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INTRODUCTION AND BACKGROUND

One of the most interesting features of social net-
works is they tend to be clumpy — with interac-
tions happening much more often among some
subsets of actors than others. Substantively this
inhomogeneity reflects natural social groups: in
kids’ networks these might be peer groups; in
organisations, business coalitions; or in national
systems, alliances. These sets of actors often cap-
ture our most important social activities: these are
the people who enforce norms (Axelrod, 1985),
influence our behaviour (Friedkin & Cook 1990;
Kreager et al., 2011), or otherwise reflect the lived
social communities that networks often intend to
capture (Freeman, 1992; Friedkin, 2004).

While intuitively common and theoretically sali-
ent, social groups are notoriously difficult to iden-
tify methodologically, with a multitude of papers
describing new approaches for finding groups or
communities (for good prior reviews, see, e.g.,
Porter et al., 2009; Fortunato, 2010; Fortunato &
Hric, 2016; Lee & Wilkinson, 2019; Shai et al.,
2020). Our intuition is that we face a mismatch
between theory and reality. Theoretically, treat-
ments of ‘cohesive groups’ in social networks tend
to be one-dimensional and lead to unrealistic null
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models. Our theories anticipate sharp boundaries
and clear distinctions, but reality is often more
nuanced. We think this misfit results from conflat-
ing two distinct dimensions that might better be
treated separately. On the one hand, groups are
characterised by their internal cohesion that cap-
tures how difficult it is to separate members of the
(sub)network. On the other hand, we expect groups
to be socially distinct, implying an implicit bound-
ary maintenance process that delineates ‘in’ from
‘out’. Our theories of groups generally assume
high levels of each, when these dimensions might
often vary independently.

Even when the theoretical objective is clear(er),
however, the methodological problem is non-trivial
for at least three reasons. The first is the sheer com-
putational complexity of the task, given the many
possible ways to assign nodes to groups; we sim-
ply cannot compare every possible solution even
with a well-defined metric (indeed, many methods
are NP-complete, e.g., Brandes et al., 2008).

Second, for many metrics, there are equivalent
solutions that are substantively different, implying
we cannot identify a uniquely optimal solution.
Consider a bridging node with ties that span two
otherwise disconnected cliques: most off-the-shelf
methods would require the node to be assigned to
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one group or the other, or bring both into a single
supercluster. Sometimes this is a signal that the
method is inappropriate (perhaps we should not be
seeking mutually exclusive solutions, even if it’s
computationally simpler) but often simply reflects
the messiness of the world itself: equivalences are
features of the world, not problems of the method.

Finally, notions of cohesion are often scale-
dependent, with the appropriateness of a given
solution depending on the comparison level for a
given analysis. We might find a very clear clus-
tering of a large network into a small number of
distinct groups, but on examination discover that
each group contains its own fractures. Such hier-
archical ordering of groups is a puzzle: sets that
seem together on one level (the whole network)
are fractured at another (within each initial cluster).
This last problem has subtly different variants, on
the one hand depending on, for example, the num-
ber of groups inferred or the nature of null models
captured via a resolution parameter (see below),
on the other hand reflecting a substantively differ-
ent order of collective organisation (hierarchical
rather than modular).

Our aim in this chapter is to help clarify these
distinctions by delineating the two primary dimen-
sions of groups common in the literature and the
tools used to measure them. Figure 27.1 provides
a simplified rubric that guides this work.

The first dimension is connectivity, which
refers substantively to the network being ‘well-
held-together’ (Markovsky & Lawler, 1994).
Intuitively, we expect cohesive networks to have

377

many relations connecting many pairs; the col-
lective does not depend on any single node (or
small subset of nodes) to control or disrupt it.
Information can easily pass between all members
of a cohesive network. The natural inversion of
a cohesive network is anomic or disintegrated,
where nodes have few ties to each other and little
chance of sharing collective information or identi-
ties across the network.

