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Abstract—High-speed long polynomial multiplication is im-
portant for applications in homomorphic encryption (HE) and
lattice-based cryptosystems. This paper addresses low-latency
hardware architectures for long polynomial modular multipli-
cation using the number-theoretic transform (NTT) and inverse
NTT (iNTT). Parallel NTT and iNTT architectures are proposed
to reduce the number of clock cycles to process the polynomials.
Chinese remainder theorem (CRT) is used to decompose the
modulus into multiple smaller moduli. Our proposed architec-
ture, namely PaReNTT, makes three novel contributions. First,
cascaded parallel NTT and iNTT architectures are proposed
such that any buffer requirement for permuting the product of
the NTTs before it is input to the iNTT is eliminated. This is
achieved by using different folding sets for the NTTs and iNTT.
Second, a novel approach to expand the set of feasible special
moduli is presented where the moduli can be expressed in terms
of a few signed power-of-two terms. Third, novel architectures
for pre-processing for computing residual polynomials using the
CRT and post-processing for combining the residual polynomials
are proposed. These architectures significantly reduce the area
consumption of the pre-processing and post-processing steps.
The proposed long modular polynomial multiplications are ideal
for applications that require low latency and high sample rate
such as in the cloud, as these feed-forward architectures can
be pipelined at arbitrary levels. Pipelining and latency tradeoffs
are also investigated. Compared to a prior design, the proposed
architecture reduces latency by a factor of 49.2, and the area-time
products (ATP) for the lookup table and DSP, ATP(LUT) and
ATP(DSP), respectively, by 89.2% and 92.5%. Specifically, we
show that for n = 4096 and a 180-bit coefficient, the proposed 2-
parallel architecture requires 6.3 Watts of power while operating
at 240 MHz, with 6 moduli, each of length 30 bits, using Xilinx
Virtex Ultrascale+ FPGA.

Index Terms—Polynomial modular multiplication, Parallel
NTT/iNTT, Residue Number System, Moduli Selection, Lattice-
based Cryptography, Homomorphic Encryption

I. INTRODUCTION

Privacy-preserving protocols and the security of the infor-
mation are essential for cloud computing. To this end, cloud
platforms typically encrypt the data by certain conventional
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symmetric-key or asymmetric-key cryptosystems to protect
user privacy. However, these methods cannot prevent infor-
mation leakage during the computation on the cloud since the
data must be decrypted before the computation. To further
enhance privacy, homomorphic encryption (HE) has emerged
as a promising tool that can guarantee the confidentiality of
information in an untrusted cloud. Homomorphic encryption
is also deployed in privacy-preserving federated learning [1]
and neural network inference [2].

Homomorphic multiplication and homomorphic addition are
two fundamental operations for the HE schemes. Most of the
existing HE schemes are constructed from the ring-learning
with errors (R-LWE) problem [3] that adds some noise to
the ciphertext to ensure post-quantum security. However, the
quadratic noise growth of homomorphic multiplication re-
quires the ciphertext modulus to be very large, which results
in inefficient arithmetic operations. One possible solution to
address this issue is to decompose the modulus and execute
it in parallel. This approach has been used in residue number
system (RNS) representation. In the literature, RNS-based im-
plementations have been employed in several software [4], [5]
and hardware implementations [6]–[8]. However, RNS relies
on the Chinese remainder theorem (CRT), which requires
additional pre-processing and post-processing operations. The
hardware building blocks for these steps need to be optimized;
otherwise, the complexity of the RNS system will negate the
advantages of parallelism of the RNS. Meanwhile, polyno-
mial modular multiplication is one of the essential arithmetic
operations for the R-LWE problem-based cryptosystems and,
indeed, HE schemes. The complexity of the number-theoretic
transform (NTT)-based polynomial modular multiplication can
be reduced dramatically compared to the schoolbook-based
polynomial modular multiplication.

Different modular long polynomial multiplier architectures
can be adopted for different applications. For example, a low-
area time-multiplexed architecture is well-suited for an edge
device. However, the cloud requires very high-speed archi-
tectures where multiple coefficients of the polynomial need
to be processed in a clock cycle. This inherently requires a
parallel architecture where the level of parallelism corresponds
to the number of coefficients processed in a clock cycle.
While substantial research has been devoted to designing and
implementing sequential and time-multiplexed architectures,
much less research on parallel NTT-based architectures has
been presented. Computing the inverse NTT (iNTT) of the
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product of NTT of the two polynomials can lead to long
latency and extra buffer requirement if its scheduling aspects
are not considered as the product needs to be shuffled before
the iNTT is computed.

Although parallel NTT-based architectures can achieve low
latency and high speed, these require a large silicon area for the
arithmetic operations as the word-lengths of the coefficients
can be large. To reduce the area, residue arithmetic is used
to convert the coefficient into several smaller coefficients that
can be implemented using shorter word-lengths. This paper
proposes parallel residue arithmetic and NTT-based modular
long polynomial multiplication referred to as PaReNTT. The
use of different scheduling (folding) of the NTT and iNTT
operations eliminates the need for additional buffers. Thus,
the latency of the complete operation is reduced. The use of
parallel NTT architecture reduces the number of clock cycles
needed to process the long polynomial modular multiplica-
tion. The proposed parallel NTT and iNTT architectures are
completely feed-forward and achieve full hardware utilization.
These can be pipelined at any arbitrary level. To the best of
our knowledge, the proposed architecture is the first approach
for a generalized, feed-forward, and parallel NTT-based im-
plementation that eliminates intermediate shuffling or buffer
requirement.

The contributions of this paper are three-fold and are
summarized below.

• Our proposed cascaded NTT-iNTT architecture does not
require intermediate shuffling operations. Different fold-
ing sets for the NTT and iNTT are used such that the
product of the two NTTs can be processed immediately
in the iNTT architecture. This leads to a significant
reduction in latency and completely eliminates the need
for any intermediate buffer.

• We consider the special format of primes for the CRT
to reduce the cost of the implementation. Specifically, all
the primes are not only NTT-compatible but also CRT-
friendly and have low Hamming weights (i.e., these con-
tain only a few signed power-of-two terms). Traditional
selection of moduli to satisfy these constraints can limit
the number of moduli available. A novel approach is
proposed to expand the set of moduli that satisfy these
constraints. This enables HE architectures for long word-
length coefficients.

• Novel optimized architectures for pre-processing and
post-processing for residue arithmetic are proposed; these
architectures reduce area and power consumption. Finally,
the low-cost pre-processing and post-processing blocks
for the residue arithmetic are integrated into the parallel
NTT-based polynomial modular multiplier to achieve
high speed, low latency, and low area designs.

The rest of this paper is organized as follows: Section II
reviews the mathematical background for HE, RNS, and NTT-
based polynomial modular multiplication and the correspond-
ing hardware architectures in prior works. Section III presents
a parallel architecture for the NTT-based polynomial mul-
tiplication that eliminates intermediate storage requirements.
Then, Section IV introduces our optimized RNS and CRT-

based polynomial multiplier. The performance of our proposed
architecture is presented and analyzed in Section V. Finally,
Section VI concludes the paper.

II. BACKGROUND

A. Notation

For a polynomial ring Rn,q = Zq[x]/(x
n + 1), its co-

efficients have to be modulo q (i.e., these lie in the range
[0, q− 1]). The polynomial degree is also restricted to be less
than n, where n is an integer power of two. To ensure all the
intermediate results belong to the polynomial ring, a modular
reduction operation is needed, which is expressed as “mod
(xn + 1, q)” or [·]q . The polynomial within the ring Rn,q is
denoted as a(x) =

∑n−1
j=0 ajx

j , where the j-th coefficient
of the polynomial a(x) is represented as aj . Mathematical
operations on two polynomials modulo (xn + 1, q) include
polynomial modular addition and multiplication, denoted as
a(x) + b(x) and a(x) · b(x), respectively. The symbol ⊙
represents point-wise multiplication over (xn + 1, q) between
two polynomials. Parameters m = log2 n and s ∈ [0,m − 1]
represent the total number of stages and the current stage in
the NTT (iNTT), respectively.

