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Estimator for Real-Time Dynamic Density Estimation
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Abstract—Real-time density estimation is ubiquitous in many
applications, including computer vision and signal processing. Ker-
nel density estimation is arguably one of the most commonly used
density estimation techniques, and the use of “sliding window”
mechanism adapts kernel density estimators to dynamic processes.
In this article, we derive the asymptotic mean integrated squared
error (AMISE) upper bound for the “sliding window” kernel den-
sity estimator. This upper bound provides a principled guide to
devise a novel estimator, which we name the temporal adaptive
kernel density estimator (TAKDE). Compared to heuristic ap-
proaches for “sliding window” kernel density estimator, TAKDE is
theoretically optimal in terms of the worst-case AMISE. We provide
numerical experiments using synthetic and real-world datasets,
showing that TAKDE outperforms other state-of-the-art dynamic
density estimators (including those outside of kernel family). In
particular, TAKDE achieves a superior test log-likelihood with a
smaller run-time.

Index Terms—Adaptive estimation, asymptotic mean integrated
squared error, kernel density estimation, real-time density
estimation.

I. INTRODUCTION

T
HIS work is concerned with estimation and tracking of

dynamic probability density functions in real time, moti-

vated by a nanoscience application. The introduction of in situ

transmission electron microscope (TEM) technology [1] allows

the growth of nanoparticles to be captured in real time and has the

potential to enable precise control in nanoparticle self-assembly

processes. Part of the underlying nanoscience problem is framed

into a learning problem with the following characteristics [2]:

1) Estimation and tracking of a time-varying probability density

function that reflects the collective changes across ensembles

of the nano objects. 2) It seems inevitable to adopt a non-

parametric approach in the density tracking, because there is

no settled parametric density function that can adequately de-

scribe growth mechanisms in a multi-stage nanoparticle growth
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process [1], [3]. 3) In order to be useful for in-process decision

making, the density estimation and tracking needs to be con-

ducted in real time. By “real-time” we mean that the learning and

computation speed ought to be fast enough relative to the imag-

ing rate (or the data arrival rate in general), which is 15 frames

per second (fps) in [1]. While the research is motivated by the

dynamic nano imaging, we believe that the aforementioned char-

acteristics are rather common in many types of dynamic stream-

ing data, brought forth in various applications by fast-pace data

collection capability. The objective of this research is to present

one competitive solution for dynamic density estimation and

tracking.

On the subject of density estimation, kernel density esti-

mator has had great success (in terms of accuracy) for static

datasets [4]. The direct adaptation of kernel density estimator

to dynamic density estimation [5] is infeasible as the memory

and computation cost constantly scale with the total number of

incoming data points. [6] further shows that even with unlimited

computation and storage resources, a traditional kernel density

estimator will only be a consistent estimator for a few specific

dynamic systems. [2] also shows that traditional kernel density

estimation falls short in practice in dynamic density estimation

due to limited data availability.

To address the disadvantages of traditional kernel density

estimator in dynamic density estimation, most researchers resort

to the “sliding window” mechanism [7], [8], [9]. For example, [7]

proposed the M-kernel algorithm, where the contribution of

each data point in the “sliding window” is approximated as

an additional weight added to the kernel density at the closest

grid point. This approach manages to keep the memory and

computation costs within budget despite the growth of the total

number of data points. However, with a poor choice of grid

points, it can suffer from either over-fitting or under-fitting. [8]

employed cluster kernel and resampling technique to improve

the merger performance. This approach uses the exponentially

decaying weight scheme to capture the dynamic of the true

density. [10] proposed the local region kernel density estima-

tor (LRKDE), where the kernel bandwidth varies in different

regions. The regions are divided such that the sum of data

variances in each region is minimized. LRKDE also uses a

“sliding window” to capture the dynamic of the true density. [9]

further improved upon the previous works by using linear

interpolation with kernel densities at grid points to approxi-

mate the kernel density estimator and then updating the kernel

densities at the grid points with data points within a “sliding

window”.
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The “sliding window” kernel density estimators do not only

use the data points at the current time stamp, and they take into

account older data points for inferring the current distribution.

Intuitively, this mechanism provides two improvements that

allow the kernel density estimator to work well in dynamic

density estimation. First, defining a window size according to

the computation and memory limit of the learning machine can

alleviate the scalability issue of the kernel density estimator as

old data points that are irrelevant to the current distribution can be

discarded. Second, including older data points in the window can

help alleviate the low data volume issue for most streaming data

applications. However, to the best of our knowledge, all “sliding

window” kernel density estimators proposed so far focus on

modifying the kernel density estimator itself, and less attention

has been given to the “sliding window” mechanism. As the only

component that addresses the “dynamic” part of dynamic density

estimation, there is no answer regarding how this mechanism

affects the performance of the estimation.

We note that there also exists another line of works that

model the dynamic density transition using a dynamical system

with a fixed number of parameters. One class of frameworks

is based on Bayesian learning [11], [12], [13], which models

the prior with an evolving Dirichlet process called dependent

Dirichlet process, where the dependence between a class of

Dirichlet processes is defined by a covariate. When using the

covariate to describe time, the dependent Dirichlet process can

be used to model the evolution of the dynamic distribution. The

computation and memory costs are also maintained at a constant

level. Another approach [2] couples B-spline with Kalman filter

to capture the density evolution with a state space model. It

imposes space continuity with B-spline smoothing and time

continuity with Kalman filter to develop a fast density estimator

for real-time process control. However, these estimators always

need a normalization process with numerical operations to return

a proper density function. For real-time density estimation tasks

that require a model update cycle in the order of sub-second,

these methods may not be ideal as we will later show in simula-

tions.