The second dimension is boundary salience. A
population with salient boundaries has clear dif-
ferentiation by categories. The most well recog-
nised are ascribed status characteristics (White,
1966), such as race, gender or caste, though social
network researchers are often interested in groups
without clear external status indicators, such as
‘leading crowds’ in schools (Coleman, 1961).
When boundaries are salient, even if informal,
actors likely recognise them and hold relational
expectations for behaviours within and between
boundaries: mean girls bully the desperate wan-
nabes; and the wannabes on some level expect
it (Waters et al., 2004). Pressures towards social
balance (Cartwright & Harary, 1956) tend to cre-
ate homophily within group boundaries as friends
come to like the same activities, in some cases
becoming equivalent to the group itself (e.g., jocks
playing sports, mathletes!).

The intersection of these two dimensions
defines a space of network archetypes that can eas-
ily be misrecognised in empirical work. Standard
intuition is that these two dimensions are posi-
tively correlated: settings are either anomic — low
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Figure 27.1 Two dimensions to cohesion and clustering in networks
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connectivity and low boundary salience — or clus-
tered — highly cohesive with strong boundaries.
That is, we expect cases to fall along some con-
tinuum defined by the diagonal of Figure 27.1. Our
intuitive notion of clustered networks often looks
like the lower-right quadrant, with clearly defined
sets of nodes and minimal contact between sets.
But social settings admit many other topolo-
gies. For example, a social system with high cat-
egorical differentiation but low (internal) group
cohesion is the defining characteristic of kin-
ship exchange systems (White, 1963; Bearman,
1997), where one clan can only marry across clan
boundaries to a specific subset of other clans. This
generalised exchange system archetype is referred
to as ‘differentiated’ in Figure 27.1, illustrated by
the cyclic relationship between the groups (yellow
—red—green—>yellow).? Opposite differentiated
networks we find integrated ones that are highly
cohesive but have no salient boundaries. The most
well known are core—periphery systems composed
of a diffuse core that admits a continuous gradient
from central to peripheral (Mani & Moody, 2014).

STRUCTURAL COHESION

Node Connectivity

We have worked above with an intuitive notion of
cohesion. Here we sharpen the definition by dis-
cussing structural cohesion. Structural cohesion
was first introduced by Doug White and Frank
Harary (2001) and then expanded in Moody and
White (2003, p. 103, emphasis original): a group’s
structural cohesion is equal to ‘the minimum
number of actors who, if removed from the group,
would disconnect the group’. This concept is
known as node connectivity in graph theory
(Harary, 1969). Structural cohesion provides a
nice operationalisation of Simmel’s notion that the
‘supra-individual’ nature of a collective is the
defining characteristic of social life (Simmel,
[1908]1950).

A second and equivalent definition of cohesion
turns on the relationships between node connec-
tivity and the number of non-overlapping paths
connecting pairs in a network. A path in a network
is a sequence of adjacent nodes and edges start-
ing with one node and ending with another that
does not cross any node/edge multiple times. Two
paths are node-independent if they share their
starting and ending nodes but no others — they
represent alternative routes between source and
target. Menger’s theorem equates the number of
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node-independent paths between a pair of nodes
to the minimum number of nodes that have to
be removed to disconnect the pair. This means
we can define an equivalent version of structural
cohesion: a group’s structural cohesion is equal to
the minimum number of node-independent paths
linking each pair of actors in the group. This is
sociologically interesting as it implies that groups
with many unique paths connecting everyone in
the group are more cohesive, matching our intui-
tion about the ability to share information quickly
and robustly among group members. This ability
to communicate should lead the group to develop
shared ideas and generalised understandings.
Figure 27.2 illustrates these points.