B. Homomorphic encryption

HE allows the computations (e.g., multiplication, addition)
directly on the ciphertext, without decryption, so that the users
can upload their data to any (even untrusted) cloud servers
while preserving privacy. The HE schemes can be broadly
classified as fully HE (FHE) and somewhat HE (SHE). The
FHE schemes allow an arbitrary number of homomorphic
evaluations while suffering from high computational complex-
ity [9]. SHE is an alternative solution with better efficiency
than the FHE, which only allows performing a limited number
of operations without decryption [3], [10], [11].

High-level steps for HE schemes can be summarized in four
stages: key generation, encryption, evaluation, and decryption.
In particular, the key generation step is used to output three
keys: the secret key, public key, and relinearization key, based
on the security parameter λ. Then, using the public key, the
encryption algorithm encrypts a message into a ciphertext ct.
During the evaluation step, a secure evaluation function per-
forms a computation homomorphically for all input ciphertexts
and outputs a new ciphertext ct′ using the relinearization key.
Finally, the result can be obtained using the secret key and ct′

in the decryption step.
Key generation, encryption, and decryption steps are gener-

ally executed by the client. Meanwhile, the evaluation step is
distributed to the cloud server for homomorphic computation.
Different homomorphic evaluation functions have different
computational costs. The homomorphic addition is relatively
simple since it is implemented by polynomial modular addi-
tions. However, homomorphic multiplication requires expen-
sive polynomial modular multiplication. Thus, the hardware or
software accelerations for the polynomial modular multiplier,
especially under the HE parameters with large degrees of
polynomial and long word-length coefficients, are demanding.
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C. Residue number system

To implement homomorphic encryption in various appli-
cations, the depth of homomorphic multiplication is one of
the main factors that need to be investigated, and increases
proportionally with respect to the word-length of the coef-
ficient. As an example, performing a depth of four homo-
morphic multiplications with an 80-bit security level requires
a 180-bit ciphertext modulus and length-4096 polynomial in
prior works [7]. However, the computation involving the long
word-length coefficients is not trivial; which is also ineffi-
cient without high-level transformations. Since the moduli in
most widely-used SHE schemes, e.g., BGV [3], BFV [10],
CKKS [11], are not restricted to be primes, it is possible to
choose each modulus to be a product of several distinct primes
by using CRT, where each prime is an NTT-compatible prime
with a small word-length.

The CRT algorithm decomposes q to q1, q2, . . . , qt (i.e.,
q =

∏t
i=1 qi, qi’s are mutually co-prime), and the ring isomor-

phism Rq ≡ Rq1 ×Rq2 , . . . ,×Rqt . After this decomposition,
ring operation in each Rqi is performed separately, which
thus can be executed in parallel. From the implementation
perspective, the larger the parameter t, the smaller each qi
and the simpler arithmetic operation over Rqi .

D. NTT-based polynomial multiplication

In addition to the long word-length of the coefficient, the
long polynomial degree n can be in the range of thousands for
the HE schemes to maintain the high-security level, which be-
comes the bottleneck for the implementations in both software
and hardware [12], [13]. Therefore, an efficient NTT-based
polynomial multiplication method with the time complexity
of O(n log n) is used.

To compute p(x) = a(x) · b(x) mod (xn + 1, q), polyno-
mials a(x) and b(x) are first mapped to their NTT-domain
polynomials A(x) =

∑n−1
k=0 Akx

k and B(x) =
∑n−1

k=0 Bkx
k.

For instance, each coefficient in the NTT-domain is computed
as Ak =

∑n−1
j=0 ajω

kj
n mod q. The parameter ωn, commonly

known as the twiddle factor, is the primitive n-th root of unity
modulo q. Subsequently, an efficient point-wise multiplication
between A(x) and B(x), yields P (x) = A(x) ⊙ B(x).
The final polynomial p(x) =

∑n−1
j=0 pjx

j is obtained via
iNTT computation, with each of its coefficients given by
pj = n−1

∑n−1
k=0 Pkω

−kj
n mod q.

This method significantly reduces the time complexity
compared to the O(n2) complexity method of the school-
book polynomial multiplication along with the polynomial
modular reduction. However, this original method involves
zero padding of length n, which doubles the length of the
polynomial in the NTT/iNTT computation. It has been shown
that using negative wrapped convolution (NWC), zero padding
can be completely eliminated [14]. However, this requires that
the inputs and outputs need to be weighted. These additional
weight operations can be eliminated by reformulation of the
algorithm. This is referred to as low-complexity negative
wrapped convolution [15], [16]. A review of the original
and low-complexity NTT approaches is presented in [17].
Data-flow graphs for low-complexity NWC based NTT and

iNTT are shown in Fig. 1 for n = 8. In particular, ψ2n is

Low-Complexity NTT:

Low-Complexity iNTT:

Fig. 1. Data-flow graphs for low-complexity NTT and iNTT for polynomial
multiplication when n = 8.

the primitive 2n-th root of unity modulo q, and q must be
NTT-compatible prime that satisfy that (q − 1) is divisible
by 2n. This low-complexity algorithm reduces the number
of modular integer multiplications. Meanwhile, the modular
multiplication by 2−1 can be efficiently implemented using
low-cost modular adders and a multiplexer (MUX) in hardware
(see supplementary information).

E. Prior hardware implementations

In the literature, several hardware architectures based on
CRT-based optimization have been proposed in [6], [7], [18],
[19], where these architectures are based on feedback architec-
tures with loops for executing multiple operations in a time-
multiplexed manner [6], [7], [18].

The works in [6], [7] introduce an approximate CRT method
for the BFV scheme, which involves the lifting and scaling
operations to switch between a small ciphertext modulus q
and a large ciphertext modulus Q. Later, a multi-level parallel
accelerator utilizing the RNS and NTT algorithms is presented
in [18]. Nevertheless, these works mainly focus on optimizing
the NTT blocks but not on the CRT system’s pre-processing
and post-processing functional blocks.
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Fig. 2. Architecture for the polynomial modular multiplier using two-parallel NTTs and one iNTT. The data sequence for upper path when n = 16 is given
to show the elimination of re-ordering operations.

In particular, the prior works consider a unified architecture
for the NTT and iNTT computations, which is typically con-
structed from a memory-based or folded architecture frame-
work [15], [18], [20]–[25]. This design strategy can reduce the
number of required processing elements (PEs). Different from
the prior works, our proposed architecture exploits a feed-
forward and parallel architecture. Our proposed architecture
has no feedback loops/data paths. Therefore, the intermediate
results can be executed and passed through to the next stage
PE directly. It may be noted that the design of parallel-
pipelined and memory-based NTT/iNTT architectures are sim-
ilar to those for prior fast Fourier transform (FFT)/inverse FFT
(iFFT) designs [26], [27].

III. PARALLEL NTT-BASED POLYNOMIAL MULTIPLIER
WITHOUT SHUFFLING OPERATIONS

In this section, we propose a novel real-time, feed-forward,
high-throughput, pipelined, and parallel NTT-based polyno-
mial multiplication architecture design that does not require
intermediate shuffling, as shown in Fig. 2. This is inspired by
a similar approach in design of FFT-iFFT cascade architec-
ture [28]. To the best of our knowledge, this is the first paper
to design NTT-iNTT cascade architecture that does not require
shuffling.