In this article, we propose the temporal adaptive kernel density

estimator (TAKDE), a novel kernel density estimator for real-

time dynamic density estimation that is theoretically optimal

in terms of the worst-case asymptotic mean integrated squared

error (AMISE). For the first time, we derive the AMISE upper

bound for the “sliding window” kernel density estimator in

a dynamic density estimation context. The minimizer of the

upper bound entails a novel sequence for bandwidth selection

and data weighting, which forms the basis of TAKDE. We

provide numerical experiments on synthetic datasets to support

our theoretical claim, and we then use several real-world datasets

to show that TAKDE outperforms other state-of-the-art fast dy-

namic density estimators, such as the B-spline Kalman Filter [2]

and KDEtrack [9] in terms of mean test log-likelihood metric.

Interestingly, TAKDE also dominates these algorithms in terms

of achieving a smaller run-time.

The organization of the article is as follows. We present in

Section II the preliminaries, including definitions and notations

used throughout the article. In Section III, we present the details

for TAKDE design, which addresses three important questions,

i.e., the selection of window size, bandwidth and the data

weights. We provide in Section IV numerical experiments with

synthetic and real datasets to demonstrate the performance of

TAKDE. Finally, we draw conclusions and discuss the potential

and limitations of TAKDE in Section V.

II. PRELIMINARIES

A. Kernel Density Estimation: A Brief Overview

The kernel density estimator for a given set of data points

{xi}ni=1 is as follows

p̂(x;σ) =
1

n

n
∑

i=1

Kσ(x− xi), (1)

where Kσ(·) is the kernel function with the bandwidth σ.

Throughout this article, K(·) denotes a standard kernel function

with a unit kernel bandwidth. We have that Kσ(x) =
1
σK( xσ ).

We further impose the following mild assumptions on the kernel

function K(·).
Assumption 1: [14] The bandwidth sequence σn (the sub-

script n shows the dependence of σ to the number of data points)

has the following properties

lim
n→∞

σn = 0

lim
n→∞

nσn = ∞, (2)

which implies that the bandwidthσn decays slower thann−1 and

converges to 0. The standard kernel function K(·) is a bounded,

symmetric probability density function with a zero first moment

and a finite second moment. That is, the following properties

hold
∫

K(x)dx = 1

∫

xK(x)dx = 0

∫

x2K(x)dx < ∞. (3)

The convergence to 0 for bandwidth is rather intuitive, in that

when we have infinitely many data points at hand, our estimator

can be as flexible as possible without having to be concerned

about over-fitting. It is also easy to verify that many commonly

used kernels (e.g., the Gaussian kernel K(x) = 1√
2π

e−x2

) sat-

isfy (3).

B. Problem Formulation

In dynamic estimation, the density evolves over time. The

evolution might be continuous in nature, but we only observe

samples from time to time. Here, we consider the case where

the streaming data comes in batches. We first define the dy-

namic streaming dataset, where we observe one new batch of

data points x
(t) = {x(t)

i ∈ R}nt

i=1 at a new time stamp t. This

data structure applies to most real-world streaming datasets. An

important example is estimating density information in video
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datasets [2] like the dynamic nano imaging problem mentioned

in the introduction. An image processing tool extracts the sizes of

nanoparticles as the sample points for estimating the normalized

particle size distribution (NSPD), which is an indicator to antic-

ipate and detect phase changes in the nanoparticle growth. This

data structure further applies to many time-series datasets [15].

For the cases where streaming data comes in on a per point basis,

one can convert those types of data into our defined structure

through combining consecutive data points into batches.

We assume data points x(t) are generated independently from

pt(x), the true density at time stamp t. Also, the data points x(t)

and x
(t′) in different time stamps (t �= t′) are independent from

each other. We impose the following assumption on the true

density function.

Assumption 2: The true density function pt(x) at any time

stamp t is twice differentiable, and its second derivative p′′t (x)
is continuous and square integrable.

Assumption 2 is commonly used for continuous density func-

tions [14]. The square integrable condition is necessary as the

integrated second order Taylor expansion appears later in the

error bound derivation.

Following (1), we write the traditional kernel density estima-

tor of the density pt(x) as follows

p̂t(x;σ) =
1

nt

nt
∑

i=1

Kσ(x− x
(t)
i ). (4)

The “sliding window” kernel density estimator, popularly

used in dynamic density estimation [7], [8], [9], takes the fol-

lowing form

ĥt(x) =
∑

j∈Tt
α
(t)
j p̂j(x;σ

(t)
j ), (5)

whereTt represents the set of batches within the moving window

(memory), p̂j is defined following (4), andα
(t)
j is a non-negative

weight sequence that satisfies
∑

j∈Tt α
(t)
j = 1, to ensure that the

output is a proper density function. The window size is Tt, i.e.

|Tt| = Tt, so that Tt can be naturally written as Tt = {t− Tt +
1, . . . , t}. The superscripts (t) on α and σ are omitted hereafter

for the presentation clarity.

In order to develop a fast real-time estimator, we need to

address the following three problems.

Problem 1. How do we choose the set Tt to have a good

enough “memory” for estimating the density at time t while

maintaining real-time processing?

Problem 2. How do we design the weight sequence in (5)?

Problem 3. How do we devise a kernel bandwidth selector in

(4)?

III. ALGORITHM DESIGN

In this section, we derive the AMISE upper bound for the

general “sliding window” kernel density estimator in (5). We

then present a novel weight and bandwidth sequence, entailed

by the upper bound minimizer (Problems 2 and 3). We use these

sequences to design the TAKDE algorithm.

