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INTRODUCTION AND BACKGROUND

One of the most interesting features of social net-
works is they tend to be clumpy – with interac-
tions happening much more often among some 
subsets of actors than others. Substantively this 
inhomogeneity reflects natural social groups: in 
kids’ networks these might be peer groups; in 
organisations, business coalitions; or in national 
systems, alliances. These sets of actors often cap-
ture our most important social activities: these are 
the people who enforce norms (Axelrod, 1985), 
influence our behaviour (Friedkin & Cook 1990; 
Kreager et al., 2011), or otherwise reflect the lived 
social communities that networks often intend to 
capture (Freeman, 1992; Friedkin, 2004).

While intuitively common and theoretically sali-
ent, social groups are notoriously difficult to iden-
tify methodologically, with a multitude of papers 
describing new approaches for finding groups or 
communities (for good prior reviews, see, e.g., 
Porter et al., 2009; Fortunato, 2010; Fortunato & 
Hric, 2016; Lee & Wilkinson, 2019; Shai et  al., 
2020). Our intuition is that we face a mismatch 
between theory and reality. Theoretically, treat-
ments of ‘cohesive groups’ in social networks tend 
to be one-dimensional and lead to unrealistic null 

models. Our theories anticipate sharp boundaries 
and clear distinctions, but reality is often more 
nuanced. We think this misfit results from conflat-
ing two distinct dimensions that might better be 
treated separately. On the one hand, groups are 
characterised by their internal cohesion that cap-
tures how difficult it is to separate members of the 
(sub)network. On the other hand, we expect groups 
to be socially distinct, implying an implicit bound-
ary maintenance process that delineates ‘in’ from 
‘out’. Our theories of groups generally assume 
high levels of each, when these dimensions might 
often vary independently.

Even when the theoretical objective is clear(er), 
however, the methodological problem is non-trivial 
for at least three reasons. The first is the sheer com-
putational complexity of the task, given the many 
possible ways to assign nodes to groups; we sim-
ply cannot compare every possible solution even 
with a well-defined metric (indeed, many methods 
are NP-complete, e.g., Brandes et al., 2008).

Second, for many metrics, there are equivalent 
solutions that are substantively different, implying 
we cannot identify a uniquely optimal solution. 
Consider a bridging node with ties that span two 
otherwise disconnected cliques: most off-the-shelf 
methods would require the node to be assigned to 
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one group or the other, or bring both into a single 
supercluster. Sometimes this is a signal that the 
method is inappropriate (perhaps we should not be 
seeking mutually exclusive solutions, even if it’s 
computationally simpler) but often simply reflects 
the messiness of the world itself: equivalences are 
features of the world, not problems of the method.

Finally, notions of cohesion are often scale-
dependent, with the appropriateness of a given 
solution depending on the comparison level for a 
given analysis. We might find a very clear clus-
tering of a large network into a small number of 
distinct groups, but on examination discover that 
each group contains its own fractures. Such hier-
archical ordering of groups is a puzzle: sets that 
seem together on one level (the whole network) 
are fractured at another (within each initial cluster). 
This last problem has subtly different variants, on 
the one hand depending on, for example, the num-
ber of groups inferred or the nature of null models 
captured via a resolution parameter (see below), 
on the other hand reflecting a substantively differ-
ent order of collective organisation (hierarchical 
rather than modular).

Our aim in this chapter is to help clarify these 
distinctions by delineating the two primary dimen-
sions of groups common in the literature and the 
tools used to measure them. Figure 27.1 provides 
a simplified rubric that guides this work.

The first dimension is connectivity, which 
refers substantively to the network being ‘well-
held-together’ (Markovsky & Lawler, 1994). 
Intuitively, we expect cohesive networks to have 

many relations connecting many pairs; the col-
lective does not depend on any single node (or 
small subset of nodes) to control or disrupt it. 
Information can easily pass between all members 
of a cohesive network. The natural inversion of 
a cohesive network is anomic or disintegrated, 
where nodes have few ties to each other and little 
chance of sharing collective information or identi-
ties across the network.

The second dimension is boundary salience. A 
population with salient boundaries has clear dif-
ferentiation by categories. The most well recog-
nised are ascribed status characteristics (White, 
1966), such as race, gender or caste, though social 
network researchers are often interested in groups 
without clear external status indicators, such as 
‘leading crowds’ in schools (Coleman, 1961). 
When boundaries are salient, even if informal, 
actors likely recognise them and hold relational 
expectations for behaviours within and between 
boundaries: mean girls bully the desperate wan-
nabes; and the wannabes on some level expect 
it (Waters et al., 2004). Pressures towards social 
balance (Cartwright & Harary, 1956) tend to cre-
ate homophily within group boundaries as friends 
come to like the same activities, in some cases 
becoming equivalent to the group itself (e.g., jocks 
playing sports, mathletes1).

The intersection of these two dimensions 
defines a space of network archetypes that can eas-
ily be misrecognised in empirical work. Standard 
intuition is that these two dimensions are posi-
tively correlated: settings are either anomic – low 

Figure 27.1 Two dimensions to cohesion and clustering in networks
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connectivity and low boundary salience – or clus-
tered  – highly cohesive with strong boundaries. 
That is, we expect cases to fall along some con-
tinuum defined by the diagonal of Figure 27.1. Our 
intuitive notion of clustered networks often looks 
like the lower-right quadrant, with clearly defined 
sets of nodes and minimal contact between sets.