A conventional method to instantiate the iNTT computa-
tion is to reuse the same scheduling approach/architecture
employed for NTT computation, as depicted in Fig. 2(a). In
particular, an additional shuffling circuit is typically utilized
for reordering output data P (x) before computing iNTT. An
example of data sequence in the upper path is provided in
Fig. 2(a) when n = 16. For leveraging the identical scheduling
procedure, the sequence order in NTT/iNTT must be identical,
which requires the reordering of the input sequence in the
upper path from bit-reverse order {P0, P4, P2, · · · , P7} to
nature order {P0, P1, P2, · · · , P7} using the shuffling circuit.
Ultimately, the order of the input sequence in iNTT com-
putation, P ′

k’s, is the same as the one in NTT computation,

aj’s. Finally, the output of iNTT architecture has to employ a
shuffling circuit to re-order the output sequence into the natural
order. However, such shuffling circuits require a large number
of clock cycles and registers, which can be eliminated in the
proposed optimized design.

Different from the conventional method, the two-parallel
products are fed into a two-parallel iNTT architecture such
that no intermediate buffer is needed in this proposed novel
architecture. This is realized by aligning the output sequence
indices of the NTT architecture with the input sequence indices
of the iNTT. This implementation ensures that as soon as
the products are output, they are instantly processed by the
iNTT architecture. However, achieving this optimization is not
straightforward. It necessitates selecting different folding sets
for the NTT and iNTT.

Moreover, utilizing the optimized folding set for iNTT
architecture generates an output sequence in its natural order
without the need for an appended shuffling circuit at the end
of iNTT architecture, as presented in the data sequence for
upper path in Fig. 2(a). Besides, the proposed architecture
is generalized for any value of n, parameterized, and can
achieve an arbitrary level of pipelining to achieve high-speed
operation.

In particular, the NTT/iNTT units in Fig. 2(b) are based on
a two-parallel architecture; these are derived using appropriate
folding sets and the folding transformation [29], [30]. Fig. 3
and Fig. 4 show the data-flow graphs for 16-point forward
NTT of a(x) and iNTT for P (x), respectively, where each
circle represents one butterfly operation. Notably, a fully par-
allel architecture, which employs a direct hardware mapping
of all operations depicted in the data-flow graphs, turns out
to be a sub-optimal design for HE schemes. Given the fact
that HE schemes mandate a large polynomial degree, such
an architecture requires a tremendous number of PEs, which
eventually leads to diminished hardware efficiency. In contrast,
orchestrated via a folding transformation, the proposed two-
parallel architecture ensures full hardware utilization among
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all components.
After applying the folding transformation, the operations in

the same color, i.e., in the same stage, are processed by the
same PE and then executed in a time-multiplexed manner. The
order in which the butterfly operations are executed in the same
PE is referred to as the folding order. Also, the corresponding
clock cycle for each butterfly operation is highlighted in blue
in Fig. 3 and Fig. 4. In this 16-point example, the folding set
(i.e., the ordered set of operations executed in each PE) of the
forward NTT is expressed as:

A = {A0,A1,A2,A3,A4,A5,A6,A7}
B = {B4, B5,B6, B7,B0, B1,B2, B3}
C = {C2, C3,C4, C5,C6, C7,C0, C1}
D = {D1,D2,D3,D4,D5,D6,D7,D0}. (1)
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Fig. 3. Data-flow graph of the 16-point forward NTT.
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Fig. 5. Architecture of the 16-point forward NTT unit.

In order to avoid intermediate buffer or data format conver-
sion from NTT to iNTT, the output samples from the last PE
in the NTT unit should be fed into the first PE in the iNTT unit
at the same clock cycle; this is based on as soon as possible
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Fig. 6. Architecture for delay-switch-delay (DSD) unit.

scheduling. This is achieved using the following folding set
for the iNTT:

A = {A4,A2,A6,A1,A5,A3,A7, A0}
B = {B0, B4,B2, B6,B1, B5,B3, B7}
C = {C3, C7,C0, C4,C2, C6,C1, C5}
D = {D2,D6,D1,D5,D3,D7,D0,D4}. (2)
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Pj

Pj+n/2

1DSD iNTT
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2DSD iNTT
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4DSD iNTT
PE3

pj

pj+n/2

Fig. 7. Architecture of the 16-point iNTT unit.

The NTT and iNTT designs are inspired by the design of
parallel FFT architectures based on folding sets [26]. Parallel
NTT architectures based on folding sets were presented in our
earlier work [31]. The NTT architecture in Fig. 5 is derived
using the folding sets shown in Equation (1). Specifically,
this architecture has four PEs and three delay-switch-delays
(DSDs), where the structures for PE and DSD are illustrated
in Fig. 8 and Fig. 6. Besides, the DSD block utilizes two
MUXs and two register sets, such that it can store the specific
data in the data-path and then either switch or pass the data to
the PE. Note that the number of registers inside each register
set is varied in different stages. In the s-th stage, each register
set has 2m−s−2 registers in the DSD block for the NTT
architecture. Furthermore, the architecture for iNTT is shown

NTT
PEs

aj[s] aj[s+1]

_
aj+2

m-1-s[s]
aj+2

m-1-k[s+1]
=

(Mod. Adder)

Ψ   ω  j2k+1 2kΨ   ω  j2k+1 2k

Ψ(2j+1)n/   2s+1
2s

Ψ(2j+1)n/   2s+1
2s

(Mod. Mult)

(3 stages)

Fig. 8. Architecture for DIT-based butterfly with merging the weighted
operation in NTT. Pipelining cut sets marked in green lines. Three stages
of pipelining inside the multiplier.

in Fig. 7, and its components are described in Fig. 9 and Fig. 6.
Fig. 9 shows a hardware-friendly PE design for iNTT that
only involves one right shift operation, one modular addition
with constant q+1

2 , and one MUX for one modular division
by two [32]. One of the main differences between NTT and
iNTT architectures is the number of registers located inside
each DSD block since they are determined by the folding set
as in Equation (2). Specifically, 2s registers are required for
each register set in the s-th stage for the iNTT architecture.
Even though the operations of NTT and iNTT are very similar,
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we consider two separate architectures instead of considering
a unified and reconfigurable architecture. The rationale is as
follows. Since modular multiplications are heavily used in
homomorphic multiplication, using two different architectures
for NTT and iNTT allows a continuous flow of the input poly-
nomials and thus can highly accelerate the HE multiplication.
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Pj[s] Pj[s+1]

_Pj+2
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Fig. 9. Architecture for DIF-based butterfly with merging the weighted
operation in iNTT. Pipelining cut sets marked in green lines.

The 16-point architectures in Fig. 5 and Fig. 7 can also be
easily generalized to any power-of-two length n by having m
PEs and (m− 1) DSDs blocks. Furthermore, the general case
NTT and iNTT folding sets are defined as follows. We denote
the PE in s-th stage as PEs, and the NTT folding set for the
butterfly operations performed inside this PE are illustrated in
Table I. The entries in the Table describe the node index of the
node of that stage in the data-flow graph. The folding order
describes the clock partition at which the node is executed. For
example, a folding order s implies that the node is executed
at clock cycle (n/2)l+s where l is an integer. The cardinality
of the folding set is n/2 as there are n/2 operations (nodes)
in an NTT stage. Thus, the scheduling period is n/2.

The folding set for iNTT can also be generalized as in Table
II, where the symbol “⟨·⟩” means the bit-reverse representation
for the folding set with respect to a (m− 1)-bit integer (e.g.,
⟨1⟩ = ⟨001b⟩ = 100b = 4 when m = 4). Specifically, if a
node i in the NTT has folding order i, the folding order of
the corresponding node in iNTT is ⟨i⟩ − 1 modulo (n/2).
While the bit-reversed scheduling has been known to eliminate
latency and buffer requirements at the data-flow graph level,
the observation that the same property holds in a parallel NTT-
iNTT cascade is non-intuitive and new.