Panel 1 and 2 present two networks of equiva-
lent size — eight nodes and ten edges — in which
every node is connected to every other node by
at least one path. However, removing node ‘e’ in
panel 1 would disconnect the graph, leaving two
groups on the ‘top’ and the ‘bottom’ of the dia-
gram. That is, the graph is 1-node-connected (note
we could have removed ‘f” as well, separating out
‘d’” as an isolate). In panel 2, there is no single
node whose removal would disconnect the graph.
Instead, we would have to strategically remove
pairs ({e f}, {c b} etc.) to disconnect the graph, so
the graph is 2-node-connected or a ‘biconnected
component’.

Note as well that while we can trace a path
from node ‘a’ to ‘h’ in both cases, in panel 1 all
such paths must go through node ‘e’ — making it a
‘cutnode’ in this graph — while the other network
contains at least one path that avoids ‘e’: for exam-
ple, we can highlight paths {abd fh} and {ace
g h}. These two paths are node-independent; they
overlap only on their starting and ending nodes.

In general, a network that has minimum node
connectivity k is said to be k-node-connected.
Node connectivity is bounded by minimum
degree: one cannot be more connected than one
has ties since, regardless of where the path would
go, independent paths are limited by the number
of first-steps on such paths, and thus this is the
upper limit on node-independent paths. For sets of
nodes, this means that every k-connected set must
be at least a k-core (i.e., have degree > k in the
subgraph).

Node connectivity is a network-level property —
it describes the path structure of the ties within the
full graph under consideration. However, we could
partition the network by some other feature and
subsequently measure the node connectivity of
the induced subset. This means that we can use
node connectivity as a comparative characteristic
for different networks (one school vs another, for
example) or sub-parts of a single network.
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Figure 27.2 Equal volume networks with different node connectivity

Cohesive Blocking

Empirical networks usually admit to internal vari-
ation in node connectivity — some parts of a net-
work may be more cohesive than others. We can
better describe the cohesive structure of a network
by recursively enumerating all k-connected sets
and describing how they relate to each other. To
do so, one first enumerates all minimum size cut-
sets and then removes all of the cutsets, assigning
each to the relevant sides of their cut. If the
induced subgraph is interesting® — that is, neither
complete nor simply strings of cutnodes — then
repeat the procedure on the resulting subgraphs,
continuing until no further cutting can be done
because you have reached a complete clique or
have only isolates left. This procedure ensures that
any (k + 1)-connected set embedded within the
network will be identified. Since each step takes
us deeper into the network, removing the most
weakly connected nodes and leaving stronger,
more connected sets, we uncover the nested cohe-
sion structure of the network. As an example,
consider Figure 27.3.

Figure 27.3 provides a full ‘cohesive block-
ing’ of a small example network. The image at
the left encircles the induced subsets of the net-
work while the tree at the right enumerates each
set and its relation to all the others. The network
is 1-connected, with nodes 4 and 13 being the
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minimum-sized cutsets (since k = 1 these are ‘cut-
nodes’). Removing nodes 4 and 13 results in one
‘singleton’ cut (node 14) and two bicomponents.
We typically ignore the singleton cut and proceed
on the bicomponents. The small bicomponent
(right branch of the cut enumeration tree) has a
size-4 three-clique embedded within it. Since
this clique cannot be cut further, this branch ends
here. On the other side, the size-12 bicomponent
has multiple two cuts along the {9-15-16-17-2}
path. Removing non-adjacent pairs of those nodes
will disconnect the graph, though most of the cuts
result in uninteresting singleton partitions (i.e.,
removing {15 17} gives two graphs, one of size 3
({1516 17}) and one of size 11 (all but 16). After
enumerating all of these cuts and examining the
resulting induced graphs, one substantive sub-
graph of size 9 is left. Note this subgraph is also
2-connected, so it has the same node connectivity
as the parent graph it was induced from.

