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ABSTRACT: Microfluidics can split samples into thousands or millions of
partitions, such as droplets or nanowells. Partitions capture analytes according to
a Poisson distribution, and in diagnostics, the analyte concentration is commonly
inferred with a closed-form solution via maximum likelihood estimation (MLE).
Here, we present a new scalable approach to multiplexing analytes. We generalize
MLE with microfluidic partitioning and extend our previously developed Sparse
Poisson Recovery (SPoRe) inference algorithm. We also present the first in vitro
demonstration of SPoRe with droplet digital PCR (ddPCR) toward infection
diagnostics. Digital PCR is intrinsically highly sensitive, and SPoRe helps expand
its multiplexing capacity by circumventing its channel limitations. We broadly
amplify bacteria with 16S ddPCR and assign barcodes to nine pathogen genera
by using five nonspecific probes. Given our two-channel ddPCR system, we
measured two probes at a time in multiple groups of droplets. Although
individual droplets are ambiguous in their bacterial contents, we recover the concentrations of bacteria in the sample from the
pooled data. We achieve stable quantification down to approximately 200 total copies of the 16S gene per sample, enabling a suite of
clinical applications given a robust upstream microbial DNA extraction procedure. We develop a new theory that generalizes the
application of this framework to many realistic sensing modalities, and we prove scaling rules for system design to achieve further
expanded multiplexing. The core principles demonstrated here could impact many biosensing applications with microfluidic
partitioning.

The advent of microfluidics in biosensing has led to
portable, cost-effective, and automated assays on chips

manufactured with the same platforms that spurred the
computing revolution.1,2 However, the core methods of
biosensing have largely rested on the paradigm of designing
a specific sensor for each analyte. For situations with many
target analytes to consider, this one-to-one principle scales
poorly: many sensors must be embedded on a single device,
samples must be concentrated enough such that a
representative subsample can be applied to each sensor, and
cross-reactivity of sensors and analytes scales combinatori-
ally.3,4 Our motivating application is in bacterial and fungal
infection diagnostics where one or a few out of hundreds of
plausible pathogens may be responsible for a patient’s
condition, but samples may exhibit very low microbial
concentrations.5,6 For instance, a milliliter of blood can have
as low as one colony-forming unit or on the order of 102 to 103
equivalent genomic copies of microbial DNA.7

Scalable coverage of many analytes is viable with nonspecific
sensing modalities that each generate measurements from
multiple analytes. Such approaches need a postprocessing
method for inferring the presence or quantities of individual
analytes. For nucleic acid diagnostics, DNA sequencing is often
the method-of-choice. Metagenomic sequencing analyzes the

contents of virtually any sample with raw sequence reads
analyzed and interpreted with bioinformatics, but this
approach has limited sensitivity in the presence of high
background such as host DNA in blood.8 Amplicon sequencing
is an alternative for microbial diagnostics in both microbiome
analysis and infections.9,10 These approaches conduct PCR on
rRNA genes (e.g., 16S for bacteria, 18S or 28S for fungal,
among others) that are flanked by conserved regions for
priming and exhibit internal sequence differences for
taxonomic discrimination.9,11 While sequencing has made
strides in clinical practice, its expense required expertise, and
complex workflows have hindered its routine use.12,13

Another category of nonspecific sensing involves “finger-
printing” where a general sensing modality assigns unique
signatures to analytes such that an unknown sample can be
read and matched against a database. Spectroscopic methods
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are common in this class, profiling a wide range of proteins,
metabolites, and cells. In clinical infections, mass spectrometry
has been applied to rRNA amplicons14 although its use to
identify clinical isolates from positive culture is gaining much
more traction.15,16 However, these approaches often struggle
to analyze mixtures of analytes.17 For mass spectrometry, this
limitation manifests as a need to analyze clinical isolates from
polymicrobial samples one at a time.
Microfluidic partitioning technologies offer an avenue for

the high-throughput, sensitive, and quantitative character-
ization of heterogeneous samples via a fingerprinting
approach.17 These systems split an initial sample into
thousands or millions of partitions such as droplets or
nanowells.18 If the analytes are at a limiting dilution, most
partitions will be empty, with an occasional analyte isolated in
its own partition. Formally, analytes are captured according to
a Poisson distribution with the Poisson rate parameter λn such
that P(xn) = λnxn e−λn/xn! represents the probability of capturing
nonnegative integer (xn) copies of analyte n in a given
partition.19,20 Among N total analytes indexed by n that are
distributed independently among the partitions, single-analyte
capture is very likely if ∑nλn < 0.1 with most partitions
remaining empty. This approach with dilute samples guides
much of the research in single-cell and single-molecule analysis.
Given the probabilistic isolation of individual analytes,

nonempty partitions can be classified one at a time against a
database. Researchers have demonstrated classification with
high-resolution melt curve analysis of individual 16S gene
amplicons captured in droplets.21 Also, surface-enhanced
Raman spectroscopy (SERS) of isolated bacterial cells22 can
assign unique spectra to species, and digital SERS with
microfluidic capture has been proposed.17 However, such
approaches rest on the assumption that partitions must be
individually classified. From a data perspective, these systems
are dependent on reliable decision boundaries between N
analyte classes which makes them highly sensitive to
measurement noise.23 Acquiring enough information from
each partition for reliable classification limits the throughput of
acquiring partition measurements, and therefore, the volume of
sample that can be analyzed.24 Moreover, in the diagnostics
sample, concentrations are rarely known a priori. Multianalyte
capture in the same partition in concentrated samples can
cause errors in classification approaches that assume single-
analyte capture.
Our group recently built on ideas from compressed sensing

(CS) to address these challenges. CS seeks to infer sparse
signals efficiently: faster or with fewer sensors.25,26 In
biosensing, samples are sparse when among many possible
analytes only a handful are present in any given sample. For
instance, a patient could be infected with any of hundreds of
pathogens, but only one or a few are responsible for the
current infection.27 In this application, CS is analogous to
quantifying analyte fingerprints from mixed measurements.28

We recently developed new theory and a new Sparse Poisson
Recovery (SPoRe) algorithm that couple principles of CS with
microfluidic partitioning.29 SPoRe performs maximum like-
lihood estimation (MLE) via gradient ascent over a generalized
likelihood function. While we were initially motivated by
microfluidics’ high sensitivity via single-molecule analysis, we
also found fundamental advantages from a signal processing
perspective. Most notably, leveraging the Poisson-distributed
capture of analytes enables improved rates of multiplexing
(fewer sensors and more analytes), tolerates multianalyte

capture in the same partition, withstands very high measure-
ment noise, and can enable partial fingerprints to be captured
separately in sensor-constrained systems.
This latter concept of asynchronous fingerprinting enables

high-throughput, sensor-constrained microfluidics systems to
achieve both sensitive detection and efficient multiplexing of
analytes. The key insight is that individual partitions can be
entirely ambiguous in their analyte content, but the
distribution of all partition measurements can be used to
solve for the analyte concentrations. In this work, we first
extend our statistical theory to cover a broad class of realistic
sensors. Next, we present the first in vitro demonstration of our
framework toward bacterial infection diagnostics, quantifying
12 bacterial species at the genus level with only one 16S primer
pair and five orthogonal DNA probes in two-channel droplet
digital PCR (ddPCR). The probes assign “barcodes” to the
16S genes. While there are other probe-based methods for
higher order multiplexing in channel-constrained ddPCR,30

our oligo-efficient approach with nonspecific probes amelio-
rates cross-reactivity issues that otherwise scale combinato-
rially. Although our approach is not mutually exclusive to these
techniques, their combination is beyond the scope of this work.
For our bacterial panel, we selected species based on high
prevalence and cause for concern due to growing drug
resistance.31−33 We characterize the performance of our assay
with 18 samples each with a mixture of 2−4 bacteria,
demonstrating accurate polymicrobial quantification down to
approximately 200 total copies of the 16S gene. Finally, we
show how our probabilistic framework enables the flagging of
samples with 16S barcodes outside the designed panel. Our
goal is that the promising practical results of our demon-
stration motivate further theoretical research, a refinement of
our particular assay toward scalable infection diagnostics, and
broader applications of our new framework to multiplexed
biosensing.