IV. MODULI SELECTION AND PARENTT ARCHITECTURE

A. Overview of proposed PaReNTT architecture

Fig. 10 shows the overview of the proposed PaReNTT
architecture, which can be divided into three constituent steps.
The first step, referred to as residual polynomials computations
(pre-processing operation), splits the two input polynomials
into several polynomials whose coefficients are small. Rather
than employing a single polynomial modular multiplier, sev-
eral polynomial modular multipliers are executed in parallel in
the residual domain. Subsequently, the post-processing opera-
tion performs the inverse mapping for the product polynomials
to one polynomial using the CRT. The result is the same as
directly performing the polynomial modular multiplication for
two input polynomials.
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Fig. 10. Overview of proposed PaReNTT architecture.

B. Special NTT-compatible and CRT-friendly primes selection

As opposed to the prior works that randomly select the
co-primes, this paper studies and utilizes the property of the
special co-primes to reduce the computational cost and the
silicon area. The main idea of this optimization is to trade
the flexibility of the co-primes selection for the timing/area
performance of the architectures.

In the proposed architecture, each qi not only needs to be
an NTT-compatible prime but also has a short word-length,
which is defined as

qi = 2v − βi, βi = 2v1i ± 2v2i ± . . .± 2vnqi − 1, (3)

where v is the word-length of qi, v1i > v2i . . . > vnqi. The
number of signed power-of-two terms in qi is (nq + 2).

The special NTT-compatible and CRT-friendly primes can
be found through an exhaustive search for the t co-prime fac-
tors and then combined to form the vt-bit ciphertext modulus,
q. The two constraints that need to be satisfied are: (i) (qi−1)
is a multiple of 2n and (ii) ⌈µ−1

nβ
⌉ > v1i > v2i. The second

constraint is derived below in Subsection C; see Equation (6).
Here µ is the word-length of the input to the Barrett reduction
unit (see description in Subsection C below). In a typical
Barrett reduction implementation, µ = 2v. In the proposed
approach, for given v and t, µ and nq are increased to expand
the number of feasible moduli.

A CRT-friendly modulus leads to an optimized hardware
architecture with respect to the overall timing and area perfor-
mance for the pre-processing and post-processing steps. Our
exhaustive search approach generates qi that are similar to
the Solinas prime, and contain a few signed power-of-two
terms [33], [34].

The integer multipliers have a larger area consumption
and longer delay than the integer adders for the hardware
implementation. Besides, the area and delay are proportional
to the word-length. Therefore, one possible direction to opti-
mize the modular multiplier, pre-processing stage, and post-
processing stage architectures is to reduce the number of
integer multipliers, especially the long integer multipliers. In
the proposed approach, all the integer multipliers are elimi-
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TABLE I
GENERALIZED FOLDING ORDER FOR NTT

Folding Order 0 1 l n
2 − 1

PE0 0 1 ... l ... n
2 − 1

PE1 2m−2 2m−2 + 1 ... 2m−2 + l mod n
2 ... 2m−2 − 1

...
PEs 2m−s−1 2m−s−1 + 1 ... 2m−s−1 + l mod n

2 ... 2m−s−1 − 1 mod n
2

...
PEm−1 1 2 ... l + 1 ... 0

TABLE II
GENERALIZED FOLDING ORDER FOR INTT

Folding Order 0 1 l n
2 − 1

PE0 ⟨1⟩ ⟨2⟩ ... ⟨l + 1⟩ ... ⟨0⟩
PE1 ⟨0⟩ ⟨1⟩ ... ⟨l⟩ ... ⟨2m−1 − 1⟩

...
PEs ⟨2− 2s mod n

2 ⟩ ⟨2− 2s + 1 mod n
2 ⟩ ... ⟨2− 2s + l mod n

2 ⟩ ... ⟨2− 2s − 1 mod n
2 ⟩

...
PEm−1 ⟨2⟩ ⟨3⟩ ... ⟨l + 2 mod n

2 ⟩ ... ⟨1⟩

aj

SAUSAU

SAUSAU SAUSAU

v+v1i+1

v+v1i+1 v+2v1i+2

(z0)

(z1)

(z2) Barrett 
Reduc.
Barrett 
Reduc.

v+v1i+2

ai,j

v

(z0)
v

v

v

(z1)

(z2)
β2

i

v

v

v

v

aj

ai,j

β1
i

(v-bit) 

v v

β3
i (v-bit) 

(z3)
v

(3 stages)

(a) Before Optimization (b) After Optimization

SAUSAU SAUSAU SAUSAU
v+v1i+1 v+2v1i+2(z3)

(D
ec

om
po

se
 to

 fo
ur

 s
eg

m
en

ts
)

v

v

v

v

4v

(D
ec

om
po

se
 to

 fo
ur

 s
eg

m
en

ts
)

(v-bit) 

4v

v+3v1i+3
v+3v1i+4 v+3v1i+5

Fig. 11. Top-level architecture of residual coefficient computation unit when t = 4.

nated when multiplying by qi, which significantly reduces the
computation cost.
C. Residual polynomials computation unit

The pre-processing stage maps the input polynomials to
their residual polynomials by applying the CRT algorithm,
as shown in Step 1 of Fig. 10. For the polynomial a(x), its
residual polynomials are

ai(x) = [a(x)]qi =
n−1∑
j=0

(ai,j mod qi)xj , i ∈ [1, t]. (4)

A key operation within the pre-processing stage is the execu-
tion of modular reduction. One approach to avoiding division
operation in computing modular operation is the use of Barrett
reduction [35]. This is described by:

a mod q = a− (
am

2µ
) · q = a− ((aϵ) ≫ µ) · q

where ϵ = ⌊ 2µ

q ⌋ can be pre-computed, and µ is the word-
length of a.

The prior works employ the divide-and-conquer paradigm
for residual polynomials computation to enhance the paral-
lelism and reduce the complexity, such as in [6]. An example
of this method is shown in Fig. 11(a), demonstrating a fully
parallel implementation for t = 4. Despite its advantages, this
method requires modular multiplication within each segment,
presenting opportunities for further optimization. In particular,
we exploit the low Hamming weight property of the moduli
and replace the modular multipliers by Shift Add Units (SAU).

<<v2i

<<v1i

_
α

α

α+v2i

α+v2i+1

α+v1i

α+v1i+1

α

SAU =

Fig. 12. SAU unit of residual coefficient computation unit whose input word-
length is α.

Algorithm 1 presents our proposed novel and hardware-
friendly optimization to implement Equation (4). The architec-
tures for the prior work and the proposed algorithm are shown
in Fig. 11(a) and Fig. 11(b), respectively. Similar to the prior
work in [6], Line 1 in Algorithm 1 begins by splitting a large
integer aj into several segments where each segment has v
bits (v is the word-length of qi). For simplicity, we define the
base B = 2v . Thus, each segment within ai,j can be expressed
as zk ·Bk, k ∈ [0, t− 1]. The next step involves the modular
reduction for each segment, which is the main focus of our
hardware optimization.

Line 3 in Algorithm 1 no longer requires v × v-bit integer
multiplication with βk

i to obtain each rk. Instead, the proposed
method utilizes the shift and add operations to eliminate the
expensive modular multiplications.

Besides, different from the baseline design in Fig. 11(a)
where the modular reductions are required to reduce each rk
modulo qi, our design reduces (t− 1) reduction units to only
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Fig. 13. Flow chart for the residual coefficient computation unit when t = 4.

Algorithm 1 Efficient residual coefficient computation
Input: aj ∈ [0, q − 1] and qi
Output: ai,j = aj mod qi, ai,j ∈ Rqi

1: aj = z0 + z1 ·B + z2 ·B2+, ...,+zt−1 ·Bt−1 //B = 2v

2: for k = 1 to t− 1 do
3: rk = zk × βk

i // βi = B mod qi
4: ai,j = z0 + r1 + ...+ rt−1 mod qi

one in the ideal case, as required in Line 4 of Algorithm 1.
The rationale behind this method is as follows. The product
rk in the prior work is a 2v-bit integer, as βk

i and zk are both
v-bits each.

