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ABSTRACT

Machine learning applications can significantly benefit from
large amounts of labeled data, although the task of labeling
data is notoriously challenging and time-consuming. This
is particularly evident in domains involving human subjects,
where labeling time-series signals often necessitates trained
professionals. In this work, we introduce the Assisted La-
beling Visualizer (ALVI), a system that simplifies the process
of labeling data by offering an interactive user interface that
visualizes synchronized video, feature-map representations,
and raw time-series signals. ALVI also leverages deep learn-
ing and self-supervised learning techniques to facilitate the
semi-automatic labeling of large amounts of unlabeled data.
We demonstrate the capabilities of ALVI on a human activ-
ity recognition dataset to showcase its potential for enhancing
the labeling process of time-series sensor data.

Index Terms— Time series, sensor data, semi-automatic
labeling, visualization.

1. INTRODUCTION

Data labeling is a crucial step in the process of machine
learning applications. It involves assigning relevant and ac-
curate tags to data that are used to train models. Labeling
time-series data is particularly important for applications that
involve continuous monitoring and tracking of data, such as
in healthcare, manufacturing, and environmental monitoring.
Time-series sensor data can provide valuable insights into
changes in a system, environment, or individual’s behavior
over time. By accurately labeling such data, machine learning
models can identify patterns and predict future outcomes.

The utilization of time-series sensor data and labeling can
significantly enhance accessibility for people with disabili-
ties. For instance, by deploying sensors throughout a museum
and labeling the captured data, machine learning models can
be trained to recognize patterns in visitor behavior [1], such
as popular exhibits and frequently taken routes. This infor-
mation can then be utilized to provide more accessible expe-
riences for people with disabilities [2][3].
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Manual labeling of time-series sensor data can be a daunt-
ing and challenging task, particularly when dealing with mas-
sive and complex datasets. One of the main difficulties is that
humans are not naturally skilled at reading and interpreting
raw time-series sensor data. Even with the use of video data
to assist in the labeling process, the manual labeling of time-
series data can still be tedious, time-consuming, and error-
prone. The process of manual labeling requires significant
human resources and can lead to inconsistencies across dif-
ferent human labelers. Semi-automatic labeling can make use
of machine learning algorithms to pre-label the data and al-
low human labelers to correct any errors or inconsistencies in
the pre-labeled data. This approach can significantly reduce
the time and effort required for manual labeling and improve
the accuracy and consistency of the labeled data.

In this work, we introduce a browser-based software
framework! for labeling time-series sensor data that incor-
porates state-of-the-art visualization and machine learning
techniques, enabling efficient and precise semi-automatic la-
beling of such data. We employ interactive visualizations of
raw time-series data, as well as features extracted through
contrastive self-supervised learning methods. Furthermore,
we incorporate a label correction process to detect and cor-
rect any potential errors in the automatically assigned labels.
The human remains in the loop to ensure the quality of the
assigned labels but with a significantly reduced workload.
Our system is compatible with any Jupyter-capable machine,
thus enabling local execution to maintain data confidentiality
in cases where the data is sensitive.

2. RELATED WORK

There have been many general systems developed to label
data, such as text, images, and audio. One example is the
VGG Image Annotator [4]. Crowd-sourcing platforms like
Amazon Mechanical Turk [5], Apen [6], and Labelbox [7] are
commonly used for general data labeling. These platforms
provide a cost-effective and scalable solution for data label-
ing, but they have certain drawbacks, such as the difficulty in

lhttps ://github.com/imics—lab/time-series—label-assist
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ensuring the quality of labels and the potential for low-quality
labels due to the lack of expertise of the workers. General
data labeling systems can have issues with ambiguity, making
it difficult for labelers to accurately label data.

Labeling time-series sensor data presents a unique set of
challenges when compared to labeling images, videos, or text.
Examples of labeling systems used for time-series sensor data
include Visplore [8] and Label Studio [9]. These systems
use various techniques such as manual labeling, rule-based
labeling, and semi-automatic labeling to overcome these chal-
lenges. However, the labeling of time-series data is often
more tedious and time-consuming than other types of data.

Semi-automatic labeling is a method that combines hu-
man expertise with machine learning algorithms to improve
the efficiency and accuracy of data labeling. Examples of lit-
erature that use semi-automatic labeling include VAST [10]
and SALT [11]. Semi-automatic labeling has been shown to
significantly reduce the time and effort required for manual
labeling while maintaining high labeling accuracy. However,
most available solutions so far only apply to image/video and
textual data.

Data visualization tools, such as t-SNE [12] and UMAP [13],

can assist in the labeling of time-series sensor data by pro-
viding visual representations of the data that can aid in iden-
tifying patterns and relationships. UMAP has been shown
to be particularly useful for dimensionality reduction and
visualization of high-dimensional time-series sensor data.

