
Reinforcement Learning Approaches for Racing and
Object Avoidance on AWS DeepRacer

Jacob McCalip
Texas State University
jsm246@txstate.edu

Mandil Pradhan
Texas State University
jns176@txstate.edu

Kecheng Yang
Texas State University

yangk@txstate.edu

Abstract—Developing autonomous driving models through re-
inforcement learning is gaining widespread prominence. However,
a pervasive problem is developing obstacle avoidance systems.
Specifically, optimizing path completion times while avoiding
objects is an underdeveloped area of research. AWS DeepRacer’s
platform provides a powerful architecture for engineering and an-
alyzing autonomous models. Using AWS DeepRacer, we integrate
two pathfinding algorithms, A* and Line-of-Sight (LoS), into this
paradigm of autonomous driving. LoS is a novel algorithm that
incrementally updates the model’s heading angles to amply reach
its destination. We trained three types of models: Centerline,
A*, and LoS. The Centerline model utilizes logic from AWS
and is practically the only model used by the AWS DeepRacer
community that avoids objects. We developed models from A*
and LoS that outperformed the default models in time per lap
while maintaining commensurate stability.

I. INTRODUCTION

Autonomous robots have revolutionized numerous sectors

of our economy and are utilized in a wide range of industries

and applications, including manufacturing, warehouses, and

healthcare. These machines are capable of performing tasks

without direct human supervision, relying on a combination

of sensors, learning-enabled algorithms, computer vision tech-

niques for perceptions, and real-time data to make decisions

and execute tasks. Among these autonomous machines, au-

tonomous vehicles have accentuated focus for both research

and development. Self-driving cars are a prime example of

autonomous vehicles that navigate through traffic, utilizing

sensors, cameras, and other technologies to detect objects

and obstacles, determine optimal routes, and make safe and

efficient decisions on the road.

While still facing many challenges to overcome towards

full-scale adoption, autonomous driving is poised to bring

substantial benefits to our society. One of the most significant

benefits of deploying self-driving cars is the potential to largely

reduce traffic accidents. Over 90 percent of road accidents are

caused by some degree of human error, including distraction,

impaired driving, and poor decision-making. It is believed

that, with the advances in autonomous driving technologies,

the number of accidents should plummet [9]. Therefore, reli-

able, effective, and efficient learning-enabled algorithms and

software implementation are essential to autonomous driving,

which can revolutionize the transportation industry. In this

paper, our objective is to optimize collision avoidance through

the lens of reinforcement learning.

This work is supported in part by NSF grants CNS-2104181 and CNS-
2149950, and a REP grant from Texas State University.

Related work. Learning-based autonomous driving can be

traced back to 1991, when artificial neural networks are ap-

plied in the ALVINN system [7]. More recently, A*-like path-

finding algorithms in continuous environments for autonomous

vehicles were investigated [3]. To enable comparative research,

benchmark suites for autonomous driving, such as KITTI [4],

were developed. In the AWS League, the main goal among the

thousands of competitors is to design a model which circles a

lap around a given track in the shortest amount of time pos-

sible. A fairly common approach among the AWS DeepRacer

Community is to use the K1999 Path-Optimization Algorithm.

This algorithm is not commonly used in machine learning or

autonomous driving and has little documentation. However,

“It works by iteratively decreasing the line’s curvature” [5];

this helps racers to cut down the overall time per lap. A less

commonly used approach is to use a path-finding program that

increases the radius around curves. Zhu et al. created a path-

finding algorithm to implement this concept, however, it is not

clear how to reproduce their work [11].

Contributions. In this research, we prototype and evaluate

collision avoidance approaches on the AWS DeepRacer plat-

form. The AWS DeepRacer platform provides a simulation

environment for training models, which can be deployed on

physical model cars. We focus on investigating reinforcement

learning models, which are trained by exploring the envi-

ronment and striving for optimal results with respect to the

rewards that are defined differently in different models. In

particular, we

• design and implement A* and Line-of-Sight (LoS) ap-

proaches to train models that attempt to provide optimal

paths;

• enhance their navigational capabilities by integrating ob-

ject avoidance methods; and

• demonstrate that the models trained by these approaches

outperform those by the AWS DeepRacer default ap-

proach in terms of learning efficiency and racing quality.

