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ABSTRACT
A weak excitation transit-time resolution limited analytic line shape is derived for a Doppler broadening-free degenerate two-photon transi-
tion from a standing wave with a TEM00 transverse profile. This approximation is appropriate when the collisional mean free path is much
larger than the transverse width of the TEM00 beam. It is considerably simpler than the two-photon absorption line shape previously pub-
lished, Bordé, C. R. Hebd. Seances Acad. Sci., Ser. B 282, 341–344 (1976), which was derived for more general experimental conditions. The
case of a saturating field, with an intensity-dependent shift of the resonance frequency, is treated and expressed in reduced units. Numerical
calculations are presented for the line shape for a range of the reduced intensity and light intensity shifts values.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040868., s

I. INTRODUCTION

Recently, the author published an analysis of cavity-ring down
spectroscopy detection of two-photon absorption (TPA).1 Degener-
ate two-photon absorption from counter-propagating waves is first-
order Doppler-free,2–4 which allows for a resolution far higher than
that of Doppler broadened spectroscopy. For excitation in the IR,
near a vibrational fundamental, there are resonantly enhanced tran-
sitions from the ground vibrational state to an overtone of an IR
allowed fundamental, with changes in rotational energy compensat-
ing for anharmonicity, resulting in a detuning of the intermediate
state absorption of less than the absorber’s rotational constant. This
results in a spectrum dominated by a small fraction of the transitions
with thermally excited lower states, further improving the selectivity
compared to one-photon absorption spectroscopy. The published
analysis was based upon the steady-state solutions of the optical
Bloch equations for three levels. These predict that TPA lines will
be homogeneously broadened with an angular frequency half width
at half maximum (HWHM) equal to one-half of the dephasing rate
of the coherence between initial and final states.3,5 Typically, for ro-
vibrational transitions in the IR, the homogeneous width arises from
pressure broadening and, like for the one-photon absorption coeffi-
cient (with units m−1) in the limit that pressure broadening greatly
exceeds the Doppler width, the peak two-photon absorption coeffi-
cient [with units of (mW)−1] of a gas will be pressure independent.1

When the pressure of the sample is reduced to the point that the col-
lisional mean-free-path becomes of the order of the beam radius of
the laser field exciting the transition, the steady-state solutions of the
optical Block equations used in the previous work1 will no longer
be appropriate and one must consider the motion of the absorbers
through the laser field. At sufficiently low pressure, collisions can
be neglected, and the resolution of the absorption will be limited by
the finite duration of the excitation field experienced by a moving
molecule. A similar limit in the cases of Lamb dip6 and molecular
beam7 spectroscopies is known as the transit-time limit.

This paper will present an analysis of two-photon absorption
in the transit-time limit when a molecule passes through a stand-
ing wave excitation field, which will be assumed to be a Gaussian
TEM00 mode.8 It will first consider the case in the weak field limit
when saturation of the TPA can be neglected and a simple analytical
result can be derived. This will be followed by numerical calculations
applicable to higher power, where TPA saturation and light intensity
(AC Stark) induced shifts of the absorption resonance are signifi-
cant. The AC Stark shift of the transition is proportional to optical
intensity and the difference in AC polarizability of the initial and
final states.

Let us assume that the absorber is moving with velocity v⃗ and
is excited by a TEM00 standing optical wave of angular frequency
ω, with the z axis centered on the beam and an origin at the focal
point of the wave. Let r be the distance perpendicular to the z axis.
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The TEM00 electric field of the standing wave can be written in
cylindrical coordinates as8

E(r, z, t) = E0 ε⃗
z0

√
z20 + z2

e−
kr2

2(z0−iz)
+i(kz−η(z)) cos(ωt) + c.c., (1)

where k = ω/c is magnitude of the wavevector of the light, ε⃗ is
the polarization vector, z0 is the confocal length of the beam, and
η(z) = tan−1(z/z0) is the Guoy phase shift. The beam has a Gaus-
sian intensity vs r, falling by a factor of e−2 for r = w(z) (the beam
radius), where w(z)2 = w2