A. Asymptotic Mean Integrated Squared Error Upper Bound

AMISE is a popular metric used to theoretically evaluate the

performance of a density estimator [14]. For a given density

estimator ĥ(x) of a density function p(x), the mean integrated

squared error (MISE) is defined as follows

MISE(ĥ, p) �

∫

E[(ĥ(x)− p(x))2]dx

=

∫

MSE(ĥ, p)dx, (6)

where the expectation is taken with respect to the distributions

of data points involved in estimator ĥ. MISE is the integration

of the mean squared error of the density estimator over the

support. [14] shows that the asymptotic expression (with respect

to the sample size n) of the MISE for a standard kernel density

estimator p̂(x;σn) with kernel bandwidth σn is

AMISE(p̂, p) =
R(K)

nσn
+

1

4
σ4
nµ

2
2(K)R(p′′), (7)

where

R(f) =

∫

f2(x)dx,

µ2(f) =

∫

x2f(x)dx. (8)

We can see that the conditions in (2) guarantee that AMISE

converges to zero as n → ∞. The MISE and AMISE have been

popular measures for characterizing non-parametric density es-

timators, including binned density estimator [16], kernel density

estimator [14], wavelet density estimator [17], and diffusion

estimator with a static limit [18]. The exact expression for kernel

density estimator can also be derived in the case of specific

distributions like Gaussian distribution [14]. However, all these

derivations assume that data points in the non-parametric density

estimator are samples from a static target density function.

In the following theorem, we derive the theoretical upper

bound of AMISE for the “sliding window” kernel density esti-

mator given in (5) in the context of dynamic density estimation.

To the best of our knowledge, this is the first AMISE bound

for “sliding window” kernel density estimator in estimating the

evolving true density pt(x).
Theorem 1: Let Assumptions 1 and 2 hold. The AMISE of a

“sliding window” kernel density estimator ĥt at time t with win-

dow size |Tt| = Tt, weight sequence {αi}Tt

i=1, and bandwidth

sequence {σi}Tt

i=1 has the following upper bound

AMISE(ĥt, pt) ≤
∑

i∈Tt

α2
i

niσi
R(K)

+ (2Tt − 1)
∑

i∈Tt
α2
iR(b

(t)
i )

+
2Tt − 1

4
µ2
2(K)

∑

i∈Tt
α2
iσ

4
iR(p′′i ), (9)
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where b
(j)
i (x) defines the difference between density functions

pi(x), pj(x)(j ≥ i)

b
(j)
i (x) � pi(x)− pj(x). (10)

Proof: We omit the superscript (t) for weight α and band-

width σ for the presentation clarity. First, recall the definition of

ĥt(x) from (4), (5), where we have

ĥt(x) =
∑

i∈Tt
αip̂i(x;σi) =

∑

i∈Tt

αi

ni

ni
∑

j=1

Kσi
(x− x

(i)
j ). (11)

The bias of the estimator can be written as

B(ĥt(x)) � E[ĥt(x)− pt(x)]

= E

⎡

⎣

∑

i∈Tt

αi

ni

ni
∑

j=1

Kσi
(x− x

(i)
j )− pt(x)

⎤

⎦

=
∑

i∈Tt
αi

∫

Kσi
(x− y)pi(y)dy − pt(x)

=
∑

i∈Tt
αi(Kσi

∗ pi)(x)− pt(x), (12)

where ∗ denotes the convolution, and pi(·) is the true density of

batch i.
Using V (·) to denote the variance operator, the estimator

variance can be calculated as

V (ĥt(x)) =
∑

i∈Tt
α2
iV (p̂i(x;σi)), (13)

due to the independence of batches, where

V (p̂i(x;σi)) =
1

ni

(

(K2
σi

∗ pi)(x)− (Kσi
∗ pi)2(x)

)

. (14)

The decomposition of the MSE of the “sliding window”

estimator ĥt is as follows

MSE(ĥt, pt) = E[(ĥt(x)− pt(x))
2]

= V (ĥt(x)) +B2(ĥt(x)). (15)

Integrating above over x, we have

MISE(ĥt, pt) =

∫

MSE(ĥt, pt)dx. (16)

Given the expressions of bias (12) and variance (14), to calculate

AMISE, we need to derive the Taylor approximations of the

following quantities

(K2
σi

∗ pi)(x)
(Kσi

∗ pi)(x). (17)

First, we have

(K2
σi

∗ pi)(x) =
∫

K2
σi
(x− y)pi(y)dy

=
1

σi

∫

K2(z)pi(x− σiz)dz

=
pi(x)

σi
R(K) + o(1), (18)

where we note that pi(x− σiz) = pi(x) + o(1) holds, because

σi → 0 as ni → ∞. We also have that

(Kσi
∗ pi)(x) =

∫

Kσi
(x− y)pi(y)dy

=

∫

K(z)pi(x− σiz)dz

=

∫

K(z)(pi(x)− σizp
′
i(x)

+
1

2
σ2
i z

2p′′i (x) + o(σ2
i ))dz

= pi(x) +
1

2
σ2
i p

′′
i (x)µ2(K) + o(σ2

i ). (19)

where we used the assumptions that
∫

K(z)dz = 1 and
∫

zK(z)dz = 0. Given the above asymptotic characterization

of the quantities, we can rewrite the bias term (12) as

B(ĥt(x)) =
∑

i∈Tt

(

αib
(t)
i (x) +

1

2
αiσ

2
i p

′′
i (x)µ2(K) + o(σ2

i )

)

.

(20)

We can also write the variance (14) as

V (ĥt(x)) =
∑

i∈Tt

(

α2
i

niσi
R(K)pi(x) + o

(

1

niσi

))

. (21)

We can now simplify the MSE (15) as

MSE(ĥt, pt) =
∑

i∈Tt

(

α2
i

niσi
R(K)pi(x) + o

(

1

niσi

))

+

(

∑

i∈Tt
αib

(t)
i (x) +

∑

i∈Tt

1

2
σ2
i αip

′′
i (x)µ2(K) +

∑

i∈Tt
o(σ2

i )

)2

.