There are several techniques available for automatically
correcting mislabeled instances of time series data. These
methods generally employ deep learning systems that can rec-
ognize the correct class of mislabeled instances, despite the
difficulty that machine learning models may encounter when
training on noisy labels [14]. By comparing the output of a
trained convolutional neural network (CNN) to the assigned
labels in a dataset, it is possible to identify which instances
in a sensor dataset are most likely to be mislabeled [15]. An-
other approach for identifying mislabeled data is to compare
instances to their nearest neighbors and determine the most
probable correct label either by comparison to neighbors [16]
or statistical inference [17].

3. METHODOLOGY

The labeling framework proposed in this study has been re-
alized as a web interface that is compatible with any browser
by leveraging the capabilities of Jupyter Notebooks [18]
and Plotly Dash [19]. The web-based tool is self-contained
and does not rely on cloud hosting, thus enabling local de-
ployment on any Jupyter-enabled machine or Google Colab.
As a result, the framework allows for secure and privacy-
preserving labeling of sensitive data, without the need to
upload the data to a remote server for annotation.
The data labeling process comprises the following steps:
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Fig. 1: ALVI semi-automatic labeling process workflow.

1. Raw time series data, and if available video, are loaded
from a file.

2. Data and corresponding video are visualized as time-
series plots using Plotly.

3. A small amount of labeled data are provided or manu-
ally labeled by the user.

b

A deep learning model is trained based on the initially
labeled data.

5. A larger amount of data is automatically labeled using
the trained model.

6. The automatically assigned labels are analyzed, and
parts of the data are manually reviewed.

Figure 1 visually depicts the above workflow. In the fol-
lowing subsections, we elaborate on the methods and tools
used in each one of the steps above.

3.1. Data Loading

The current version of the software supports data files in
CSV text format. It is assumed that files are structured
as: <timestamp>,<chl>, ..., <chn>,<label>, <sub>
where t imestamp is the time stamp of the sensor measure-
ment, chl, ..., chn represent the different data channels.
For example, an accelerometer may have three channels for
the three axes of acceleration, XYZ. The label column
represents a label assigned to each time step of data. Initially,
that value can be setto * ‘undefined’’ if the data is unla-
beled. The sub column represents the subject from which the
data were collected and can be a number or a string. When
data from multiple subjects are aggregated together, it is of-
ten necessary to maintain subject independence in machine
learning experiments. Thus, maintaining the subject label is
desirable. Each row of the file is a sensor measurement.

Along with the raw time-series data, the user can specify
a video file, if available, to inform the labeling process (e.g.
Fig. 2a). The loaded video file can be synchronized with a
particular section of the raw data by specifying an offset with
respect to the data timestamps.
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1 datetime accel x accely accelz accel ttl label  sub

2 01546 -0.23438 -0.46875 0171875 -0.44846 Walking 1
3 01547 -0.26563 -0.48438 0171875 -0.42145 Walking
4 01547 -0.32813 -0.64063 0.140625 -0.26662 Walking
5| ousa7 034375 075 0125 -0.16556 Walking
6 01547 -03125 -095313 0140625 0012857 Walking
7 01548 -0.26563 -0.96875 0.1875 0.021856 Walking
8 01548 -0.26563 -103125 021875 0.087145 Walking
9 01548 -0.29688 -1.17188 0265625 0.237733 Walking
10 01549 -03125 -1.1875 0.265625 0.256332 Walking
11 0US49 032813 -13125 0.171875 0.363768 Walking
12 01549 -0.32813 -1.40625 0.15625 0.452453 Walking
13 0S50 035938 15 025 0.562578 Walking
14 0SS0 -03125 -1.17188  0.1875 0.227234 Walking
15 01550 -0.29688 -1.20313 0.140625 0.247165 Walking 1

(a) A snapshot of the data file and the video captured during data
collection from an arm-mounted camera.
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(b) An example visualization used for seed labeling. The raw signals,
color-coded assigned label line, and confidence lines are visible.

Fig. 2: Data loading and seed labeling stages.

3.2. Seed Labeling

In order to facilitate the automatic labeling of the remaining
data, it is necessary to have a small amount of initial labeled
data. These initial labeled data can either be directly loaded
into the system if they have already been pre-labeled outside
of the system or manually labeled within the system by utiliz-
ing the visualization capabilities and the video-sync feature.

The seed labeling process can use advanced visualiza-
tion features and interactive graphs provided by Plotly (see
Fig. 2b). For instance, the user is afforded the ability to zoom
in on the signal, select specific sections, and assign labels by
specifying the starting and ending points of a segment, the
label, and their confidence level regarding the assigned label
(i.e., low, medium, or high). Confidence levels can be utilized
in model training. For example, segments of low confidence
can be excluded from the training set.

