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Abstract—Recently, edge computing has attracted a lot of
attention from academia and industry. One of the important
problems in edge computing is the task assignment problem.
Many task assignment optimization problems in the literature
do not consider uncertain parameters. In this paper, we adopt
the chance-constrained method as a powerful paradigm to
model uncertainty in our task assignment optimization problem.
Chance-constrained programming is one of the most difficult
classes of optimization problems. To solve our defined problem,
we propose a method called FMS that finds the optimal solution
accurately and quickly. We first transform the original proba-
bilistic problem into an equivalent problem using the Gauss
error function, and then rely on an auxiliary problem to decrease
the search space and find the candidate points that lead to
the optimal solution and, therefore, solve the defined problem.
Simulation results confirm the correctness and efficiency of our
method.

Index Terms—candidate points, chance-constrained, edge
computing, optimization, search space

I. INTRODUCTION

Recently, edge computing has attracted a lot of attention
from academia and industry [9], [11]. It pushes mobile
computing, network control, and storage to distributed devices
at the network edge, providing server resources, data analysis,
and artificial intelligence closer to data collection sources. It
offers faster data processing, generates less network traffic,
and is less costly than cloud computing.

One of the important problems in edge computing is the
task assignment problem [16], which involves the transfer of
resource-intensive computational tasks to external platforms
or devices on the edge. Numerous people have worked on
various task assignment optimization problems [3], [7], [18],
but most of the problems do not involve random parameters.
In reality, many parameters are uncertain; for example, the
latency between the time the client sends out a task to an
edge device and the time the client receives a reply is not
predictable. In this paper, we adopt the chance-constrained
method [1] as a powerful paradigm to model uncertainty in
our optimization problem. This method allows us to formulate
an optimization problem that ensures that the probability of
meeting a certain constraint is above a certain level. Chance-
constrained methods have a plethora of applications from
telecommunication and medicine to finance [17].

In this paper, we consider a chance-constrained task assign-
ment optimization problem. More specifically, we assume that
a client needs to choose some of n edge devices to process

tasks. If the client chooses device i, there is a network delay di
associated with it. The delay di is a stochastic variable which
we assume follows a Gaussian distribution with mean μi and
variance σ2

i , i.e., di ∼ N(μi, σ
2

i ), i = 1, 2, · · · , n. We also
know that the amount of work each device can finish in its
capacity is wi. The devices process the work sequentially. Our
goal is to assign work to devices such that, with a probability
(confidence level) p, the total delay is minimized and the total
amount of work finished exceeds a certain amount W .

The chance-constrained method is a relatively robust ap-
proach to model uncertainty; however, it is often difficult to
solve [2]. One way to try is brute force, where all possible
assignments are enumerated. However, this method is not
scalable with an increase in n. Inspired by the ideas from [13],
[14], we propose an algorithm called Finding the Minimal
Solution (FMS) to quickly reach the minimum solution by
substantially reducing the search space. The main idea is as
follows: We first transform the original chance-constrained
probabilistic problem, which we call P1, using the Gauss
error function [4] into an equivalent problem P2. Then, we
relate P2 to an auxiliary problem P3. With a series of theo-
rems, we prove that we can significantly decrease the search
space and find the candidate points that lead to the solution
to P2 through P3. After we obtain the candidate points
of P2, we choose the one that minimizes our optimization
goal as the solution to P2, and therefore solve the original
problem P1. To verify the correctness of our algorithm, we
conduct simulations comparing the proposed FMS method
and a variation method called Finding the minimal solution
using Binary Search (FBS) with the ground truth solution
provided by the brute forth algorithm (BF). Simulation results
show that, using the brute force method as a benchmark, most
of the time, both MFS and FBS can produce the exact same
minimal solutions as the BF method. And when the solutions
are different, the deviation is only about a few percentage
points from the optimal. In the process of finding the optimal
solution, both MFS and FBS have greatly narrowed down the
search space, with FBS using a few more attempts than MFS
due to its simplicity while MFS successfully pinpointing the
solution in a couple of tries thanks to its consideration of the
problem structure.