■ EXPERIMENTAL SECTION
Bacterial Panel. We ordered bacterial species’ genomic

DNA (gDNA) from the American Type Culture Collection
(ATCC, Manassas, VA). The species’ names and their ATCC
identifiers are as follows: Acinetobacter baumannii (BAA-1605),
Bacteroides fragilis (25285), Enterobacter cloacae (13047),
Enterococcus faecium (BAA-23200, Escherichia coli (11775),
Klebsiella pneumoniae (13883), Pseudomonas aeruginosa (BAA-
1744), Staphylococcus aureus (12600), Staphylococcus epidermi-
dis (14990), Staphylococcus saprophyticus (15305), Streptococ-
cus agalactiae (13813), and Streptococcus pneumoniae (33400).
Particular strains were selected based on their availability at the
time of purchase and only if ATCC provided whole genome
sequence information for the isolate. DNA was resuspended
and aliquoted according to ATCC’s instructions at approx-
imately 106 genome copies per microliter. DNA aliquots were
stored at −4 °C until use.

Probe Design. All oligonucleotides were acquired from
Integrated DNA Technologies (Coralville, IA) with HPLC
purification and are given in Table 1. All probes had a 3′ Iowa
Black quencher. HEX and FAM 5′ modifications are indicated
in each experiment’s context. We used ThermoBLAST from
DNA Software (Plymouth, MI) to align the 16S primers (27F
and 1492R from a previous study11) against bacterial genomes
and find amplicons. Hydrolysis probes for barcoding must hit
multiple bacterial taxa, and shorter probes are naturally less
specific. We spiked probes with locked nucleic acids (LNAs) to
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achieve a sufficient melting temperature (Tm). To avoid
combinatorially increasing our probe search space, we deferred
LNA positioning until after sequence selection.
Full details of our sequence selection process are provided in

Supporting Information S1 (Supp. S1). We chose a length of
11 nucleotides for flexibility in LNA positioning and a
sufficient Tm. We used heuristics based on the GC content
and alignment to filter the 411 possible 11-mers to avoid
heterodimers and weak mismatches. As much as possible, we
positioned LNAs at mismatch sites to improve the
thermodynamic discrimination against these sequences. We
evaluated all Tm’s in IDT’s OligoAnalyzer. Each 16S gene
elicits a binary barcode response to the set of five candidate
probes based on the presence or absence of the probe
sequences in the gene (Figure 1a). We used coordinate ascent
optimization to select a final probe set that separated the
bacterial barcodes by genus. Particularly, we grouped together
the three species of Staphylococcus and two species of
Streptococcus.
Droplet Digital PCR. We used the Bio-Rad Qx 200 (Bio-

Rad Laboratories, Hercules, CA, USA) which has two
fluorescence channels (FAM and HEX) for multiplexed PCR
with hydrolysis probes. Primers were at 900 nM, and for
polymicrobial samples, all probes were at 125 nM. We used
Bio-Rad’s ddPCR Multiplex Supermix and prepared master
mixes, generated droplets, and read droplets according to the
manufacturer’s instructions. For PCR cycling, extension times
were set to 7 min because of the long amplicon (approximately
1500 base pairs) that is atypical in ddPCR, partly following
guidance from a previous study34 and internal data (not
shown). PCR cycling was as follows: 95 °C for 10 min (initial
denaturation and hot-start deactivation), 60 cycles of 94 °C for
30 s (denaturation), 60 °C for 7 min (annealing and
extension), and 98 °C for 10 min. Ramp rates during cycling

were set to 2 °C/s. Samples were refrigerated at 4 °C for 30
min prior to droplet readout.

Barcode Validation. We prepared ddPCR reactions with
individual microbial gDNA and a no template control (NTC).
We used amplitude multiplexing30 to measure five probes in a
single well with the two-channel system by adjusting individual
probe concentrations (Figure S1).

Preparation of Polymicrobial Samples. We prepared
monomicrobial dilutions of gDNA in Milli-Q purified water.
One dilution was prepared for each bacterium, approximately
targeting a concentration λn between 0.2 and 2 (“Concen-
tration 1”). We diluted each of these by 1/2 to yield
“Concentration 2.” We used a custom script to assign random
combinations of these bacterial dilutions to samples,
generating five samples with k = 2 unique bacteria and six
samples of k = 3 and k = 4. We reserved one sample as an NTC
with water alone. The probability of drawing each bacterium
was adaptively weighted to encourage an approximately even
representation of taxa across the samples. Each sample was
split across four wells of a ddPCR plate (Figure S2).

■ RESULTS AND DISCUSSION
Overview of the Approach. In ddPCR, samples are split

into thousands of droplets to stochastically capture nucleic
acids. End point PCR measurements form binary clusters that
indicate the presence or absence of target sequences.30,35 In
this study, we use nonspecific probes that “barcode” 16S genes
based on their binary pattern of response in ddPCR, and we
statistically infer bacterial concentrations from partial barcode
measurements. We present theoretical results and characterize
the performance in an in vitro demonstration.
We must first account for the intragenomic sequence

variability of copies of the 16S gene. Although we attempted
to design probes such that each genus had a unique, consistent
barcode for all copies, E. cloacae appeared to exhibit a small
proportion of variant barcodes, a fraction which we computed
experimentally (Figures S1, S3). Such variation is likely
inevitable, especially in larger-scale systems, but can be
accounted for. We store each pathogen’s fractional barcode
distribution across its copies in a column of a matrix C (Figure
1b). Note the ordering of barcodes is arbitrary in constructing
C and that because of only slight variation between 16S copies
within a genome,11 C is nearly the identity matrix in practice.
In the rows of C, we also ignore the barcodes that are not

Table 1. Oligonucleotides Used in This Study

oligo name sequence

primer 27F AGAGTTTGATCMTGGCTCAG
primer 1492R TACGGYTACCTTGTTAYGACTT
probe 1 TA+A+C+GGC+T+C+AC
probe 2 CTT+T+CGC+C+C+AT
probe 3 A+TT+C+C+GA+CT+TC
probe 4 A+C+C+AA+T+C+CATC
probe 5 A+A+G+CA+C+TCCGC

Figure 1. (a) Presence of nonspecific probe sequences in 16S gene copies defines their barcodes. (b) Accounting for barcode variability in 16S
copies. The white values in C are zero with the darkest gray representing 1. Each column contains the proportions of the barcodes in each bacterial
taxa’s 16S gene copies.
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elicited by the combination of the probes and the bacterial
panel. Our optimization estimates the nine-dimensional
Poisson parameter vector λ that represents nine analyte
concentrations. With nine unique barcodes and bacterial
genera, the term “analytes” could refer to either. If the analytes
are the barcodes, then λn(BC) is the concentration of the total
16S genes from any source bacteria that exhibits the nth
barcode. If the analytes are the bacteria, then λn(bact) is the
concentration of the nth bacterium’s 16S genes, regardless of
the particular barcodes of individual genes. Because λ(BC) =
Cλ(bact), our results currently depend on a C matrix of rank N
to readily convert between the barcode concentrations λ(BC)

and the bacterial concentrations λ(bact). We make use of both
definitions of “analyte”, carefully clarify which we are using at
any time, and often drop the superscript.
Ideally, we could estimate λ(BC) by simply capturing

individual 16S genes in droplets with all five probes. However,
if multiple genes appear (with distinct sequences) in the same
droplet, an effect known as partition-specific competition
(PSC) occurs, and fluorescent intensities can decrease.31 PSC
makes it difficult to differentiate many barcodes in a single
reaction. Second, unique clusters for every barcode cannot
scale beyond this study if the eventual goal is to quantify
dozens to hundreds of microbes.
Instead, we generate four sensor groups of droplets each

