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TAKDE: Temporal Adaptive Kernel Density
Estimator for Real-Time Dynamic Density Estimation

Yinsong Wang “, Yu Ding

Abstract—Real-time density estimation is ubiquitous in many
applications, including computer vision and signal processing. Ker-
nel density estimation is arguably one of the most commonly used
density estimation techniques, and the use of “sliding window”
mechanism adapts kernel density estimators to dynamic processes.
In this article, we derive the asymptotic mean integrated squared
error (AMISE) upper bound for the ‘“sliding window” kernel den-
sity estimator. This upper bound provides a principled guide to
devise a novel estimator, which we name the temporal adaptive
kernel density estimator (TAKDE). Compared to heuristic ap-
proaches for “sliding window” kernel density estimator, TAKDE is
theoretically optimal in terms of the worst-case AMISE. We provide
numerical experiments using synthetic and real-world datasets,
showing that TAKDE outperforms other state-of-the-art dynamic
density estimators (including those outside of kernel family). In
particular, TAKDE achieves a superior test log-likelihood with a
smaller run-time.

Index Terms—Adaptive estimation, asymptotic mean integrated
squared error, Kkernel density estimation, real-time density
estimation.

1. INTRODUCTION

HIS work is concerned with estimation and tracking of

dynamic probability density functions in real time, moti-
vated by a nanoscience application. The introduction of in situ
transmission electron microscope (TEM) technology [1] allows
the growth of nanoparticles to be captured in real time and has the
potential to enable precise control in nanoparticle self-assembly
processes. Part of the underlying nanoscience problem is framed
into a learning problem with the following characteristics [2]:
1) Estimation and tracking of a time-varying probability density
function that reflects the collective changes across ensembles
of the nano objects. 2) It seems inevitable to adopt a non-
parametric approach in the density tracking, because there is
no settled parametric density function that can adequately de-
scribe growth mechanisms in a multi-stage nanoparticle growth
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process [1], [3]. 3) In order to be useful for in-process decision
making, the density estimation and tracking needs to be con-
ducted in real time. By “real-time” we mean that the learning and
computation speed ought to be fast enough relative to the imag-
ing rate (or the data arrival rate in general), which is 15 frames
per second (fps) in [1]. While the research is motivated by the
dynamic nano imaging, we believe that the aforementioned char-
acteristics are rather common in many types of dynamic stream-
ing data, brought forth in various applications by fast-pace data
collection capability. The objective of this research is to present
one competitive solution for dynamic density estimation and
tracking.

On the subject of density estimation, kernel density esti-
mator has had great success (in terms of accuracy) for static
datasets [4]. The direct adaptation of kernel density estimator
to dynamic density estimation [5] is infeasible as the memory
and computation cost constantly scale with the total number of
incoming data points. [6] further shows that even with unlimited
computation and storage resources, a traditional kernel density
estimator will only be a consistent estimator for a few specific
dynamic systems. [2] also shows that traditional kernel density
estimation falls short in practice in dynamic density estimation
due to limited data availability.

To address the disadvantages of traditional kernel density
estimator in dynamic density estimation, most researchers resort
to the “sliding window” mechanism [7], [8], [9]. For example, [7]
proposed the M-kernel algorithm, where the contribution of
each data point in the “sliding window” is approximated as
an additional weight added to the kernel density at the closest
grid point. This approach manages to keep the memory and
computation costs within budget despite the growth of the total
number of data points. However, with a poor choice of grid
points, it can suffer from either over-fitting or under-fitting. [8]
employed cluster kernel and resampling technique to improve
the merger performance. This approach uses the exponentially
decaying weight scheme to capture the dynamic of the true
density. [10] proposed the local region kernel density estima-
tor (LRKDE), where the kernel bandwidth varies in different
regions. The regions are divided such that the sum of data
variances in each region is minimized. LRKDE also uses a
“sliding window” to capture the dynamic of the true density. [9]
further improved upon the previous works by using linear
interpolation with kernel densities at grid points to approxi-
mate the kernel density estimator and then updating the kernel
densities at the grid points with data points within a “sliding
window”.
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The “sliding window” kernel density estimators do not only
use the data points at the current time stamp, and they take into
account older data points for inferring the current distribution.
Intuitively, this mechanism provides two improvements that
allow the kernel density estimator to work well in dynamic
density estimation. First, defining a window size according to
the computation and memory limit of the learning machine can
alleviate the scalability issue of the kernel density estimator as
old data points that are irrelevant to the current distribution can be
discarded. Second, including older data points in the window can
help alleviate the low data volume issue for most streaming data
applications. However, to the best of our knowledge, all “sliding
window” kernel density estimators proposed so far focus on
modifying the kernel density estimator itself, and less attention
has been given to the “sliding window” mechanism. As the only
component that addresses the “dynamic” part of dynamic density
estimation, there is no answer regarding how this mechanism
affects the performance of the estimation.

We note that there also exists another line of works that
model the dynamic density transition using a dynamical system
with a fixed number of parameters. One class of frameworks
is based on Bayesian learning [11], [12], [13], which models
the prior with an evolving Dirichlet process called dependent
Dirichlet process, where the dependence between a class of
Dirichlet processes is defined by a covariate. When using the
covariate to describe time, the dependent Dirichlet process can
be used to model the evolution of the dynamic distribution. The
computation and memory costs are also maintained at a constant
level. Another approach [2] couples B-spline with Kalman filter
to capture the density evolution with a state space model. It
imposes space continuity with B-spline smoothing and time
continuity with Kalman filter to develop a fast density estimator
for real-time process control. However, these estimators always
need a normalization process with numerical operations to return
a proper density function. For real-time density estimation tasks
that require a model update cycle in the order of sub-second,
these methods may not be ideal as we will later show in simula-
tions.