3.3. Model Training and Automatic Labeling

The process of training a deep learning model involves utiliz-
ing the manually pre-labeled portion of the data. During this
stage, the continuous signal is segmented into fixed-size win-
dows, and each window is assigned a single label. This tech-
nique is a commonly employed approach for training models
on time-series data. The training set can comprise either over-
lapping or non-overlapping segments. In the event that a win-
dow spans two or more labels, the user can elect to assign the
majority of time steps as the primary label for that segment or
exclude the segment entirely from the training set.

The deep learning model can be based on any neural
network architecture that supports time-series classifica-
tion. The current version offers the user a choice between

a convolutional neural network (CNN)-based or a long short-
term memory (LSTM)-based architecture. However, the
module can be replaced with other architectures, such as a
transformer-based architecture, if necessary.

Upon acquiring a trained model, a larger quantity of data
can be automatically labeled by having the model predict the
correct label for each segment of the new data. Although this
process saves time and effort from manual labor, it is antici-
pated to produce some incorrect predictions. To rectify these
inaccuracies and establish a reliable ground truth, we utilize
a complex approach for incorrect label detection and correc-
tion, which is detailed in the following subsections. This ap-
proach requires human intervention; however, it is substan-
tially less labor-intensive than fully manual labeling.

3.4. Label Correction

By adopting label correction techniques, the Assisted Label-
ing Visualizer (ALVI) can focus a human reviewer on the por-
tions of data most likely to be mislabeled by the Automatic
Labeling process. ALVI implements a label-cleaning process
based on K-Nearest Neighbors (KNN). However, such data-
centric approaches are highly sensitive to the clusterability of
the features being processed [17]. To account for this sen-
sitivity, we incorporate deep feature learning using a convo-
lutional feature extractor. The output penultimate layer of a
CNN is used to produce a highly clusterable feature space.

A KNN classifier is fit to the extracted feature space and
used to predict labels for each instance of data. By comparing
this classification to the output of the trained CNN we identify
instances that have been classified with one label but lay in
a region of the feature space near instances that do not share
their label. The dataset is sorted by the product of the assigned
one-hot label from the CNN and the categorical label output
by KNN. This allows us to identify a portion of the dataset
that most needs review.

3.5. Data Visualization

Incorporating a human in the loop during the label correc-
tion process is crucial, necessitating informative visualiza-
tions to aid in decision-making. Our proposed solution in-
volves the use of automatically labeled data that is visual-
ized and color-coded. We employ two types of visualizations,
raw signals and Uniform Manifold Approximation and Pro-
jection (UMAP) plots [13]. In the UMAP plot, each point
corresponds to a signal segment. Multi-channel raw signal
segments are mapped to a low dimensional vector through
a model trained using self-supervised contrastive learning as
presented in [20]. Such methods do not rely on the original
data labels and, thus, are not affected by label noise. The low-
dimensional vector is then further reduced to two dimensions
for 2D visualization by UMAP.

By clicking on a point in the UMAP plot, the point is
highlighted, along with the closest neighbor, irrespective of
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Fig. 3: The data visualization process utilized for label review and correction. When the user clicks on a suspicious data point
on the UMAP plot, the nearest neighbor overall as well as the nearest neighbor of the same label, are highlighted. The top graph
shows the locations of those segments in the original signal, whereas the lower right graph shows a zoomed-in neighbor.

its class, and the closest neighbor of the same class as the one
assigned to the point. Additionally, the corresponding signal
segment in the raw time series data is also highlighted. If
available, the synchronized video can display the correspond-
ing position. Figure 3 shows an example of this process. This
process can help the users decide if the automatically assigned
label is correct or not. The combination of these visualiza-
tions enhances the effectiveness of the label correction pro-
cess, ultimately leading to higher-quality labeled datasets.

4. RESULTS

In order to evaluate the tool we used TWristAR [21], a hu-
man activity recognition (HAR) dataset that contains multi-
modal data collected with an Empatica E4 Wristband. Three
subjects performed scripted activities which were structured
for easier labeling and balanced classes. For this work, the
scripted activities were treated as labeled. Two subjects per-
formed unscripted free-form walks that included a period of
sitting as well as walking on flat ground and up/downstairs. A
full video record is included. [22] provides additional dataset

details and describes prior manual labeling work.

For the TWristAR dataset, we found that manually label-
ing a single subject’s 11-minute free-form walk took 34 min-
utes. This is consistent with our experience that labeling data
with frequent activity changes takes longer than real-time due
to the need to stop and check the transitions. The manual
labeling accuracy was 91% versus the ground truth based on
prior labeling by multiple people with additional review. With
the ALVI tool using the predictions of a model trained on the
scripted sequences the labeling time was reduced to 9 minutes
and the accuracy increased to 96%.

5. CONCLUSION

In this work, we introduced ALVI, a browser-based software
framework that enables efficient and precise semi-automatic
labeling of time-series sensor data. We have demonstrated the
labeling time reduction and accuracy benefits when labeling
portions of a HAR dataset. Future work includes the evalua-
tion of datasets in alternate domains and the addition of more
informative visualizations and feature representations.
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