(22)

Disregarding the terms that converge to zero and taking integral

over x, we can derive an upper bound for AMISE as

AMISE(ĥt, pt) ≤
∑

i∈Tt

α2
i

niσi
R(K)

+ (2|Tt| − 1)
∑

i∈Tt
α2
iR(b

(t)
i )

+
2|Tt| − 1

4
µ2
2(K)

∑

i∈Tt
α2
iσ

4
iR(p′′i ), (23)

where the last two lines follow from the Cauchy-Schwarz in-

equality for the 2|Tt| − 1 terms in the square. Note that b
(t)
t = 0

by definition. Observing that |Tt| = Tt completes the proof of

Theorem 1. �

Let us call the three lines in the right hand side of (9) as term 1,

term 2, and term 3, respectively. Term 1 is due to the variance of

the estimator, and terms 2 and 3 are the bias terms. Terms 1 and

3 are asymptotically vanishing in the sense that when ni → ∞,

they both go to zero per condition (2). We can make several

observations about the upper bound expression (9). First, the

dynamic density estimation with “sliding window” kernel den-

sity estimators will have a non-vanishing error term 2, induced
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by keeping densities of various time stamps in the memory. We

will later see in Corollary 3 that under optimal weight design,

this term can also go to zero when ni → ∞. Second, when the

distribution evolution is mild (i.e., R(b
(t)
i ) is small), there can

be a theoretical advantage in including previous samples in the

memory to reduce the variance term 1. Later simulations will

show this advantage can be significant in practice. Third, when

the previous distributions are very different from the current

distribution, it is desirable to only keep one batch (the current

batch) in the memory, i.e., Tt = {t} and Tt = 1. In this case,

R(b
(t)
t ) = 0 by definition (10) and the upper bound (9) exactly

recovers the AMISE for the traditional kernel density estimator

in (7).

B. Window Generator

In the existing literature, kernel density estimators are modi-

fied using arbitrary “sliding windows” to adapt to the dynamic

estimation. This approach performs better than the traditional

kernel density estimator, as a static kernel density estimator

works poorly for dynamic density estimation [2]. However, this

heuristic approach lacks a theoretical justification. In fact, based

on the theoretical upper bound of AMISE (9), it is intuitive that

the window size should depend on the density evolution to keep

the AMISE small. For example, when the true density changes

drastically, it is ideal to decrease the window size to adapt to the

fast density change. Therefore, we propose a histogram-based

window size generator that will allow the kernel density estima-

tor to be adaptive to dynamic changes.

We observe in (9) that compared to the static AMISE, the

worst-case AMISE for dynamic density estimation depends on

one more quantity, namely the difference function b
(t)
i . In princi-

ple, we can use this quantity as an indicator to adapt the dynamic

kernel density estimator to the changes in the underlying density

function.

We define a cutoff threshold to determine the number of

batches (sliding window size) to be kept in the memory of the

dynamic kernel density estimator. In doing so, we first define the

temporal adaptive (TA) distance between two density functions.

Here, we use histograms to approximate the density functions

as true density functions are unavailable. We denote the number

of bins in the histograms by m, set using the Sturges’ rule [19]

m = 1 + 3.322 log n, (24)

where n is the smallest batch size among all batches in the

current memory. Sturges’ rule is a widely adopted, simple

binning algorithm in the literature. It is derived for normally

distributed data. The user can choose other binning rules, such as

Doane’s rule [20], Scott’s rule [21], or Freedman and Diaconis’s

rule [22] as appropriate. However, we note that all existing

binning guidelines provide bins similar to Sturges’ rule under

low data volume (less than 200) [4].

The temporal adaptive distance between two histogramshisti
and histj is expressed as

‖histi, histj‖TA � ‖yi − yj‖22, (25)

where ‖ · ‖2 denotes the �2 norm and yi is the probability mass

vector on bins in batch i, i.e., ‖yi‖1 = 1. This TA distance

serves as a measure proportional to R̂(b
(t)
i ), the approximation

of R(b
(t)
i ) in (9), i.e.,

R̂(b
(t)
i ) ∝ ‖histi, histt‖TA. (26)

To control the bias, one can set a cutoff threshold s for the TA

distance. Upon receiving batch t, the number of batches to be

kept in the memory can be set as Tt that satisfies the following

two inequalities

t−1
∑

j=t−Tt

‖histj , histt‖TA > s,

t−1
∑

j=t−Tt+1

‖histj , histt‖TA ≤ s.

(27)

Note that from a practical standpoint, the cutoff threshold s
should not be the only criterion for window selection, because

when the true density goes through a long static period, it is

possible that (27) will induce a large memory window that

exceeds the computational limit for real-time density estima-

tion. Therefore, there should exist a hard cap w to account for

computational limits. Combining both considerations, the actual

number of batches in the memory should be set as min(Tt, w).
Remark 1: Note that the main purpose of cutoff value s

is to reduce the window size (and computation cost) when

dealing with rapidly changing densities. The bias-variance de-

composition suggests that including more batches in TAKDE

can induce a lower variance (first term in (21)) at the cost of

increasing the bias (first term in (20)). Moreover, we will show in

Corollary 3 that TAKDE is consistent regardless of window size

Tt. Later, synthetic data simulation also suggests the empirical

performance difference is not too sensitive to the cutoff value, so

one can heuristically choose it in favor of fast processing rather

than through intensive cross-validation.

C. Bandwidth and Weight Generator

The dynamic nature of the underlying true density makes

it practically impossible to understand the actual difference

functions and the second derivative of the true densities. How-

ever, using the AMISE upper bound in Theorem 1, we can

find theoretically optimal sequences for kernel bandwidths and

weights, which in turn helps in the algorithm design. In view of

Theorem 1, we present the following corollary.

