

1

L]
L]
L]
L]
L]
L]

o

FC1 FC2 FC3 FR4 FR5 FR6 WCH WeC2 WC3 WR4 Wi

e Mean Size: Zle ],/“i/]z] /J, where ,/“i/jz is the set of selected sensors after 2 stages for each
1 < j <J. We note that the ideal value is 2 with {7, 12} as the ground-truth sensors for all
data sets.

e Mean False Positive: Z§:1 |<%/12 \{5,7,12}|/J. The ideal value is 0.

e Mean CV MSE: ZleMSE i/J, where MSE is the CV MSE for j-th data set.

e Mean Time: Z§:1Tj /J, where T; is the time cost for j-th data set.

We also display in Figure 4 the mean and standard deviation of the CV MSE of both SAFE and MSAFE
methods with each scenario of 6 and 1.

We observe that both methods select the correct sensors 7 and 12 on all data sets. However in every
setting of 0 and 1, MSAFE selects fewer sensors and less incorrect selections than SAFE. MSAFE
method merely selects 45%~65% extra sensors as SAFE does; specially MSAFE selects only 8%~23%
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TaBLE 2. Performance metrics across 100 data sets for various covariance settings
with simulation model Eq. (13).

!
2

% 0 Mean Size Mean False Positive Mean CV MSE Mean Time (min)

n SAFE | MSAFE | SAFE MSAFE SAFE MSAFE SAFE | MSAFE

i 0.25 10 | 3.61 2.36 1.59 0.36 4.287e—3 | 3.344e—3 | 164.14 30.66

& ’ 100 | 3.90 2.42 1.87 0.42 4.593e—3 | 3.639e—3 | 169.82 25.34

7 10 10 3.60 2.13 1.55 0.13 4.078e—3 | 2.951e—3 | 163.06 25.93

8 100 | 4.86 2.38 2.72 0.38 4.474e—3 | 3.548e—3 | 189.71 22.46

9 100 10 | 3.76 2.20 1.68 0.20 4.040e—3 | 2.837e—3 | 168.38 25.85

10 100 | 5.19 2.39 2.98 0.39 4.467e—3 | 3.489e—3 | 200.89 21.50
1

12

13 FIGURE 4. Plots of CV MSE and time of SAFE and MSAFE methods across 100 data
14

sets for various covariance settings with simulation model Eq. (13). The x-axis labels
denote the pair (6,7).
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27 (a) CV MSE on simulated data. (b) Time on simulated data.
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misspecified sensors than SAFE does. Moreover, MSAFE tends to have less prediction error in every
™ scenario; specially, MSAFE has 70%~80% mean square error as the one of SAFE. Overall, MSAFE
% method is more robust against the covariance misspecification than SAFE. Finally, the computational
— time of MSAFE on those simulation data sets is always about 10%~18% of that of the SAFE method,

> which once again corroborates the stability and speed advantage of multiscale piecewise polynomial
34

— 6. Conclusions
37

g To perform fast and precise algorithm for robotic prosthesis controllers, we propose MSAFE method
39 based on SAFE, with the multiscale piecewise polynomial basis to discretize the integral operator in
40 FLM. Multiscale basis systematically generates sparse coefficient matrices, accelerating the calculation
41 and improving the stability of original SAFE method. Compared to single-scale spline basis SAFE
42 method, MSAFE with multiscale basis costs only 10%~15% computational time on the hand movement
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data, while performing better sensor selection and comparable prediction accuracy. We also test the
robustness of sensor selection for multi- and single-scale basis against correlation noise. Experiments
on simulated data shows that with various patterns of correlated noise, MSAFE always has slighter
misspecification and prediction error than SAFE. Both real-data experiments and simulation studies
corroborate the efficiency and stability of the proposed MSAFE method.

s fe]m]-
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n Appendix A. Multiscale Piecewise Polynomial Basis

12

13 In this appendix, we present the multiscale piecewise cubic polynomial basis on Q := [0, 1] and its
11 properties. For n > 0, we denote by M, the linear space of all piecewise polynomials of degree less
15 than or equal to p, supported on Q with nodes {i/ 2”}1»220. Abbreviation M, is used when the degree p
16 is clear from the context. By definition, we have the nestedness M, C M, 1. This enables us to define
17 wavelet subspace W, ;1 C M, such that W, | L M, in L?(Q) sense, and M, | = M, &+ W, 1,
15 where ‘@1 denotes the direct sum of two perpendicular spaces. With these spaces, the multiscale
19 decomposition of function space M, could be represented by

2 (14) M, =My&t W, st Woat -t W,.

21

-, Such a decomposition has a spectacular property that W), can be constructed based on W. To see this,
o, define @ := {¢o, 91 } where ¢y := /2, ¢; := (1+-)/2, and transformations of functions f € L*(Q)
~._such that

24

5 RHf=fo9 ',  Af=fod .
26 One can learn from [11] that

27 Wit = W, &+ ZIW,,, for all n € N.
% Moreover, if W, is a basis of W,,, then

30 Wyt = {Tw:w e W,,ic {0,1}}

31
— isabasis of W, 1. This result reveals the relation between wavelet space W, and W, and a systematic

32
L, way to generate basis W, of W,, out from basis W; of W.

34 232210220""3%”-

% Then for n > 1 we have that

36

S, (15) W,= U Wi, w= | Zw,
s ec{0,1}"! ec{0,1}""!

39 and we would have W, as a basis of W,.
4 The relation above not only serves as a systematical generator of basis functions for high levels,
41 but also leads us to the estimation of coefficient matrix entries. The proposition following claims

g that as level n increases, the entries of coefficient matrix A in Eq. (8) will decay exponentially. Define
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1 CP]0, 1] as the space of all functions on [0, 1] possessing p-order continuous derivatives for p € N,
2 and for f € C[0, 1], define [| f]|e := max,epo 1] |/ (2)].