In this article, we propose the temporal adaptive kernel density
estimator (TAKDE), a novel kernel density estimator for real-
time dynamic density estimation that is theoretically optimal
in terms of the worst-case asymptotic mean integrated squared
error (AMISE). For the first time, we derive the AMISE upper
bound for the “sliding window” kernel density estimator in
a dynamic density estimation context. The minimizer of the
upper bound entails a novel sequence for bandwidth selection
and data weighting, which forms the basis of TAKDE. We
provide numerical experiments on synthetic datasets to support
our theoretical claim, and we then use several real-world datasets
to show that TAKDE outperforms other state-of-the-art fast dy-
namic density estimators, such as the B-spline Kalman Filter [2]
and KDEtrack [9] in terms of mean test log-likelihood metric.
Interestingly, TAKDE also dominates these algorithms in terms
of achieving a smaller run-time.

The organization of the article is as follows. We present in
Section II the preliminaries, including definitions and notations
used throughout the article. In Section III, we present the details
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for TAKDE design, which addresses three important questions,
i.e., the selection of window size, bandwidth and the data
weights. We provide in Section IV numerical experiments with
synthetic and real datasets to demonstrate the performance of
TAKDE. Finally, we draw conclusions and discuss the potential
and limitations of TAKDE in Section V.

II. PRELIMINARIES
A. Kernel Density Estimation: A Brief Overview

The kernel density estimator for a given set of data points
{z;}_, is as follows

n

. 1
plwso) = — ;Ka(:c i), (1)
where K, (-) is the kernel function with the bandwidth o.
Throughout this article, K (-) denotes a standard kernel function
with a unit kernel bandwidth. We have that K, (z) = LK ().
We further impose the following mild assumptions on the kernel
function K (-).
Assumption 1: [14] The bandwidth sequence o, (the sub-
script n shows the dependence of o to the number of data points)
has the following properties

limo, =0
n—00
lim no,, = oo, (2)
n—0o0
which implies that the bandwidth o, decays slower thann~! and

converges to 0. The standard kernel function K (-) is a bounded,
symmetric probability density function with a zero first moment

and a finite second moment. That is, the following properties
hold

/ K(2)ds =1
/ 2K (z)dz = 0

/xQK(x)d:c < 00. 3)

The convergence to 0 for bandwidth is rather intuitive, in that
when we have infinitely many data points at hand, our estimator
can be as flexible as possible without having to be concerned
about over-fitting. It is also easy to verify that many commonly
used kernels (e.g., the Gaussian kernel K (x) = \/%e’mz) sat-

isfy (3).

B. Problem Formulation

In dynamic estimation, the density evolves over time. The
evolution might be continuous in nature, but we only observe
samples from time to time. Here, we consider the case where
the streaming data comes in batches. We first define the dy-
namic streaming dataset, where we observe one new batch of

data points x(*) = {xgt) € R}, at a new time stamp ¢. This

data structure applies to most real-world streaming datasets. An
important example is estimating density information in video
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datasets [2] like the dynamic nano imaging problem mentioned
in the introduction. Animage processing tool extracts the sizes of
nanoparticles as the sample points for estimating the normalized
particle size distribution (NSPD), which is an indicator to antic-
ipate and detect phase changes in the nanoparticle growth. This
data structure further applies to many time-series datasets [15].
For the cases where streaming data comes in on a per point basis,
one can convert those types of data into our defined structure
through combining consecutive data points into batches.

We assume data points x(*) are generated independently from
p¢(z), the true density at time stamp ¢. Also, the data points x(*)
and x(*) in different time stamps (¢ # t') are independent from
each other. We impose the following assumption on the true
density function.

Assumption 2: The true density function p;(z) at any time
stamp ¢ is twice differentiable, and its second derivative p}/(x)
is continuous and square integrable.

Assumption 2 is commonly used for continuous density func-
tions [14]. The square integrable condition is necessary as the
integrated second order Taylor expansion appears later in the
error bound derivation.

Following (1), we write the traditional kernel density estima-
tor of the density p;(z) as follows

1
==Y K, (z—z"). )
R

The “sliding window” kernel density estimator, popularly
used in dynamic density estimation [7], [8], [9], takes the fol-
lowing form

=3 alp;(as0"), 5)

JET:

where 7; represents the set of batches within the moving window

(memory), p; is defined following (4), and a( 2

weight sequence that satisfies > jeT, @ § ) = 1, to ensure that the
output is a proper density function. The window size is T3, i.e.
|T:| = T, so that T; can be naturally written as 7; = {t — T} +

., t}. The superscripts (¢) on « and o are omitted hereafter
for the presentation clarity.

In order to develop a fast real-time estimator, we need to
address the following three problems.

Problem 1. How do we choose the set 7; to have a good
enough “memory” for estimating the density at time ¢ while
maintaining real-time processing?

Problem 2. How do we design the weight sequence in (5)?

Problem 3. How do we devise a kernel bandwidth selector in
4)?

is anon- negatlve

III. ALGORITHM DESIGN

In this section, we derive the AMISE upper bound for the
general “sliding window” kernel density estimator in (5). We
then present a novel weight and bandwidth sequence, entailed
by the upper bound minimizer (Problems 2 and 3). We use these
sequences to design the TAKDE algorithm.
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A. Asymptotic Mean Integrated Squared Error Upper Bound

AMISE is a popular metric used to theoretically evaluate the
performance of a density estimator [14]. For a given density
estimator /() of a density function p(z), the mean integrated
squared error (MISE) is defined as follows

MISE(h,p) & / E{(h(z) - p(z))’]da

= / MSE(h, p)dz, ©6)

where the expectation is taken with respect to the distributions
of data points involved in estimator h. MISE is the integration
of the mean squared error of the density estimator over the
support. [ 14] shows that the asymptotic expression (with respect
to the sample size n) of the MISE for a standard kernel density
estimator p(z; o, ) with kernel bandwidth o, is

RK) 1
_|_ —
noy, 4

= [ Fas

pa(f) = / 2? f(z)da. ®)

AMISE(p,p) = o3 (K)R®"), (D

where

We can see that the conditions in (2) guarantee that AMISE
converges to zero as n — co. The MISE and AMISE have been
popular measures for characterizing non-parametric density es-
timators, including binned density estimator [16], kernel density
estimator [14], wavelet density estimator [17], and diffusion
estimator with a static limit [ 18]. The exact expression for kernel
density estimator can also be derived in the case of specific
distributions like Gaussian distribution [14]. However, all these
derivations assume that data points in the non-parametric density
estimator are samples from a static target density function.