with a different subset of two probes (Figure 2). We call this
concept asynchronous fingerprinting and describe the
allocation of probes to each group in our theory (Supporting
Information S2). Despite PSC effects, raw droplets can still be
reasonably thresholded above zero in each channel.36 Although
the 16S barcode content in each droplet is made entirely
ambiguous, we infer bacterial concentrations in the sample
from the pooled, binarized data from the four groups of
droplets. SPoRe essentially finds the solution that best explains
the distribution of droplet measurements across the four
groups (Figure 2e).
Generalized MLE with Microfluidic Partitioning. The

standard for quantification in digital microfluidics data is based
on MLE.37 We generalize MLE in our new framework and
apply it to ddPCR. Respectively, the general terms used in this
section analyte, partition, and measurement vector correspond
with the physical concepts of a barcode or bacterium, a droplet,
and the two prebinarized measurements acquired from each
droplet. Supporting Information S2 contains detailed clar-
ification of our mathematical notation.
Let N and D define the number of unique analytes in the

assay and the number of partitions, respectively. We let xd be

an N-dimensional nonnegative integer vector representing the
quantities of each analyte in partition d. We say that λ is k-
sparse if k elements are nonzero. With microfluidic
partitioning, xd is distributed as Poisson(λ) where λ is the N-
dimensional parameter vector that characterizes the rate of
capture of each of the N analytes. Let yd represent the
measurement vector acquired from partition d (e.g., in our
assay, yd ∈ {0,1}2). Note that while yd is observed directly, λ
must be inferred, and xd is latent. We use an asterisk (λ*, xd*)
to denote true values and a hat (λ̂, xd̂) to denote estimates. In
MLE, an estimate of λ̂MLE maximizes the likelihood of the
observed measurements

= |

= | |

=

= +

p

p P

y

y x x

arg max ( )

arg max ( ) ( )

d

D

d

d

D

d
x

MLE
1

1 N (1)

Denoting the likelihood function from the right-hand side of
eq 1 as , the gradient is

=
| |

| |=

+

+

x

D

p P

p P

y x x

y x x
1 ( ) ( )

( ) ( )
1

d

D
d

d

x

x1

N

N (2)

Although fairly obtuse, this equation leads to two commonly
used equations in specialized implementations of MLE that use
digital fingerprinting or orthogonal assays (Supporting
Information S3). In our ddPCR assay, droplets may contain
multiple gene copies, including some with zero probe response.
Despite this ambiguity, SPoRe uses gradient descent to solve
eq 1.
We made two modifications to the original SPoRe

implementation. First, SPoRe is modular for the appropriate
sensing model, p(yd|x), for the application. We used a simple
model for our ddPCR assay. For yd∈{0,1}2, with M = 2 for the
two fluorescence channels, we say p(yd|x) = ∏mp(ym|x) with
p(ym|x) = 1 if x has at least one copy of a gene that contains the
corresponding probe, with p(ym|x) = 0 otherwise. In our
implementation, we define the analyte as the bacterial content
and account for the fractional barcode content in the gradient
computations. Second, our earlier work used Monte Carlo
approximations of the gradient (eq 2) on batches of observed
measurements. Here, with the finite measurement space of
ddPCR, these gradients can be computed quickly and exactly
over all measurements (Supporting Information S4). This
enables a backtracking line search to speed up convergence of

Figure 2. (a−d) Example of raw data from four groups of droplets, each from the same mixed bacterial sample. Green and blue axis labels indicate a
5′ HEX and FAM modification for the probes, respectively. Raw data are binarized by manual thresholding, overriding most of the effects due to
PSC. (e) SPoRe algorithm optimizes over all groups simultaneously, accurately reflecting the estimated ground truth (dashed lines).
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gradient descent to estimate λ̂MLE
(bact). The exact gradient,

while cumbersome to derive for the 2-channel ddPCR system,
could be similarly calculated for any number of channels and is
computationally cheap. This implementation and our raw data
are available at https://github.com/pavankkota/SPoRe.
Identifiability of the System. Gradient descent will

always converge to some solution, but we need to develop
some assurance that it is the correct solution. Proving the
identifiability of a model ensures that there is a unique global
optimum for the likelihood function given infinite data.
Identifiability states that if p(y|λ) = p(y|λ′) ∀y in each sensor
group, then λ = λ′.
We formally define terms and prove sufficiency conditions

for identifiability (Supporting Information S2). Briefly, we find
that λ can be inferred uniquely if the sensing functions that
map x to y are monotonic. Monotonic functions do not change
direction in the output; in biosensing, most outputs increase
with increases in the input such that the sensors are monotonic
increasing. We also assert that if one copy of an analyte does
not yield a nonzero measurement, then the analyte is
considered nonresponsive such that its content in a partition
has no influence on the measurement. Lastly, we also impose a
system-wide condition called fingerprint equivalence, which
(informally) states that analytes with the same single-molecule
fingerprints in a given sensing group behave interchangeably.
To align with these conditions in our proof, we define the

analytes as the barcodes. Under reasonable PSC effects (e.g.,
not an overwhelming diversity of 16S genes in any given
droplet), the addition of new barcodes to a droplet cannot
reduce the binarized measurements (monotonicity). The

binary data are determined by the presence of a 16S gene
with a complementary probe sequence; without such a binding
site, the gene is nonresponsive. Lastly, gene copies with the
same combination of probe-binding sites are interchangeable
(fingerprint equivalence). Our theorem (Theorem S2.7,
Supporting Information S2) proves the sufficiency of these
conditions for λ(BC) = λ′(BC), and with rank (C) = N, λ(BC) =
λ′(BC) ⇒ λ(bact) = λ′(bact).
Figure 3 illustrates a key process in our theorem for this

particular assay. Our theorem defines a matrix Z(g) whose rows
indicate the positions of analytes with equal, nonzero
fingerprint responses in the sensor group g. Stacking these
matrices for each g yields a matrix Z, and if rank(Z) = N, then
the system is identifiable. With two binary measurements per
group, there are 22 − 1 = 3 nonzero barcode measurements.
For instance, note that in Group 1, original barcode indices 2
and 4 share a [1,0] response, yielding the first row of Z(1). Each
group contributes three rows to matrix Z.
This result implies that we cannot arbitrarily assign probes

to each group, and interestingly, using probes in multiple
groups can be beneficial by adding rows to Z. It is not sufficient
to simply capture each probe’s information in at least one
group. Also, for Z to be rank(N), we can derive a simple rule of
thumb for binary ddPCR with M channels: G(2M − 1) ≥ N is
necessary for the conditions of our theorem. Although we had
access to a two-channel Bio-Rad Qx200, this result also
indicates promise for applying our framework to digital PCR
systems with more than two channels: up to N = 15G analytes
on the 4-channel QuantStudio Absolute Q (ThermoFisher
Scientific, Waltham, MA), or up to 63G analytes on new 6-

Figure 3. Formation of the linear system matrix Z that verifies the identifiability for our assay. Nonwhite squares are 1, and white squares are zero.
Each group contributes three rows to Z, and rank (Z) must be N (Theorem 2.7, Supporting Information S2).