0(1 + (z/z0)
2
) and w0 =

√
2z0/k is the

beam radius in the focal plane. E0 is the electric field amplitude at the
focal point (r = z = 0) and is related to the one-way optical power, P,
by E0 =

√
4P/πε0cw2

0.
It is assumed that the sample is at low pressure and the optical

power is sufficiently low such that we have a single pair of resonantly
coupled levels, with the energy difference very close to 2h̵ω. It is
further assumed that there exists one or more intermediate states,
n, that simultaneously have dipole allowed transitions from the ini-
tial state g and to the final state f. The notations ωi = Ei/h̵, ωij = ωi

− ωj, and Ωij = ⟨i∣μ⃗ ⋅ ε⃗∣j⟩E0(w0/w(z))e−r
2/w(z)2

/2h̵ are used. The res-
onant condition implies 2ω ≈ ωgf, and we assume that the detuning
of all one photon transitions |ω − ωij| is large compared to the Rabi
frequencies Ωng and Ωfn. In this case, quasi-degenerate perturbation
theory can be used to eliminate the off-resonance states n in the dress
state Hamiltonian,9 resulting in an effective two-state Hamiltonian
with matrix elements given by10

Hgg/h̵ = ωg + Δωg = ωg −∑
n
∣Ωgn∣

2
(

1
ωn − ωg − ω + kvz

+
1

ωn − ωg − ω − kvz
+

1
ωn − ωg + ω + kvz

+
1

ωn − ωg + ω − kvz
), (2)

Hff/h̵ = ωf + 2ω + Δωf = ωf + 2ω −∑
n
∣Ωfn∣

2

×(
1

ωn − ωf − ω + kvz
+

1
ωn − ωf − ω − kvz

+
1

ωn − ωf + ω + kvz
+

1
ωn − ωf + ω − kvz

), (3)

Hgf/h̵ = Ω2p =
1
2∑n

ΩgnΩnf(
1

ωn − ωg − ω + kvz

+
1

ωn − ωg − ω − kvz
+

1
ωf − ωn − ω + kvz

+
1

ωf − ωn − ω − kvz
), (4)

ΩijΩjk = ⟨i∣μ⃗ ⋅ ε⃗∣ j⟩⟨ j∣μ⃗ ⋅ ε⃗∣k⟩
P e−2r

2/w(z)2

π ε0 c h̵2 w(z)2
. (5)

The state f has one photon fewer in the light field from each direc-
tion; this model does not include the Doppler-broadened TPA con-
tribution, which reaches distinguishable final states with two pho-
tons removed from either directional beam and includes a Doppler
shift contribution of ±2kvz to Hff. The equation of motion for this

effective two-level system is the same as that of a one photon two-
level system if we use Ω2p in Eq. (4) for the Rabi frequency as
well as Δω = ωf − ωg − 2ω + Δωf −Δωg [Eqs. (2) and (3)] for the
detuning from resonance. Both Ω2p and Δωf − Δωg are propor-
tional to the light intensity; Δωf − Δωg is often called the light or
AC Stark shift.

In the limit that the TPA is dominated by a single near-
resonance state n, but with |ωng − ω|≫ |ωfg − 2ω| and kvz , we have
the limits Δωfg = Δωf − Δωg = −2(Ω2

fn − Ω
2
ng)/(ωng − ω) and Ω2p

= 2ΩfnΩng/(ωng − ω). If we further assume the double harmonic
oscillator approximation11 that we are driving the n → 1 → 2 two-
photon vibrational transition and approximate the two rotational
contributions to the transition matrix elements as equal, we have
Ω21 =

√
2Ω10, and thus, Δωfg = Ω2p/

√
2 = 2Ω2

01/(ωng − ω).
Given the lack of Doppler broadening and that z0 ≫ w(z),

we can ignore vz when integrating the equations of motion. Each
molecule will pass through the TEM00 mode with an impact param-
eter b and the magnitude of the velocity perpendicular to z of
v, with v having a 2D Maxwell–Boltzmann distribution, P2D(v)
= (mv/kBT) exp(−mv2/2kBT). For such a trajectory, let ρ∞ff (b, v,Δω)
be the probability that amolecule that enters the field in state g leaves
in state f; Δω = (ωf − ωg)/2 − ω is the detuning from the two pho-
ton resonance. The rate of photon absorption per unit path length
by a thermal sample with the number density in state g of Ng can be
written as