But social settings admit many other topolo-
gies. For example, a social system with high cat-
egorical differentiation but low (internal) group 
cohesion is the defining characteristic of kin-
ship exchange systems (White, 1963; Bearman, 
1997), where one clan can only marry across clan 
boundaries to a specific subset of other clans. This 
generalised exchange system archetype is referred 
to as ‘differentiated’ in Figure 27.1, illustrated by 
the cyclic relationship between the groups (yellow
→red→green→yellow).2 Opposite differentiated 
networks we find integrated ones that are highly 
cohesive but have no salient boundaries. The most 
well known are core–periphery systems composed 
of a diffuse core that admits a continuous gradient 
from central to peripheral (Mani & Moody, 2014).

STRUCTURAL COHESION

Node Connectivity

We have worked above with an intuitive notion of 
cohesion. Here we sharpen the definition by dis-
cussing structural cohesion. Structural cohesion 
was first introduced by Doug White and Frank 
Harary (2001) and then expanded in Moody and 
White (2003, p. 103, emphasis original): a group’s 
structural cohesion is equal to ‘the minimum 
number of actors who, if removed from the group, 
would disconnect the group’. This concept is 
known as node connectivity in graph theory 
(Harary, 1969). Structural cohesion provides a 
nice operationalisation of Simmel’s notion that the 
‘supra-individual’ nature of a collective is the 
defining characteristic of social life (Simmel, 
[1908]1950).

A second and equivalent definition of cohesion 
turns on the relationships between node connec-
tivity and the number of non-overlapping paths 
connecting pairs in a network. A path in a network 
is a sequence of adjacent nodes and edges start-
ing with one node and ending with another that 
does not cross any node/edge multiple times. Two 
paths are node-independent if they share their 
starting and ending nodes but no others – they 
represent alternative routes between source and 
target. Menger’s theorem equates the number of 

node-independent paths between a pair of nodes 
to the minimum number of nodes that have to 
be removed to disconnect the pair. This means 
we can define an equivalent version of structural 
cohesion: a group’s structural cohesion is equal to 
the minimum number of node-independent paths 
linking each pair of actors in the group. This is 
sociologically interesting as it implies that groups 
with many unique paths connecting everyone in 
the group are more cohesive, matching our intui-
tion about the ability to share information quickly 
and robustly among group members. This ability 
to communicate should lead the group to develop 
shared ideas and generalised understandings. 
Figure 27.2 illustrates these points.

Panel 1 and 2 present two networks of equiva-
lent size – eight nodes and ten edges – in which 
every node is connected to every other node by 
at least one path. However, removing node ‘e’ in 
panel 1 would disconnect the graph, leaving two 
groups on the ‘top’ and the ‘bottom’ of the dia-
gram. That is, the graph is 1-node-connected (note 
we could have removed ‘f’ as well, separating out 
‘d’ as an isolate). In panel 2, there is no single 
node whose removal would disconnect the graph. 
Instead, we would have to strategically remove 
pairs ({e f}, {c b} etc.) to disconnect the graph, so 
the graph is 2-node-connected or a ‘biconnected 
component’.

Note as well that while we can trace a path 
from node ‘a’ to ‘h’ in both cases, in panel 1 all 
such paths must go through node ‘e’ – making it a 
‘cutnode’ in this graph – while the other network 
contains at least one path that avoids ‘e’: for exam-
ple, we can highlight paths {a b d f h} and {a c e 
g h}. These two paths are node-independent; they 
overlap only on their starting and ending nodes.

In general, a network that has minimum node 
connectivity k is said to be k-node-connected. 
Node connectivity is bounded by minimum 
degree: one cannot be more connected than one 
has ties since, regardless of where the path would 
go, independent paths are limited by the number 
of first-steps on such paths, and thus this is the 
upper limit on node-independent paths. For sets of 
nodes, this means that every k-connected set must 
be at least a k-core (i.e., have degree ≥ k in the 
subgraph).

Node connectivity is a network-level property – 
it describes the path structure of the ties within the 
full graph under consideration. However, we could 
partition the network by some other feature and 
subsequently measure the node connectivity of 
the induced subset. This means that we can use 
node connectivity as a comparative characteristic 
for different networks (one school vs another, for 
example) or sub-parts of a single network.
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Cohesive Blocking

Empirical networks usually admit to internal vari-
ation in node connectivity – some parts of a net-
work may be more cohesive than others. We can 
better describe the cohesive structure of a network 
by recursively enumerating all k-connected sets 
and describing how they relate to each other. To 
do so, one first enumerates all minimum size cut-
sets and then removes all of the cutsets, assigning 
each to the relevant sides of their cut. If the 
induced subgraph is interesting3 – that is, neither 
complete nor simply strings of cutnodes – then 
repeat the procedure on the resulting subgraphs, 
continuing until no further cutting can be done 
because you have reached a complete clique or 
have only isolates left. This procedure ensures that 
any (k + l)-connected set embedded within the 
network will be identified. Since each step takes 
us deeper into the network, removing the most 
weakly connected nodes and leaving stronger, 
more connected sets, we uncover the nested cohe-
sion structure of the network. As an example, 
consider Figure 27.3.