Since qi only contains a few signed power-of-two terms, a
long integer multiplication in Line 3 of Algorithm 1 is replaced
by an SAU. For instance, for a special prime qi = 2v −2v1i −
2v2i + 1, βi in Line 3 of Algorithm 1 can be expressed as

βi = [2v]qi ≡ 2v1i + 2v2i − 1. (5)

The multiplication by βi using SAU is shown in Fig. 12. Here,
the word-length of z1×βi is (v+v1i+1). After nβ SAUs, the
word-length is increased to (v+nβ(v1i+1)). The word-length
of ai,j at Line 4 of Algorithm 1, µ, is greater than or equal to
(v+nβ(v1i+1)+1), where µ is the word-length of the input
to the Barrett reduction unit. This leads to the constraint:

⌈µ− 1

nβ
⌉ > v1i > v2i. (6)

The parameter nβ = t− 1 in the general case.
A block diagram to illustrate Algorithm 1 is shown in

Fig. 13, for t = 4. It can be seen that the modular mul-
tiplication in zk × βk

i in Fig. 11(a) can be replaced by the
shift and add operations, resulting in reduced hardware costs.
Since a multiplier is typically quadratically more expensive
than an adder with respect to word-length, using such a shift
and add operation is more area efficient than using a multiplier
to obtain its result rk.

D. Increasing the number of primes as required

An increase in the number of co-prime factors t can
eventually deepen the depth of the SAU, resulting in a long
word-length in the intermediate result, thus yielding inefficient
computation. To overcome this bottleneck, two alternative
solutions are employed.

Approach 1. The first solution involves the simple strategic
placement of an extra Barrett reduction unit within the data-
path, aiming to decrease the maximum depth of SAU. Inserting
additional Barrett reductions between the SAUs can reduce the

depth of SAU to zero and consequently decrease the word-
length of the intermediate result to v-bit. For instance, the
application of an additional Barrett reduction unit for r3 can
minimize the depth of SAU to 1, as shown and highlighted in
orange in Fig. 14 and Fig. 13, ensuring all input word-lengths
for Barrett reduction units are short. Consequently, as the
operating intermediate results rk are represented using short
word-lengths, combining all the rk and z0 to calculate ai,j
requires only adders and a Barrett reduction unit. Despite this
overhead, it maintains a smaller hardware resource require-
ment than the prior design, as shown in Fig. 11(a), owing to a
reduced number of Barrett reduction units and the elimination
of integer multiplication. This method is appropriate when the
number of moduli is small (for example, less than 5).
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Fig. 14. Residual coefficient computation unit with additional Barrett reduc-
tion unit for t = 4. An additional Barrett reduction unit, employed to reduce
the depth of the SAU, is circled, while word-lengths after the placement of
this additional Barrett reduction unit are highlighted in orange.

Approach 2. When the number of moduli, t, is large, the
above approach is not efficient, as the number of SAUs grows
in a square manner with t. For this case, we propose a novel
approach described in Algorithm 2. First, t is decomposed as
t = d · t′ where t′ moduli are combined using SAUs similar to
Approach 1 and form a block. Then d such blocks are used,
where each block processes t′ moduli. The maximum depth
of SAUs in each block is (t′ − 1).

Note that the co-prime factors used in this approach require
an adjustment nβ = t′ − 1 in Equation (5) in order to satisfy
the condition ⌈µ−1

nβ
⌉ > v1i > v2i.

Fig. 15 illustrates an example for six co-prime factors (t =
6). This circuit primarily comprises two blocks (d = 2) of
SAU units (marked in blue), where each block has three inputs
(t′ = 3), augmented with additional Barrett reduction units and
one multiplier. In this example, each segment zk undergoes
modular reduction by multiplying βk

i , where k ∈ [0, 5]. The
first block computes the multiplication with β0

i to β2
i by using

low-cost SAUs:

sumi,0 = z0 · β0
i + z1 · β1

i + z2 · β2
i . (7)
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Fig. 15. Residual coefficient computation by factorization unit for t = 6.

Segments z3 to z5 serve to execute the modular reduction,
which are subsequently optimized through the application of
the distributivity property of multiplication:

sumi,1 = [z3 · β3
i + z4 · β4

i + z5 · β5
i ]qi ,

= [z3 · β0
i + z4 · β1

i + z5 · β2
i ]qi · [β3

i ]qi , (8)

where [z3 ·β0
i +z4 ·β1

i +z5 ·β2
i ]qi can be implemented through

identical components in the first block with the SAU units,
followed by a Barrett reduction unit, and the multiplication
[β3

i ]qi (a v-bit pre-computed constant) instantiated through a
(v× v)-bit multiplier. This novel optimization in Equation (8)
ensures the intermediate result of sumi,1 is fixed to 2v-bit.
Ultimately, sumi,0 and sumi,1 are accumulated and reduced
to a v-bit result by a Barrett reduction unit.

Algorithm 2 Efficient residual coefficient computation by
Factorization

Input: aj ∈ [0, q − 1], qi, and t = t′ · d
Output: ai,j = aj mod qi, ai,j ∈ Rqi

1: aj = z0 + z1 ·B + z2 ·B2+, ...,+zt−1 ·Bt−1 //B = 2v

2: for ρ = 0 to d− 1 do
3: for k = 1 to t′ − 1 do
4: rk = zk × βk

i // βi = B mod qi
5: if ρ == 0 then
6: sumi,0 = z0 + r1 + ...+ rt′−1

7: else
8: sumi,ρ = [z0 + r1 + ...+ rt′−1]qi · [β

t′ρ
i ]qi

9: ai,j = sumi,0 + sumi,1 + · · ·+ sumi,d−1 mod qi

In terms of computational complexity analysis, this pro-
posed method demonstrates a reduction in hardware resource
consumption. Compared to the design in Fig. 11(a), this ap-
proach reduces the number of integer multipliers and modular
reduction units from t and t to (d − 1) and d, respectively.
However, additional t(t′−1)

2 SAUs are used. For example,
the proposed method reduces six integer multipliers and six
modular reduction units to one integer multiplier and two
modular reduction units when t = 2·3. It is important to know
that employing this method does not mandate the constraint
parameter of t = 6 for co-prime (qi) generation during the
exhaustive search procedure. On the contrary, it leverages the
constraint parameter of t′ = 3 to achieve six satisfied co-
prime factors since the maximum depth of SAU unit is two

(i.e., nβ = 2 instead of nβ = 5), which markedly broadens
the flexibility of the search space for co-prime factors.

E. Evaluation in residual domain

After using CRT representation, the function f(ai(x), bi(x))
over Rn,qi can be computed independently, as presented in
Step 2 in Fig. 10. As a result, the overall t operations can
be executed in parallel. In our case, the function computes
the residual products pi(x) for i ∈ [1, t], by utilizing NTT-
based polynomial multiplication over Rn,qi . The architecture
to compute pi(x) = ai(x) · bi(x) mod (xn + 1, qi) is based
on our novel NTT-based polynomial multiplier in Fig. 2.
Thus, our proposed architecture achieves high throughput
and low latency by increasing the parallelism from the CRT
representation.

F. Inverse mapping of residual coefficients of polynomials

During Step 3 in Fig. 10, the results obtained by the
evaluation in the residual domain need to be converted back
to over the ring Rn,q , which is the same as f(a(x), b(x)) over
Rn,q (i.e., result computed without using CRT representation).

This post-processing stage is based on the inverse CRT
algorithm:

p(x) =
t∑

i=1

pi(x) · ei mod q

=
t∑

i=1

n−1∑
j=0

pi,j · ei · xj mod q, (9)

where each ei = q∗i · q̃i is a constant, q∗i = ( q
qi
) ∈ Z, and

q̃i = [( q
qi
)−1]qi ∈ Zqi .