In the following theorem, we derive the theoretical upper
bound of AMISE for the “sliding window” kernel density esti-
mator given in (5) in the context of dynamic density estimation.
To the best of our knowledge, this is the first AMISE bound
for “sliding window” kernel density estimator in estimating the
evolving true density p:(z).

Theorem 1: Let Assumptions 1 and 2 hold. The AMISE of a
“sliding window” kernel density estimator hy at time ¢ with win-
dow size |T;| = T}, weight sequence {;}7*, and bandwidth
sequence {o; }/, has the following upper bound

2
~ o
AMISE(hy,pt) < Z —R(K)
i€T, nigi
+ @20 - 1) a?RO)
€Ty
2T
4+ = )Y o2olR@p). 9
€Ty
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where bl(-j ) (x) defines the difference between density functions

pi(),pi(w)(j > 1)

b (x) £ pi(x) — pj().

Proof: We omit the superscript (¢) for weight « and band-
width o for the presentation clarity. First, recall the definition of
hi(x) from (4), (5), where we have

(10)

R (6% i
x):Zaipi(a:;az Z zX:K xg) . (1D
€Ty €Tt
The bias of the estimator can be written as
B(hy(x)) £ E[he(z) — pi(2)]
Q;
=F Z ZKglx—x — pe()
€Ty i
=ZaZ/K pi(y)dy — pi(2)
€Ty
= (K, pi) () — pi(@), (12)
€T

where * denotes the convolution, and p;(+) is the true density of
batch ¢.

Using V() to denote the variance operator, the estimator
variance can be calculated as

v)) =Y aiV(pi(x;0), (13)
€Tt
due to the independence of batches, where
. 1
V(pi(w;01)) = — (K5, #pi)(@) = (Ko, % pi)* (@) - (14)

The decomposition of the MSE of the “sliding window”
estimator h; is as follows

MSE(hi,pi) = E[(h(2) — pi())?]
= V(h(x)) + B*(hu(x)). (15)
Integrating above over z, we have
MISE(hy,p) = /MSE(ilt,pt)dl"- (16)

Given the expressions of bias (12) and variance (14), to calculate
AMISE, we need to derive the Taylor approximations of the
following quantities

(K3, *pi)(x)

(Ko, % p)(@). a”
First, we have
(12, +p)@) = [ K2 (2 = wmi(w)dy
_ %/K2(z)pi(x i)z
= MR(K)-‘FO(U, (18)

g;
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where we note that p;(x — 0;2) = p;(x) + o(1) holds, because
o; — 0 asn; — oo. We also have that

(Ko +00)(@) = [ Kala = w)pi(w)iy
/K 2)pi(x — 0;2)dz
/K (pi(x) — oizp;(x)

T 2022p(@) + oo

S )z

S0t @al) + ofo?).

where we used the assumptions that [ K(z)dz=1 and
[ 2K (z)dz = 0. Given the above asymptotic characterization
of the quantities, we can rewrite the bias term (12) as

Bliu(e) = 3 (a”0) + Gouotsl s ) +o(a?) ).

. 2
€Ty

= pi(z) + (19)

(20)

1 >) . Q2D
n;o;

We can also write the variance (14) as

Vi) = 3 (L rn) +o

€T

We can now simplify the MSE (15) as

MSE(p) = 3 (2 rpn) +o ()
+ (Zaib&)(az) +) ; o2l (z)pua(K) + Zo(gg))z,
i€y €Ty T,

(22)
Disregarding the terms that converge to zero and taking integral
over x, we can derive an upper bound for AMISE as

2

AMI
SE(hy,pr) < Z P R(K)
€T
+@T - 1) > a2R()
€T
2|T| -1 L3

Z a204R

€Ty

» (23)

where the last two lines follow from the Cauchy-Schwarz in-
equality for the 2|7;| — 1 terms in the square. Note that bgt) =0
by definition. Observing that |7;| = T; completes the proof of
Theorem 1. |

Let us call the three lines in the right hand side of (9) as term 1,
term 2, and term 3, respectively. Term 1 is due to the variance of
the estimator, and terms 2 and 3 are the bias terms. Terms 1 and
3 are asymptotically vanishing in the sense that when n; — oo,
they both go to zero per condition (2). We can make several
observations about the upper bound expression (9). First, the
dynamic density estimation with “sliding window” kernel den-
sity estimators will have a non-vanishing error term 2, induced
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by keeping densities of various time stamps in the memory. We
will later see in Corollary 3 that under optimal weight design,
this term can also go to zero when n; — oo. Second, when the

distribution evolution is mild (i.e., R(bz(-t)) is small), there can
be a theoretical advantage in including previous samples in the
memory to reduce the variance term 1. Later simulations will
show this advantage can be significant in practice. Third, when
the previous distributions are very different from the current
distribution, it is desirable to only keep one batch (the current
batch) in the memory, i.e., 7; = {t} and T; = 1. In this case,
R(bgt)) = 0 by definition (10) and the upper bound (9) exactly
recovers the AMISE for the traditional kernel density estimator
in (7).