Corollary 2. The optimal sequences of weights and band-

widths that minimize the AMISE upper bound of the dynamic

kernel density estimator are as follows

σi =

[

R(K)

niµ2
2(K)R(p′′i )(2Tt − 1)

]
1

5

,

αi =
1/Si

∑

j∈Tt 1/Sj
, (28)

where the sequence Si (with superscript (t) omitted) is such that

Si =
5R(K)

4niσi
+ (2Tt − 1)R(b

(t)
i ). (29)
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Proof: Equation (23) shows that the upper bound on AMISE

depends on the weight sequence αi and the bandwidth sequence

σi. Therefore, we can minimize the upper bound with respect to

both of these parameters.

Differentiating with respect to σi yields the following (opti-

mal) sequence

σi =

[

R(K)

niµ2
2(K)R(p′′i )(2Tt − 1)

]
1

5

. (30)

We can find the optimal sequence of weights by simply solving

the minimization of Lagrangian of (23) with the constraint
∑

αi = 1 and incorporating (30). This will result in the fol-

lowing expression for the sequence αi

Si =
5R(K)

4niσi
+ (2Tt − 1)R(b

(t)
i )

αi =
1/Si

∑

j∈Tt 1/Sj
, (31)

which completes the proof of Corollary 2.

Remark 2: Corollary 2 provides some insights concerning the

bandwidth and weight choices.

1) The bandwidth sequence suggests that we should make

the kernel more flexible as more batches of data points are

included in the estimation. This aligns with the intuition

from the traditional kernel density estimator, where the

estimator can be more flexible with more sample points.

2) The weight sequence provides the following insights.

First, when the number of data points at a particular batch

is considerably large, we should assign more weight to

that batch with the hope of extracting more information

to infer the current density. Second, the R(b
(t)
i ) quantity

provides a countermeasure to prevent us from assigning a

large weight to data points coming from a very different

distribution compared to the current batch. Third, we

should assign more weights to the batches with larger

kernel bandwidths, which means we are favoring smoother

estimators in principle.

Corollary 3. Under Assumptions 1, 2, the optimal weight

sequence and kernel bandwidth sequence in Corollary 2 will

ensure that for any ε > 0,

Pr(|ĥt − pt|2 > ε) → 0, (32)

as ni → ∞.

Proof: First, notice that following Corollary 2, we have

σi → 0 and αi → 0 for every batch except the last batch where

αt → 1 (since R(b
(t)
t ) = 0) as ni → ∞. It is easy to verify that

E[|ĥt − pt|2] → 0 under this bandwidth and weight sequence,

based on the expression of the mean squared error in (22). Then,

by Markov inequality, we have

Pr(|ĥt − pt|2 > ε) ≤ E[|ĥt − pt|2]
ε

→ 0. (33)

The proof is complete. �

Corollary 3 shows that TAKDE is weakly consistent as

ni → ∞ regardless of Tt. This is rather intuitive as TAKDE

can precisely recover the traditional KDE in this extreme case.

D. Kernel Bandwidth Selector

The bandwidth sequence in Corollary 2 presents a principle

for choosing the kernel bandwidth. However, the quantityR(p′′i )
is unknown in practice, and we still need to find a kernel band-

width selector to calculate the actual kernel bandwidth values.

There exist extensive studies for the choice of bandwidth in

traditional kernel density estimation. One popular choice is the

cross-validation approach [23], [24], [25], [26]. However, the

computational cost of cross-validation prohibits its application

in high-frequency density estimation as every new batch of data

points needs to be cross-validated for a new kernel bandwidth.

Minimizing AMISE in (7) reveals a simple expression for the

optimal kernel bandwidth. [14] characterized the optimal kernel

bandwidth based on (7) as follows

σAMISE =

[

R(K)

nµ2
2(K)R(p′′)

]
1

5

. (34)

We notice that (34) coincides with the optimal kernel bandwidth

sequence we derived in Corollary 2 except for a factor of

(2Tt − 1)1/5. This relationship allows us to directly adopt ex-

isting kernel bandwidth selection methods for optimal AMISE.

Expression (34) is still dependent on the unknown R(p′′), but

there exist a number of studies that explore different methods for

estimating R(p′′). For example, [27] approximates the AMISE

objective function assuming the density is Poisson and then

proceeds to find the minimizer as the optimal kernel bandwidth.

However, this method is not applicable in real-time dynamic

density estimation as the optimization process is expensive. [9]

provides an iterative update framework by estimating R(p′′)
through R(p̂′′), which is the numerical square integration of the

second derivative of the density estimator. This approach does

not impose any strict assumption on the underlying distribution,

which offers a robust estimation ofR(p′′). However, the iterative

algorithm still requires numerical operations like numerical

derivatives and numerical integration, which may not be efficient

enough for real-time density estimation.

In TAKDE, we adopt the normal rule introduced in [28].

Assuming the true density is Gaussian, the optimal kernel band-

width can be approximated as follows

σAMISE ≈ cσ̂n− 1

5 , (35)

where c is the smoothness parameter depending on the kernel

function and the underlying true density, and σ̂ is the sample

standard deviation of the data points. The normal rule is par-

ticularly appealing for the design of TAKDE due to its simple

structure, which allows a direct plug-in of smoothness parameter

c and enables fast real-time processing.

There are two commonly used recommendations for the

smoothness parameter c in (35). The first choice given in [14] is

as follows

σAMISE ≈
[

8π1/2R(K)

3µ2
2(K)n

]

1

5

σ̂, (36)

where σ̂ is the estimated standard deviation assuming the true

density is normal. The smoothness parameter c of Gaussian

Kernel in this setting is (32/3)1/5.
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Algorithm 1. Temporal Adaptive Kernel Density Estimator

(TAKDE)

Input: Kernel function K(·), cutoff value s, hard cap w,

smoothness parameter c.
For t = 1, 2, . . .

1: Receive new batch of data x
(t) at time t.

2: Window Generator: Generate and record histt and

forget histt−w. Set Distance = 0, Tt = 0, Tt = ∅.