However, direct multiplication by the constant ei involves
a long integer multiplication and expensive modular reduction
over q, which will result in an inefficient implementation and a
long critical path. Meanwhile, the properties of the special co-
primes can lower the cost of modular operations over qi in the
post-processing stage. Therefore, we leverage the technique
in [36] to further express Equation (9) as:

p(x) =
t∑

i=1

[
pi(x) · q̃i

]
qi
· q∗i mod q

=
t∑

i=1

n−1∑
j=0

[
pi,j · q̃i

]
qi
· q∗i · xj mod q.

(10)

The core concept of this methodology is the partitioning of
a long word-length v × vt-bit multiplier into a v × v-bit
multiplier coupled with a v × (t − 1)v-bit multiplier. Thus,
the modular reduction with respect to q is replaced by four
separate modular reductions in terms of different qi. The
resource savings achieved through this optimization can be
explained as follows:

The computation in 0 ≤
[
pi,j · q̃i

]
qi
< qi can be performed

efficiently since the modular reduction over qi has a lower
cost than the modular reduction q. As q∗i is a (t − 1)v-bit
pre-computed constant, no division is required in the post-
processing stage. Besides, the range of the coefficients from
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[
pi(x)·q̃i

]
qi
·q∗i is in [0, q−1] so that no modular multiplication

is required to compute the product.
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Fig. 16. Inverse mapping architecture when t = 4. This circuit illustrates
the post-processing step for the inverse CRT. Pipelining cut set is added after
each integer adder/multiplier.

The optimized architecture of the inverse mapping of
residual coefficients of polynomials is shown in Fig. 16(b)
(we use t = 4 as an example). In this architecture, each
long word-length (4v × v-bit) multiplier for multiplying ei
is split into v × v-bit multiplier with constant q̃i and v × 2v-
bit multiplier with constant q∗i . Instead of implementing an
expensive modular reduction over a large modulus q block
in Fig. 16(a), only three modular adders and four modular
reductions over qi are required to obtain the final result p(x).
Specifically, the modular reduction over qi is also efficient
based on the special co-prime.

Overall, the proposed novel architecture can significantly
reduce the area and power consumption.

V. EXPERIMENTAL RESULTS

This section evaluates the co-prime factor selection and
performance of the parallel NTT-based polynomial multiplier
without shuffling operations (as presented Section III) and
pre-processing/post-processing units for the CRT algorithm
(detailed in Section IV) separately. Subsequently, a compre-
hensive performance discussion and comparison analysis of
the proposed PaReNTT polynomial multiplier is presented.

For our evaluations, the proposed designs are implemented
using SystemVerilog and then mapped to the Xilinx Virtex
Ultrascale+ FPGA. We also specifically consider a fixed 180-
bit q with either four or six co-prime factors and a polynomial
degree of n = 4096 to investigate the designs under different
levels of CRT-based parallelism. Consequently, the 180-bit
modulus q is composed of co-primes that are either 45-bit or

30-bit, and these co-primes adhere to special NTT-compatible
and CRT-friendly formats.

Note that our design can be easily extended to a longer
word-length modulus by either incorporating more co-prime
factors or by increasing the word length of each individual
co-prime. Moreover, in the case of a length-4096 and t = 4
NTT-based polynomial multiplier, 48 PEs and 44 DSD units
are employed given that m = log2(4096) = 12. When t =
6, 72 PEs and 66 DSD units are applied. A higher degree
of the polynomial can also be integrated, requiring solely an
increment in the number of PEs and DSDs.
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Fig. 17. Comparison of latency of Two-parallel NTT-based polynomial
multiplication with and without shuffling operations when n = 4096.

A. Expansion of Co-prime factors

Table III shows the total number of special NTT-compatible
and CRT-friendly primes under different settings. Two values
of µ are chosen: µ = (2v + 15) and (2v + 30). The number
of signed power-of-two terms is either 4 or 5. When µ,
the number of signed power-of-two terms, and n are set to
be (2v + 30)-bit, five terms, and length-4096, respectively,
the feasible co-prime factors are 169 (for v = 30) and
480 (for v = 45) in number. Thus, the number of coprime
factors is large enough to accommodate long word-lengths of
coefficients. In our hardware implementation, 75-bit and 105-
bit µ are considered for the 30-bit (v = 30) and 45-bit (v = 45)
co-primes (corresponding to µ = (2v+15)). Moreover, each of
these co-primes is characterized by four signed power-of-two
terms.

TABLE III
THE NUMBER OF SPECIAL NTT-COMPATIBLE AND CRT-FRIENDLY

PRIMES UNDER DIFFERENT SETTINGS WHEN t = 4 AND t = 6 (v = 45
AND 30)

t v µ # PoT n ⌈log2 ϵ⌉ # primes
4 45 (2v + 15) 4 4096 61 12
4 45 (2v + 30) 4 4096 76 33
4 45 (2v + 15) 5 4096 61 126
4 45 (2v + 30) 5 4096 76 480
6 30 (2v + 15) 4 4096 46 8
6 30 (2v + 30) 4 4096 61 26
6 30 (2v + 15) 5 4096 46 23
6 30 (2v + 30) 5 4096 61 169
µ: The input word-length of Barrett reduction unit; # PoT: The

number of signed power-of-two terms in each co-prime.
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B. Evaluation metrics and performance of parallel NTT-based
polynomial multiplier

To analyze the timing performances of the implementations,
we define two timing performance metrics, block processing
period (BPP) and latency. BPP is defined as the time required
to process n coefficient inputs or the time required to generate
n coefficient outputs. For a length-n NTT-based two-parallel
polynomial multiplier, the expression for BPP is

TBPP = n/2, (11)

where the throughput is two samples per clock cycle. In ad-
dition, the latency for one polynomial modular multiplication
is

TLat = (n− 2) + Tpipe, (12)

where Tpipe represents the additional pipelining stages added
to the data-path in order to reduce the critical path. Fur-
thermore, the total clock cycles consumed by L polynomial
modular multiplications are

Ttotal = TLat + TBPP · L. (13)

For n = 4096, the BPP is 2048 clock cycles, and the
latency is 4096 clock cycles (excluding extra clock cycles
required for pipelining). The latency is significantly reduced
compared to the NTT-based polynomial multipliers that use
a shuffling circuit in the prior works. The comparison of our
optimized and conventional methods (without considering the
pipelining) is shown in Fig. 17. Specifically, the conventional
method with the shuffling circuit needs additional 1024 (n/4
in general) clock cycles for the re-ordering, leading to an
increase in latency by around 20.0% for a two-parallel design
and n = 4096.

TABLE IV
AREA CONSUMPTION AND FREQUENCY FOR RESIDUAL COEFFICIENT

COMPUTATION UNIT WHEN t = 4 AND t = 6 (⌈log2 qi⌉ = 45 AND 30)

Design t Freq.[MHz] LUTs DSPs FFs Npip

Prior work 4 76 6350 0 0 0
Proposed 4 62 4034 0 0 0
Prior work 4 200 5836 0 1288 5
Proposed 4 271 3937 0 1164 6
Prior work 6 105 2032 0 0 0
Proposed 6 55 1148 0 0 0
Prior work 6 300 2660 0 1244 6
Proposed 6 309 1537 0 682 6

TABLE V
AREA CONSUMPTION AND FREQUENCY FOR INVERSE MAPPING

ARCHITECTURE WHEN t = 4 AND ⌈log2 qi⌉ = 45

Design Freq.[MHz] LUTs DSPs FFs Npip

Conven. 45 17729 63 0 0
Proposed 50 15894 60 0 0
Conven. 111 15066 63 2544 6

Proposed 244 12302 60 6686 16

C. Comparison of residual coefficient computation unit and
inverse mapping architecture

Fig. 14 and Fig. 15 illustrate and compare the designs
for residual coefficient, and Fig. 16 presents inverse mapping
computations architecture. The experimental results and com-
parison, both with and without the incorporation of pipelining

for these foundational components, are presented in Tables
IV and V. The pipelining cut sets in the building blocks are
marked in green in Fig. 14, Fig. 15, and Fig. 16.