R2p(Δω) = 4Ng ∫

∞

0
∫

∞

0
vP2D(v)ρ∞ff (b, v,Δω) db dv. (6)

II. WEAK FIELD LIMIT
For a weak excitation field intensity, we use first order time

dependent perturbation theory to write

ρ∞ff (b, v,Δω) = ∣∫
∞

−∞
Ω2p(t) exp(−i(2Δωt))dt∣

2
, (7)

Ω2p(t) = Ω(0)2p exp(−2b2/w2
) exp(−2v2t2/w2

), (8)

ρ∞ff (b, v,Δω) = (Ω
(0)
2p )

2
exp(−4b2/w(z)2)

×
πw(z)2

2v2
exp(−

w(z)2Δω2

4v2
), (9)

∫

∞

−∞
ρ∞ff (b, v,Δω)db = (Ω

(0)
2p )

2 (πw(z)2)3/2

4v2
exp(−

w(z)2Δω2

4v2
).

(10)
Recalling that Δω is linear in ω, we see that for a molecule cross-
ing with perpendicular speed v, the transit-time limited nonsatu-
rated line shape is Gaussian in detuning with an angular frequency
HWHM of 2

√
ln(2)v/w(z). For single-photon absorption in the

transit time limit, the line shape is also Gaussian in detuning with
a HWHM of

√
2 ln(2)v/w0, independent of the beam crossing posi-

tion z. The latter is due to the fact that as one moves away from
the focus and the beam radius increases, the laser beam develops a
wavefront curvature that leads to an effective frequency sweep expe-
rienced by themolecules crossing it and this just compensates for the
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expected reduction in linewidth due to the longer interaction time.
In the two-photon case, the frequency shifts due to motion through
the forward and backward propagating fields cancel and thus do not
increase the two-photon linewidth. The two-photon line shape is
independent of the collimation of the molecular beam, while real-
izing the transit-time limit for one-photon transitions requires that
the angular spread of the molecular beam be <λ/2πw0, which implies
that the angular spread of the molecular beam be less than the far-

field diffraction spread angle of the TEM00 beam. As (Ω(0)2p )
2
is pro-

portional to w(z)−4, we see that the on-resonance excitation proba-
bility ρ∞ff (b, v, 0) scales w(z)

−2 and v−2. This can be contrasted with
transit-time limited one-photon absorption where the on-resonance
absorption probability is independent of w(z) and also scales as v−2.

Integration over the 2D speed distribution gives the thermally
averaged excitation rate [Eq. (6)],

R2p(Δω) =
π3Ngw(z)3(Ω(0)2p )

2

2

√
m

2kbT

× exp(−
√

m
2kbT

w(z)∣Δω∣), (11)

ΔωHWHM =
ln(2)
2w(z)

√
2kbT
m

, (12)

where Ω(0)2p is the two-photon Rabi rate when the molecule is at
the center of the laser beam. ΔωHWHM is the angular frequency
HWHM (of ω) of this line shape. The line shape is predicted to have
a cusp, i.e., a discontinuous slope, at exact resonance Δω = 0. This

arises from the 1/v2 factor in ρ∞ff (b, v,Δω), which cancels the fac-
tor of v2 in vP(v), combined with the transit-time width approach-
ing zero width as v → 0. Clearly, both the assumptions that colli-
sions can be neglected and that ρ∞ff (b, v,Δω) can be calculated by
perturbation theory break down in this limit of small v. Correct-
ing these assumptions will “round-off” the cusp. It is noted that
Ω(0)2p is proportional to the on-axis intensity and thus inversely pro-
portional to w(z)2, so the on-resonance excitation rate is inversely
proportional to w(z).