Figure 4. (a) Signal recovery results against the estimated ground truth. All colors are scaled against the maximum estimated ground truth
concentration of λ* = 2.56 for concentration 1 of B. fragilis. Sample 6 is a negative control with no bacterial gDNA added. (b) Relative error of the
estimated relative abundance versus true relative abundance. Data points use the same colormap in (a) to indicate the estimated absolute
abundance of the bacterium. (c) Receiver operating characteristic curves and their area under the curves on aggregate data within different sparsity
levels and across all samples.
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channel systems from Bio-Rad and Roche (Basel, Switzerland).
Note that we do not intend to rank these instruments as other
factors such as the volume that can be processed, the number
of partitions that can be generated, automation of workflows,
etc. require application-specific consideration.
The implication of identifiability must be approached with

caution: given the infinite data (D → ∞) in each group, the
true λ* is the global optimum of the likelihood function. Our
results fall short of a recovery guarantee for finite D partitions.
In our earlier work,29 we derived the insight that less sparse λ*
(more analytes with nonzero quantities) necessitate more
partitions for stable recovery. Nonetheless, in contrast to
typical applications of CS, there is no explicit maximum for the
sparsity level as any λ is identifiable under our result.
Demonstration of Polymicrobial Quantification. We

tested SPoRe’s ability to quantify bacterial loads in mixed
samples of purified gDNA. We used reference wells with
individual bacterial dilutions to estimate the ground truth
concentrations and assist with manual thresholding (Figure
S4) to binarize the data. We passed this prebinarized data to
SPoRe.
Figure 4a illustrates the quantitative results. For a general

performance evaluation on polymicrobial samples, we used the
cosine similarity metric to capture concordance with the true
relative abundances of bacteria in the sample. We found an
average cosine similarity of 0.97, indicating our ability to very
reliably capture the dominant bacteria in a sample while
making some errors on the relatively less abundant bacteria.
These errors are further characterized in Figure 4b, which
indicates that relative error in the estimated relative
abundances decreases for higher relative abundance bacteria.
Of course, λ̂MLE estimates absolute abundance. Sweeping a
global threshold on λ̂n to make a binary call on bacterial
presence yielded a receiver operating characteristic (ROC)
curve with an AUC of 0.969 (Figure 4c) and a downward
trend in AUC when increasing k. Less sparse samples are
subject to higher estimation variance which may explain this
effect.29 A fixed threshold of λn = 0.15 achieves an overall
sensitivity of 96% and specificity of 95%.
We investigated the source of error in the signal recovery.

Differing in concentration estimates for the bacteria truly in the
sample is to be expected due to pipetting volume variability
and sampling variability. However, in some samples, SPoRe
missed a bacterium of low abundance (a false negative) while it
included a bacterium that is absent in the sample (a false
positive). First, we confirmed that in all samples, p(y|λ̂) >
p(y|λ*) on average; the recovered solutions better explained
the data given to SPoRe than the estimated ground truth
(Figure S5). Thus, the local optima are unlikely to be the issue.
Next, we hypothesized that mistakes in thresholding

propagated to SPoRe. Informally, given warped data, SPoRe
returns a warped solution that could appear to have higher
mean likelihood than the estimated ground truth. SPoRe’s
sensing model, p(y|x), assumes that binary measurements
perfectly reflect the presence or absence of an amplicon with
the corresponding probe sequence. However, in Figure S4, we
illustrate and discuss how challenges with droplet rain, “lean”
and “lift”, and PSC cause some data points to fall ambiguously
between clusters. While these effects are common and have
some popular tools to help disambiguate droplets,38,39 we
decided to use manual clustering as these tools are generally
not designed for the conditions of our assay. We designed a
simulated experiment to evaluate SPoRe’s performance in the

idealized absence of cluster ambiguity. Given λ* and the
droplet counts in each group, we simulated the underlying
droplet gene content (X with xd ∼ Poisson(λ*) and the
resulting binary measurements using our p(y|x) model. On this
simulated data, SPoRe returned virtually perfect solutions with
a mean cosine similarity of 0.9999 (Figure S6). This finding
highlights the possibility that future research could focus on
closing the gap between the modeled p(y|x) and experimental
reality, perhaps via conditions that result in clearer cluster
boundaries or probabilistic models for p(y|x) that account for
assay-specific noise.

Characterization of Limit of Quantification. In
infection diagnostics, pathogen loads can vary by several
orders of magnitude. Tolerating multigene capture reduces the
risk that high concentration samples flood a system and allows
design for microfluidics systems with fewer partitions (e.g.,
smaller form factors with nanowells instead of droplets). We
designed samples such that total concentrations (∑nλn*) would
be between 1 and 5 to illustrate this ability. However,
demonstrating this capability on the Bio-Rad Qx200 means
that our samples have 16S concentrations that are unrealisti-
cally high for most clinical presentations. We characterized the
limit of quantification in terms of 16S copy counts per sample
for partitioning systems that may still result in multianalyte
capture (e.g., via spatial constraints that limit D) by randomly
subsampling our experimental data. For each sample, we
subsampled 10, 1, 0.1, and 0.01% of the droplet data and
passed it to SPoRe. We estimate the 16S copy count in this
data as the product of the number of subsampled droplets and
the total estimated ground truth concentration DS(∑nλn*).
Figure 5 shows how SPoRe maintains a strong recovery

down to approximately 200 copies of the 16S gene. Depending

on the quality of a future upstream microbial DNA isolation
procedure, this limit could be potent for many applications in
infection diagnostics. For instance, for a bacterial genome with
five 16S copies, an initial sample volume of 5 mL, a DNA
isolation procedure with 20% yield, and the ability to pass the
entire elution volume across multiple groups in the digital PCR
assay, our result would translate to a limit of quantification of
40 genome copies/mL.
Of course, a final system may have the flexibility to generate

many partitions, driving lower magnitudes of λ which
empirically help recovery.29 Intuitively, signal inference can
only gain information by capturing measurements from
individual molecules rather than their combined effects.

Figure 5. SPoRe’s performance on random subsamples of
experimental data. Each sample’s set of prebinarized droplet
measurements was subsampled by a factor of 10−1, 10−2, 10−3, and
10−4.
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Moreover, in ddPCR, single-molecule capture would avoid
PSC altogether, such that thresholding may be more reliable.
Flagging Samples with Unknown Barcodes. Given a

set of droplet measurements, the MLE will always report some
solution even if the sample contains a bacterium with a 16S
barcode distribution outside the panel given to SPoRe.
However, this probabilistic approach allows us to assess the
recovered solution and detect such anomalies. Given a
recovered λ̂MLE, we can characterize the expected distribution
of the discrete measurements and perform a χ2 goodness of fit
test between the expected and observed distributions. A poor
match between these distributions would indicate a faulty
solution that could be due to an out-of-panel bacterium.
We used the p value of the χ2 goodness of fit test as a metric

to detect faulty solutions. For each tested polymicrobial
sample, we simulated the effect of having an “unknown”
bacterium in it by removing each of the correct, present
bacteria (one at a time) from SPoRe’s database before running
the algorithm. We repeated this process for both the manually
thresholded and the simulated data. In both cases, the p value
of the test is a highly reliable metric for flagging samples with
out-of-panel bacteria, as indicated by the ROC curves (Figure
6). With simulated data, the separation is perfect with an area

under the curve (AUC) of 1.0. Indeed, the minimum p value
for SPoRe on simulated data with the full database of microbes
was 0.783, and all cases in which SPoRe was deliberately not
given one of the present bacteria in the sample returned p = 0.
Given a reliable measurement model that corresponds with
real-world data, the significant presence of a microbial barcode
outside the provided database could be detected with a
threshold on the p value. With manual thresholding, note that
small mistakes in binarizing the data may make the observed
distribution of measurements improbable for any λ. As a result,
samples that contain only bacteria in the panel may
nonetheless return results that are flagged as faulty. We see
this effect in the diminished (but still strong) performance with
an AUC of 0.964.
Reporting “unknown bacteria” is likely far more useful to a

clinician than reporting a “negative” result that would be
returned from panels designed by specific sensors. This ability
mirrors that of mass spectrometry and other fingerprinting
systems, but the statistical underpinning could lead to
theoretically grounded approaches with more research. Based
on limitations in hard thresholding, our current assay would

more likely only be able to report “faulty solution” since
“unknown bacteria” is a more specific call with a different
clinical decision pathway.