The differences of our work from others and the key
contributions of our work are as follows:

• We define a chance-constrained task assignment opti-
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mization problem in an edge network.
• We propose a method to solve the probabilistic problem

with high accuracy and a small search space.
• Simulation results confirm the correctness and efficiency

of our method.

The rest of the paper is organized as follows: Section II
references the related work, Section III presents the problem,
Section IV provides the solution, Section V describes the
simulations conducted, and the conclusion is in Section VI.

II. RELATED WORK

In the literature, many papers have discussed task assign-
ment optimization problems in edge networks [3], [7], [18].
In [3], the authors proposed a multi-objective optimization
solution to assign different application tasks to different edge
devices while minimizing the energy consumption of edge
devices and the computation time of tasks. In [7], the authors
put forward a new joint task assignment and resource alloca-
tion approach in a multi-user environment to minimize energy
consumption with application latency constraint. And in [18],
the authors presented a task offloading and power assignment
optimization algorithm for minimizing task completion time
under mobile device energy constraint. In these optimization
problems, uncertain parameters are not considered, which is
what we aim to address in this paper.

To model optimization problems under uncertainty, we
adopt the chance-constraint approach, a formulation of an
optimization problem to ensure that the probability of meeting
a certain constraint is above a certain level. Some early work
dates back to the 1950s, with pioneers such as Charnes and
Cooper [6], Charnes et al. [5], Miller and Wagner [12], and
Prékopa [15], who considered problems with individual or
joint chance constraints. Chance-constrained problems are
one of the most difficult classes of optimization problems
[10] and are generally difficult to solve, except for special
cases such as the minimum spanning tree [8] and linear
optimization [17].

The closely related papers to our problem are [13] and
[14]. In [13], the authors consider the problem of finding
the shortest paths in a graph with independent randomly
distributed edge lengths. The goal is to maximize the proba-
bility that the path length does not exceed a given threshold.
They assume each edge has independent normally distributed
length and relate the problem to the linear combination of
mean and variance. In [14], the author focuses on a general
framework for reliable stochastic combinatorial optimization
that includes mean-risk minimization and models involving
the probability tail of the stochastic cost of a solution. Inspired
by these ideas, we develop a solution to our defined problem
in this paper.

III. PROBLEM DEFINITION

The problem we want to solve in this paper is defined as
follows: A client has some tasks that need to be processed
by edge devices and there are n wireless edge devices
available. If a client uses device i, there is a network delay

di associated with the device. Delay di is assumed to follow
a Gaussian distribution with mean μi and variance σ2

i , i.e.,
di ∼ N(μi, σ

2

i ), i = 1, 2, · · · , n. The amount of work
each device can finish in its capacity is wi. The devices
process the work sequentially. The goal is to assign work
to devices such that with probability p, the total delay is
minimized and the total amount of work finished exceeds
W . The mathematical representation of our problem, which
we call P1, is as follows:

minimize
X

D

s. t. P (
n∑

i=1

dixi < D) ≥ p

n∑

i=1

wixi ≥ W

xi ∈ {0, 1}, i = 1, 2, · · · , n

(P1)

In P1, D is the total delay. Parameter xi is either 0 or 1. If
a device i is chosen, xi = 1; Otherwise, xi = 0. The vector
X = {x1, x2, · · · , xn} that can minimize D is the optimal
solution we want to find to solve P1.

IV. OUR METHOD

A. Transformation

In order to find the optimal solution to P1, we first
make the following transformation. Since each di follows
a Gaussian distribution di ∼ N(μi, σ

2

i ), i = 1, 2, · · · , n,
the summation of these random variables

∑n
i=1

dixi also
follows a Gaussian distribution with mean μ =

∑n
i=1

μixi

and standard deviation σ =
√∑n

i=1
σ2

i xi. We rewrite the
probabilistic condition in terms of the Gauss error function
(erf) [4] as follows.