B. Window Generator

In the existing literature, kernel density estimators are modi-
fied using arbitrary “sliding windows” to adapt to the dynamic
estimation. This approach performs better than the traditional
kernel density estimator, as a static kernel density estimator
works poorly for dynamic density estimation [2]. However, this
heuristic approach lacks a theoretical justification. In fact, based
on the theoretical upper bound of AMISE (9), it is intuitive that
the window size should depend on the density evolution to keep
the AMISE small. For example, when the true density changes
drastically, it is ideal to decrease the window size to adapt to the
fast density change. Therefore, we propose a histogram-based
window size generator that will allow the kernel density estima-
tor to be adaptive to dynamic changes.

We observe in (9) that compared to the static AMISE, the
worst-case AMISE for dynamic density estimation depends on

one more quantity, namely the difference function bgt). In princi-
ple, we can use this quantity as an indicator to adapt the dynamic
kernel density estimator to the changes in the underlying density
function.

We define a cutoff threshold to determine the number of
batches (sliding window size) to be kept in the memory of the
dynamic kernel density estimator. In doing so, we first define the
temporal adaptive (TA) distance between two density functions.
Here, we use histograms to approximate the density functions
as true density functions are unavailable. We denote the number
of bins in the histograms by m, set using the Sturges’ rule [19]

m =14 3.322logn, 24)
where n is the smallest batch size among all batches in the
current memory. Sturges’ rule is a widely adopted, simple
binning algorithm in the literature. It is derived for normally
distributed data. The user can choose other binning rules, such as
Doane’s rule [20], Scott’s rule [21], or Freedman and Diaconis’s
rule [22] as appropriate. However, we note that all existing
binning guidelines provide bins similar to Sturges’ rule under
low data volume (less than 200) [4].

The temporal adaptive distance between two histograms hist;
and hist; is expressed as

[hist, hist;||lra £ lyi — y;ll3, (25)

13835

where || - |2 denotes the {5 norm and y; is the probability mass
vector on bins in batch ¢, i.e., |ly;|[1 = 1. This TA distance

serves as a measure proportional to ]%(bgt)), the approximation
of R(!") in (9), i.c.,

ROV o ||hist;, histy||74. (26)

To control the bias, one can set a cutoff threshold s for the TA
distance. Upon receiving batch ¢, the number of batches to be
kept in the memory can be set as 7} that satisfies the following
two inequalities

t—1 t—1
> sty histil|lra > s, Y |hist;, histi||lra < s.
j=t=T, j=t—Ti+1

27
Note that from a practical standpoint, the cutoff threshold s
should not be the only criterion for window selection, because
when the true density goes through a long static period, it is
possible that (27) will induce a large memory window that
exceeds the computational limit for real-time density estima-
tion. Therefore, there should exist a hard cap w to account for
computational limits. Combining both considerations, the actual
number of batches in the memory should be set as min(73, w).
Remark 1: Note that the main purpose of cutoff value s
is to reduce the window size (and computation cost) when
dealing with rapidly changing densities. The bias-variance de-
composition suggests that including more batches in TAKDE
can induce a lower variance (first term in (21)) at the cost of
increasing the bias (first termin (20)). Moreover, we will show in
Corollary 3 that TAKDE is consistent regardless of window size
T;. Later, synthetic data simulation also suggests the empirical
performance difference is not too sensitive to the cutoff value, so
one can heuristically choose it in favor of fast processing rather
than through intensive cross-validation.

C. Bandwidth and Weight Generator

The dynamic nature of the underlying true density makes
it practically impossible to understand the actual difference
functions and the second derivative of the true densities. How-
ever, using the AMISE upper bound in Theorem 1, we can
find theoretically optimal sequences for kernel bandwidths and
weights, which in turn helps in the algorithm design. In view of
Theorem 1, we present the following corollary.

Corollary 2. The optimal sequences of weights and band-
widths that minimize the AMISE upper bound of the dynamic
kernel density estimator are as follows

[SUE

o R(K)
B ERG)EE -1
1/5;
= = (28)
Zje?’t 1/Sj

where the sequence S; (with superscript (¢) omitted) is such that
S, = 202 0 omy — )ROGW). 29
) @ - DROY) 29)

Authorized licensed use limited to: Northeastern University. Downloaded on December 04,2023 at 17:43:24 UTC from IEEE Xplore. Restrictions apply.



13836

Proof: Equation (23) shows that the upper bound on AMISE
depends on the weight sequence «; and the bandwidth sequence
o;. Therefore, we can minimize the upper bound with respect to
both of these parameters.

Differentiating with respect to o; yields the following (opti-
mal) sequence

R(K) ’
nip3 (K)R(p}) (21, — 1)
We can find the optimal sequence of weights by simply solving
the minimization of Lagrangian of (23) with the constraint

> a; =1 and incorporating (30). This will result in the fol-
lowing expression for the sequence «;

(ST

(30)

g; =

_ 5R(K) 1)
S; = .00 —I—(2Tt 1)R(bi )
1/,
Q= =75 (31)
ZjeTt 1/Sj

which completes the proof of Corollary 2.

Remark 2: Corollary 2 provides some insights concerning the

bandwidth and weight choices.

1) The bandwidth sequence suggests that we should make
the kernel more flexible as more batches of data points are
included in the estimation. This aligns with the intuition
from the traditional kernel density estimator, where the
estimator can be more flexible with more sample points.

2) The weight sequence provides the following insights.
First, when the number of data points at a particular batch
is considerably large, we should assign more weight to
that batch with the hope of extracting more information
to infer the current density. Second, the R(bz(-t)) quantity
provides a countermeasure to prevent us from assigning a
large weight to data points coming from a very different
distribution compared to the current batch. Third, we
should assign more weights to the batches with larger
kernel bandwidths, which means we are favoring smoother
estimators in principle.

Corollary 3. Under Assumptions 1, 2, the optimal weight

sequence and kernel bandwidth sequence in Corollary 2 will
ensure that for any € > 0,

Pr(lhy — pi|? > €) = 0, (32)

as n; — 00.