While Tt < w:

Distance = Distance+ ‖histt, histt−Tt
‖TA (37)

Break If:

Distance > s, (38)

Else:

Tt = Tt ∪ x
(t−Tt) Tt = Tt + 1. (39)

Return: Tt and Tt and the sequence {R̂(b
(t)
j )}j∈Tt

where

R̂(b
(t)
j ) = m‖histj , histt‖TA. (40)

3: Bandwidth Generator: Receive the batch set Tt.
For j ∈ {t− Tt + 1, . . . , t}:

σj =
cσ̂j

((2Tt − 1)nj)1/5
, (41)

where c is defined by the kernel bandwidth selector,

nj = |x(j)|, and σ̂j is the sample standard deviation

of data in batch j.

Return: Bandwidth sequence σj .

4: Weight Generator: Receive bandwidth sequence σj

and the approximated R̂(b
(t)
j ) sequence. Let

αj =
1/Sj

∑

i∈Tt 1/Si
,

Sj =
5R(K)

4njσj
+ (2Tt − 1)R̂(b

(t)
j ). (42)

Return: Weight sequence αj .

Output: The Temporal Adaptive Kernel Density

Estimator given as

ĥt(x) =
∑

j∈Tt
αj p̂j(x;σj),

p̂j(x;σj) =
1

nj

nj
∑

i=1

Kσj
(x− x

(j)
i ). (43)

The second recommendation [29] comes from the upper

bound of the AMISE-optimal kernel bandwidth using beta(4, 4)
or triweight density function, that is,

σAMISE ≤
[

243R(K)

35µ2
2(K)n

]
1

5

σ̂. (44)

This bandwidth provides an oversmoothed density estimator

that might not perform well with respect to metrics like log-

likelihood or MSE. However, an oversmoothed density estimator

is often preferred for real-world applications, because the results

are visually plausible. In this case, the smoothness parameter c
of Gaussian Kernel is (972/35

√
π)1/5.

Remark 3: The only reason for adopting the normal rule in

TAKDE is its computation simplicity. We must note that the

weight sequence given in Corollary 2 is compatible with any

existing R(p′′) approximation method.

E. Algorithm Design

In this subsection, we present the final form of TAKDE.

The algorithm requires as input a cutoff value s, a hard cap

w, a smoothness parameter c, and a kernel function K. Upon

receiving the batch of data points at time t, the window generator

decides the set of batchesTt to be used for the density estimation.

The window generator will also return the sequence of approx-

imated R̂(b
(t)
j ) as in (26) for all batches in the memory. Then,

all batches within the memory will be fed into the bandwidth

generator to generate the sequence of kernel bandwidths σj as

in Corollary 2. Then, the approximated R̂(b
(t)
j ) and bandwidth

sequence σj will be fed into the weight generator to generate

the sequence αj as in Corollary 2. Finally, all parameters will

be put together to generate a proper kernel density estimator for

estimating the density at time t. Fig. 1 illustrates the workflow

of TAKDE. The algorithmic presentation of TAKDE is outlined

in Algorithm 1.

IV. EXPERIMENT

We now present numerical experiments to verify the efficiency

of TAKDE both on synthetic data and real-world data. All

experimental results established in this section are based on

Gaussian kernel function.

A. Algorithm Design Evaluation

Before we compare TAKDE with other established bench-

mark algorithms, we evaluate the design of TAKDE on synthetic

data. The specific question that we aim to address is that whether

our proposed weighting scheme, derived from the AMISE upper

bound, outperforms other heuristic weight sequences such as

uniform (or average) weighting and exponentially decaying

weighting.

1) Synthetic Dataset Design: We create a synthetic dataset

to test the performance of TAKDE in dynamic density estima-

tion. We design the synthetic dataset following some general

principles.

1) The true densities involved in the generation of the dataset

need to have analytical forms and have already been

established in the literature.

2) Each batch of data points has a size in the range of [5, 20],
so that the batches do not differ too drastically in terms of

the data amount.

3) The number of testing points for all batches should be the

same for comparison purposes.
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Fig. 1. TAKDE framework.

4) The dynamics of the underlying densities varies for dif-

ferent batches.

Following the above principles, we adopt the 15 Gaussian

mixture densities, recommended by [30], as the baseline densi-

ties for our synthetic dataset design. The 15 densities are shown

in Fig. 2.

To design the true density, we first consider 14 sections, where

each section consists of multiple batches. Let us denote the 15

Gaussian mixtures with g1(x), . . . , g15(x) and represent the 14

sections with S1, . . . ,S14, where |S1|+ . . .+ |S14| equals to

the total number of batches in the dataset. To be specific, section

Si has |Si| consecutive batches of data points in it, and the first

batch of data in section Si+1 will start after the last batch in

section Si. For batch i in section j, where 1 ≤ i ≤ |Sj |, the

density function h
(j)
i (x) is defined as follows

h
(j)
i (x) =

|Sj | − i+ 1

|Sj |
gj(x) +

i− 1

|Sj |
gj+1(x). (45)

To be consistent with our previous notation, h
(j)
i (x) = ptij (x)

for tij = |S1|+ . . .+ |Sj−1|+ i. Notice that in section j, the j-

th Gaussian mixture linearly transforms to the j + 1-th Gaussian

mixture. After we move on to section j + 1, none of previous

Gaussian mixtures g1(x), . . . , gj(x) will appear in the section.

Given the density of batch i in section j, we sample a random

number between 5 to 20 as the number of training points and

500 for testing points to perform the comparison. To account for

the randomness in partitioning the batches into 14 sections and

the randomness in samples, we generate 300 synthetic datasets

for Monte-Carlo simulations.

2) TAKDE Evaluation: We now compare the weight gener-

ator in TAKDE with two heuristic approaches in the literature.