Figure 27.3 provides a full ‘cohesive block-
ing’ of a small example network. The image at 
the left encircles the induced subsets of the net-
work while the tree at the right enumerates each 
set and its relation to all the others. The network 
is 1-connected, with nodes 4 and 13 being the 

minimum-sized cutsets (since k = 1 these are ‘cut-
nodes’). Removing nodes 4 and 13 results in one 
‘singleton’ cut (node 14) and two bicomponents. 
We typically ignore the singleton cut and proceed 
on the bicomponents. The small bicomponent 
(right branch of the cut enumeration tree) has a 
size-4 three-clique embedded within it. Since 
this clique cannot be cut further, this branch ends 
here. On the other side, the size-12 bicomponent 
has multiple two cuts along the {9-15-16-17-2} 
path. Removing non-adjacent pairs of those nodes 
will disconnect the graph, though most of the cuts 
result in uninteresting singleton partitions (i.e., 
removing {15 17} gives two graphs, one of size 3 
({15 16 17}) and one of size 11 (all but 16). After 
enumerating all of these cuts and examining the 
resulting induced graphs, one substantive sub-
graph of size 9 is left. Note this subgraph is also 
2-connected, so it has the same node connectivity 
as the parent graph it was induced from.

The cohesive blocking procedure described 
above can induce subgraphs that are less connected 
than their parent subgraphs (indicated in Figure 
27.4 by dashed lines on the induced graph). The 
defining feature is the nested nature of the sub-
graph – to get to that subset, one had to go through 
the weakest cuts at the level above. The number 
of recursions needed to get to a particular subset 
is its nestedness depth, which Moody and White 
(2003) argue is a reasonable measure of social 

Figure 27.2 Equal volume networks with different node connectivity
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embeddedness (Granovetter, 1985). The choice 
to include weaker nested sets reflects the cutting 
process and thus the ‘disconnect’ aspect of social 
cohesion; but it is not unreasonable to focus only 
on induced graphs that increase k-connectivity, in 
which case the dashed-line box would be removed 
and one would go directly to the two four compo-
nents embedded within the overall larger (n = 12) 
bicomponent, and nestedness is then equivalent to 
the highest node connectivity set that a node is a 
member of.

The cohesive blocking routine generally results 
in two types of induced subgraphs. The first are 
sets of nodes that calve away from the rest of 
the graph – separate distinct subsets. These are 
branching points in the blocking tree and gener-
ally correspond to the sorts of subgroups we tradi-
tionally think of as ‘modular’ in Figure 27.1. The 
other sort are long chains in the blocking structure, 
representing increasingly cohesive sets nested 
within each other like Russian dolls – one group 
is not necessarily distinct, but rather more deeply 
embedded than the other.

Cohesive blocking provides a full summary of 
the network connectivity structure, but is difficult 
to use in subsequent analysis. One solution is to 

assign nodes to a group based on shared member-
ship in a nested k component. In this sense, for 
example, we might say that all members of either 
large bicomponent in Figure 27.3 are two distinct 
groups, with node 4 belonging to both groups. 
The analyst then needs to determine where in 
the nestedness tree to break the network, noting 
that such breaks can result in both overlapping 
groups (if at a branching point) or a non-exhaus-
tive assignment (i.e., node 14 belongs to neither 
bicomponent).

Alternatively, one can characterise the network 
as a whole based on summaries of pairwise cohe-
sion levels. For example, one can determine the 
highest k-connected set all pairs of nodes belong 
to. In Figure 27.3, for example, the overall for all 
pairs is 1.9. One can apply a similar summary to 
individuals (average, min, max) relative to all oth-
ers (for individual level analysis) or to subgroups 
induced based on other features. Which summary 
statistic (mean, median, upper quartile, etc.) best 
captures the social process at hand is an open 
question. Any single summary score will almost 
always average over important divisions – a bow-
tie network with a single node connecting two 
large cliques can have a high average score even 

Figure 27.3 Example of cohesive blocking on a network
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though the graph as a whole is 1-connected, so 
there are obvious trade-offs to this approach.

Extensions and Observations

The main advantage of the structural cohesion 
approach is the clear link between the exact path 
structure of a network and the sociological notion 
of cohesion: if our ties bind us together, then struc-
turally cohesive networks are more tightly bound 
than non-cohesive networks. There are a number of 
related ideas that have somewhat different implica-
tions and are worth spelling out clearly. Most of 
these alternatives take a feature that is maximised 
in a graph-theoretic clique and use that dimension 
as the foundation for the cohesion metric. In most 
cases, however, these metrics fall victim to a base 
asymmetry: structurally cohesive groups have 
these features, but maximising these features does 
not ensure cohesion. The archetypical case are 
centralised graphs with single cutnodes (like node 
e in Figure 27.2) where you have low node con-
nectivity even if other features are high.

For example, consider the difference between 
node and edge connectivity. Edge connectivity is 
the number of edges one would have to remove 
to disconnect a network. This fails as a general 
feature, when networks are highly centralised, as 
many ties funnel through a single cutnode. In any 
social process where nodes control the flow of 
resources through the network, highly centralised 
networks introduce unequal control of the flow in 
the network, leading to bottlenecks, fragmentation 
and inequality. All k-node-connected networks  
are at least k-edge-connected; but not all k-edge-
connected networks are k-node-connected. Of 
course, if the social process at play is known to 
depend more on edges than nodes, then we may be 
better off focusing on edge connectivity instead. In 
those cases, we refer the reader to the long litera-
ture on min-cut, max-flow problems.