The cohesive blocking procedure described
above can induce subgraphs that are less connected
than their parent subgraphs (indicated in Figure
27.4 by dashed lines on the induced graph). The
defining feature is the nested nature of the sub-
graph — to get to that subset, one had to go through
the weakest cuts at the level above. The number
of recursions needed to get to a particular subset
is its nestedness depth, which Moody and White
(2003) argue is a reasonable measure of social
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Full Graph
N=17, k=1

{1:9,15,16,17} {{,10:13}
N=12,k=2 N=5k=2

{1:9} {10:13}
N=9 k=2 N=4,k=3

{1:5} {5:9}
N=5k=4||N=5k=4

Figure 27.3 Example of cohesive blocking on a network

embeddedness (Granovetter, 1985). The choice
to include weaker nested sets reflects the cutting
process and thus the ‘disconnect’ aspect of social
cohesion; but it is not unreasonable to focus only
on induced graphs that increase k-connectivity, in
which case the dashed-line box would be removed
and one would go directly to the two four compo-
nents embedded within the overall larger (n = 12)
bicomponent, and nestedness is then equivalent to
the highest node connectivity set that a node is a
member of.

The cohesive blocking routine generally results
in two types of induced subgraphs. The first are
sets of nodes that calve away from the rest of
the graph — separate distinct subsets. These are
branching points in the blocking tree and gener-
ally correspond to the sorts of subgroups we tradi-
tionally think of as ‘modular’ in Figure 27.1. The
other sort are long chains in the blocking structure,
representing increasingly cohesive sets nested
within each other like Russian dolls — one group
is not necessarily distinct, but rather more deeply
embedded than the other.

Cohesive blocking provides a full summary of
the network connectivity structure, but is difficult
to use in subsequent analysis. One solution is to
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assign nodes to a group based on shared member-
ship in a nested k component. In this sense, for
example, we might say that all members of either
large bicomponent in Figure 27.3 are two distinct
groups, with node 4 belonging to both groups.
The analyst then needs to determine where in
the nestedness tree to break the network, noting
that such breaks can result in both overlapping
groups (if at a branching point) or a non-exhaus-
tive assignment (i.e., node 14 belongs to neither
bicomponent).

Alternatively, one can characterise the network
as a whole based on summaries of pairwise cohe-
sion levels. For example, one can determine the
highest k-connected set all pairs of nodes belong
to. In Figure 27.3, for example, the overall for all
pairs is 1.9. One can apply a similar summary to
individuals (average, min, max) relative to all oth-
ers (for individual level analysis) or to subgroups
induced based on other features. Which summary
statistic (mean, median, upper quartile, etc.) best
captures the social process at hand is an open
question. Any single summary score will almost
always average over important divisions — a bow-
tie network with a single node connecting two
large cliques can have a high average score even
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though the graph as a whole is 1-connected, so
there are obvious trade-offs to this approach.

Extensions and Observations

The main advantage of the structural cohesion
approach is the clear link between the exact path
structure of a network and the sociological notion
of cohesion: if our ties bind us together, then struc-
turally cohesive networks are more tightly bound
than non-cohesive networks. There are a number of
related ideas that have somewhat different implica-
tions and are worth spelling out clearly. Most of
these alternatives take a feature that is maximised
in a graph-theoretic clique and use that dimension
as the foundation for the cohesion metric. In most
cases, however, these metrics fall victim to a base
asymmetry: structurally cohesive groups have
these features, but maximising these features does
not ensure cohesion. The archetypical case are
centralised graphs with single cutnodes (like node
e in Figure 27.2) where you have low node con-
nectivity even if other features are high.

For example, consider the difference between
node and edge connectivity. Edge connectivity is
the number of edges one would have to remove
to disconnect a network. This fails as a general
feature, when networks are highly centralised, as
many ties funnel through a single cutnode. In any
social process where nodes control the flow of
resources through the network, highly centralised
networks introduce unequal control of the flow in
the network, leading to bottlenecks, fragmentation
and inequality. All k-node-connected networks
are at least k-edge-connected; but not all k-edge-
connected networks are k-node-connected. Of
course, if the social process at play is known to
depend more on edges than nodes, then we may be
better off focusing on edge connectivity instead. In
those cases, we refer the reader to the long litera-
ture on min-cut, max-flow problems.