Proof: First, notice that following Corollary 2, we have
o; — 0 and o; — 0 for every batch except the last batch where
oy — 1 (since R(bit)) = 0) as n; — oo. It is easy to verify that
E[|hs — p|?] — 0 under this bandwidth and weight sequence,
based on the expression of the mean squared error in (22). Then,
by Markov inequality, we have

EWAH —pt|2]

Pr(\ilt—l)t|2>€)§ c

—0. (33)

The proof is complete. |

Corollary 3 shows that TAKDE is weakly consistent as
n; — oo regardless of T;. This is rather intuitive as TAKDE
can precisely recover the traditional KDE in this extreme case.
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D. Kernel Bandwidth Selector

The bandwidth sequence in Corollary 2 presents a principle
for choosing the kernel bandwidth. However, the quantity R(p!)
is unknown in practice, and we still need to find a kernel band-
width selector to calculate the actual kernel bandwidth values.
There exist extensive studies for the choice of bandwidth in
traditional kernel density estimation. One popular choice is the
cross-validation approach [23], [24], [25], [26]. However, the
computational cost of cross-validation prohibits its application
in high-frequency density estimation as every new batch of data
points needs to be cross-validated for a new kernel bandwidth.

Minimizing AMISE in (7) reveals a simple expression for the
optimal kernel bandwidth. [14] characterized the optimal kernel
bandwidth based on (7) as follows

R(K) r (34)

np3(K)R(p")
We notice that (34) coincides with the optimal kernel bandwidth
sequence we derived in Corollary 2 except for a factor of
(2T} — 1)/5. This relationship allows us to directly adopt ex-
isting kernel bandwidth selection methods for optimal AMISE.

Expression (34) is still dependent on the unknown R(p”), but
there exist a number of studies that explore different methods for
estimating R(p"). For example, [27] approximates the AMISE
objective function assuming the density is Poisson and then
proceeds to find the minimizer as the optimal kernel bandwidth.
However, this method is not applicable in real-time dynamic
density estimation as the optimization process is expensive. [9]
provides an iterative update framework by estimating R(p")
through R(p"), which is the numerical square integration of the
second derivative of the density estimator. This approach does
not impose any strict assumption on the underlying distribution,
which offers a robust estimation of R(p”). However, the iterative
algorithm still requires numerical operations like numerical
derivatives and numerical integration, which may not be efficient
enough for real-time density estimation.

In TAKDE, we adopt the normal rule introduced in [28].
Assuming the true density is Gaussian, the optimal kernel band-
width can be approximated as follows

OAMISE = |:

il

OAMISE = cOn” 5, (35)

where c is the smoothness parameter depending on the kernel
function and the underlying true density, and & is the sample
standard deviation of the data points. The normal rule is par-
ticularly appealing for the design of TAKDE due to its simple
structure, which allows a direct plug-in of smoothness parameter
c and enables fast real-time processing.

There are two commonly used recommendations for the
smoothness parameter c in (35). The first choice given in [14] is
as follows

87r1/2R(K)} 5 a6

s (K)n
where ¢ is the estimated standard deviation assuming the true

density is normal. The smoothness parameter ¢ of Gaussian
Kernel in this setting is (32/3)/°.

OAMISE =~ {
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Algorithm 1. Temporal Adaptive Kernel Density Estimator
(TAKDE)

Input: Kernel function K (-), cutoff value s, hard cap w,
smoothness parameter c.
Fort=1,2,...
1: Receive new batch of data x®) at time ¢.
2: Window Generator: Generate and record hist; and
forget hist;_,,. Set Distance = 0,1, = 0,7; = (.
While T; < w:

Distance = Distance + ||histy, histi_1,||ra  (37)
Break If:
Distance > s, (38)
Else:
Ti=T,ux®T) T, =T, +1. (39)

Return: 7; and T} and the sequence {R(b;t))} JeTs
where

ROYY = ml|hist;, hist]|7a. (40)

3: Bandwidth Generator: Receive the batch set 7.
Forje{t—-T,+1,...,t}:
Cé'j
95 = o _ 1\, N1/5°
(2T, — 1)n;)Y

where c is defined by the kernel bandwidth selector,
n; = [x\9)], and 6; is the sample standard deviation
of data in batch j.

Return: Bandwidth sequence o;.

4: Weight Generator: Receive bandwidth sequence o
(®)

J

(41)

and the approximated R(b
1/S;

Dieri 1/8i7

5R(K)

J 47”Lj0'j

) sequence. Let

aj:

+ (273 - DROY). (42)

Return: Weight sequence «;.
Output: The Temporal Adaptive Kernel Density
Estimator given as

hi(w) = ajpj(a; ),

JETe

. 1 j
pj(z;0;) = — ZK‘U (x — xl(.J)).

The second recommendation [29] comes from the upper
bound of the AMISE-optimal kernel bandwidth using beta (4, 4)
or triweight density function, that is,

243R(K) ] N )

< | —_ 7
e [35u%(K)n
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This bandwidth provides an oversmoothed density estimator
that might not perform well with respect to metrics like log-
likelihood or MSE. However, an oversmoothed density estimator
is often preferred for real-world applications, because the results
are visually plausible. In this case, the smoothness parameter ¢
of Gaussian Kernel is (972/35./7)/°.

Remark 3: The only reason for adopting the normal rule in
TAKDE is its computation simplicity. We must note that the
weight sequence given in Corollary 2 is compatible with any
existing R(p”) approximation method.