II. BACKGROUND

This research focuses on reinforcement learning, which is

based on the concept of reward. Intuitively, a model learns

through a trial-and-error process to maximize its reward. Over

time, it is expected to yield a model that is adapted to its

environment, as the learning process favors the actions and

behaviors that lead to the highest reward in a reinforced man-

ner. A key concept in reinforcement learning is the distinction



between exploratory and exploitative behaviors. Exploration

involves taking random actions regardless of whether the re-

sults would be favorable or not. On the other hand, exploitation

involves using information already gathered in prior attempts

to move towards desirable results.

AWS DeepRacer. AWS DeepRacer is an ecosystem for in-

vestigation and research on autonomous driving technologies.

Developed by AWS, DeepRacer is centered around a 1/18th

scale racing car as shown in Fig. 1(a). The racing of AWS

DeepRacer can be done either in the simulation or on a

physical track. Fig. 1(b) shows an example physical track

we built in our research lab. Furthermore, having been open-

sourced, DeepRacer has fostered a number of projects beyond

its default framework.

Our efforts mainly focus on the DeepRacer simulation envi-

ronment. Further, we used the simulation to concentrate more

on the computation and control approaches, while limiting

unpredictable impacts of the physical world. This isolation of

variables is imperative for conducting systematic experiments

and data analysis. The official simulation environment is via

the AWS DeepRacer console provided by AWS. However, in

recent years, a community simulation environment has been

developed and widely adopted, which is called DeepRacer for

Cloud (DRFC). This tool is a loosely bound set of scripts

that allows for model training compatible with AWS’s official

server and league. An advantage of DRFC is that we have

more freedom to adjust the simulation to suit our desires.

DRFC uses Docker to house Minio, Robomaker Sagemaker,

RL Coach, and Gazebo, of which the simulation environment

is composed. The function of each of these components is

briefly explained as follows.

• Minio is an object storage system.

• AWS Robomaker provides service to develop and test

robotic applications.

• AWS Sagemaker provides infrastructure for building

learning models.

• RL Coach is developed by Intel for fine-tuning algorithm

development.

• Gazebo provides simulation of 3D physics.

Simulation environment. Hyperparameters are critical for

training models. In the simulation, hyperparameters are de-

fined from the outset, instead of being learned from data,

and help to shape the model’s behaviors. In the context of

DeepRacer, we have the following major hyperparameters [2].

• batch_size: gradient descent batch size, which de-

termines sample size that is taken into consideration for

updating the training model.

• num_epochs: number of times the training data set will

be processed in loop to update the learning parameters.

• discount_factor: determines the importance of im-

mediate vs future rewards.

• beta_entropy: randomness of policy distribution.

• lr: the step function of gradient descent.

• loss_type: provides the difference between actual and

predicted results of a model.

(a) Physical car (b) Physical track

Fig. 1. Physical environment.

• num_episodes_between_training: defines how

frequently to update the policy of the agent.

Using local simulation via DRFC, there is a greater degree

of control. To illustrate, in local training, we may switch the

direction of the car (clockwise vs counterclockwise), change

the lighting of the simulation, change the location, type,

and amount of objects on the track, etc. Moreover, Amazon

is restrictive of Python packages, such as the time library.

Consequently, local simulation is a standard practice among

the AWS DeepRacer community. Thus, we utilized a local

simulation environment for this study.

Models and rewards functions. A model is mainly comprised

of action space, reward function, and metadata information.

The action space is the set of all possible actions the agent may

take. In our context, we have the option of choosing a discrete

or continuous action space. A discrete action space means that

the possible actions are finite and countable. Conversely, a

continuous action space can take on an infinity of values within

a certain range. It is well known that continuous action spaces

tend to take longer to converge, however, they are also less

prone to human bias.

The reward function is at the core of reinforcement learning.

The reward function maps the behavior of the model’s state

and action to an associated reward. which indicates the agent’s

performance. DeepRacer utilizes Python to write a reward

function and possess simulation parameters used to feed the

model information about its environment. This information, in

a vague sense, can be used to incentive the model to produce

desired outcomes. For instance, a parameter of the simulation

called “distance from center” returns the distance in meters

from the center of the track. The reward function serves as the

fundamental logic guiding the nature of the model.