3
~, Proposition 2. Suppose that {W, }*_, is a sequence of multiscale piecewise polynomial bases of degree

~ p >0 generated by Eq. (15). If f € CP[0, 1], then for any w € W,, withn > 1, there holds

(16) ‘/Olffw‘l:df

with positive constant

S CP . 2*(p+1)}'l

() ‘

)
[=S)

5
7
5
B
0

n V2p+3

12 p+1)12r 1 vew

13

. Proof. By Eq. (15), for any w € W41 with n > 0 we have w = v(2" - —i) for some v € Wj and 0 <i <
s 2" —1. Then

15

16

16 1 1 o I
17 /Of(T)W(T)dT:/Of(T)V(Z T—i)dt=2 /Of(z (t+1i))v(t)dT.

18

1 On the other hand, notice that by Taylor expansion, we have
20

21 P*lf(l)(izfn) , T P
— —-n AY) — J O\k& ) v s(p)(H—n .
= D) = 4 T+/o 72D

23

24 Therefore we have

/1f(1:)w T)dt
0

26

. FP 27t +i))v(t)drdT
0

27 - pl2 (p+Dn

28

» Hf H t” T)dtdt

0 pl2(p+1)n v

5 | H o

32 —_ oo D

- (p+ D)2 /0 P y(1)dT|.

34
5. Next we estimate the last integral. Notice the fact that monic Legendre polynomials Lp+1 of degree
5. P+ 1 has the smallest L?-norm among monic polynomials with the same degree on [—1, 1]. Then
— since v € W; has vanishing moment p + 1, we have

1
1 1

[esrn(5)s

1 r+1

/_IL,,H(t)v(z)dt‘.

38

1
39 / Pty (t)dt| =
E 0
w _ b
; 2p+2

2p+2
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1 Then by Cauchy inequality,

2
2 1 V2
1
3 /0 hv(t)dr| < 2p+2HLp+1HL2 11] HV||L201
4
s _ V22t 2
6 - 2p+2 (2p—|—2)' 2p+3 22[0.1]
7
N VIl 220,11 2p+3
e = 2p+2 > 3 S 22(p+1) HV||L2[O71]7
9 (p—&-l)\/pT

10
11 where the L?-norm of L, and the estimation of central binomial coefficient (2:) >4"/(2n+1) are
12 applied. Then combining the estimations above gives the final bound

V23

(p+ DRE+D+2)

/0 1 f(r)w(r)dr‘ <

pr H m%”"”ﬁ[e,uy

1 which is exactly the desired. O

17

18 Based on Proposition 2 now we are capable to prove Theorem 1, which could be used to determine
19 the multiscale level needed for a certain accuracy level. Recall that the multiscale coefficient matrix

20 for n level is A,,, and the truncated A,’f‘ of matrices A,, forlevel 1 <m <nis
21

2 [Am] = [Anl;, 1<j<2"(p+1),
" 0, 2M(p+1)<j<2"(p+1).

23

24

g Notice that for n > m, A,, is exactly the first 2" (p -+ 1) columns of A”". For matrix A, define ||A||» and
2 ||A||F as the matrix 2- and Frobenius-norm of A respectively.

27

25 Proof of Theorem 1. By Proposition 2, for all n > m we have

29

" =22 <[ pa vy 2t

31 i=m+1

32

33

34

35 — cf) f(P)

36

2

SCIZ, Fp) (p—|—1N Z 2i=ly=2(p+1)i
i=m-+1

2 N(p+1) 2—2pm

oo (22p+2 _ 2)2m )

E Then notice for matrix A there holds ||A||> < ||A||r, we have the desired inequality. Worthy to notice
38 that with large m, another inequality ||A||2 < \/||A||1||A|| yields a better bound. O

39

E Now we focus on constructing multiscale basis of M3. Inspired by [13, 21], here we define points
41 To:={t;:==(i+1)/5:i=0,1,2,3}, which satisfies Ty C ®(Tp). Then we construct the basis of M}
42 and W% as follows. Define W, = {wo,-}?zo C MS such that wy,(t;) = &; for i,j = 0,1,2,3, which
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results in
125 75 65
woo(x) = ?x3 Exz - ?x+4,
125 95
woi(x) = X x —100x% + + X6,
125 175
wop (x) = —7x3 +— > x> —35x+4,
125 55
woz(x) = e X =252 + —x—1.

Clear that W, forms a basis of M. For wavelet space W3, we require the basis W == {wy; : i
0,1,2,3} C M3 consisting of functions with vanishing moment 4, that is, (w1;,wo;) = 0 for i, j
0,1,2,3. One possible basis could be

25 (—920x° + 1080x? — 320x + 19), 0<x<3,
Wlo(x) — ) 48 2
25 (7080x* — 15720x% + 11360x — 2669), 3 <x <1,
| & (—23480x° + 1572022 —2700x +91), 0<x< 4,
w
il ) 5 (5200 — 10802 + 660x — 101), lox<l,
25 (—520x° 4 480x% — 60x — 1), 0<x<3,
wia(x) =9 g 3 2 |
25 (23480x7 — 54720x% +41700x — 10369), 3 <x <1,
| 25 (—7080x +5520x2 — 1160x+51), 0<x< 1,
w
130 T | & (9203 — 168002 +920x — 141),  L<x<1,

2° therefore we have W, as a basis of W3 Then basis W, for level n > 2 could be obtained via relation
1 Eq. (15).
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