P (

n∑

i=1

dixi < D) =
1

2
(1 + erf(

D − μ√
2σ

)) ≥ p

So, D ≥ μ+ [
√
2erf−1(2p− 1)]σ

If p is given, then
√
2erf−1(2p − 1) is a constant. We

denote it by A, i.e., A =
√
2erf−1(2p− 1). Then,

D ≥ μ+Aσ

Therefore, to minimize D, we need to find the minimum
value of μ + Aσ. So, we have the following minimization
problem, which we call P2, that is equivalent to problem P1.
From now on, we will focus on finding the optimal solution
to P2 and thereafter solving P1.

minimize
X

μ+Aσ

s. t.
n∑

i=1

wixi ≥ W

xi ∈ {0, 1}, i = 1, 2, · · · , n

(P2)

Now let us consider the time complexity of finding the
minimum value of μ + Aσ. As we know, if a device i is
chosen, its xi = 1, otherwise xi = 0. Since there are n
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devices, there are 2n choices of these devices. Therefore, the
time complexity is O(2n) if we use the brute force method,
which is exponential and not scalable when n is large.

B. Auxiliary Problem

Next, we create an auxiliary problem to problem P2, which
we call problem P3, as follows:

minimize
X

μ+ kσ2

s. t.
n∑

i=1

wixi ≥ W

xi ∈ {0, 1}, i = 1, 2, · · · , n

(P3)

The goal of P3 is similar to that of P2, but it is a linear
function of (μ, σ2) with a coefficient k(where k ≥ 0) instead
of (μ, σ) with a constant A. Here, k can take different
values and plays a very important role in solution search. We
denote the solution X to P3 at k as X(k). The constraints∑n

i=1
wixi ≥ W in the two problems are the same. That

is, if we find a solution vector X that satisfies the constraint
in P3, it must satisfy the constraint in P2, even though the
minimum solution to P3 may not be the minimum solution
to P2. However, we can find all the candidate points of P2
through P3, as we will later prove that the candidate points
of P3 are also the candidate points of P2. With the candidate
points, we can quickly find the minimal solution to P2.

The following theorems show the properties of P3.
Theorem 1: For a pair (μ, σ2), μ+ kσ2 is a monotonically

increasing function with respect to k.
Proof. Suppose (μ1, σ2

1) and (μ2, σ2
2) are the minimum

solutions to problem P3 at k1 and k2 (k2 > k1), respectively.
We want to prove that μ1 + k1σ

2
1 < μ2 + k2σ

2
2 . Since the

pair (μ1, σ2

1) is the minimum solutions to P3 at k1, we
have μ1 + k1σ

2

1
≤ μ2 + k1σ

2

2
. And since k2 > k1, we

have μ2 + k1σ
2
2 < μ2 + k2σ

2
2 . Combining the two, we have

μ1 + k1σ
2

1
≤ μ2 + k1σ

2

2
< μ2 + k2σ

2

2
. Therefore, μ+ kσ2 is

a monotonically increasing function with respect to k. �

Theorem 2: Suppose (μ1, σ2
1) and (μ2, σ2

2) are the minimum
solutions to problem P3 at k1 and k2, respectively. If k2 > k1,
then σ2

2
≤ σ2

1
.

Proof. Because (μ1, σ2
1) is the minimum solution at k1, we

have μ1 + k1σ
2

1
≤ μ2 + k1σ

2

2
. Also, because (μ2, σ2

2
) is the

minimum solution at k2, we have μ1 + k2σ
2

1
≥ μ2 + k2σ

2

2
.