In evaluating the results for our proposed residual coefficient
computation unit, we have considered the experimental results
for two distinct approaches presented in Fig. 14 (for v = 45,
t = 4) and Fig. 15 (for v = 30, t = 6). Additionally,
we reference the prior design delineated in Fig. 11(a) and
implemented it in a fully parallel manner with our parameter
setting and Barrett reduction units. This has been employed
as a baseline for the comparison of the residual coefficient
computation unit presented in Table IV. Both pipelined and
non-pipelined designs are considered. From non-pipelined
designs (Npip = 0), we observe that the area requirements
of the proposed designs for preprocessing are less than those
of the prior design. A comparison between the prior design
(Fig. 11(a)) and the proposed design of Fig. 14 reveals a
shorter critical path in the former before pipelining. These
designs are feed-forward and can be pipelined at appropriate
levels. For a fair comparison, both designs are appropriately
pipelined to facilitate high-speed operation. The result indi-
cates a significant reduction of 32.5% in LUT consumption
in our design. Such saving mainly comes from replacing the
four integer multipliers and four Barrett reduction units by two
Barrett reduction units augmented by additional low-cost SAU
units. Meanwhile, the comparison between Fig. 11(a) and our
proposed design in Fig. 15 shows a saving of LUTs increases
to 67.7% after pipelining.

Besides, parameter setting of v = 45 and t = 4 is applied
to compare conventional design Fig. 16(a) and our proposed
design Fig. 16(b) for the inverse mapping architecture. The
area consumption results show an 18.3% and 4.8% reduction
in the usage of LUTs and DSPs in our proposed design,
respectively. Such savings are primarily derived from the
replacement of an expensive Barrett reduction unit with respect
to q by four Barrett units using special primes qi. In particular,
instead of performing a multiplication with a 180-bit integer
q during the Barrett reduction with q, our approach employs
four short word-length shift-and-add operations to compute the
multiplications with 45-bit specialized qi. Although the total
word-length of multipliers for q̃i and q∗i remains unchanged
compared to the multiplier with ei, the decomposition of the
long word-length multiplication at the algorithmic level for
our proposed hardware architecture enables a straightforward
pipelining optimization without the need for further transfor-
mation.

D. Evaluation on PaReNTT polynomial multiplier

This sub-section delves into the implementation and com-
parison of the proposed PaReNTT polynomial multiplier (two-
parallel residue arithmetic-based NTT architecture) for n =
4096 and ⌈log2 q⌉ = 180.

The performances and experimental results for the param-
eter settings t = 4, v = 45 and t = 6, v = 30 are presented
in Tables VI and VII. These two implementations employ the
same architecture designs for the evaluation in the residual
domain (i.e., the parallel NTT-based polynomial multiplier
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TABLE VI
AREA CONSUMPTION AND FREQUENCY FOR POLYNOMIAL MODULAR MULTIPLIERS FOR n = 4096

Design ⌈log2 q⌉ t Freq.[MHz] LUTsa DSPsa FFsa Power [W]

Proposed 180 4 244 322K (27.2%) 1.6K (22.8%) 92K (3.9%) 6.6
180 6 240 341K (28.9%) 1.1K (16.5%) 103K (4.3%) 6.3

Roy [7] 180 6 225 64K 0.3K 25K (Not Reported)
a: # of used resources (% utilization) on FPGA board.

TABLE VII
TIMING PERFORMANCE FOR POLYNOMIAL MODULAR MULTIPLIERS FOR n = 4096

Design ⌈log2 q⌉ t CRT BPPb Latencyc ABPd ABPd ATPe ATPe

# Cycles Period [µs] # Cycles Period [µs] (LUT) (DSP) (LUT) (DSP)

Proposed 180 4 Yes 2048 8.5 4246 17.4 2.7M 13.1K 5.6M 27.8K
180 6 Yes 2048 8.4 4254 17.7 2.9M 9.6K 6.0M 19.5K

Roy [7] 180 6 Yes N/A N/A 196003 871.1 N/A N/A 55.8M 261.3K
b: Block processing period (BPP) is the period (µs) for processing n coefficient inputs or for generating n sample outputs after the first sample

out.
c: Latency is the period (µs) of the first sample in and the first sample out.
d: ABP is calculated from the number of LUTs/DSPs times BPP (µs).
e: ATP is calculated from the number of LUTs/DSPs times latency (µs).

for varying qi as described in Section III) and the inverse
mapping of residual coefficients of the polynomial. However,
the employed residual polynomial computation units for t = 4
and t = 6 are based on Fig. 14 and Fig. 15, respectively.
Detailed breakdowns of these two blocks’ results are presented
in Table IV.

In terms of timing performance, both designs can operate
at a high clock frequency of 240MHz after pipelining. It can
also be observed that the BPP and latency, measured in clock
cycles, remain similar regardless of the varying word-length v
due to the degree of the polynomial being fixed. Furthermore,
the area performance of PaReNTT architectures for t = 4
and t = 6 is also examined. As illustrated in Table VI, the
implementation for t = 6 utilizes an additional 5.6% of LUTs,
while concurrently reducing DSP usage by 31.25% compared
to the design implemented for t = 4.

To comprehensively compare the timing and area perfor-
mances of our proposed designs, we evaluate the area-BPP
product (ABP). The reductions in ABP(LUT) and ABP(DSP)
achieved by the t = 6 design are 6.90% and 26.72%,
respectively, when compared to the t = 4 design.

The main sources of power consumption in our PaReNTT
architectures are the shift registers deployed in the DSD units,
in addition to the logic operations executed in LUTs and DSPs.
Since the t = 6 implementation utilizes fewer resources, it is
associated with a reduction in power consumption. Specifi-
cally, it is approximately 4.5% lower when compared to the
t = 4 implementation.

Although the parameter setting of n = 4096 and ⌈log2 q⌉ =
180 indicates superior ABP(LUT) and ABP(DSP) perfor-
mance for the t = 6 implementation, varying parameter
selections for n, v, and t may also impact both the flexibility of
co-prime factor selection and ABP performance. This suggests
that the choice between designs shown in Fig. 14 or Fig. 15
and the selection of parameters should be meticulously tailored
to suit the requirements of different HE applications.

Direct comparisons with prior works are difficult as systems

are implemented using different data-paths and FPGA devices
corresponding to different technologies. Nevertheless, we now
compare the proposed design with a prior design based on the
same parameter setting n = 4096, log2(q) = 180 in [7] and
the same FPGA device. The timing and area performances of
the prior design are included in the last line of Tables VII and
VI. Moreover, to reduce the variation of the parameter setting,
parameter setting of v = 30 and t = 6 is considered in the
proposed PaReNTT architecture, which is the same as [7].

Despite the fact that the area performance of the previous
design is superior to the PaReNTT architecture, our design
has a better timing performance, as reducing the latency and
increasing throughput is the primary goal of this work. Specif-
ically, the prior design incorporates a customized optimization
for the BFV scheme requiring lifting and scaling operations.
Consequently, the clock cycles for modular multiplication in
the homomorphic multiplication are approximately doubled
compared to the design without these operations. In order
to provide a fair comparison, we halved the clock cycle
and latency consumption for the CRT-based, NTT, and iNTT
operations in their design. The equivalent number of clock
cycles equals 196, 003 = (87, 582× 2 + 102, 043 + 15, 662 +
99, 137)/2, and the latency is 871.1 µs. Note that the ap-
proximated timing results are obtained from Table II in [7]
by calculating the sum of two NTTs (for polynomial a(x)
and b(x), respectively), coefficient-wise multiplication, iNTT,
Lift and then divided by two. As their scaling step requires
a more complex operation than the general inverse mapping
for the residual polynomials due to scheme requirements, the
clock cycles in this step are excluded from their approximated
timing result.