■ CONCLUSIONS
We present a new scalable framework for infection diagnostics
that leverages the sparsity of samples and the Poisson
distribution of microfluidic capture. We showed how analyte
concentrations in a sample can be inferred from a population
of partition measurements, despite ambiguity in the content of
any individual partition. Tolerating this ambiguity enables the
use of nonspecific probes for efficient multiplexing and
asynchronous fingerprinting to circumvent channel limitations
in common microfluidic systems. In an in vitro demonstration,
we achieved clinically relevant limits of quantification of nine
pathogen taxa with only five DNA probes and two primers.
Our ddPCR assay has a few areas for improvement. First, we

designed probes to assign unique barcodes to the bacterial taxa
in our chosen panel. Future bioinformatics tools could account
for bacteria outside the panel that could plausibly appear in a
sample to ensure that the designed barcodes are specific to the
intended microbes. Second, our PCR cycling time was over 8 h
driven by a long extension time to efficiently amplify the full
16S gene. Future iterations of our approach could employ
custom master mixes with faster polymerases, restrict the
amplicon to a shorter 16S segment, or replace hard
thresholding with probabilistic noise models at faster cycling
conditions. Third, many clinical infections may be caused by
bacteria or fungi. Multiplexing primers to include eukaryotic
marker genes along with the 16S primers for bacteria could
enable the broadening of the panel. Lastly, automatic
thresholding or postprocessing would be necessary for practical
routine use. Internal controls and unsupervised clustering
could help flexibly account for variable PSC effects.
While there is room for improvement in the ddPCR

approach, our theory and algorithm open additional routes to
improve this microbial assay or expand it to other applications.
Our conditions on identifiability cover many realistic sensing
modalities that could enhance performance. For instance,
expanding to nonbinary measurements would enable fewer
sensors to assign unique fingerprints to analytes at a higher
rate. Moreover, our identifiability conditions are sufficient but
not necessary, and our SPoRe algorithm is modular for any
user-defined sensing function. We encourage users to proceed
with simulations, even if their sensing model is outside the
scope of our currently developed theory. Combining conven-
tional sensors with new techniques in microfluidics and signal
processing will offer a suite of new interdisciplinary approaches
to scalable, multiplexed biosensing.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.3c01176.

Detailed description of algorithmic and theoretical
considerations, including the probe sequence selection
algorithm, formal proof of the identifiability result,
comparisons to conventional MLE with digital micro-
fluidics, modifications to the gradient computations,
detailed description of amplitude multiplexing for
barcode validation, experimental setup, thresholding
ddPCR data, estimating intragenomic barcode varia-

Figure 6. Flagging samples with out-of-panel bacteria. A χ2 goodness
of fit test is performed using the distribution of y expected given λ̂ and
the observed distribution. The p value of the test is used as the metric
for determining if a sample has 16S genes with barcodes that are
unaccounted for in SPoRe.
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bility, likelihood analysis of SPoRe’s solutions, and
performance on simulated versions of experimental
samples (PDF)
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S1 Probe Design

We used ThermoBLAST from DNA Software (Plymouth, MI) to align the 16S primers (27F and 1492R)
against bacterial genomes and find amplicons. We passed these amplicons to a custom Matlab script to design
probes. We chose a sequence length of 11 nucleotides with 5-8 GC nucleotides, without four consecutive G’s
or C’s, and without a G on the 5’ end to avoid self-quenching of the fluorophore. We used Smith-Waterman
alignment in Matlab to pre-screen for probes that self-hybridize and to assess cross-hybridization of probes
amongst the evolving candidate set. To assist in achieving near binary measurements, we considered perfect
matches on all 16S copies to be “1” for a genome, and for imperfect homology, we filtered for sequences
that had neither nine consecutive matches nor a single G-T mismatch. This latter filtering is a proxy for
ensuring that probes have weak, negligible interactions against 16S sequences where they do not have perfect
complementarity. The former filtering for positive hits was intended to avoid the issue of mixtures of barcodes
for any particular bacteria for simplicity in our initial demonstration.

Given a set of filtered, candidate probes, we used a coordinate ascent strategy to iteratively optimize a set.
We hypothesized that barcoding the full-length 16S gene with probes could achieve genus level resolution, as
sequencing the full gene achieves a mix of genus and species resolution. As a result, we encouraged similarity
of the three Staphylococcus species and the two Streptococcous species. Define S as a set of pairs of bacteria
(bi, bj) within a genus that are similar. The complementary set D includes all other bacterial pairs. Let kp,i

represent the 11-mer barcode of bacteria i with probes indexed by p. Coordinate ascent sought to solve:

argmax
p

[ ∑
(bi,bj)∈S

−∥kp,i − kp,j∥22 + log

( ∑
(bi,bj)∈D

∥kp,i − kp,j∥2
)]

+ θ min
(bi,bj)∈D

∥kp,i − kp,j∥2 (S1)

The first term is taken from research in metric learning [1], and the second term (with a weight of θ = 10)
highly rewards some nonzero separation between all bacterial pairs that are intended to be discriminated
between. We chose an initial random set of probes that passed our cross-hybridization check. We iteratively
cycled through a shuffled order of the candidate set of probes, evaluating one probe at a time for replacement
with any of the other probes that passed the initial filtering step. If replacing a probe improved the objective
function, the probe set was updated and the search continued. The algorithm terminated when all probe
sequences had been evaluated for replacement but not replaced. For the chosen set of sequences, we evaluated
the alignment against 16S genes with imperfect homology (the zeroes in the barcodes). As much as possible,
we positioned LNAs at mismatch sites to improve the thermodynamic discrimination against these sequences.
We evaluated all Tm’s in IDT’s OligoAnalyzer, positioning additional LNAs as necessary to reach a sufficient
probe Tm.

S2 Theory: Identifiability with Common Types of Sensors

For estimating λ, the property of identifiability means that there is a one-to-one correspondence between
each realizable distribution of measurements and the Poisson rates λ: if p(y|λ) = p(y|λ′) for all y, then
λ = λ′. From an optimization perspective, identifiability implies that the λ∗ is the unique global optimum
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to the likelihood function if we have infinite measurements. Therefore, identifiability is a necessary condition
for our method to work.

S2.1 Notation

We use bold face upper and lower case letters for matrices and vectors, respectively. Non-bold, lower case
letters represent scalars. We denote the vector of all zeros as 0 with its dimensionality dependent on context.
We use script letters (A, B, etc.) to denote sets. We denote ej as the standard basis vector with ej = 1 and
ei = 0 for all i ̸= j. Let a and b be two arbitrary vectors of the same dimension, and let ai and bi denote
their ith elements. We use supp(a) to denote the support of vector a defined as the index set where ai > 0
for i ∈ supp(a). We use the notation a ⪰ b to imply that ai ≥ bi ∀i, and we use a ≻ b to further imply
the existence of at least one index i where ai > bi. A set in the subscript of a vector such as xA refers to
the subvector of x indexed by the elements of A. We make frequent use of the shorthand

∑
a to denote the

summation over elements of a vector a.

S2.2 Definitions and Assumptions

We treat the dataset of measurements from all partitions in a sensor group as samples of a random variable
y. The signal (i.e., analyte quantities in a partition) x is N -dimensional with x ∼ Poisson(λ∗). Each signal
is measured by M sensors to yield the observation vector y (e.g., M fluorescence measurements). We define
the function f : ZN

+ → RM that is composed of M scalar functions fm : ZN
+ → R. A particular measurement

value ym is determined by the sensor output fm(x) plus some additive, zero-mean random noise nm.

y =


y1
y2
...

yM

 =


f1(x)
f2(x)

...
fM (x)

+


n1

n2

...
nM

 (S2)

Note that the sensor functions fm are group-dependent. For example, each group may have different probes.
We assume that our sensors are monotonic and that our analytes obey responsiveness and fingerprint

equivalence. Given these properties, we prove sufficient conditions for identifiability. Without loss of gener-
ality, we will say that all M sensor functions are monotonic.

Definition S2.1 (Monotonic Sensors). A sensor function fm : ZN
+ → R is monotonic increasing if a ⪰ b ⇒

fm(a) ≥ fm(b) and monotonic decreasing if a ⪰ b ⇒ fm(a) ≤ fm(b).