Subtracting the two sides of these two, we get (k2−k1)σ
2

1 ≥
(k2 − k1)σ

2

2
. Therefore, σ2

2
≤ σ2

1
. �

C. Our Proposed Algorithm FMS

Now we present the main algorithm Finding the Minimum
Solution to P2 (FMS) in Fig. 1. It has three steps. In the first
two steps, we rely on the auxiliary problem P3 to produce
the candidate points of our target P2 problem. In Step (1),
we call Algorithm Reducing Search Space (RSS) in Fig. 2 to
reduce the search space of P3 by narrowing the range of k

from [0, ∞] to [0, h]. In Step (2), we call Algorithm Finding
Candidate Points (FCP) in Fig. 3 to return all the candidate
points of P3 in the k range [0, h]. These candidate points
are also the candidate points of P2 (proof below). Finally,

Algorithm FMS: Finding the Minimum Solution to P2

Require: Input: μi, σi, wi for i = {1, 2, · · · , n}, A, W
Output: the minimum solution X to P2

1: Call Algorithm RSS to get the search range of [0, h] in
P3

2: Call Algorithm FCP to obtain all the candidate points in
the search range [0, h] in P3

3: Compare all the X values of the candidate points using
the objective function μ+Aσ to get the minimum solution
to P2

Fig. 1. Algorithm to find the minimum solution to P2

in Step (3), we find the minimum solution to P2 from these
candidate points.

In the following, we will explain these algorithms in detail.

Step 1. Algorithm RSS

In Step (1) of Algorithm FMS, we call Algorithm RSS in
Fig. 2 to decrease the search range of k in P3 from [0, ∞]
to [0, h], where h = A

σ
. In RSS, we first solve P3 at 0 and

obtain X(0) (line 1). In line 2, we assign σ0 to σ. The notation
σk represents the σ at k. As long as kσ �= A, we repeat the
following (lines 4-6): we update k to A

σ
, solve P3 at k to get

X(k), and assign σk to σ. After the loop terminates, we get
the upper bound h of the search range. We return the k range
[0, h] and the corresponding solutions X(0) and X(h).

Algorithm RSS: Reducing Search Space

Require: Input: μi, σi, wi for i = {1, 2, · · · , n}, A, W
Output: range [0, h] and the corresponding X(0) and
X(h)

1: solve P3 at 0 to get X(0)
2: σ = σ0

3: while kσ �= A do
4: k = A

σ

5: solve P3 at k to get X(k)
6: σ = σk

7: end while
8: h = k

9: output range [0, h] and the corresponding X(0) and X(h)

Fig. 2. Finding the search range of k in P3

In Theorem 3, we show that the minimum solution to P2
cannot lie in the range of k from h to ∞ in P3. Therefore,
we only need to search the range of k from 0 to h in P3 to
find the minimum solution to P2, substantially reducing the
search space for P2.

Theorem 3: The minimum solution to P2 cannot lie in the
k range of (A

σ
∞) in P3.

Proof. Suppose (μ, σ2) is the minimum solution to P3 at
A
σ

. We denote (μ′, σ′2) as the minimum solution to P3 for
any k′ > A

σ
. We want to show that μ + Aσ ≤ μ′ + Aσ′.

Since (μ, σ2) is the minimum solution to P3 at A
σ

, we have
μ + Aσ = μ + A

σ
σ2 ≤ μ′ + A

σ
σ′2. And from Theorem 2,
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we have μ′ + A
σ
σ′2 ≤ μ′ + A

σ′
σ′2 = μ′ +Aσ′. Putting these

together, we have μ+Aσ ≤ μ′+Aσ′. Since k′ is any number
greater than A

σ
, this means we cannot get a lower value in P2

by trying any k′ in the range of (A
σ

, ∞) in P3. Therefore,
the minimum solution to P2 cannot lie in the k range of (A

σ
,

∞) in P3. �

Step 2. Algorithm FCP

In Step (2) of Algorithm FMS, we call Algorithm FCP in
Fig. 3 to find all the candidate points in the k search range
[0, h] in P3. We show that the candidate points in P3 are
also the candidate points in P2.