One approach is to assign uniform weights to the batches,

assuming older data points are of the same importance as the new

data points, and the other one is to assign exponentially decaying

weights, assuming the new points are much more important [8],

[9]. To ensure a fair comparison, we only change the weight

generator of TAKDE to uniform and exponential weighting, and

we keep the other components of the algorithm unchanged. The

uniform weight sequence is set as follows

αj =
1

Tt
, ∀j ∈ {t− Tt + 1, . . . , t}. (46)

The exponential weight sequence is set as follows

αj = (1− e)et−j , ∀j ∈ {t− Tt + 2, . . . , t}, (47)

and αt−Tt+1 = eTt−1, where e is the decay ratio. We compare

the above to αj corresponding to the expression in (42). In our

simulation, e = 0.9 in general yields the best result under dif-

ferent settings; therefore, the decay ratio for exponential weight

sequence is set to e = 0.9.

Our comparison is performed under several kernel bandwidth

selectors, including the normal selector and oversmooth selector

mentioned in Section III-D and under various cutoff values.

First, we consider normal bandwidth selector (36) and over-

smooth bandwidth selector (44). For each bandwidth selector,

we conduct the comparison with datasets having from 100 to 500

batches of data to reflect different underlying dynamics. Notice

that for the data with 100 batches, the dynamic change is more

drastic than that of the data with 500 batches.
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Fig. 2. The 15 Gaussian mixture densities used in the synthetic dataset design.

Fig. 3. Test log-likelihood comparison between TAKDE versus the heuristic approaches. The x-axis represents the cutoff value and the y-axis represents the test
log-likelihood. The first row shows the result under normal bandwidth selector and the second row shows the result under oversmooth bandwidth selector. In each
row, the plots from left to right represent the simulation results using synthetic datasets with 100, 200, 300, 400, and 500 batches of data.

The simulation result is shown in Fig. 3. We can ob-

serve that TAKDE with AMISE-based weight sequence dom-

inates the uniform and exponential weight sequences in terms

of the test log-likelihood. We also see that when using the

heuristic weight sequences, increasing the memory (i.e., larger

cutoff value) mostly exacerbates the density estimation per-

formance. The results show that the performance difference

between TAKDE and other two methods is larger when the

total number of batches is smaller. This suggests that TAKDE

with AMISE-based weight sequence is better at adapting to

more drastic dynamic changes. The smaller differences in 500-

batch simulations are consistent with our theoretical results,

where the weighting sequence in Corollary 2 gets closer to

uniform weighting as R(b
(t)
i ) converges to 0, equivalent to

a static density estimation. We observe that changes in the

cutoff value do not have a significant effect on TAKDE per-

formance compared to others. This verifies our discussion in

Remark 1.
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Fig. 4. Test log-likelihood comparison between TAKDE versus the heuristic approaches over different bandwidth selectors. The x-axis represents the value of
the smoothness parameter c. The y-axis represents the test log-likelihood. Each plot from left to right represents the simulation conducted with cutoff values from
1 to 5.

Second, we conduct the comparison using a synthetic dataset

with 100 batches of data for different bandwidth selectors, i.e.,

varying the smoothness parameter c in (35). The simulation

results are shown in Fig. 4. Again, we observe the same perfor-

mance trend for the algorithms. These simulations empirically

verify that the performance advantage of our proposed weight

sequence against the heuristic weight sequences is robust to

different kernel bandwidths and different window sizes.

B. Comparison With Benchmark Algorithms

Next, we compare TAKDE with three density estimation

methods on real-world datasets. We consider both the mean

test log-likelihood and the run-time to show the advantages of

TAKDE.

1) Benchmark Algorithms:

1) Kernel Density Estimator (KDE): The first benchmark

algorithm is the traditional kernel density estimator. The

main reason to include kernel density estimator in the

comparison is to show why a traditional density estimator

is not ideal for dynamic density estimation. The kernel

density estimator is formulated as (1). The bandwidth

selector is

σ = cσ̂n− 1

5 , (48)

where we use cross-validation to choose c (rather than the

actual bandwidth) for easy comparison with TAKDE.

2) B-spline Kalman Filter (BKF) [2]: B-spline Kalman filter

models the underlying density function as a count mea-

sure defined on the partitions of the density support. The

density estimator is defined as

p̂(x) =
1

C
exp

m
∑

i=1

βiBi(x), (49)

where C is the normalization constant calculated with

numerical integration, m is the number of partitions, and

Bi(x) are the B-spline bases. The algorithm updates its

states βi using a B-spline matrix evaluated on the centers

of the density support partitions and the count vector at

each batch.

3) KDEtrack [9]: KDEtrack partitions the support of the den-

sity using a collection of grid points. The set of grid points

and the density values at the grid points are updated after

each new batch of data points is received and evaluated.

The density evaluation at a test point will be the linear

interpolation at the test point using the closest grid points.

Remark 4: We do not include the M-kernel and LRKDE

methods since [9] has showed that KDEtrack is superior to these

two methods.

2) Datasets
� In situ TEM video data: The first dataset we use is in situ

TEM dataset introduced in Section I. It is the 76.6 s in situ

TEM video published in [1]. It has a total of 1149 frames

of images and 5−20 particle counts in each frame.
� CinCECGTorso (ECG) data: CinCECGTorso dataset is

an ECG dataset taken from multiple torso surface sites

of four patients from the Computers in Cardiology chal-

lenges. This dataset is available on UCR time-series data

archive [15].

The dataset consists of ECG measurements of four patients.