Other alternative metrics aimed at capturing 
how well the network is ‘held together’ by the 
social relations suffer much the same problem. The 
most common cohesion metric is probably simple 
density – the proportion of pairs in a network who 
are connected (simple) or the average strength 
of relations across pairs (if relation is weighted). 
Density focuses on volume – all else equal we 
would expect that having more ties among a set 
of nodes will result in greater connectivity and 
ease of resource flow. But this assumes that the 
network ties are somewhat evenly distributed, as 
otherwise highly clustered or centralised networks 
can suffer the sorts of problems illustrated in panel 
b of Figure 27.2.

A second common measure is average social 
distance: in a cohesive network each person is 
socially close to all others (at the limit, directly 
adjacent as in a clique). This, again, is subject 
to the dominance effects of high centralisation: 
networks with very central nodes will have short 
overall distances between most pairs, but that cen-
tral node has a dominant role over flow in the net-
work. In some settings, this sort of centralisation 
is effective – there are clear efficiencies to having 
centralised nodes that act as routers for distributing 
information or basic control purposes, for exam-
ple – but we would argue these are best thought of 
as efficient structures not cohesive structures.

A third common measure for cohesion is 
the proportion of triangles in a network that are 
closed. Intuitively, this builds on the notion that 
collections of strong ties form the basis of small 
groups (Freeman, 1992), and we’d expect that 
the network as a whole is held together because 
each connected pair is jointly connected to com-
mon thirds. In practice, triadic closure tends to 
limit group size based on degree as the redun-
dancy implied by common close ties means that 
relations tend to ‘turn in’ on others in the same 
group, creating a direct linkage between the ‘held 
together’ and ‘distinct’ dimensions discussed in 
Figure 27.1. Cohesion based on transitivity shares 
the same issues as density and k-cores discussed 
above: highly cohesive networks tend to be tran-
sitive, but highly transitive networks are not nec-
essarily structurally cohesive. Moreover, because 
there is no distance requirement for node-connec-
tivity, it is possible to have comparatively high 
k-node-cohesion (k = 3, 4) in very large groups 
with minimal transitivity. Whether this is a feature 
or a bug is context dependent. On the one hand, 
if the social process under investigation allows 
resources to flow long distances (reputation, infor-
mation, viruses), then structural cohesion can 
provide greater efficiency re-linking wider popu-
lations with fewer ties. On the other hand, if the 
setting requires face-to-face reinforcement to be 
effective, then the distance-limiting features of 
transitive closure may take precedence.

The main pragmatic barrier to using struc-
tural cohesion is computational. The approach 
provided by Moody and White (2003) combines 
algorithms by Kanevsky (1990, 1993) and the key 
step of identifying cutsets runs in O(2kV3) (avail-
able in SAS/IML and, with some modifications, in 
iGraph for R). This is often prohibitively compu-
tationally expensive for large networks. Sinkovitz 
et  al. (2017) provide a targeted search approach 
that exploits k-cores (which are fast to find), but 
forgoes the full blocking approach implied by 
identifying all cutsets discussed above. Their 
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routine allows enumeration of all k-connected sets 
on networks with hundreds of thousands of nodes.

Node-connectivity can naturally extend to 
connectivity through nodes-of-a-class, such as 
would be found in bipartite networks. Cornwell 
and Burchard (2019) provide a detailed exami-
nation of how graphs are connected through one 
mode or another and define two-mode node con-
nectivity as the number of nodes in the first mode 
that would have to be removed to disconnect the 
second mode. Extending this to the general mul-
tilevel network case could be informative, but 
remains unexplored to the best of our knowledge. 
Another way one might extend structural cohesion 
would be to consider paths of particular lengths 
or that sum to particular weights. These sorts of 
extensions would lead to somewhat messy and 
localised versions of a ‘cohesive horizon’ around 
focal nodes, but maximal sets that are node-and-
distance connected might capture social processes 
with only localised flow.

PEER GROUPS AND COMMUNITIES

Background

Structural cohesion provides a sociologically prin-
cipled approach to understanding the connectivity 
dimension of Figure 27.1, but does not address 
boundary saliency. Our traditional notions of peer 
groups (Freeman, 1992) are simultaneously 

cohesive and distinct. When high boundary salience 
and internal connectivity are combined, we get 
modular groups: sets of nodes with many ties to 
each other within groups and few(er) ties between 
groups. Sociological peer groups are seen as the 
primary site for social action. Peers share informa-
tion with each other, react to status updates, enforce 
norms and generally provide the primary social 
context within which people orient their behaviour. 
These groups can be recognised and named within 
a community formally (youth gangs would be an 
example) or informally (‘the cool kids’) but often 
they are not named, though they might be recog-
nised (Coleman, 1961).

The methodological conundrum of peer groups 
is that outsiders generally, and data collectors in 
particular, often lack the information necessary to 
know which groups are which. This has come to 
be known generally as the ‘community detection’4 
problem, where the goal is to partition the nodes 
of a network into subsets in a way that optimises a 
target measure of joint cohesion/distinction.