The following theorem discloses the design idea of FCP.
Theorem 4: For a k range [a, b], if X(a) = X(b), then for

any c ∈ [a, b], we have X(c) = X(a) = X(b).
Proof. From Theorem 2, we know that σ2

b ≤ σ2

c ≤ σ2

a. If
X(a) = X(b), then σ2

a = σ2

b . Therefore, the only way for
σ2

b ≤ σ2
c ≤ σ2

a = σ2

b to hold is to let σ2
a = σ2

c = σ2

b . Since c

can be any value in the range [a, b], then all the k values in
this range have the same σ2 value.

Since (μa, σ2

a) is the solution to P3 at a, we have μa +
aσ2

a ≤ μc + aσ2
c . From the above, σ2

a = σ2
c . Therefore, μa ≤

μc. Now, we show that μa cannot be less than μc. We prove
this by contradiction. Suppose μa is strictly less than μc, i.e.,
μa < μc. Since c can be any value in the range [a, b], if c = b,
then μc = μb. Therefore, μa < μb. But if X(a) = X(b), then
μa = μb. We reach a contradiction. So, μa can only be equal
to μc and therefore equal to μb as well. This means that the
μ values of all the ks in the range of [a, b] are the same.
Combining the result of the σ2 values above, we have proved
that X(c) = X(a) = X(b). �

Theorem 4 tells us that, for a range [a, b] of k, if
X(a) = X(b), then we need only consider a or b as a
candidate point and can ignore all other values in the range.
However, if X(a) �= X(b), then there may be more candidate
points in the range. In that case, we pick an intermediate point
c. If X(a) = X(c), then, besides a, we need only search
the range (c, b] for more candidate points. If X(c) = X(b),
then, besides b, we need only search the range [a, c) for more
candidate points. In this way, we can further narrow the search
space.

How do we determine an intermediate point c in the
range of [a, b]? The choice of c will affect the efficiency
and accuracy of our method. Ideally, it is a candidate point
that causes (μ, σ2) to change. We need to search for it.
To simplify, we can use binary search, picking the middle
point in the range each time to reduce the search space.
Alternatively, we can use the following method that considers
the property of the functions: we look at two functions defined
as f1(k) = μa + kσ2

a and f2(k) = μb + kσ2

b . In these
two functions, k is a variable and the others are constants.
Therefore, these two functions are lines and they intersect in
the range of [a, b] because f1(a) < f1(b) and f2(a) > f2(b).
To get the cross point, we let f1(k) = f2(k). Thus, the cross
point c is: −μa−μb

σ2
a
−σ2

b

. We treat the cross point as a candidate
point.

With these preparations, we have Algorithm FCP to find
all the candidate points in the range of k from 0 to h in P3.

Algorithm FCP: Finding Candidate Points

Require: Input: μi, σi, wi for i = {1, 2, · · · , n}, [0, h],
X(0), X(h), W
Output: candidate point set Sp

1: if X(0) == X(h) then
2: add element {0, X(0)} to the candidate point set Sp

3: return
4: end if
5: add elements {0, X(0)} and {h, X(h)} to the candidate

point set Sp

6: add range [0, h] to the range set Sr

7: while Sr is not empty do
8: pop the first range [a, b] from Sr

9: c = −μa−μb

σ2
a
−σ2

b

10: if c �= a and c �= b then
11: solve P3 at c to get X(c)
12: if X(c) == X(a) and X(c) �= X(b) then
13: add range (c, b] to Sr