E. Algorithm Design

In this subsection, we present the final form of TAKDE.
The algorithm requires as input a cutoff value s, a hard cap
w, a smoothness parameter ¢, and a kernel function K. Upon
receiving the batch of data points at time ¢, the window generator
decides the set of batches 7; to be used for the density estimation.
The window generator will also return the sequence of approx-
imated R(b§t)) as in (26) for all batches in the memory. Then,
all batches within the memory will be fed into the bandwidth
generator to generate the sequence of kernel bandwidths o; as

in Corollary 2. Then, the approximated ]A%(bgt)) and bandwidth
sequence o; will be fed into the weight generator to generate
the sequence «; as in Corollary 2. Finally, all parameters will
be put together to generate a proper kernel density estimator for
estimating the density at time ¢. Fig. 1 illustrates the workflow
of TAKDE. The algorithmic presentation of TAKDE is outlined
in Algorithm 1.

IV. EXPERIMENT

We now present numerical experiments to verify the efficiency
of TAKDE both on synthetic data and real-world data. All
experimental results established in this section are based on
Gaussian kernel function.

A. Algorithm Design Evaluation

Before we compare TAKDE with other established bench-
mark algorithms, we evaluate the design of TAKDE on synthetic
data. The specific question that we aim to address is that whether
our proposed weighting scheme, derived from the AMISE upper
bound, outperforms other heuristic weight sequences such as
uniform (or average) weighting and exponentially decaying
weighting.

1) Synthetic Dataset Design: We create a synthetic dataset
to test the performance of TAKDE in dynamic density estima-
tion. We design the synthetic dataset following some general
principles.

1) The true densities involved in the generation of the dataset
need to have analytical forms and have already been
established in the literature.

2) Each batch of data points has a size in the range of [5, 20],
so that the batches do not differ too drastically in terms of
the data amount.

3) The number of testing points for all batches should be the
same for comparison purposes.
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Weight
Generator

Fig. 1. TAKDE framework.

4) The dynamics of the underlying densities varies for dif-

ferent batches.

Following the above principles, we adopt the 15 Gaussian
mixture densities, recommended by [30], as the baseline densi-
ties for our synthetic dataset design. The 15 densities are shown
in Fig. 2.

To design the true density, we first consider 14 sections, where
each section consists of multiple batches. Let us denote the 15
Gaussian mixtures with g; (), ..., g15(2) and represent the 14
sections with Sy, ..., S14, where |[Si] + ...+ [S14] equals to
the total number of batches in the dataset. To be specific, section
S; has |S;| consecutive batches of data points in it, and the first
batch of data in section S; 1 will start after the last batch in
section S;. For batch ¢ in section j, where 1 < i < |Sj|, the

density function hl(j ) (x) is defined as follows

1—1

Si|l—i+1
= ng(x) + m%‘ﬂ(@-
J

n(e) = 2
J

(45)

To be consistent with our previous notation, hgj ) () = py,, (x)
fort;; = |Si1| + ...+ |S;j—1| + 4. Notice that in section j, the j-
th Gaussian mixture linearly transforms to the 7 + 1-th Gaussian
mixture. After we move on to section j + 1, none of previous
Gaussian mixtures g1 (), ..., g;(«) will appear in the section.
Given the density of batch ¢ in section j, we sample a random
number between 5 to 20 as the number of training points and
500 for testing points to perform the comparison. To account for
the randomness in partitioning the batches into 14 sections and
the randomness in samples, we generate 300 synthetic datasets
for Monte-Carlo simulations.

2) TAKDE Evaluation: We now compare the weight gener-
ator in TAKDE with two heuristic approaches in the literature.
One approach is to assign uniform weights to the batches,
assuming older data points are of the same importance as the new
data points, and the other one is to assign exponentially decaying
weights, assuming the new points are much more important [8],
[9]. To ensure a fair comparison, we only change the weight
generator of TAKDE to uniform and exponential weighting, and
we keep the other components of the algorithm unchanged. The
uniform weight sequence is set as follows

1
aj=—Vje{t-—T,+1,...,t}. (46)
T;
The exponential weight sequence is set as follows
aj=1—-ee I Vje{t-—T,+2,...,t}, 47)

and a7, 41 = eT*=1 where e is the decay ratio. We compare

the above to «; corresponding to the expression in (42). In our
simulation, e = 0.9 in general yields the best result under dif-
ferent settings; therefore, the decay ratio for exponential weight
sequence is set to e = 0.9.

Our comparison is performed under several kernel bandwidth
selectors, including the normal selector and oversmooth selector
mentioned in Section III-D and under various cutoff values.

First, we consider normal bandwidth selector (36) and over-
smooth bandwidth selector (44). For each bandwidth selector,
we conduct the comparison with datasets having from 100 to 500
batches of data to reflect different underlying dynamics. Notice
that for the data with 100 batches, the dynamic change is more
drastic than that of the data with 500 batches.
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Fig. 2. The 15 Gaussian mixture densities used in the synthetic dataset design.
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Fig. 3. Test log-likelihood comparison between TAKDE versus the heuristic approaches. The x-axis represents the cutoff value and the y-axis represents the test

log-likelihood. The first row shows the result under normal bandwidth selector and the second row shows the result under oversmooth bandwidth selector. In each
row, the plots from left to right represent the simulation results using synthetic datasets with 100, 200, 300, 400, and 500 batches of data.

The simulation result is shown in Fig. 3. We can ob-
serve that TAKDE with AMISE-based weight sequence dom-
inates the uniform and exponential weight sequences in terms
of the test log-likelihood. We also see that when using the
heuristic weight sequences, increasing the memory (i.e., larger
cutoff value) mostly exacerbates the density estimation per-
formance. The results show that the performance difference
between TAKDE and other two methods is larger when the
total number of batches is smaller. This suggests that TAKDE

with AMISE-based weight sequence is better at adapting to
more drastic dynamic changes. The smaller differences in 500-
batch simulations are consistent with our theoretical results,
where the weighting sequence in Corollary 2 gets closer to
uniform weighting as R(bl(-t)) converges to 0, equivalent to
a static density estimation. We observe that changes in the
cutoff value do not have a significant effect on TAKDE per-
formance compared to others. This verifies our discussion in
Remark 1.
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Test log-likelihood comparison between TAKDE versus the heuristic approaches over different bandwidth selectors. The x-axis represents the value of

the smoothness parameter c. The y-axis represents the test log-likelihood. Each plot from left to right represents the simulation conducted with cutoff values from

1to5.