Physical build: Sim2Real. Models trained from simulation

can be uploaded to the physical car and used on an actual track

such as the one we built in Fig. 1. DeepRacer is fairly unique

in that we can take models trained in simulation to a physical

counterpart; other popular autonomous driving simulations

such as CARLA have no physical counterparts. Moreover,

work done by Revell et al. describes procedures to optimize

the bridging of the Sim2Real gap on AWS DeepRacer [8].

III. INVESTIGATED APPROACHES

In addition to DeepRacer’s default approach (Centerline),

we develop, implement, and investigate two new approaches

(A-Star and Line-of-Sight) to obtain models that are capable



(a) Holistic path generation (b) Zoom-in

Fig. 2. A-Star path generation.

(a) Holistic path generation (b) Zoom-in

Fig. 3. Line-of-Sight path generation.

of racing when obstacles are present. We briefly explain the

three approaches as follows.

Centerline. The Centerline algorithm created by Amazon

utilizes the centerline of the track and the location of objects to

guide the model; the further the model is from the centerline,

the less reward; on the other hand, if the model is in the same

lane as the object and the model gets too close to the object,

the car gets progressively less reward [1].

A-Star. One of the approaches used is the A* path-finding

algorithm, which generates a predefined path that avoids

obstacles in the track. It serves as a guide to incentivize the

model to follow the path. In Fig. 2, the cyan ‘X’ points are the

searched nodes in the grid; the outermost two dots represent

the track border, and the black box represents an object.

Moreover, the red line is Fig. 2 is the final path calculated from

A*. It should be noted that in Fig. 2 there is a small gap in

the line, however, this gap is only for present in visualization,

not in the actual path file generated. The object locations

used in Fig. 2 is representative of our training. Related, we

have Fig. 4, a heatmap, the brighter, more dense clusters

of orange colors here highlight a higher reward for a given

area. This approach is considered static because the generated

path remains unchanged throughout the training period. By

incorporating this approach into our training process, the

model converges faster, ultimately resulting in reduced training

time.

Line-of-Sight. The Line-of-Sight (LoS) algorithm utilizes the

vehicle’s field of vision to identify the furthest destination on

the race track and then generates a path and heading angle

toward that location. In our experiment, we set a limit on how

far the vehicle could see. As the vehicle progresses, it receives

updated paths and heading angles to guide its movements. This

approach is considered dynamic because it provides regular

updates to the model during the training period. However, one

limitation of this approach is that it may take longer for the

model to converge since the path and heading angle depend

on the vehicle’s location and field of vision, which may vary.

The current location of the vehicle plays a significant role in

determining the heading angle and destination point on the

track.

IV. EXPERIMENTS AND EVALUATION

Experiment settings. To standardize our finding, we trained

each model for 0.5 hours, 1.5 hours, and 3 hours; with

each using 4 workers; training with multiple workers enables

parallelization of the training process, thus, a trained model

will converge faster in a given period.

All models were trained with the stereo camera and a

continuous action space on the “re:invent 2018” track:

• speed: 1.0 ∼ 1.5
• steering angle: −20 ∼ 20

The hyperparameters in our experiments are summarized as

follows:

batch_size = 64 stack_size = 1
num_epochs = 3 epsilon_steps = 10000
discount_factor = 0.985 e_greedy_ value = 0.0003
beta_entropy = 0.01 term_cond_max_episodes = 1000
lr = 0.0003 term_cond_avg_score = 350
loss_type = huber exploration_type = categorical
num_episodes_between_training = 32

These settings are slightly modified from the default in order

to synergize better with continuous models [10].

• The Centerline models utilize reward 4 in the DeepRacer

developer’s guide which involves avoiding stationary ob-

jects [1].

• The A-Star models utilize a custom reward we made de-

signed to follow A*’s path, with python helper functions

borrowed from Daniel Gonzalez [5].

• The Line-of-Sight models utilize a line-of-sight algo-

rithm to dynamically determine the vehicle’s optimal

path, destination, and heading angle to follow.

All models were trained with three stationary cars, which

act as obstacles for the model to avoid.

Once the training was complete, we ran an evaluation for

50 iterations on each model, this data is used for our analysis.

It should be noted that the evaluation was performed on the

best checkpoint of each model, which here is defined as the

checkpoint with the highest reward. Fig. 4 illustrates this

process by showing an example heat map of event rewards

during the training of A-Star models.

Results and evaluation. We first report the training time for

each model to converge, which is defined as the training time

for a model to reach its best mean lap completion time as

follows:

• Centerline converges at 3 hours of training with a mean

lap completion time of 14.27 seconds;



Fig. 4. Heatmap of the accumulation of event rewards during training.