14: else if X(c) �= X(a) and X(c) == X(b) then
15: add range [a, c) to Sr

16: else if X(c) �= X(a) and X(c) �= X(b) then
17: add element {c, X(c)} to Sp

18: add ranges [a, c) and [c, b] to Sr

19: end if
20: end if
21: end while

Fig. 3. Finding all the candidate points in the k range of [0, h] in P3

In Algorithm FCP, we first check if the X values (from
Algorithm RSS) at 0 and h are the same (line 1). If so,
according to Theorem 4, we only need to add element {0,
X(0)} to the candidate point set Sp and return (line 2-3). In
Sp, each element contains the k value and the corresponding
X(k). If the X values at 0 and h are different, we add two
candidate points 0 and h, and their corresponding X values
into the candidate point set Sp (line 5). We also add the range
[0, h] into the range set denoted by Sr (line 6). Then, as long
as the range set Sr is not empty, we do the following. We pop
the first range [a, b] from Sr (line 8). We calculate the cross
point c (line 9). If c is not equal to a nor b (line 10), then we
solve P3 at c to get X(c). Then there are three cases (lines
12-19). If X(c) is the same as X(a) but not X(b) (line 12),
then there cannot be new candidate points in the range [a, c]
from Theorem 4. So, we only add (c, b] to the range set Sr

(line 13) to further explore the candidate points. Similarly, we
only add range [a, c) to Sr if X(c) is the same as X(b) but
not X(a) (lines 14-15). Finally, if X(c) is not equal to X(a)
nor X(b) (line 16), we need to add c and its corresponding X

value to the candidate point set (line 17) and both [a, c) and
[c, b] to the range set (line 18) because there can be more
candidate points in both sections. The output of Algorithm
FCP will be all the candidate points and their corresponding
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X values in P3. The following theorem shows that these
candidate points are also the candidate points of P2.

Theorem 5: The candidate points in P3 are also the
candidate points in P2.
Proof. In Algorithm FCP, we only add an intermediate point
c in the range of [a, b] to the candidate point set Sp when
X(c) is different from either X(a) or X(b) in P3. If there
is a change in the X value at c from that at a or b, there
may be a change in the corresponding μ and σ2 in P3 and,
consequently, a change in the objective function μ + Aσ in
P2. On the other hand, if there is no change in μ and σ2 in
P3, there should be no change in μ+Aσ in P2. Therefore,
the candidate points we consider to solve P3 are also the
candidate points we consider to solve P2. �

Step 3. Solving Problem P2

The final step of the FMS algorithm is to compare all the
X values of the candidates points using the objective function
μ + Aσ to get the minimum solution to the P2 problem. If
P2 is solved, then the original equivalent P1 is solved.

V. SIMULATIONS

In this section, we evaluate the performance of our pro-
posed algorithm using a customized simulator written in
Matlab.

A. Algorithms Compared

We compared the following algorithms to solve the P2
problem, and thus the P1 problem.

1) FMS: our proposed algorithm.
2) FBS: finding the minimal solution using binary search.

In this algorithm, we search for candidate points using
binary search in the k range [0, h].

3) BF: brute force algorithm. We enumerate all the possi-
bilities of X to find the minimum solution to P2. This
provides the ground truth to evaluate the accuracy of
our proposed algorithm.

B. Metrics

We used the following metrics.

1) The accuracy of FMS and FBS compared with the brute
force algorithm BF. We calculated the percentage of
cases in which algorithms FMS and FBS can produce
the same results as BF.

2) If the solutions from FMS and FBS differ from that
of BF, how much is the difference? We calculated the
deviation of FMS and FBS from BF.

3) The number of candidate points evaluated to find the
minimum solution to P2.

C. Settings

In our simulations, we tried n values from 10 to 20 in
increments of 2. For each device i, we randomly generated
μi from the range [10, 100], σi from the range [−5, 5], and
wi from the range [100, 200]. We set the probability p to
0.95 and 0.99, and W to 500. For each simulation, we ran
500 times and averaged the results.
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D. Experiments

1) Experiment 1: We compared the optimal solutions
found by FMS and FBS with that of the BF algorithm. We
calculated the percentage of cases in which algorithms FMS
and FBS produced the exact same minimal μ+Aσ (rounded
to four decimal places) as BF.

