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ABSTRACT

Machine learning applications can significantly benefit from

large amounts of labeled data, although the task of labeling

data is notoriously challenging and time-consuming. This

is particularly evident in domains involving human subjects,

where labeling time-series signals often necessitates trained

professionals. In this work, we introduce the Assisted La-

beling Visualizer (ALVI), a system that simplifies the process

of labeling data by offering an interactive user interface that

visualizes synchronized video, feature-map representations,

and raw time-series signals. ALVI also leverages deep learn-

ing and self-supervised learning techniques to facilitate the

semi-automatic labeling of large amounts of unlabeled data.

We demonstrate the capabilities of ALVI on a human activ-

ity recognition dataset to showcase its potential for enhancing

the labeling process of time-series sensor data.

Index Terms— Time series, sensor data, semi-automatic

labeling, visualization.

1. INTRODUCTION

Data labeling is a crucial step in the process of machine

learning applications. It involves assigning relevant and ac-

curate tags to data that are used to train models. Labeling

time-series data is particularly important for applications that

involve continuous monitoring and tracking of data, such as

in healthcare, manufacturing, and environmental monitoring.

Time-series sensor data can provide valuable insights into

changes in a system, environment, or individual’s behavior

over time. By accurately labeling such data, machine learning

models can identify patterns and predict future outcomes.

The utilization of time-series sensor data and labeling can

significantly enhance accessibility for people with disabili-

ties. For instance, by deploying sensors throughout a museum

and labeling the captured data, machine learning models can

be trained to recognize patterns in visitor behavior [1], such

as popular exhibits and frequently taken routes. This infor-

mation can then be utilized to provide more accessible expe-

riences for people with disabilities [2][3].

This work is supported in part by the NSF awards 1757893 and 2149950.

Manual labeling of time-series sensor data can be a daunt-

ing and challenging task, particularly when dealing with mas-

sive and complex datasets. One of the main difficulties is that

humans are not naturally skilled at reading and interpreting

raw time-series sensor data. Even with the use of video data

to assist in the labeling process, the manual labeling of time-

series data can still be tedious, time-consuming, and error-

prone. The process of manual labeling requires significant

human resources and can lead to inconsistencies across dif-

ferent human labelers. Semi-automatic labeling can make use

of machine learning algorithms to pre-label the data and al-

low human labelers to correct any errors or inconsistencies in

the pre-labeled data. This approach can significantly reduce

the time and effort required for manual labeling and improve

the accuracy and consistency of the labeled data.

In this work, we introduce a browser-based software

framework1 for labeling time-series sensor data that incor-

porates state-of-the-art visualization and machine learning

techniques, enabling efficient and precise semi-automatic la-

beling of such data. We employ interactive visualizations of

raw time-series data, as well as features extracted through

contrastive self-supervised learning methods. Furthermore,

we incorporate a label correction process to detect and cor-

rect any potential errors in the automatically assigned labels.

The human remains in the loop to ensure the quality of the

assigned labels but with a significantly reduced workload.

Our system is compatible with any Jupyter-capable machine,

thus enabling local execution to maintain data confidentiality

in cases where the data is sensitive.

2. RELATED WORK

There have been many general systems developed to label

data, such as text, images, and audio. One example is the

VGG Image Annotator [4]. Crowd-sourcing platforms like

Amazon Mechanical Turk [5], Apen [6], and Labelbox [7] are

commonly used for general data labeling. These platforms

provide a cost-effective and scalable solution for data label-

ing, but they have certain drawbacks, such as the difficulty in

1https://github.com/imics-lab/time-series-label-assist20
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ensuring the quality of labels and the potential for low-quality

labels due to the lack of expertise of the workers. General

data labeling systems can have issues with ambiguity, making

it difficult for labelers to accurately label data.

Labeling time-series sensor data presents a unique set of

challenges when compared to labeling images, videos, or text.

Examples of labeling systems used for time-series sensor data

include Visplore [8] and Label Studio [9]. These systems

use various techniques such as manual labeling, rule-based

labeling, and semi-automatic labeling to overcome these chal-

lenges. However, the labeling of time-series data is often

more tedious and time-consuming than other types of data.

Semi-automatic labeling is a method that combines hu-

man expertise with machine learning algorithms to improve

the efficiency and accuracy of data labeling. Examples of lit-

erature that use semi-automatic labeling include VAST [10]

and SALT [11]. Semi-automatic labeling has been shown to

significantly reduce the time and effort required for manual

labeling while maintaining high labeling accuracy. However,

most available solutions so far only apply to image/video and

textual data.