The ideal-typical modular communities are 
similar to those in Figure 27.4, which shows four 
clearly distinct groups, each with very few ties to 
any other group and many ties within the group. In 
a standard sociogram, these sorts of groups jump 
out clearly (left panel); if we represent them as a 
mixing matrix (right panel) we see that the net-
work is nearly block diagonal, meaning that the 
blocks on the diagonal have much higher weight 
than off-diagonal blocks – that is, there is more 
relational volume within groups than between 
groups.

Figure 27.4 Example of a clearly modular network
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In most realistic settings, however, the case is 
not nearly so simple. Consider Figure 27.5 below, 
which presents eight common clustering algo-
rithms (discussed in detail below) applied to the 
Gagnon prison network (MacRae, 1960).

This multiplicity of solutions to the commu-
nity detection problem is expected, analogous 
to the number of different available methods for 
unsupervised clustering of point-cloud data. In the 
presence of unknown mechanisms driving only 
weakly and potentially overlapping clusters, dif-
ferent algorithmic approaches will often identify 

different clusters. Some cluster/community labels 
might be more or less useful than others in a par-
ticular application: researchers should ask how 
particular solutions match their theoretical con-
cerns to evaluate and select them.

Community Detection Methods

Most contemporary strategies for community 
detection focus on three basic strategies.5 The first 
(and most common) is to use some algorithmic 

Figure 27.5 Comparison of eight clustering methods on the same real network: colours 
within panels denote same-community membership
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process as a heuristic for optimising a community-
relevant descriptive score. The second is to exploit 
a strong correspondence between the eigenstruc-
ture of a network and groups using variants of 
singular value decomposition. The third considers 
generative network models to recast community 
detection as a statistical problem where commu-
nity membership influences tie probability. A full 
review of all such methods is beyond the scope of 
this chapter, but we describe exemplars and high-
light some best practices.

Heuristic Sorting Approaches

Heuristic approaches to community detection sort 
nodes into groups based either on an index of 
‘groupedness’ or a simulated social process that is 
sensitive to an underlying group structure. Given 
the complexity of the assignment task, such sort-
ing approaches may not truly maximise the objec-
tive function, but instead reflect different strategies 
to overcome the necessary trade-offs between 
completeness and computational feasibility in a 
way that finds a reasonably good partition in a 
reasonable amount of time. Each of the algorithms 
we discuss below takes a slightly different 
approach to this trade-off.

The first step in direct sorting models is to 
define a score that reflects the group structure of 
the network which can then be used to judge the fit 
of any proposed partition. Historically a number 
of such metrics were developed (e.g., the Freeman 
segregation index (1972) or the Segregation 
Matrix Index (Fershtman, 1997)), which intui-
tively shared the notion that substantive groups 
are composed of people who have most of their 
(strong) ties within the group rather than between.

In contemporary work, the modularity score 
is the most common metric used to identify 
communities.6 Modularity (Newman & Girvan, 
2004) with resolution parameter γ (Reichardt & 
Bornholdt, 2006) counts the total edge weight 
within communities relative to a multiple of the 
expected weight in a random graph model with the 
same expected degree sequence:
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where m is the total weight of edges; ki is the 
strength (weighted degree) of node i; Aij is the 
edge weight between nodes i and j; and δ is an 
indicator function giving 1 if the pair is assigned 
to the same community (Ci = Cj) and 0 otherwise, 
thus limiting the sum to within-group node pairs.

The difference within the parentheses (Aij- 
γ(kikj)/2m) compares the weight of observed ties 
in the group compared to that (up to a factor of γ)  
expected under random mixing. In the original 
default γ = 1 formulation, the modularity of a net-
work with only one community is precisely zero 
by construction, while the modularity of putting 
each node into its own community (i.e., N com-
munities) gives negative values, and the maximum 
modularity will be found for some intermediate 
number of communities. This means that Q can 
serve as an objective function for partition selec-
tion, which was difficult to do with earlier meas-
ures. The extent to which one considers the total 
within-community edge weight relative to the 
expected random ties is governed by the resolution 
parameter γ: larger γ values increase the penalty in 
Q paid by putting node pairs in the same group, 
typically leading to larger numbers of smaller 
communities.

Because of the 1/2m normalisation, modular-
ity cannot be larger than one. Then, by comparing 
the total within-group edge weight against that 
for a corresponding random graph with the given 
community labels, one expects Q≈0 for γ = 1 in 
the case where the community labels are randomly 
assigned. As such, it is a common misconception to 
assume some threshold of Q to immediately imply 
‘good’ clustering into communities. However, it is 
essential to keep in mind that these special modu-
larity values are relative to a given set of community 
labels. Importantly, even a random graph without 
any a priori defined community structure may have 
some partition of nodes into communities with a 
high value of modularity (Guimerà et  al., 2004). 
Modularity only provides a measure for comparing 
one set of community labels to another set for the 
same network; any comparison of the maximum 
modularity obtained between different networks, 
or to assess that modularity is ‘high’ for a given 
network and thus claim it is strongly clustered, 
must be performed carefully. For example, one 
might compare the maximum modularity obtained 
for a given network against suitable permutations 
of the network – for example, double edge swaps 
to explore the space of the associated configuration 
model (see Fosdick et al., 2018) – and the distribu-
tion of maximum modularities computed for each 
network so obtained.