Other alternative metrics aimed at capturing
how well the network is ‘held together’ by the
social relations suffer much the same problem. The
most common cohesion metric is probably simple
density — the proportion of pairs in a network who
are connected (simple) or the average strength
of relations across pairs (if relation is weighted).
Density focuses on volume — all else equal we
would expect that having more ties among a set
of nodes will result in greater connectivity and
ease of resource flow. But this assumes that the
network ties are somewhat evenly distributed, as
otherwise highly clustered or centralised networks
can suffer the sorts of problems illustrated in panel
b of Figure 27.2.
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A second common measure is average social
distance: in a cohesive network each person is
socially close to all others (at the limit, directly
adjacent as in a clique). This, again, is subject
to the dominance effects of high centralisation:
networks with very central nodes will have short
overall distances between most pairs, but that cen-
tral node has a dominant role over flow in the net-
work. In some settings, this sort of centralisation
is effective — there are clear efficiencies to having
centralised nodes that act as routers for distributing
information or basic control purposes, for exam-
ple — but we would argue these are best thought of
as efficient structures not cohesive structures.

A third common measure for cohesion is
the proportion of triangles in a network that are
closed. Intuitively, this builds on the notion that
collections of strong ties form the basis of small
groups (Freeman, 1992), and we’d expect that
the network as a whole is held together because
each connected pair is jointly connected to com-
mon thirds. In practice, triadic closure tends to
limit group size based on degree as the redun-
dancy implied by common close ties means that
relations tend to ‘turn in’ on others in the same
group, creating a direct linkage between the ‘held
together’ and ‘distinct’ dimensions discussed in
Figure 27.1. Cohesion based on transitivity shares
the same issues as density and k-cores discussed
above: highly cohesive networks tend to be tran-
sitive, but highly transitive networks are not nec-
essarily structurally cohesive. Moreover, because
there is no distance requirement for node-connec-
tivity, it is possible to have comparatively high
k-node-cohesion (k = 3, 4) in very large groups
with minimal transitivity. Whether this is a feature
or a bug is context dependent. On the one hand,
if the social process under investigation allows
resources to flow long distances (reputation, infor-
mation, viruses), then structural cohesion can
provide greater efficiency re-linking wider popu-
lations with fewer ties. On the other hand, if the
setting requires face-to-face reinforcement to be
effective, then the distance-limiting features of
transitive closure may take precedence.

The main pragmatic barrier to using struc-
tural cohesion is computational. The approach
provided by Moody and White (2003) combines
algorithms by Kanevsky (1990, 1993) and the key
step of identifying cutsets runs in O(2¥V?) (avail-
able in SAS/IML and, with some modifications, in
iGraph for R). This is often prohibitively compu-
tationally expensive for large networks. Sinkovitz
et al. (2017) provide a targeted search approach
that exploits k-cores (which are fast to find), but
forgoes the full blocking approach implied by
identifying all cutsets discussed above. Their
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routine allows enumeration of all k-connected sets
on networks with hundreds of thousands of nodes.

Node-connectivity can naturally extend to
connectivity through nodes-of-a-class, such as
would be found in bipartite networks. Cornwell
and Burchard (2019) provide a detailed exami-
nation of how graphs are connected through one
mode or another and define two-mode node con-
nectivity as the number of nodes in the first mode
that would have to be removed to disconnect the
second mode. Extending this to the general mul-
tilevel network case could be informative, but
remains unexplored to the best of our knowledge.
Another way one might extend structural cohesion
would be to consider paths of particular lengths
or that sum to particular weights. These sorts of
extensions would lead to somewhat messy and
localised versions of a ‘cohesive horizon’ around
focal nodes, but maximal sets that are node-and-
distance connected might capture social processes
with only localised flow.