Second, we conduct the comparison using a synthetic dataset
with 100 batches of data for different bandwidth selectors, i.e.,
varying the smoothness parameter c in (35). The simulation
results are shown in Fig. 4. Again, we observe the same perfor-
mance trend for the algorithms. These simulations empirically
verify that the performance advantage of our proposed weight
sequence against the heuristic weight sequences is robust to
different kernel bandwidths and different window sizes.

B. Comparison With Benchmark Algorithms

Next, we compare TAKDE with three density estimation
methods on real-world datasets. We consider both the mean
test log-likelihood and the run-time to show the advantages of
TAKDE.

1) Benchmark Algorithms:

1) Kernel Density Estimator (KDE): The first benchmark
algorithm is the traditional kernel density estimator. The
main reason to include kernel density estimator in the
comparison is to show why a traditional density estimator
is not ideal for dynamic density estimation. The kernel
density estimator is formulated as (1). The bandwidth
selector is

!
o=con s,

(48)

where we use cross-validation to choose ¢ (rather than the
actual bandwidth) for easy comparison with TAKDE.
B-spline Kalman Filter (BKF) [2]: B-spline Kalman filter
models the underlying density function as a count mea-
sure defined on the partitions of the density support. The
density estimator is defined as

2)

A 1 -

P(w) = G expy_ BiBi(x), (49)
=1

where C' is the normalization constant calculated with

numerical integration, m is the number of partitions, and

B;(x) are the B-spline bases. The algorithm updates its

states (; using a B-spline matrix evaluated on the centers
of the density support partitions and the count vector at
each batch.

KDEtrack [9]: KDEtrack partitions the support of the den-
sity using a collection of grid points. The set of grid points
and the density values at the grid points are updated after
each new batch of data points is received and evaluated.
The density evaluation at a test point will be the linear
interpolation at the test point using the closest grid points.

Remark 4: We do not include the M-kernel and LRKDE

methods since [9] has showed that KDEtrack is superior to these
two methods.

2) Datasets

e Insitu TEM video data: The first dataset we use is in situ
TEM dataset introduced in Section L. It is the 76.6 s in situ
TEM video published in [1]. It has a total of 1149 frames
of images and 5—20 particle counts in each frame.

e CinCECGTorso (ECG) data: CinCECGTorso dataset is

an ECG dataset taken from multiple torso surface sites
of four patients from the Computers in Cardiology chal-
lenges. This dataset is available on UCR time-series data
archive [15].
The dataset consists of ECG measurements of four patients.
We use the ECG signal sequence of one person to highlight
the density dynamics over time. Note that simulations on
all four patients yield similar results. There are 342 ECG
signals (data points) available at each batch, and there are a
total of 1639 batches of data points over time. The batches
are collected at 2 kHz frequency, which requires the density
estimator to be updated 2000 times per second. For each
batch of data points at a certain time stamp, we randomly
sample 5 to 20 data points to train and use the rest of the data
points to evaluate the algorithms. The number of training
data points at each batch is determined only once through-
out all the Monte-Carlo simulations. However, the set of
training points are sampled randomly in each Monte-Carlo
simulation.
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TABLE I
BEST EXPERIMENTAL SETTINGS FOR DIFFERENT BENCHMARK ALGORITHMS IN DIFFERENT DATASETS

Algorithm [ Noise Parameter oy | Noise Parameter iy | Smoothness Parameter ¢ | Cutoff Value (Window Size)
TEM
KDE - - 1.34 -
B-spline 0.66 0.04 - -
KDEtrack - - 0.45 1(16)
TAKDE - - 0.15 1(16)
ECG
KDE - - 0.98 -
B-spline 0.82 0.05 - -
KDEtrack - - 0.1 1(60)
TAKDE - - 0.7 1(60)
Wafer
KDE - - 0.22 -
B-spline 0.96 0.06 - -
KDEtrack - - 1.05 1(20)
TAKDE - - 0.15 1(20)
Earth
KDE - - 0.4 -
B-spline 0.81 0.05 - -
KDEtrack - - 0.8 0.2(15)
TAKDE - - 0.05 1.4(90)
Star
KDE - - 0.9 -
B-spline 0.30 0.02 - -
KDEtrack - - 1 0.3(20)
TAKDE - - 0.35 1.8(38)

e Wafer data: Wafer dataset is a collection of sensor readings
in a semiconductor wafer manufacturing process over time,
available on UCR time-series data archive [15]. Unlike
the previous two datasets, a wafer manufacturing process
is a rather slow process that could span over 10 weeks.
However, this dataset is still illustrative for evaluating the
accuracy of TAKDE. We use the readings in the normal
state wafer manufacturing process to conduct our analysis.
There are 600 readings (data points) available at each batch,
and there are a total of 152 batches of data points over time.
Again, we adopt the same train-test split approach as in the
ECG dataset.

Earthquakes (Earth) data: The earthquake dataset is a
sensor reading dataset from Northern California Earth-
quake Data Center available on UCR time-series data
archive [15]. It consists of 461 readings at each batch with
a total of 512 batches.

StarLight Curves (Star) data: The starlight curves dataset
consists of time-series sensor readings on the brightness
of a collection of celestial objects. It is also available on
UCR time-series data archive [15]. This dataset includes
the readings of 1000 celestial objects at each batch with a
total of 1024 batches.