Early uses of modularity as a score ignored the 
resolution parameter (which is equivalent to set-
ting it to 1) and much of the initial excitement 
over modularity was that it ‘solved’ the number 
of clusters problem. This, it turns out, is illusory: 
the number of clusters varies with the resolution 
parameter, and there is not necessarily a reason 
to pick γ = 1 over another value. As an empirical 
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feature, many social networks do admit to scale 
effects – some small set of resolution values for 
which there is a largely stable set of returned 
communities. For example, if one were to cluster 
faculty in a university based on shared graduate 
student committees, a coarse division between 
natural sciences, social sciences and humanities 
would probably appear for a wide range of small 
resolution parameter values. But, turning the 
resolution knob up a bit, one would probably see 
a stable set of solutions at a higher value reflect-
ing university departments. Importantly, neither 
of these solutions is wrong – they simply capture 
sociality at different levels of interaction. We want 
to emphasise that this is a feature easily revealed 
by tuning the resolution parameter in modularity 
but is in no way an artefact of using the modular-
ity score: many real network settings are naturally 
clustered at different scales.

A common approach to identifying a good 
resolution parameter is to calculate communi-
ties at multiple different resolution parameters 
and select points in the parameter space where 
the identified communities appear to be robust 
to modest change (see, e.g., Fenn et  al., 2009). 
Figure 27.6 shows the number of communities 
found by the R-igraph cluster_leiden() function 
(Traag et al., 2019) for three different networks, 
demonstrating robust results (plateaus) occur at 
values above default γ = 1.7 The need to undertake 
some systematic approach becomes even more 
pressing for community detection in multilayer 
networks (see Kivela et al., 2014) because of the 
introduction of at least one additional parameter 
(typically notated ω) to set the coupling between 
layers (Mucha et  al., 2010). Newman (2016) 
addressed resolution parameter selection by 
identifying a fundamental equivalence between 
modularity maximisation and stochastic block-
model inference in the special case of a degree-
corrected planted partition model, leading to an 
iterative procedure for finding the γ that self-
consistently maximises both modularity and the 
corresponding likelihood. Pamfil et  al. (2019) 
extended Newman’s iterative approach to a vari-
ety of multilayer settings. In a different approach, 
Weir et  al. (2017) developed an efficient post-
processor to find the convex hull of admissible 
modularity partitions (CHAMP) for an input col-
lection of community-label partitions, however 
obtained, to quickly pick out the domains in γ 
where each partition maximises modularity, thus 
making it easier to find community features that 
are robust to changes in γ. The bottom right panel 
of Figure 27.6 demonstrates this post-processing 
for the unweighted karate club, finding the com-
munity-label partitions corresponding to the line 
segments along the upper envelope of modularity 

Q(γ), where each line in the diagram corresponds 
to a single partition of nodes into communities 
obtained by cluster_leiden(). Recently, Gibson 
and Mucha (2022) combined the SBM equiva-
lence approach with CHAMP to eliminate the 
possibility of stochastic fluctuations causing fixed 
points of the iterative process to go unstable, thus 
making it easier to find appropriate resolution 
(and interlayer coupling) parameters.

Once one has a score to optimise, how best to 
perform the sorting into groups? That is, given a 
computationally complex optimisation problem, 
much of the development in community detection 
has involved coming up with new heuristic search 
procedures. The earliest models were based on 
variants of simulated annealing (e.g., UCINET’s 
Factions, de Amorim et al., 1990). Most contem-
porary approaches use a more targeted search 
procedure using either a divisive or agglomerative 
approach. In a divisive approach, one starts with 
the full network considered as one ‘root’ commu-
nity, which is then split by cutting it at its weakest 
point(s). A commonly used example is Girvan and 
Newman’s (2002) ‘edge-betweenness’ approach. 
Edge betweenness is the number of shortest paths 
between node pairs that cross over that edge. 
Edges with high betweenness scores generally 
link parts of the network that are otherwise less 
linked – that is, they are global bridges. By cutting 
the network at these points, natural subgroups will 
fall out. Carried out to its full extent, the process of 
repeated betweenness calculation and cutting will 
result in a tree with the whole graph at the root 
and each node individually at the lowest possible 
cut level. One way to return a single solution from 
such a tree is to select the level with highest modu-
larity (Newman & Girvan, 2004).

Agglomerative approaches start with each node 
assigned to its own community and joins them 
if doing so improves the objective (e.g., modu-
larity). One generally starts by assigning nodes 
to some other node they are connected to (with 
a strong edge weight, if relevant), then joining 
pairs of nodes that share many neighbours, grow-
ing groups until doing so no longer improves fit. 
Unlike edge betweenness, there is no fixed order 
to test the joins – particularly early in the process, 
there are often many equally good assignments so 
some choices have to be made at random. Much 
of the effort in these sorts of models is in identify-
ing reasonably good ways to change group assign-
ment, pick which groups to merge and ensuring 
that doing so doesn’t inadvertently walk one into 
a poor solution.8 For example, the ‘fast greedy’ 
method (Clauset et  al., 2004) rapidly increases 
modularity by merging communities; the Louvain 
method (Blondel et al., 2008) continues to move 
one random node at a time between existing 
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communities until no further improvement can be 
found by a single such move and then lifts hierar-
chically to a smaller graph with nodes correspond-
ing to the communities and repeats; and the recent 
improvements moving from Louvain to Leiden 
(Traag et al., 2019) include new checks to ensure 
that each identified community is a connected 
component. Ken Frank’s KliqueFinder (1995) 
uses a similar strategy, but optimises the in-group 
odds ratio for a shared tie.