PEER GROUPS AND COMMUNITIES

Background

Structural cohesion provides a sociologically prin-
cipled approach to understanding the connectivity
dimension of Figure 27.1, but does not address
boundary saliency. Our traditional notions of peer
1992) are simultaneously

groups (Freeman,
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cohesive and distinct. When high boundary salience
and internal connectivity are combined, we get
modular groups: sets of nodes with many ties to
each other within groups and few(er) ties between
groups. Sociological peer groups are seen as the
primary site for social action. Peers share informa-
tion with each other, react to status updates, enforce
norms and generally provide the primary social
context within which people orient their behaviour.
These groups can be recognised and named within
a community formally (youth gangs would be an
example) or informally (‘the cool kids’) but often
they are not named, though they might be recog-
nised (Coleman, 1961).

The methodological conundrum of peer groups
is that outsiders generally, and data collectors in
particular, often lack the information necessary to
know which groups are which. This has come to
be known generally as the ‘community detection™
problem, where the goal is to partition the nodes
of a network into subsets in a way that optimises a
target measure of joint cohesion/distinction.

The ideal-typical modular communities are
similar to those in Figure 27.4, which shows four
clearly distinct groups, each with very few ties to
any other group and many ties within the group. In
a standard sociogram, these sorts of groups jump
out clearly (left panel); if we represent them as a
mixing matrix (right panel) we see that the net-
work is nearly block diagonal, meaning that the
blocks on the diagonal have much higher weight
than off-diagonal blocks — that is, there is more
relational volume within groups than between
groups.

Mixing matrix
Observed and expected values

A B C D
24 3 2 0 |A

48 | 68 |137 | 36
3 |28 | 1 0 |B
53 [ 25 | 152 | 40
0 4 | 66 | 0 |c
1.7 | 164 | 333 | 86

0 3 8

52 | 73 | 147 D

Modularity: 0.56

Figure 27.4 Example of a clearly modular network
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In most realistic settings, however, the case is
not nearly so simple. Consider Figure 27.5 below,
which presents eight common clustering algo-
rithms (discussed in detail below) applied to the
Gagnon prison network (MacRae, 1960).

This multiplicity of solutions to the commu-
nity detection problem is expected, analogous
to the number of different available methods for
unsupervised clustering of point-cloud data. In the
presence of unknown mechanisms driving only
weakly and potentially overlapping clusters, dif-
ferent algorithmic approaches will often identify
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different clusters. Some cluster/community labels
might be more or less useful than others in a par-
ticular application: researchers should ask how
particular solutions match their theoretical con-
cerns to evaluate and select them.

Community Detection Methods

Most contemporary strategies for community
detection focus on three basic strategies.® The first
(and most common) is to use some algorithmic

Comparison of standard network community routines on the same graph.

Fast greedy

0.62 0.58 1

Leading eigenvector

Label propagation
0.57 \

Edge between

Walktrap
0.58

Spinglass
1

Figure 27.5 Comparison of eight clustering methods on the same real network: colours
within panels denote same-community membership

BK-SAGE-MCLEVEY-230049-Chp27.indd 383

16/08/23 9:03 AM



384

process as a heuristic for optimising a community-
relevant descriptive score. The second is to exploit
a strong correspondence between the eigenstruc-
ture of a network and groups using variants of
singular value decomposition. The third considers
generative network models to recast community
detection as a statistical problem where commu-
nity membership influences tie probability. A full
review of all such methods is beyond the scope of
this chapter, but we describe exemplars and high-
light some best practices.

Heuristic Sorting Approaches

Heuristic approaches to community detection sort
nodes into groups based either on an index of
‘groupedness’ or a simulated social process that is
sensitive to an underlying group structure. Given
the complexity of the assignment task, such sort-
ing approaches may not truly maximise the objec-
tive function, but instead reflect different strategies
to overcome the necessary trade-offs between
completeness and computational feasibility in a
way that finds a reasonably good partition in a
reasonable amount of time. Each of the algorithms
we discuss below takes a slightly different
approach to this trade-off.