3) Experimental Settings: In comparing across different den-
sity estimators, we only present the best performance of B-
spline Kalman filter, where the noise prior parameters are cross-
validated using a grid search with an interval size of 0.01.
For the traditional kernel density estimator, we report its best
performance, but even that is significantly inferior to other den-
sity estimators. For KDEtrack and TAKDE, we report the best
settings performances (in terms of smoothness parameter ¢ and
cutoff value s). Notice we do not adopt the iterative bandwidth
update in KDEtrack for the computation reason explained in

Authorized licensed use limited to: Northeastern University. Downloaded on

Section III-D, but instead we use the same bandwidth generator
asin TAKDE. All the simulations are conducted over 100 Monte-
Carlo simulations for random training-testing splits to generate
the standard errors of the performance. The performance metric
is the mean test log-likelihood of the test points.

4) Performance: The parameter settings leading to respec-
tive best performance for all benchmark algorithms are shown
in Table I. These settings are cross-validated using the first 10%
batches of each dataset (20% for Wafer and Earth dataset).

The results are tabulated in Table II. TAKDE tagged with
“(normal)” represents the performance achieved with smooth-
ness parameter recommended in (36) (normal bandwidth se-
lector) and the optimal cutoff in Table I. TAKDE tagged with
“(cor)” represents the performance achieved by TAKDE under
KDEtrack best settings in terms of cutoff value and smoothness
parameter. As we can observe, TAKDE dominates all other
benchmark algorithms in terms of test log-likelihood by a large
margin. TAKDE is also robust with respect to different cutoff
values and different smoothness parameters, as it dominates all
other benchmark algorithms even under the best settings for
KDEtrack. The only exception is TAKDE with normal band-
width selector on the TEM dataset. The underlying reason is
that the low data volume available at different batches (training
and testing combined) forces the “true” density distribution
at each time stamp to an average of Dirac measures, which
is far from the normal assumption of the normal bandwidth
selector.

The run-time comparisons are shown in Table III. The values
represent the time used for executing the density estimation for
all test data points in all batches. We can observe that in addition
to being more accurate than the benchmark algorithms, TAKDE
is also much faster in speed as it requires negligible calcula-
tions in addition to kernel density evaluation. The computation
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TABLE II
MEAN TEST LOG-LIKELIHOOD ON FIVE REAL DATASETS

Algorithm TEM ECG Wafer Earth Star

KDE —0.026 £0.0001 | 0.060 £ 0.00002 | 0.0229 £ 0.0007 0.048 £0.0002 | 0.0078 4 0.00002

B-spline Kalman Filter | 0.171 4 0.0062 1.580 £ 0.0011 1.204 £ 0.0034 1.324 £ 0.0051 0.685 4 0.0024

KDEtrack 0.245 4 0.0057 1.095 £ 0.0009 0.866 & 0.0018 0.915 £ 0.0012 0.640 £ 0.0007
TAKDE(normal) 0.130 £ 0.0016 1.639 +0.0004 | 1.530 +0.0015 1.247 £0.0017 0.696 + 0.0007
TAKDE(cor) 0.246 +0.0022 | 1.625+0.0010 | 1.627 £0.0017 | 1.331 £+0.0026 | 0.705 £ 0.0008

TAKDE 0.362 +0.0036 | 1.648 4 0.0009 | 1.848 £0.0025 | 1.504 £0.0026 | 0.710 £ 0.0012
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Visualization of the density estimators on the TEM dataset. The first row shows TAKDE at its normal setting and optimal setting. The second row shows

B-spline Kalman Filter at its optimal setting. The third row shows KDEtrack at its optimal setting. Figures from left to right represent the estimation at time stamps

225, 450, 675, and 900, respectively.

TABLE III
RUN-TIME COMPARISON (SECONDS) ON FIVE REAL DATASETS

Algorithm TEM ECG | Wafer | Earth Star
B-spline Kalman Filter 7.08 4.099 | 0.379 | 0.907 | 1.752
KDEtrack 5.461 4.712 1.542 1.569 14.85
TAKDE 0.378 | 0.557 | 0.114 | 0.704 | 0.851

advantage makes a huge difference for the ECG dataset in
particular, as the other two benchmark algorithms do not run
nearly fast enough to catch up with the 2 kHz data collection
rate.

C. Visual Examination

In this subsection, we visualize the previously compared den-
sity estimators. We pick the time stamps {225, 450, 675,900} in
1150 batches of data in the TEM dataset for visualization. The re-
sults are shown in Fig. 5. As we can observe, TAKDE at its opti-
mal setting (for test log-likelihood) yields a more flexible model
compared to other algorithms. TAKDE with normal smoothness
parameter yields the smoothest model among all. Our results

in Table II also show that the normal smoothness parameter
can achieve estimation performance close to the optimal setting
while yielding smooth density functions that facilitate easy
interpretation. For this reason, in most real-world applications
that do not place estimation accuracy as their first priority, we
do recommend using the normal smoothness parameter (36) to
avoid cross-validation.

V. CONCLUSION

In this article, we established a theoretical AMISE upper
bound expression for the “sliding window” kernel density es-
timator in dynamic density estimation. We proposed the tem-
poral adaptive kernel density estimator that maintains the fast
processing advantage of the “sliding window” kernel density
estimator, while being theoretically optimal under the worst-case
AMISE. We provided extensive numerical simulations to verify
that TAKDE is superior to state-of-the-art real-time dynamic
density estimators in terms of the mean test log-likelihood.
TAKDE also dominated these algorithms in terms of achieving
smaller run-times.

Authorized licensed use limited to: Northeastern University. Downloaded on December 04,2023 at 17:43:24 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: TAKDE: TEMPORAL ADAPTIVE KERNEL DENSITY ESTIMATOR FOR REAL-TIME DYNAMIC DENSITY ESTIMATION

The proposed weight sequence is reminiscent of the attention
mechanism in a transformer neural network for sequence re-
weighting [31]. Considering the massive success of transformers
in different fields, one of the future research directions is to
see whether learning the weight sequence through the attention
mechanism can result in a better performance.

Note that TAKDE in its current state only works for univariate
density estimation. Thus, another future direction is to extend it
to multivariate density cases.
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