Monotonic functions are very common and natural; for instance, many sensing modalities have a mono-
tonic increasing sigmoidal response to their input. Any time a Lemma or Theorem relies on monotonicity,
its proof will assume all M sensors are monotonic increasing without loss of generality. Next, we define the
responsiveness property of analytes:

Definition S2.2 (Responsiveness). If f(ei) ̸= f(0), the analyte indexed by i is said to be responsive. If
f(ei) = f(0), then the analyte indexed by i is nonresponsive. If we let B define the set of indices for all such
nonresponsive analytes (i ∈ B), then for any two signals x and x′, f(x) = f(x′) if xn = x′

n for all n /∈ B.

In other words, a nonresponsive analyte does not influence the sensor output regardless of its quantity.
An analyte is considered “responsive” if a single copy yields a different measurement than the null signal
(e.g., an empty microfluidic partition).

We define a final intuitive condition on our system called fingerprint equivalence. The fingerprint of
analyte n is the measurement yielded by an isolated copy of the analyte, or f(en). Among analytes with
identical fingerprint responses within a sensor group, the total number of occurrences of these analytes
dictates the output response. In other words, the sensors treat these analytes as interchangeable copies of
each other.

Definition S2.3 (Fingerprint Equivalence). Let X ⊆ {1, ..., N} be an index set of analytes with identical
fingerprints, i.e. f(ei) is fixed for all i ∈ X . A system has the fingerprint equivalence property if for any
pair of vectors x and x′ with supp(x), supp(x′) ⊆ X and

∑
n xn =

∑
n x

′
n, we have f(x) = f(x′).

S2



Note that even if all analyte fingerprints are distinct, multiple signals can still map to the same measure-
ment vector since we allow for cases of multi-analyte capture in the same partition. We define these signals
as members of a collision set.

Definition S2.4 (Collision Sets). The collision set Cx for signal x is the set of all signals x′ that satisfy
f(x′) = f(x).

We define U as the set of unique collision sets. In 2-channel ddPCR with binarized measurements, there are
four collision sets in each sensor group ({0, 1}2). It will soon be clear that observations y are drawn from a
mixture model. We can define each mixture element as follows:

Definition S2.5 (Mixture Element). The mixture element Ex for signal x is the set of all signals x′ that
satisfy p(y|x) ∼ p(y|x′).

Note with any zero-mean noise, p(y|x) ∼ p(y|x′) ⇒ f(x) = f(x′) such that Ex ⊆ Cx. In some cases, such as
additive white Gaussian noise, Ex = Cx. We define V as the set of unique mixture elements with arbitrary
Ev ∈ V .

S2.3 Proof of Identifiability

With G different sensor groups indexed by g, we assume that the sensor group applied to a measurement
y is known and deterministic. Each sensor group has a different function f that maps x to M -dimensional
space (e.g., different probes in ddPCR). Identifiability means that p(y|λ) = p(y|λ′) ∀y, g ⇒ λ = λ′. Each
λ must yield a unique set of G distributions of measurements.

We will use the notation Cg
u and Eg

v to specify the group g when necessary. For an arbitrary group, we
can express p(y|λ) as:

p(y|λ) =
∑
x

p(y|x)P (x|λ)

=
∑
Ev∈V

p(y|x ∈ Ev)P (Ev|λ),
(S3)

P (Ev|λ) =
∑
x∈Ev

P (x|λ). (S4)

If a mixture distribution is identifiable, it means that identical distributions must come from the same
set of weights on the mixture elements; in this context, p(y|λ) ∼ p(y|λ′) ⇒ P (Ev|λ) = P (Ev|λ′) ∀v. Many
finite mixtures (what we practically have in MMVP) and countably infinite mixtures with common noise
distributions are identifiable [2-3], and we assume that the system noise characteristics lend to an identifiable
mixture. However, we need to prove the identifiability of MMVP, or that equal mixture weights implies equal
Poisson parameters: P (Eg

v |λ) = P (Eg
v |λ

′) ∀v, g ⇒ λ = λ′. Note that because Eg
x ⊆ Cg

x and unique collision
sets are disjoint, P (Eg

v |λ) = P (Eg
v |λ

′) ∀v, g ⇒ P (Cg
u|λ) = P (Cg

u|λ
′) ∀u, g.

We assume P (Cg
u|λ) = P (Cg

u|λ
′) ∀u, g and prove the implication of λ = λ′ given a set of monotonic

sensors and with analytes exhibiting responsiveness and fingerprint equivalence in all G groups. We first
focus on what can be concluded from a single, arbitrary sensor group (dropping the g superscript) with
analytes potentially having nonunique fingerprints, and then we conclude with how multiple groups can be
pooled to achieve identifiability. Again, note that our analysis will focus on monotonic increasing sensors
without loss of generality.

Define A ⊆ {1, ..., N} such that analytes indexed by a ∈ A are all responsive such that there exists some
m such that fm(ea) > fm(0). Define the complementary set B with nonresponding analytes indexed by b.

Lemma S2.1. If fm is monotonic increasing for all m ∈ {1, ...,M}, and if only the analytes indexed by
a ∈ A ⊆ {1, ..., N} are responsive, then f(x) = f(0) if and only if xA = 0.

Proof. Consider z such that zA = 0. Note that supp(z) ⊆ B. Because analytes indexed by b ∈ B are
nonresponding, f(z) = f(0) by definition. Next, we prove the forward condition, f(x) = f(0) ⇒ xA = 0, by
contradiction. Say f(z) = f(0) and let z satisfy za ≥ 1 for some a ∈ A. By definition of A, f(ea) > f(0),
and z ⪰ ea. With monotonic functions, f(z) ⪰ f(ea) ≻ f(0) and we have arrived at a contradiction.
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The key concept to carry forward is that values of elements in xB are entirely arbitrary for the analysis
of collision sets.

Lemma S2.2. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. If P (C0|λ) = P (C0|λ′), then

∑
λA =

∑
λ′
A.

Proof. By Lemma S2.1, C0 contains all x with xA = 0 with arbitrary values on xB. Therefore, P (C0|λ) =
P (C0|λ′) implies

P (xA = 0|λ) = P (xA = 0|λ′) (S5)

e−
∑

λA = e−
∑

λ′
A (S6)∑

λA =
∑

λ′
A. (S7)

Lemma S2.3. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. For a ∈ A, if for all x ∈ Cea

, xa is the only nonzero value in xA, then
λa = λ′

a.

Proof. We assume P (Cea
|λ) = P (Cea

|λ′). By definition of A, f(ea) ≻ f(0). If xa is the only nonzero value
of xA, we have Cea = {cea : c ∈ K ⊆ {1, 2, . . .}}. Then, P (Cea |λ) = P (Cea |λ

′) implies

e−
∑

λA
∑
c∈K

λc
a

c!
= e−

∑
λ′

A
∑
c∈K

λ′
a
c

c!
. (S8)

Using Lemma S2.2,
∑

c∈K
λc
a

c! =
∑

c∈K
λ′
a
c

c! , which implies λa = λ′
a since the function on both sides is

monotonic in λa.

From here, we first derive results for the special case where all analytes indexed by A have unique single-
copy fingerprints. Afterwards, we generalize to multiple groups, allowing for equal nonzero fingerprints
within a group. The next Lemma guarantees at least one index a to which Lemma S2.3 can be applied.

Lemma S2.4. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. If f(ei) ̸= f(ej) ∀i, j ∈ A with i ̸= j, ∃a ∈ A such that all x ∈ Cea are
nonzero in xA only on index a.

Proof. First, with unique nonzero fingerprints in A and monotonic sensors, the fingerprint responses fm(ea)
can be sorted. Starting arbitrarily with m = 1, we can select the minimal set M ⊆ A that minimizes f1(ea)
such that ∀a ∈ M, ∀j ∈ Mc, f1(ea) < f1(ej). If |M| > 1, then the process can be repeated with m = 2
(and so forth) on the subset M until there is one unique minimum and its corresponding index a.