Previously,12 Bordé published a considerably more complex
expressions for the two-photon line shape. His analysis considered
the interaction with the field to third order, allowed for the two
traveling waves to have different frequencies and spatial shapes, and
included the second order Doppler effect. The second order Doppler
effect results in a shift in the resonant frequency12 of −ωv2/2c2,
which for thermal velocities of small molecules in the IR is of the
order of tens of Hz, completely negligible compared to the transition
time broadening for realistic cavity parameters.

III. LINE SHAPE WITH SATURATION
AND AC STARK SHIFT

Analytical expressions are not available in the strong field case
but can be computed numerically by integration of the equation
of motion dr⃗/dt = −Ω⃗ × r⃗, where r⃗ = (Re ρgf, Im ρgf, ρ11 − ρ22)
and Ω⃗ = (2Ω2pe−2(b

2+v2t2)/w2
, 0, 2Δω + βΩ2pe−2(b

2+v2t2)/w2
), where

β = Δωfg/Ω2f (the ratio of the AC Stark Shift in the level separation
to the effective two-photon Rabi frequency), which is independent
of the field amplitude if the perturbation treatment of nonresonant
states is valid. Re ρgf and Im ρgf are the real and imaginary parts

FIG. 1. Plots of excitation probability for a transit-time limited two-photon absorption, integrated over impact parameter b and then divided by the optical beam radius, w, for
normalization. The horizontal axes are the dimensionless Rabi frequency, Ω′, as defined in the text. Panel (a) is calculated with no intensity dependence of the transition
frequency (β = 0). The curves, from bottom to top, correspond to dimensionless detuning of Δω′ = 2.0, 1.5, 1.0, 0.5, 0.0. Panel (b) is calculated with the ratio of line shift to
Rabi frequency factor β = 1/

√

2. The curves (in the order of height of the first peak from bottom to top) are calculated with Δω′ = 2.0, 1.0, −2.0, 0.0, −1.0. The curves in
panel (c) are calculated with β =

√

2. The curves (in the order of height of the first peak from bottom to top) are calculated with Δω′ = 2.0, 1.0, 0.0, −2.0, −1.0.
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of the two-photon coherence, ρgf. For molecules with perpendicu-
lar speed v, ρff(∞) can be written as a function of a dimensionless
reduced effective Rabi frequency, Ω′ =

√
π/2wΩ2p/v, and reduced

detuning, Δω′ = 2wΔωgf/v. For a molecule passing the center of the
optical beam with β = Δω′ = 0, Ω′ = 1 corresponds to a π pulse that
inverts the population between states g and f.

Figure 1 shows the integrated (over impact parameter, b) value
of ρff(∞) as a function of Ω′ divided by w for several values of Δω′

and for three values of β = 0, 1/
√
2, and

√
2 shown in three sepa-

rate panels. For β = 0, these integrated excitation probability plots
are independent of the sign of Δω′. For β > 0, the curves with nega-
tive values of Δω′ have higher peak values, as the negative detuning

FIG. 2. Plots of excitation probability for a transit-time limited two-photon absorption, integrated over impact parameter b and then divided by the optical beam radius, w, for
normalization. The horizontal axis is the dimensionless angular frequency detuning, Δω′, as defined in the text. Panel (a) is calculated with no intensity dependence of the
transition frequency (β = 0); curves correspond to the reduced Rabi frequencies of 0.1, 0.2, 0.4, 0.8, 1.6, 6.4, 3.2 12.8, and 25.6 from bottom to top. Panel (b) is calculated
with the ratio of line shift to the Rabi frequency factor β = 1/

√

2; curves correspond to the reduced Rabi frequencies of 0.1, 0.2, 0.4, 1.6, 0.8, 6.4, 3.2, 12.8, and 25.6 from
bottom to top. Panel (c) is calculated with β =

√

2; curves correspond to the reduced Rabi frequencies of 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, and 25.6 from bottom to top.