The comparison and evaluation result shows our design
reduces the latency by a factor of 49.2. Additionally, we
compare the area-timing product (ATP) of these two designs.
The comparison indicates that our design reduces ATP(LUT)
and ATP(DSP) by 89.2% and 92.5%, respectively, compared
to the design in [7]. For high throughput applications, such as
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in the cloud, it is necessary to add additional weight to the
time (T). In such applications, AT2 product (AT2P) is an ap-
propriate metric. In the proposed design, the AT2P(LUT) and
AT2P(DSP) are reduced by 99.8% and 99.8%, respectively,
compared to the design in [7].

VI. CONCLUSION

This paper has proposed PaReNTT, an efficient CRT and
NTT-based long polynomial multiplier. This design leverages
the characteristics of the specially selected primes to optimize
the pre-processing and post-processing units for the CRT
algorithm. We point out that a slightly different pre-processing
approach for the CRT has been presented in []. In addition, a
novel iNTT unit is designed based on bit-reversed scheduling
to eliminate an expensive shuffling circuit and significantly
reduce latency. Hardware-software codesign of the polynomial
modular multiplier is a topic of further research. Future efforts
will be directed toward evaluating different homomorphic
encryption algorithms such as BFV, BGV, and CKKS using
the proposed efficient long polynomial multiplier based on
hardware-software co-design.

VII. DISCLOSURE

The content of this paper is the topic of the patent applica-
tion in [37].
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This Supplementary Information briefly describes the
algorithms for polynomial modular multiplication via the
frequency domain using NTT/iNTT. Two approaches are
reviewed: negative wrapped convolution (NWC) and low-
complexity NWC. A detailed tutorial on this topic is presented
in [1].

I. LOW-COMPLEXITY NUMBER THEORETIC
TRANSFORM-BASED POLYNOMIAL MULTIPLICATION

An efficient number theoretic transform (NTT)-based
polynomial multiplication method with the time complexity
of O(n log n) is used. This method significantly reduces the
time complexity compared to the O(n2) complexity method
of the schoolbook polynomial multiplication along with the
modular polynomial reduction.

The prior work in [2] presents an efficient algorithm for
the NTT-based polynomial multiplication computing p(x) =
a(x) · b(x) mod (xn + 1, q), namely negative wrapped con-
volution, as shown in Algorithm 1. Note that the weighted
operations are needed before NTT and after iNTT during
the negative wrapped convolution to avoid the expensive zero
padding [2].

The core step of this algorithm is the NTT that converts
the polynomials a(x) and b(x) to their NTT-domain Ã(x)
and B̃(x) as in Step 2. The NTT for polynomial a(x) is
mathematically expressed as

Ãk =
n−1∑
j=0

ajψ
j
2nω

kj
n mod q, k ∈ [0, n− 1]. (1)

Polynomial b(x) is similarly transformed to B̃(x). Specifically,
ω is the primitive n-th root of unity modulo q (i.e., twiddle
factor), which satisfies ωn ≡ 1 mod q. ψ2n is the primitive
2n-th root of unity modulo q, and thus ω = ψ2

2n mod q. After
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using the NTT algorithm, the efficient point-wise multiplica-
tion between Ã(x) and B̃(x) is performed, which is followed
by the inverse NTT (iNTT). The iNTT transforms product, P̃ ,
to the original algebraic domain polynomial p(x), which is
defined as

pk = n−1ψ−k
2n

n−1∑
j=0

P̃jω
−kj
n mod q, k ∈ [0, n− 1], (2)

where n−1 is the modular multiplicative inverse of n with
respect to modulo q.

During the NTT and iNTT, the weighted operation re-
quires the multiplication of the polynomials by the weights
ψj
2n mod q for NTT or ψ−j

2n mod q for iNTT. Furthermore,
an NTT-compatible prime is also utilized, i.e., q must satisfy
that (q − 1) is divisible by 2n.

Algorithm 1 Negative Wrapped Convolution [2]
Input: a(x), b(x) ∈ Rn,q

Output: p(x) = a(x) · b(x) mod (xn + 1, q)

1: Weighted operation:
ã(x) =

∑n−1
j=0 ajψ

j
2nx

j mod q

b̃(x) =
∑n−1

j=0 bjψ
j
2nx

j mod q
2: NTT computation:
Ã(x) : Ak =

∑n−1
j=0 ãjω

kj
n mod q, k ∈ [0, n− 1]

B̃(x) : Bk =
∑n−1

j=0 b̃jω
kj
n mod q, k ∈ [0, n− 1]

3: Point-wise multiplication:
P̃ (x) = Ã(x)⊙ B̃(x) =

∑n−1
k=0 ÃkB̃kx

k

4: iNTT computation:
p̃(x) = n−1

∑n−1
j=0 P̃jω

−kj
n mod q, k ∈ [0, n− 1]

5: Weighted operation:
p(x) =

∑n−1
j=0 p̃jψ

−j
2n x

j

Since the weighted operations in NTT/iNTT require a
large number of expensive modular multiplications, the recent
works in [3], [4] present a new method to merge the weighted
operations into the butterfly operations. In particular, the new
NTT in Equation (1) is re-represented as Ãk and Ãk+n/2 by
using the decimation-in-time (DIT) method:

Ãk = a
(0)
k + ψ2nω

k
na

(1)
k mod q, (3)

Ãk+n/2 = a
(0)
k − ψ2nω

k
na

(1)
k mod q, (4)
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where k ∈ [0, n2 − 1] and

a
(0)
k =

n/2−1∑
j=0

a2jψ
j
nω

kj
n/2 mod q, (5)

a
(1)
k =

n/2−1∑
j=0

a2j+1ψ
j
nω

kj
n/2 mod q. (6)

Since ω = ψ2
2n mod q, integers ψj

2n and ωkj
n/2 can be merged

as an integer ψ2nω
k
n = ψ

(2k+1)
2n . Thus, only one modular

multiplication is required in the butterfly operation.
The improved iNTT algorithm merges not only the

weighted operation but also the multiplication with constant
n−1 into the butterfly operations, as presented in [3]. Based on
Equation (2) and the decimation-in-frequency (DIF) method,
the new iNTT algorithm is expressed as

p2k = (
n

2
)−1ψ−k

n

n/2−1∑
j=0

P̃
(0)
j ω−kj

n/2 mod q, (7)

p2k+1 = (
n

2
)−1ψ−k

n

n/2−1∑
j=0

P̃
(1)
j ω−kj

n/2 mod q, (8)

where k ∈ [0, n2 − 1], and

P̃
(0)
j =

P̃j + P̃j+n/2

2
mod q (9)

P̃
(1)
j =

P̃j − P̃j+n/2

2
ω−j
n ψ−1

2n mod q. (10)

Similarly, the integers ω−j
n and ψ−1

2n are combined as an
integer ψ−1

2n ω
−j
n = ψ

−(2j+1)
2n . Different from the NTT butterfly

architecture, the modular addition and modular subtraction
intermediate results in the iNTT butterfly need to be divided
by two. In fact, the modular multiplication by 2−1 can be
implemented without a modular multiplier [3], since

x

2
=

{
x
2 , if x is even
⌊x
2 ⌋+

q+1
2 mod q, if x is odd.

(11)

Specifically, x × 2−1 can be implemented as (x ≫ 1)
when x is even. If x is odd, x× 2−1 can be represented as:

x

2
≡ (2⌊x

2
⌋+ 1)

q + 1

2

≡ ⌊x
2
⌋(q + 1) +

q + 1

2

≡ ⌊x
2
⌋+ q + 1

2
mod q (12)

where ⌊x
2 ⌋ can also be implemented as (x ≫ 1), and

(q + 1)/2 is a pre-computed constant. Hence, no modular
multiplications are required while requires one modular adder
and a multiplexer (MUX).
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