For this ea, all i ∈ A \ {a} satisfy fm(ei) > fm(ea) for at least one m. Therefore, signals in the collision
set x ∈ Cea

must satisfy xi = 0 for all i ∈ A \ {a}. Signals with at least one xi ≥ 1 would have at least one
m where fm(x) > fm(ea), and therefore not be in the collision set by definition. This conclusion completes
the proof by contradiction.

Next, we show how this result chains to all analytes indexed in A.

Lemma S2.5. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. If f(ei) ̸= f(ej) ∀i, j ∈ A with i ̸= j, λa = λ′

a ∀a ∈ A.

Proof. Lemmas S2.3 and S2.4 guarantee at least one a that yields λa = λ′
a. Let us call this index a1 and define

the subset S ⊆ A, the subset of indices for which λi = λ′
i ∀i ∈ S. At this point, S = {a1}. Repeating the

process in the proof of Lemma S2.4, we can find a new index a2 that satisfies fm(en) > fm(ea2) ∀n ∈ Sc\{a2}
for at least one m.

For the direct proof of identifiability, we assume P (Cea2
|λ) = P (Cea2

|λ′), or:
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∑
x∈Cea2

P (x|λ) =
∑

x∈Cea2

P (x|λ′). (S9)

Among signals x in Cea2
, xn = 0 for n ∈ Sc \ {a2} because fm(en) > f(ea2

) for some m, and sensors are
monotonic. These signals can also be partitioned into those with xa2 = 0, and those with xa2 ≥ 1. If any of
the former type exist, then xi > 0 for some of the indices i ∈ S. For instance, we could have f(2ei) = f(ea2)

with xi = 2. These signals’ terms in the summation follow the form

[∏
n∈S P (xn|λn)

]
e−

∑
i∈Sc λi . Note

that λi = λ′
i ∀i ∈ S combined with Lemma S2.2 yields

∑
i∈Sc λi =

∑
i∈Sc λ′

i. Because λi = λ′
i for i ∈ S, the

product component is equal on both sides as well. Therefore, these terms can be eliminated in Equation (S9).
We will denote the set of remaining x in the summation as C′.

In C′, we have xa2 ∈ K ⊆ {1, 2, ...}. Therefore:

e
∑

λA
∑

x∈Cea2

∏
n∈S∪{a2}

λxn
n

xn!
= e

∑
λ′

A
∑

x∈Cea2

∏
n∈S∪{a2}

λ′
n
xn

xn!
(S10)

∑
k∈K

λk
a2

k!
hk(λS) =

∑
k∈K

λ′
a2

k

k!
hk(λ

′
S), (S11)

where hk is the mapping λS 7→
∑

x∈Cea2
: xa2=k

∏
n∈S

λxn
n

xn!
. Because λS = λ′

S , we can replace both hk(λS)

and hk(λ
′
S) by constants Hk. Therefore,

∑
k∈K

λk
a2

k!
Hk =

∑
k∈K

λ′
a2

k

k!
Hk. (S12)

Because Hk ≥ 0, both sides are monotonic in λa2
such that λa2

= λ′
a2
. Now, a2 can be added to S and the

process can be repeated until S = A such that λA = λ′
A.

Now, we will extend this result to the case of having equal fingerprints in the same sensor group—i.e.,
that f(ei) = f(ej) for some pairs i, j.

Lemma S2.6. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. Define the disjoint sets A1,A2, ...AC indexed by c with ∪C

c=1Ac = A such
that for all i, j ∈ Ac, f(ei) = f(ej). Then,

∑
λAc

=
∑

λ′
Ac

∀c.

Proof. Note that the Poisson distribution has the property that if xi are each independently drawn from
Poisson(λi), then

∑
i∈Ac

xi ∼ Poisson(
∑

λAc
). We can then simply define a dummy variables x†

c =
∑

i∈Ac
xi

and λ†
c such that x†

c ∼ Poisson(λ†
c). This dummy variable represents an “analyte” that appears with a

distribution governed by the total quantities of analytes with the same fingerprint. However, what matters
for identifiability is the sensor functional values of signals, i.e. that f(a) = f(b) if for all c,

∑
aAc =

∑
bAc .

Namely, x†
c ∼ Poisson(λ†

c) by fundamental properties of the Poisson distribution, but it is only with the
condition of fingerprint equivalence (Definition S2.3) that lets us apply all previous results that are based on

collision sets, i.e., sets of signals with equal functional values. These yield λ†
c = λ′

c
† ∀c, or

∑
λAc

=
∑

λ′
Ac

∀c.

Theorem S2.7. Let g index G different sensor groups that satisfy fingerprint equivalence and that contain
monotonic, saturating sensors. For each group g, define the row vector zgc of zeros and ones with ones in the
indices associated with Ac. Define the N -column matrix Zg whose C rows are comprised of zgc ∀c. Define
the N -column matrix Z as the vertical concatenation Zg ∀g. If rank(Z) = N , then λ = λ′.

Proof. This theorem is a formal way of saying that Lemma S2.6 must yield N independent equations when
applied to all groups where the sensing and system conditions hold. We can consider the system of equations
yielded by Lemma S2.6 and represented by Zλ = Zλ′, or Z(λ−λ′) = 0. If rank(Z) = N , then it follows that
λ = λ′. Therefore, we have P (Cg

u|λ) = P (Cg
u|λ

′) ∀(u, g) ⇒ λ = λ′, concluding our proof of identifiability.
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S3 Special Cases of MLE with ddPCR

From eq 2 in the main text that describes the generalized gradient in MLE, we consider two commonly
employed special cases. First, if samples are sufficiently dilute such that partitions are either empty (xd = 0)
or have only one analyte, the goal is often to identify each nonzero signal independently with a classification
process. In other words, assays must be designed such that p(yd|x) > 0 only for x∗

d - the measurements are

unambiguous. Setting the gradient equal to zero and simplifying leads to λ̂MLE = 1
D

∑D
d=1 x

∗
d. In practice,

clusters of classes must have reliable decision boundaries and concentrations are estimated by totaling the
classification results.

The second specialized case is common for ddPCR where for each PCR assay is specific for a target
analyte and assigned to a particular channel. With M channels, N = M and each measurement unam-
biguously determines the presence or absence of each target sequence. Precisely, p(yd|x) is one or zero, and
considerations of each analytes’ quantity xn can be simplified to xn = 0 (absent) or xn > 0 (present). Each

analyte n can be inferred independently such that λn = − log
D0,n

D where D0,n is the number of droplets
that do not contain analyte n. This formula can be found by applying the above assumptions, setting eq 2
in the main text to zero, and simplifying.

S4 Exact Gradient Computation and p(y|x) Model for ddPCR

We first focus on the gradient resulting from a single probe group. In a single group, there are only four viable
measurements with y ∈ {0, 1}2. Let us define Y = {0, 1}2, and py as the proportion of the D measurements
that equal y. We can then re-express the log-likelihood maximization as:

λ̂MLE = argmax
λ

1

D

D∑
d=1

log
∑
x∈ZN

+

p(yd|x)P (x|λ) (S13)

= argmax
λ

∑
y∈Y

py log
∑
x∈ZN

+

p(yd|x)P (x|λ) (S14)

Here, we will use λ ≡ λ(bact) since we will be optimizing over the bacterial concentrations directly. In
our case, E. cloacae is the only bacteria with a fractional abundance of a probe binding site - approximately
87.5% of its copies interact with probes 1, 3, and 4, and 12.5% interact with only probes 3 and 4 (Figure
S3). Similarly to how we defined C in the Results and Discussion, we can define C(g) for group g with each
bacterium’s fractional abundances of genes with a corresponding barcode. Figure S3 shows an example of
C(1), which can be generated with Figure 1 as a reference.

We define p(y|x) =
∏

m p(ym|x). For p(ym = 1|x), then p(ym|x) = 1 if the droplet has at least one copy
of a gene that interacts with probe m and p(ym|x) = 0 otherwise. For p(ym = 0|x), this likelihood is 1 if
none of the genes in the droplet interact with probe m and 0 otherwise.