Data visualization tools, such as t-SNE [12] and UMAP [13],

can assist in the labeling of time-series sensor data by pro-

viding visual representations of the data that can aid in iden-

tifying patterns and relationships. UMAP has been shown

to be particularly useful for dimensionality reduction and

visualization of high-dimensional time-series sensor data.

There are several techniques available for automatically

correcting mislabeled instances of time series data. These

methods generally employ deep learning systems that can rec-

ognize the correct class of mislabeled instances, despite the

difficulty that machine learning models may encounter when

training on noisy labels [14]. By comparing the output of a

trained convolutional neural network (CNN) to the assigned

labels in a dataset, it is possible to identify which instances

in a sensor dataset are most likely to be mislabeled [15]. An-

other approach for identifying mislabeled data is to compare

instances to their nearest neighbors and determine the most

probable correct label either by comparison to neighbors [16]

or statistical inference [17].

3. METHODOLOGY

The labeling framework proposed in this study has been re-

alized as a web interface that is compatible with any browser

by leveraging the capabilities of Jupyter Notebooks [18]

and Plotly Dash [19]. The web-based tool is self-contained

and does not rely on cloud hosting, thus enabling local de-

ployment on any Jupyter-enabled machine or Google Colab.

As a result, the framework allows for secure and privacy-

preserving labeling of sensitive data, without the need to

upload the data to a remote server for annotation.

The data labeling process comprises the following steps:

Fig. 1: ALVI semi-automatic labeling process workflow.

1. Raw time series data, and if available video, are loaded

from a file.

2. Data and corresponding video are visualized as time-

series plots using Plotly.

3. A small amount of labeled data are provided or manu-

ally labeled by the user.

4. A deep learning model is trained based on the initially

labeled data.

5. A larger amount of data is automatically labeled using

the trained model.

6. The automatically assigned labels are analyzed, and

parts of the data are manually reviewed.

Figure 1 visually depicts the above workflow. In the fol-

lowing subsections, we elaborate on the methods and tools

used in each one of the steps above.

3.1. Data Loading

The current version of the software supports data files in

CSV text format. It is assumed that files are structured

as: <timestamp>,<ch1>,...,<chn>,<label>,<sub>

where timestamp is the time stamp of the sensor measure-

ment, ch1,...,chn represent the different data channels.

For example, an accelerometer may have three channels for

the three axes of acceleration, XYZ. The label column

represents a label assigned to each time step of data. Initially,

that value can be set to ‘‘undefined’’ if the data is unla-

beled. The sub column represents the subject from which the

data were collected and can be a number or a string. When

data from multiple subjects are aggregated together, it is of-

ten necessary to maintain subject independence in machine

learning experiments. Thus, maintaining the subject label is

desirable. Each row of the file is a sensor measurement.

Along with the raw time-series data, the user can specify

a video file, if available, to inform the labeling process (e.g.

Fig. 2a). The loaded video file can be synchronized with a

particular section of the raw data by specifying an offset with

respect to the data timestamps.
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(a) A snapshot of the data file and the video captured during data

collection from an arm-mounted camera.

(b) An example visualization used for seed labeling. The raw signals,

color-coded assigned label line, and confidence lines are visible.

Fig. 2: Data loading and seed labeling stages.

3.2. Seed Labeling

In order to facilitate the automatic labeling of the remaining

data, it is necessary to have a small amount of initial labeled

data. These initial labeled data can either be directly loaded

into the system if they have already been pre-labeled outside

of the system or manually labeled within the system by utiliz-

ing the visualization capabilities and the video-sync feature.

The seed labeling process can use advanced visualiza-

tion features and interactive graphs provided by Plotly (see

Fig. 2b). For instance, the user is afforded the ability to zoom

in on the signal, select specific sections, and assign labels by

specifying the starting and ending points of a segment, the

label, and their confidence level regarding the assigned label

(i.e., low, medium, or high). Confidence levels can be utilized

in model training. For example, segments of low confidence

can be excluded from the training set.

3.3. Model Training and Automatic Labeling

The process of training a deep learning model involves utiliz-

ing the manually pre-labeled portion of the data. During this

stage, the continuous signal is segmented into fixed-size win-

dows, and each window is assigned a single label. This tech-

nique is a commonly employed approach for training models

on time-series data. The training set can comprise either over-

lapping or non-overlapping segments. In the event that a win-

dow spans two or more labels, the user can elect to assign the

majority of time steps as the primary label for that segment or

exclude the segment entirely from the training set.