An alternative heuristic strategy is to allow 
some process to operate on the network that would 
itself reveal groups, and then use that result as a 
proxy for finding groups directly. For example, 
Moody (2001) reasoned that a peer-influence pro-
cess should reveal cohesive groups, since within-
group ties would push members to hold similar 
ideas that are distinct from other groups (Friedkin, 
1998). This model simulates a peer-influence pro-
cess over multiple random variables, then clusters 
nodes based on their resulting scores.9 Richards’ 
(1995) Negopy program used a similar sort-
ing process based on node IDs as the initialisa-
tion stage in its search process, which was then 
improved on using rule-based sorting techniques. 
Contemporary methods using this tactic have 
focused either on a simulated communication pro-
cess (packet passing methods, such as label propa-
gation (Raghavan et al., 2007)) by following the 
intuition that peer groups will share more inter-
nally to the group than externally, or by simulat-
ing random walks on the network, assuming that 

a random walker will tend to get ‘stuck’ within 
communities (Pons & Latapy, 2005).

Eigenvector-based Approaches

Many researchers recognised the qualitative simi-
larity between finding communities in a network 
and the problem of finding lower-dimensional 
representations of high-dimensional data objects 
in general. Intuitively, just as items in a scale 
should all be more similar to each other than not, 
peers in a community should all be close to each 
other (in some sense) in the network. Early 
approaches (MacRae, 1960; Cairns & Cairns, 
1995) used this analogy directly and applied PCA 
to (some transformation of) the (valued) adja-
cency matrix. The main advantage of this model 
was ease of use, but an additional feature is that 
groups are non-exclusive – nodes with strong ties 
to multiple groups will have significant loadings 
on both groups.

This initial simple model has fallen out of 
favour in recent work (though it still appears some-
times as a starting point for heuristic improve-
ment approaches) in favour of eigenvector-based 
approaches with more principled mathematical 
foundations (see, e.g., Chung, 1997). Fiedler 
(1973) introduced spectral partitioning in terms of 
the eigenvectors of the (combinatorial) Laplacian 
matrix.10 Recently, Priebe et  al. (2019) com-
pared and contrasted the types of communities 

Figure 27.6 Modularity maximisation at different γ resolution parameter values
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identified via eigendecomposition of the normal-
ised Laplacian matrix versus those identified in 
the adjacency matrix. In the simplest versions, the 
elements of a single eigenvector of the correspond-
ing matrix are used to split the network into two 
parts, and then the process is repeated recursively 
on each part. Alternatively, a higher-dimensional 
decomposition may be used to directly partition 
into multiple parts (as in Priebe et al., 2019). The 
two obvious advantages of these approaches are 
the quick performance on large networks and  
use of a clear mathematical framework that allows 
developers to build on the large body of work in 
related spectral methods. Practically, these mod-
els (like all methods) work very well if clustering 
is clear and seem to work well enough when the 
problem is data reduction on very large networks, 
where a node misassignment here or there is not 
too critical. Because the models work on lower-
dimensional summaries of the full network, how-
ever, some oddities can occur that are easier to 
control in the node-sorting approaches discussed 
above – such as ensuring that each community is a 
connected component.

Stochastic Block Models

The final common approach leverages advances in 
the statistical models of networks to identify com-
munities. Stochastic block models (SBMs) are 
generative models, describing a probabilistic pro-
cess to generate a network with the characteristics 
defined by the model (Holland et  al., 1983; 
Wang & Wong, 1987; Snijders & Nowicki, 1997; 
Lee & Wilkinson, 2019). The simplest SBM with 
K blocks is given by

 A U U Bern U QU,ij i j i
T

j ( )  

where A is the adjacency matrix, U is an NxK 
matrix of block membership where Uij = 1 if node 
i is a member of block j and 0 otherwise, and Q is 
a KxK matrix defining the probability of ties 
within and between blocks. If Q is diagonally 
dominant – for example, Qii is much greater than 
Qij (i ≠ j) – then blocks are (‘assortative’) com-
munities. While this is the most common use of 
stochastic blockmodels, one can specify Q in any 
configuration. Moreover, one need not assume 
hard boundaries on block membership: mixed 
membership SBMs allow nodes to have partial 
membership in multiple groups that sum to 1 (ele-
ments of U are continuous rather than binary) or 
overlapping models where nodes can be in multi-
ple groups simultaneously (Airoldi et al., 2008). 
In practice, we usually know A but not U, so the 

goal is to assign nodes to labels in U in a way that 
maximises the match with the observed data (see 
Lee and Wilkinson, 2019, for review).

There are multiple implementations of stochas-
tic blockmodels, which can differ both in formal 
aspects of the model (assumed distributional 
properties, degree corrections, hard clustering vs 
soft, inclusion of observed or latent covariates, for 
example) as well as the search initialisation (often 
using methods like k-means or spectral cluster-
ing for initial group assignments) and model 
maximisation routines (MCMC, EM likelihood 
maximisation, etc.). Practically, models often 
require users to pre-specify the number of clusters 
searched for (but see Leger, 2016, which maxim-
ises within a user-specified range). Importantly, 
recent advances have improved the computational 
performance in fitting SBMs (Peixoto, 2014). 
Substantively, results are often similar to eigen-
vector approaches and similarly carry no guaran-
tee of connected clusters, unless that is included in 
a post-processing step. The canonical form of the 
model does not have any resolution parameter, so 
users would have to build that in through appropri-
ate information criteria or, more likely in practice, 
explore stability by forcing lower or higher num-
bers of communities.