However, with the analyte currently defined as a copy of the nth bacterium’s 16S gene, we must be
careful. For instance, with index 3 corresponding with E. cloacae, if x3 = 1 in x, p(y1|x) may not be 1
since one copy of E. cloacae’s 16S gene is not guaranteed to interact with probe 1. To resolve this, we
will temporarily transform the problem to the space of gene barcodes for this group: λ(BC1) = C(1)λ.
Note λ(BC1) is 4-dimensional. We can define x(BC1) = [x00, x01, x10, x11]

T as the vector representing the
quantities of 16S genes from any source bacteria that interact with the probes in the pattern noted in the
subscript, noting x(BC1) ∼ Poisson(λ(BC1)). Lastly, let us define Xy as that set where if x(BC1) ∈ Xy, then
p(y|x(BC1)) = 1. Now we can rewrite Equation (S14) as:

=
∑
y∈Y

py log
∑

x(BC1)∈Xy

P (x(BC1)|λ(BC1)). (S15)

The linearity of gradients allow us to treat this one y at a time, summing the contributions from each y
at the end. In general, treat 00 as short for [0, 0], 01 for [0, 1], etc. Let ∇00

λ be the component of the gradient
from y = [0, 0], ∇01

λ from y = [0, 1], etc. We will similarly define the mean log likelihood contributions as
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ℓ00, ℓ01, etc. Similarly, define the rows of C(1) as C
(1)
00 ,C

(1)
01 , etc. By convention, λ and other vectors should

be assumed to be column vectors, but the rows of C(1) are row vectors. Thus we have:

ℓ00 = p00 logP (x01 = 0 and x10 = 0 and x11 = 0) (S16)

= p00e
−x01−x10−x11 (S17)

= p00(−C
(1)
01 −C

(1)
10 −C

(1)
11 )λ (S18)

∇00
λ = p00(−C

(1)
01 −C

(1)
10 −C

(1)
11 )

T . (S19)

In the first line, we define the conditions for x(BC1) ∈ X00 and solve. Genes that interact with either
probe cannot be in droplets that yield y = [0, 0]. Next, for the y = [0, 1] response, at least one gene that
interacts with the 2nd (FAM) probe must be present, and genes that interact with the HEX probe must be
absent.

ℓ01 = p01 logP (x01 ≥ 1 and x10 = 0 and x11 = 0) (S20)

= p01 log(1− e−x01)e−x10−x11 (S21)

= p01

(
log(1− e−C

(1)
01 λ)−C

(1)
10 λ−C

(1)
11 λ

)
(S22)

∇01
λ = p01

[(
e−C

(1)
01 λ

1− e−C
(1)
01 λ

)
C

(1)T
01 −C

(1)T
10 −C

(1)T
11

]
. (S23)

A virtually identical simplification for ∇10
λ is omitted here. Lastly, for y = [1, 1], we have:

ℓ11 = p11 log(P (x11 ≥ 1) + P (x11 = 0 and x01 > 0 and x10 > 0) (S24)

= p11 log

(
(1− e−x11) + e−x11(1− e−x01)(1− e−x10)

)
. (S25)

The remaining algebraic steps are omitted, but the final result is

∇11
λ = p11e

−x11
−C

(1)T
11 − e−x01(−C

(1)T
01 −C

(1)T
11 )− e−x10(−C

(1)T
10 −C

(1)T
11 )− e−x01−x10(−C

(1)T
01 −C

(1)T
10 −C

(1)T
11 )

(1− e−x11) + e−x11(1− e−x01)(1− e−x10)
(S26)

where C
(1)
ij λ can be substituted for any xij .

We can now say that for group 1, ∇(1)
λ = ∇00

λ +∇01
λ +∇10

λ +∇11
λ . The above process can be repeated

for any group g. Therefore, the final gradient vector (arbitrarily scaled) is

∇λ =
∑
g

pg∇(g)
λ (S27)

where pg is the proportion of total droplets that come from group g.
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Figure S1: Separation of bacterial barcodes with amplitude multiplexing. Each cluster depicted is from a separate
ddPCR reaction with one bacterial species in it. Data from the three Staphylococcus bacteria and the two Streptococcus
bacteria were combined in this plot. Amplitude multiplexing is a technique to resolve more probes than the available
number of color channels, but it is typically used with each unique probe participating in an orthogonal assay with
its own primer pair. Here, we adjusted probe concentrations to “move” the cluster positions with a single pair of
primers. Probes 1 and 5 were tagged with HEX, and Probes 2-4 were tagged with FAM. Probes 1, 2, and 4 at
125 nM, and with Probes 3 and 5 at 250 nM. Based on each 16S gene’s barcode, droplets containing that gene will
position in clusters whose channel intensities roughly correlate with the total probe concentration tagged with the
corresponding fluorophore.

Figure S2: Plate layout for ddPCR test samples. The first two rows served as references for ground truth concen-
tration estimation of monomicrobial dilutions and manual thresholding of all wells. The colors of the wells in rows
A and B correspond to the probe group applied. Random mixtures of bacteria were distribtued across the rest of
the plate with each mixture being applied to four wells, each with a different subset of two probes defining the 16S
barcodes.
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Figure S3: Example of partial barcode matrix for Group 1. E. cloacae’s amplicons appeared to always interact
with Probes 3 and 4, but a small subcluster appeared to lack the HEX response to Probe 1 (Fig. S1a). We used our
SPoRe algorithm to estimate the barcode abundances in reference wells A3 and B10 (Fig. S2) which both contained
Probe 1. After manual thresholding, the binarized data and “analytes” with barcodes [0, 1], [1, 0], and [1, 1] (ordered
as [HEX, FAM]) were passed to SPoRe, and SPoRe estimated the abundances of the amplicons with these responses.
In this case, the [1, 0] quantity was nearly zero, consistent with the expectation that E. cloacae always interacted
with a FAM probe. The fraction of amplicons with the HEX probe was determined by λ[1,1]/(λ[1,1] + λ[0,1]). In A3
and B10, these were estimated to be 0.832 and 0.828, respectively. Our sequence analysis found eight 16S copies in
the E. cloacae genome, so it is possible that one amplicon had a sequencing error such that Probe 1 truly binds to
7/8 copies. Therefore, column 3 of matrix C had 0.875 of barcode [1,1] and 0.125 of barcode [0,1] for Groups 1 and
3.

(a) (b) (c)

Figure S4: Example process for manual thresholding with noted challenges. (a) All reference data (rows A and
B in Figure S2) from the same probe group was pooled and displayed to serve as a visual reference. Droplet “rain”
is evident in each cluster. Due to some mild “lean” and ”lift” of the raw ddPCR clusters caused likely by partial
probe interactions, we allowed any linear threshold for each fluorescence channel determined by two user-selected
points. (b) Raw data from a polymicrobial sample was overlaid on the reference data with the same corresponding
probe group. An example is shown with the raw data from D09 (Group 1, k = 4 sample number 2) overlaid with
the Group 1 reference data. PSC effects, as expected, create subpopulations of droplet measurements between the
binary clusters. We speculate that the small additional cluster near zero is due to droplets where probes partially
interacted with amplicons due to imperfect sequence homology. (c) After the user selects two points to define a line
for thresholding, the plot is updated to allow the user to visually confirm the results. Red points are assigned the
value 1, and black points are assigned 0.
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Figure S5: Likelihood comparison of SPoRe’s solution against the estimated ground truth. SPoRe’s solution exhibits
higher average likelihood for the pre-binarized data that it is given.

Figure S6: SPoRe’s performance on simulations of experimental concentrations. Given the estimated ground truth
concentrations (λ∗), we simulated binary measurement data to pass to SPoRe. SPoRe returns virtually perfect results
with mean cosine similarity of 0.9999. Here, we plot the relative error in estimates of the absolute abundance for
each bacteria, represented by |λ̂n − λ∗

n|/λ∗
n when running SPoRe on the simulated measurements.
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