FIG. 3. Plots of thermal averaged two-photon absorption line shapes in the transit-time limit. For each panel, curves correspond to reduced Rabi frequencies of 0.1, 0.2, 0.4,
0.8, 1.6, 3.2, 6.4,12.8 and 25.6 from bottom to top. The horizontal axes are the dimensionless angular frequency detuning, Δω′′, as defined in the text. Panel (a) is calculated
with no intensity dependence of the transition frequency (β = 0). Panel (b) is calculated with the ratio of the line shift to Rabi frequency factor β = 1/

√

2, and panel (c) is
calculated with β =

√

2.
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compensates, in part, the light shift near the center of the beam.
Figure 2 shows the integrated excitation probability vs Δω′ for val-
ues of Ω′ = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 with β = 0, 1/

√
2, and

√
2 again shown in separate panels.

Under thermal conditions, the line shape is calculated by aver-
aging the flux of excited molecules leaving the beam. This can be
represented by another pair of dimensionless reduced quantities:
Ω′′ =

√
πm
kBT

wΩ2p andΔω′′ =
√

2 m
kBT

wΔωgf. Figure 3 shows the calcu-

lated line shape,
√
m/2 kBTw2 ∫ ∫ vP(v)ρff(∞, b, v, Ω2p,Δωgf) db dv.

IV. NUMERICAL EXAMPLE
As a numerical example, consider the TPA of NNO (nitrous

oxide) pumping the ν3 vibrational mode, as was recently reported.13

Here,m = 44 u and the mean inverse laser beam radius at the center
of the cavity used (mirrors of 1 m radii of curvature, separation of
0.75 m and λ = 4.53 μm) is w0 = 0.90 mm. At T = 300 K, Eq. (12)
predicts a low power transit time limited line shape with a fre-
quency HWHM of 41.2 kHz. The root-mean-squared perpendicular
velocity vrms =

√
2kBT/m = 335 m/s. Saturation intensity, where

Ω′ = 1, occurs when Ω2p = 2.97 ⋅ 105 s−1. The detuning of the Q(17)
TPA feature is 0.113 cm−1 = 2.13 ⋅ 1010 s−1. The spontaneous emis-
sion rates for the transitions that make up the near resonant path-
way are Ang = 107 s−1 and Afn = 205 s−1, so the approximation
Ωfn =

√
2Ωng is a good one. Ω′ = 1 when Ωng = 4.73 ⋅ 107 s−1, which

occurs for molecules passing through the center of the beam when
the on-axis intensity is 56.4W/cm2 or a one way optical power of the
TEM00 equal to 0.717 W. The self-collisional broadening HWHM
coefficient for the P(18) line of the fundamental is 0.099 cm−1/bar
= 30 kHz/Pa, and the two photon transition should have about the
same relaxation rate or a broadening rate of 15 kHz/Pa. Thus, at a
NNO pressure of 1 Pa, the pressure broadening width should be
about 37% of the transit-time broadening. The published experi-
ment on the TPA of this transition13 used sample pressures between
100 Pa and 1200 Pa; the sample was air containing 25 ppm of NNO,
i.e., NNO partial pressures between 0.1 mPa and 1.2 mPa, approx-
imately three orders of magnitude below that needed to realize the
transit-time broadening limit if the sample was pure NNO. Clearly,
sensitivity is not the limiting factor in realizing the transit time lim-
ited resolution, but it is the stabilization and control of the laser
frequency with sufficient resolution (on the order of 1 kHz). That
initial experiment used optical feedback locking of the laser to the
cavity used for the TPA, which resulted in a frequency jump of the
laser the lock was interrupted to observe the cavity intensity ring-
down. It should be possible to optically lock the laser to one cavity
and observe the TPA in another using an acousto-optic modulator
(AOM) as the light attenuator. The small frequency shifts required in
the transit time limit could be realized by changes in the RF drive fre-
quency of the AOM, the case in which the laser and cavity it is locked
to can be static, which should enhance their frequency stability.

V. CONCLUSIONS
The results of this investigation provide simple expressions

for the two-photon absorption line shape in the low pressure limit
where collisions while crossing a laser beam can be neglected and
the intensity is well below that needed to saturate the two-photon
transition. The higher optical intensity case is expressed in dimen-
sionless reduced units for the effective Rabi frequency and light shift
and numerical line shape calculations presented for a range of these
values.
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