The key advantage of the SBM approach is the 
core integration with generative statistical mod-
elling frameworks for networks. This integration 
allows one to build on the formal insights from 
that literature, including the ability to test graphs 
against fundamental limits on community detect-
ability (Abbe, 2018), to test alternative models, 
and include other data-generating features simul-
taneously. For example, latent network models 
(Krivitsky et  al. 2009) provide the ability to fit 
latent-space models with clustering, which allows 
one to better capture natural heterogeneity in 
latent-space models of networks.

Each of the three approaches to community 
detection discussed here – heuristic sorts, eigen-
value decomposition and stochastic blockmodels –  
have deep roots that could each occupy a review 
in their own right. We emphasise that real-world 
data is typically too complex to be conclusively 
modelled with a single technique. Indeed, we 
want to re-emphasise our analogy to unsuper-
vised clustering of point-cloud data. When data 
is inherently well clustered, many different algo-
rithms will find the same or highly similar clus-
ter structures. But many real-world cases are 
less structured, resulting in different algorithms 
finding differing results. These general observa-
tions are intimately connected to no free lunch 
theorems that identify how the improvement of 
an algorithm across part of an overall problem 
domain is balanced by diminished performance 
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elsewhere (Peel et al., 2017). That is, in practice, 
some algorithms might be more or less useful in a 
specific application.

CONCLUSION

With this chapter we have briefly discussed some 
of the varied approaches that are available for 
identifying cohesion and communities in network 
data, using the two-dimensional rubric of connec-
tivity and boundary salience. We advise users to 
consider the many different available techniques 
as a collection of exploratory tools that can be 
used to try and better understand their data,11 and 
to think carefully about how the problem a 
researcher is asking fits into the two dimensions 
of Figure 27.1. Is your question primarily about 
connectivity? If so, cohesive blocking or pairwise 
connectivity scoring might be most appropriate or 
techniques that allow for overlapping cluster 
membership. Is your question primarily about 
boundary salience? Then you should think care-
fully about what constitutes boundaries in your 
setting and attempt to identify the socially active 
variables that define the boundaries. If your prob-
lem is simultaneously about boundaries and con-
nectivity, or if boundaries admit to no clear 
external label, then consider an ensemble of dif-
ferent community detection routines and explore 
resolution parameter limits thoroughly. 
Fundamentally, it is up to researchers to ask them-
selves how specific community labels might 
match or contradict their theoretical concerns – 
only then are we able to substantively understand, 
evaluate and benefit from these approaches.
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Notes
1  “You can’t join Mathletes, it’s social suicide!” 

(Waters et al., 2004).

2  Colour figures online. We note that there are 
myriad sorts of generalised structures that can 
be layered over categories, including many types 
of hierarchies and chain-generalised exchange 
 systems.

3  Moody and White’s (2003) original procedure 
ignored induced graphs that would result in sin-
gle nodes or strings of cutsets, as these tend to 
be uninteresting substantively – i.e., there is little 
value in inducing a subgraph and further examin-
ing it if you already know that its composed solely 
of cutnodes from the parent graph. Similarly, 
complete cliques are often substantively interest-
ing but there’s no reason to go any further.

4  Terms differ significantly across research tradi-
tions here. In sociology and social network analy-
sis ‘cohesive peer groups’ or ‘social cliques’ or 
‘crowds’ are commonly used to define socially 
salient network subgroups. But ‘group’ and 
‘clique’ have specific different meanings in math-
ematics and computer science, where much of 
the recent work in this field has originated, and 
has instead come under the heading of ‘commu-
nity detection’. Here we generally use the terms 
‘peer group’ and ‘community’ interchangeably 
unless the context requires greater specificity.

5  We have collected a set of comparisons in table 
form here: people.duke.edu/~jmoody77/Cluster-
Comparisons.pdf

6  Numerous other such scores exist to be used  
as objective functions for community detection 
(see, e.g., the different options available in the 
leidenalg python package, github.com/vtraag/
leidenalg).

7  Football example from Girvan and New-
man, 2002, available at www-personal.umich.
edu/~mejn/netdata/; Enron email example from 
R-igraphdata.

8  These sorts of assignment changes and checks 
are deceptively complicated. One might think 
it simple to sort nodes to the set where most 
of their peers are: if ego has mode of peers in 
group j, make ego’s assignment ‘j’. But, in prac-
tice, assigning one node affects the fit of every 
other node they are connected to, which leads to 
a sequence of changes implied by every assign-
ment; a sorting that thus convergences on ‘best’ 
is not trivial.

9  In practice, this particular algorithm ends up being 
quite close to leading eigenvector approaches, so 
it’s probably best to use that instead.

10  The Laplacian matrix is defined as: L = D-A; where 
D is a matrix with (weighted) degrees on the 
diagonal and 0s elsewhere and A is the adjacency 
matrix.

11  At the same time, we acknowledge that our per-
spective is not universally agreed with (see, e.g., 
Peixoto, 2022, for a very different opinion).
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