The simulation results are shown in Figs. 4 (a) and (b)
with p = 0.95 and p = 0.99, respectively. In both figures,
70%−80% of the time, FMS and FBS found exactly the same
optimal solution as BF. Comparing FMS and FBS, there is not
much difference between the solutions they found. Despite the
simplicity of FBS, its accuracy is satisfactory.

Next, we look at the solutions where FMS and FBS differ
from that of the BF. We used the following formula to
calculate the deviation of the minimal values produced by
FMS or FBS from that of the BF.

optA − optBF

optBF

(1)

In formula (1), variable optA refers to the minimal μ+Aσ

found by FMS or FBS and optBF is the minimal μ + Aσ

generated by BF. The results of this metric are shown in Figs.
5(a) and (b).

We can see from the results that when p = 0.95, the
deviations of FMS and FBS from BF are less than 2% and
when p = 0.99, the deviations are less than 2.5%. This means
that both algorithms can produce results quite close to, if not
the same as, the actual optimal. Comparing FMS and FBS, we
observe that FBS has slightly higher deviation than FMS due
to the fact that it does not take the structure of the problem
into account.
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Fig. 6. The number of candidate points compared in FMS and FBS

Number of devices FMS FBS BF

10 2.1067 7.8067 210

12 2.0833 7.5733 212

14 2.1167 9.5900 214

16 2.1467 9.9733 216

18 2.1067 9.8033 218

20 2.1600 12.0400 220

Fig. 7. Number of candidate points compared in FMS, FBS, and BF to find
the optimal solution when p = 0.95

2) Experiment 2: We compared the number of candidate
points evaluated in FMS, FBS, and BF to find the solution
to P2. We ran the simulations 500 times and averaged the
results, which are shown in Figs. 6(a) and (b) and table 7.

Figs. 6(a) and (b) compare the results of FMS and FBS
only. In both p = 0.95 and p = 0.99, FBS evaluated
significant more candidate points than FMS to find the
optimal solution. This is because FBS simply adds the middle
point of a range without considering the properties of the
problem, while FMS looks for the turning point based on the
problem structure. The number of candidate points evaluated
by FMS is only around 2, which means FMS is very quick
in pinpointing the optimal solution.

Since the BF algorithm traverses all the possibilities to
find the minimal solution, the number of candidate points
it evaluates is 2n, which rises exponentially as n increases.
It is hard to put its numbers with those of the other two into
the figures. So we use the table in Fig. 7 to compare the
three algorithms. The table illustrates how FMS and FBS,
particularly FMS, can save the effort required to find the
optimal solution to the problem. Here, we just present the
table when p = 0.95 due to space limitations; it is similar
when p = 0.99.

To summarize, we can see that both MFS and FBS produce
the exact same optimal solutions as BF most of the time,
and when the solutions differ, the deviation is only a few
percentage points away from the optimal. In finding the opti-
mal solution, both MFS and FBS have substantially reduced
the search space, with FBS getting the optimal solution in
a few more attempts than MFS due to its simple idea, and
MFS successfully pinpointing the solution in only a couple
of attempts thanks to its digestion of the problem structure.

VI. CONCLUSION

In this paper, we worked on a chance-constrained task
assignment optimization problem to deal with uncertainty and
proposed a method, FMS, to solve it. We first transformed
the original probabilistic problem into an equivalent prob-
lem using the Gauss error function, and then relied on an
auxiliary problem to decrease the search space and find the
candidate points, and then obtain the optimal solution to our
defined problem. We conducted simulations to evaluate the
performance of our method. Simulation results confirmed the
correctness and efficiency of our method. In this paper, we
assumed that the delay of each device follows a Gaussian
distribution. In the future, we will explore cases where pa-
rameters follow other distributions and where devices process
tasks concurrently.
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