We use the ECG signal sequence of one person to highlight

the density dynamics over time. Note that simulations on

all four patients yield similar results. There are 342 ECG

signals (data points) available at each batch, and there are a

total of 1639 batches of data points over time. The batches

are collected at 2 kHz frequency, which requires the density

estimator to be updated 2000 times per second. For each

batch of data points at a certain time stamp, we randomly

sample 5 to 20 data points to train and use the rest of the data

points to evaluate the algorithms. The number of training

data points at each batch is determined only once through-

out all the Monte-Carlo simulations. However, the set of

training points are sampled randomly in each Monte-Carlo

simulation.
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TABLE I
BEST EXPERIMENTAL SETTINGS FOR DIFFERENT BENCHMARK ALGORITHMS IN DIFFERENT DATASETS

� Wafer data: Wafer dataset is a collection of sensor readings

in a semiconductor wafer manufacturing process over time,

available on UCR time-series data archive [15]. Unlike

the previous two datasets, a wafer manufacturing process

is a rather slow process that could span over 10 weeks.

However, this dataset is still illustrative for evaluating the

accuracy of TAKDE. We use the readings in the normal

state wafer manufacturing process to conduct our analysis.

There are 600 readings (data points) available at each batch,

and there are a total of 152 batches of data points over time.

Again, we adopt the same train-test split approach as in the

ECG dataset.
� Earthquakes (Earth) data: The earthquake dataset is a

sensor reading dataset from Northern California Earth-

quake Data Center available on UCR time-series data

archive [15]. It consists of 461 readings at each batch with

a total of 512 batches.
� StarLight Curves (Star) data: The starlight curves dataset

consists of time-series sensor readings on the brightness

of a collection of celestial objects. It is also available on

UCR time-series data archive [15]. This dataset includes

the readings of 1000 celestial objects at each batch with a

total of 1024 batches.

3) Experimental Settings: In comparing across different den-

sity estimators, we only present the best performance of B-

spline Kalman filter, where the noise prior parameters are cross-

validated using a grid search with an interval size of 0.01.

For the traditional kernel density estimator, we report its best

performance, but even that is significantly inferior to other den-

sity estimators. For KDEtrack and TAKDE, we report the best

settings performances (in terms of smoothness parameter c and

cutoff value s). Notice we do not adopt the iterative bandwidth

update in KDEtrack for the computation reason explained in

Section III-D, but instead we use the same bandwidth generator

as in TAKDE. All the simulations are conducted over 100 Monte-

Carlo simulations for random training-testing splits to generate

the standard errors of the performance. The performance metric

is the mean test log-likelihood of the test points.

4) Performance: The parameter settings leading to respec-

tive best performance for all benchmark algorithms are shown

in Table I. These settings are cross-validated using the first 10%

batches of each dataset (20% for Wafer and Earth dataset).

The results are tabulated in Table II. TAKDE tagged with

“(normal)” represents the performance achieved with smooth-

ness parameter recommended in (36) (normal bandwidth se-

lector) and the optimal cutoff in Table I. TAKDE tagged with

“(cor)” represents the performance achieved by TAKDE under

KDEtrack best settings in terms of cutoff value and smoothness

parameter. As we can observe, TAKDE dominates all other

benchmark algorithms in terms of test log-likelihood by a large

margin. TAKDE is also robust with respect to different cutoff

values and different smoothness parameters, as it dominates all

other benchmark algorithms even under the best settings for

KDEtrack. The only exception is TAKDE with normal band-

width selector on the TEM dataset. The underlying reason is

that the low data volume available at different batches (training

and testing combined) forces the “true” density distribution

at each time stamp to an average of Dirac measures, which

is far from the normal assumption of the normal bandwidth

selector.

The run-time comparisons are shown in Table III. The values

represent the time used for executing the density estimation for

all test data points in all batches. We can observe that in addition

to being more accurate than the benchmark algorithms, TAKDE

is also much faster in speed as it requires negligible calcula-

tions in addition to kernel density evaluation. The computation
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TABLE II
MEAN TEST LOG-LIKELIHOOD ON FIVE REAL DATASETS

Fig. 5. Visualization of the density estimators on the TEM dataset. The first row shows TAKDE at its normal setting and optimal setting. The second row shows
B-spline Kalman Filter at its optimal setting. The third row shows KDEtrack at its optimal setting. Figures from left to right represent the estimation at time stamps
225, 450, 675, and 900, respectively.

TABLE III
RUN-TIME COMPARISON (SECONDS) ON FIVE REAL DATASETS

advantage makes a huge difference for the ECG dataset in

particular, as the other two benchmark algorithms do not run

nearly fast enough to catch up with the 2 kHz data collection

rate.

C. Visual Examination

In this subsection, we visualize the previously compared den-

sity estimators. We pick the time stamps {225, 450, 675, 900} in

1150 batches of data in the TEM dataset for visualization. The re-

sults are shown in Fig. 5. As we can observe, TAKDE at its opti-

mal setting (for test log-likelihood) yields a more flexible model

compared to other algorithms. TAKDE with normal smoothness

parameter yields the smoothest model among all. Our results

in Table II also show that the normal smoothness parameter

can achieve estimation performance close to the optimal setting

while yielding smooth density functions that facilitate easy

interpretation. For this reason, in most real-world applications

that do not place estimation accuracy as their first priority, we

do recommend using the normal smoothness parameter (36) to

avoid cross-validation.

V. CONCLUSION

In this article, we established a theoretical AMISE upper

bound expression for the “sliding window” kernel density es-

timator in dynamic density estimation. We proposed the tem-

poral adaptive kernel density estimator that maintains the fast

processing advantage of the “sliding window” kernel density

estimator, while being theoretically optimal under the worst-case

AMISE. We provided extensive numerical simulations to verify

that TAKDE is superior to state-of-the-art real-time dynamic

density estimators in terms of the mean test log-likelihood.

TAKDE also dominated these algorithms in terms of achieving

smaller run-times.
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The proposed weight sequence is reminiscent of the attention

mechanism in a transformer neural network for sequence re-

weighting [31]. Considering the massive success of transformers

in different fields, one of the future research directions is to

see whether learning the weight sequence through the attention

mechanism can result in a better performance.

Note that TAKDE in its current state only works for univariate

density estimation. Thus, another future direction is to extend it

to multivariate density cases.
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