The deep learning model can be based on any neural

network architecture that supports time-series classifica-

tion. The current version offers the user a choice between

a convolutional neural network (CNN)-based or a long short-

term memory (LSTM)-based architecture. However, the

module can be replaced with other architectures, such as a

transformer-based architecture, if necessary.

Upon acquiring a trained model, a larger quantity of data

can be automatically labeled by having the model predict the

correct label for each segment of the new data. Although this

process saves time and effort from manual labor, it is antici-

pated to produce some incorrect predictions. To rectify these

inaccuracies and establish a reliable ground truth, we utilize

a complex approach for incorrect label detection and correc-

tion, which is detailed in the following subsections. This ap-

proach requires human intervention; however, it is substan-

tially less labor-intensive than fully manual labeling.

3.4. Label Correction

By adopting label correction techniques, the Assisted Label-

ing Visualizer (ALVI) can focus a human reviewer on the por-

tions of data most likely to be mislabeled by the Automatic

Labeling process. ALVI implements a label-cleaning process

based on K-Nearest Neighbors (KNN). However, such data-

centric approaches are highly sensitive to the clusterability of

the features being processed [17]. To account for this sen-

sitivity, we incorporate deep feature learning using a convo-

lutional feature extractor. The output penultimate layer of a

CNN is used to produce a highly clusterable feature space.

A KNN classifier is fit to the extracted feature space and

used to predict labels for each instance of data. By comparing

this classification to the output of the trained CNN we identify

instances that have been classified with one label but lay in

a region of the feature space near instances that do not share

their label. The dataset is sorted by the product of the assigned

one-hot label from the CNN and the categorical label output

by KNN. This allows us to identify a portion of the dataset

that most needs review.

3.5. Data Visualization

Incorporating a human in the loop during the label correc-

tion process is crucial, necessitating informative visualiza-

tions to aid in decision-making. Our proposed solution in-

volves the use of automatically labeled data that is visual-

ized and color-coded. We employ two types of visualizations,

raw signals and Uniform Manifold Approximation and Pro-

jection (UMAP) plots [13]. In the UMAP plot, each point

corresponds to a signal segment. Multi-channel raw signal

segments are mapped to a low dimensional vector through

a model trained using self-supervised contrastive learning as

presented in [20]. Such methods do not rely on the original

data labels and, thus, are not affected by label noise. The low-

dimensional vector is then further reduced to two dimensions

for 2D visualization by UMAP.

By clicking on a point in the UMAP plot, the point is

highlighted, along with the closest neighbor, irrespective of
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(a) Visualization of the raw times series data.

(b) UMAP plot. (c) Nearest neighbors.

Fig. 3: The data visualization process utilized for label review and correction. When the user clicks on a suspicious data point

on the UMAP plot, the nearest neighbor overall as well as the nearest neighbor of the same label, are highlighted. The top graph

shows the locations of those segments in the original signal, whereas the lower right graph shows a zoomed-in neighbor.

its class, and the closest neighbor of the same class as the one

assigned to the point. Additionally, the corresponding signal

segment in the raw time series data is also highlighted. If

available, the synchronized video can display the correspond-

ing position. Figure 3 shows an example of this process. This

process can help the users decide if the automatically assigned

label is correct or not. The combination of these visualiza-

tions enhances the effectiveness of the label correction pro-

cess, ultimately leading to higher-quality labeled datasets.

4. RESULTS

In order to evaluate the tool we used TWristAR [21], a hu-

man activity recognition (HAR) dataset that contains multi-

modal data collected with an Empatica E4 Wristband. Three

subjects performed scripted activities which were structured

for easier labeling and balanced classes. For this work, the

scripted activities were treated as labeled. Two subjects per-

formed unscripted free-form walks that included a period of

sitting as well as walking on flat ground and up/downstairs. A

full video record is included. [22] provides additional dataset

details and describes prior manual labeling work.

For the TWristAR dataset, we found that manually label-

ing a single subject’s 11-minute free-form walk took 34 min-

utes. This is consistent with our experience that labeling data

with frequent activity changes takes longer than real-time due

to the need to stop and check the transitions. The manual

labeling accuracy was 91% versus the ground truth based on

prior labeling by multiple people with additional review. With

the ALVI tool using the predictions of a model trained on the

scripted sequences the labeling time was reduced to 9 minutes

and the accuracy increased to 96%.

5. CONCLUSION

In this work, we introduced ALVI, a browser-based software

framework that enables efficient and precise semi-automatic

labeling of time-series sensor data. We have demonstrated the

labeling time reduction and accuracy benefits when labeling

portions of a HAR dataset. Future work includes the evalua-

tion of datasets in alternate domains and the addition of more

informative visualizations and feature representations.
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