Fig. 5. Time spent on completed laps to show the racing speed of models.

• A-Star converges at 1.5 hours of training with a mean

lap completion time of 11.98 seconds;

• Line-of-Sight converges at 0.5 hours of training with a

mean lap completion time of 13.08 seconds.

These results demonstrate that our proposed approaches need

less training time to reach a model with optimal performance

than the default Centerline approach.

In Fig. 5 we show each type of model trained on 0.5 hours,

1.5 hours, and 3 hours of training (x-axis). We did not incre-

ment one training to the next, instead, each model was trained

independently. With 0.5 hours of training, Centerline could

not complete the evaluation, A-Star had only 3 completed laps

within the evaluation, but Line-of-Sight had a complete 50 out

of 50 completed laps at this time; this small amount of training

also proved to be Line-of-Sight’s fastest time compared to

longer training sessions as shown in Fig. 5. The nature of

Line-of-Sight promotes rapid adaptation to the model’s local

environment. In Fig. 5, we show that models from A-Star and

Line-of-Sight outperformed the standard models in speed in

every instance. We have included a video playlist showing all

the evaluations conducted in this study for demonstration [6].

V. CONCLUSION

In this work, we leverage the AWS DeepRacer platform

to investigate reinforcement-learning-based approaches for au-

tonomous driving. The goal is to create models that are able

to reach faster racing speeds while maintaining reasonably

reliable performance. In addition, objects may exist in the

track and should be avoided by the racing car. By integrating

the concepts of A* and LoS algorithms, we created novel

Fig. 6. Percentage of laps that are perfectly completed by models.

solutions inside DeepRacer’s environment that we believe has

the potential to transcend to other domains of reinforcement

learning. We developed models from these two algorithms that

have similar stability to the default models but achieved faster

performance.

Future work. In subsequent work, we aim to delve deeper into

the hyperparameter settings, and how that impacts the training

behavior of the model. This future research should display how

each setting affects the model’s performance. Furthermore,

we plan to investigate the application of the trained model

in the physical environment. Namely, we have observed that

there is performance variability between the simulation and

the physical environment. This discrepancy warrants further

investigation to identify the factors that contribute to bridging

the Sim2Real gap.

REFERENCES

[1] Amazon. Aws deepracer developer guide. Online at https:
//docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-
reward-function-examples.html.

[2] Siddhartha Banerjee. Aws deepracer — looking under the hood for
design of the reward function and adjusting hyperparameters. Online at
https://medium.com/analytics-vidhya/aws-deepracer-looking-under-the-
hood-for-design-of-the-reward-function-and-adjusting-e9dd3805ebbf.

[3] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James
Diebel. Path planning for autonomous vehicles in unknown semi-
structured environments. volume 29, page 485–501, USA, apr 2010.
Sage Publications, Inc.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pages 3354–
3361, 2012.

[5] Daniel Gonzalez. An advanced guide to aws deepracer. Online
at https://towardsdatascience.com/an-advanced-guide-to-aws-deepracer-
2b462c37eea.

[6] Jacob Mccalip. Playlist of model evalauations. Online at https://www.
youtube.com/playlist?list=PLh53BF3bZA6rR2tk3GCcLMVeN8Cy-
95Rc.

[7] Dean A. Pomerleau. Efficient training of artificial neural networks for
autonomous navigation, 1991.

[8] Jacob Revell, Dominic Welch, and James Hereford. Sim2real: Issues in
transferring autonomous driving model from simulation to real world.
In SoutheastCon 2022, pages 296–301. IEEE, 2022.

[9] Santokh Singh. Critical reasons for crashes investigated in the national
motor vehicle crash causation survey, Feb 2015.

[10] Boltron Racing Team. Continuous action space, reward func, and
hyperparameters for top 15 finish in deepracer! Online at https:
//youtu.be/11Sta3idwZI.

[11] Wenjie Zhu, Haikuo Du, Moyan Zhu, Yanbo Liu, Chaoting Lin, Shaobo
Wang, Weiqi Sun, and Huaming Yan. Application of reinforcement
learning in the autonomous driving platform of the deepracer. In 2022
41st Chinese Control Conference (CCC), pages 5345–5352. IEEE, 2022.