The first step in direct sorting models is to
define a score that reflects the group structure of
the network which can then be used to judge the fit
of any proposed partition. Historically a number
of such metrics were developed (e.g., the Freeman
segregation index (1972) or the Segregation
Matrix Index (Fershtman, 1997)), which intui-
tively shared the notion that substantive groups
are composed of people who have most of their
(strong) ties within the group rather than between.

In contemporary work, the modularity score
is the most common metric used to identify
communities.® Modularity (Newman & Girvan,
2004) with resolution parameter y (Reichardt &
Bornholdt, 2006) counts the total edge weight
within communities relative to a multiple of the
expected weight in a random graph model with the
same expected degree sequence:

1 k.k,

73 At s(c.. c))

where m is the total weight of edges; k; is the
strength (weighted degree) of node i; A is the
edge weight between nodes i and j; and § is an
indicator function giving 1 if the pair is assigned
to the same community (C; = C;) and O otherwise,
thus limiting the sum to within-group node pairs.
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The difference within the parentheses (Aj-
y(kik;j)/2m) compares the weight of observed ties
in the group compared to that (up to a factor of y)
expected under random mixing. In the original
default y = 1 formulation, the modularity of a net-
work with only one community is precisely zero
by construction, while the modularity of putting
each node into its own community (i.e., N com-
munities) gives negative values, and the maximum
modularity will be found for some intermediate
number of communities. This means that Q can
serve as an objective function for partition selec-
tion, which was difficult to do with earlier meas-
ures. The extent to which one considers the total
within-community edge weight relative to the
expected random ties is governed by the resolution
parameter y: larger y values increase the penalty in
Q paid by putting node pairs in the same group,
typically leading to larger numbers of smaller
communities.

Because of the 1/2m normalisation, modular-
ity cannot be larger than one. Then, by comparing
the total within-group edge weight against that
for a corresponding random graph with the given
community labels, one expects Q=0 for y = 1 in
the case where the community labels are randomly
assigned. As such, it is a common misconception to
assume some threshold of Q to immediately imply
‘good’ clustering into communities. However, it is
essential to keep in mind that these special modu-
larity values are relative to a given set of community
labels. Importantly, even a random graph without
any a priori defined community structure may have
some partition of nodes into communities with a
high value of modularity (Guimera et al., 2004).
Modularity only provides a measure for comparing
one set of community labels to another set for the
same network; any comparison of the maximum
modularity obtained between different networks,
or to assess that modularity is ‘high’ for a given
network and thus claim it is strongly clustered,
must be performed carefully. For example, one
might compare the maximum modularity obtained
for a given network against suitable permutations
of the network — for example, double edge swaps
to explore the space of the associated configuration
model (see Fosdick et al., 2018) — and the distribu-
tion of maximum modularities computed for each
network so obtained.

Early uses of modularity as a score ignored the
resolution parameter (which is equivalent to set-
ting it to 1) and much of the initial excitement
over modularity was that it ‘solved’ the number
of clusters problem. This, it turns out, is illusory:
the number of clusters varies with the resolution
parameter, and there is not necessarily a reason
to pick y = 1 over another value. As an empirical
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feature, many social networks do admit to scale
effects — some small set of resolution values for
which there is a largely stable set of returned
communities. For example, if one were to cluster
faculty in a university based on shared graduate
student committees, a coarse division between
natural sciences, social sciences and humanities
would probably appear for a wide range of small
resolution parameter values. But, turning the
resolution knob up a bit, one would probably see
a stable set of solutions at a higher value reflect-
ing university departments. Importantly, neither
of these solutions is wrong — they simply capture
sociality at different levels of interaction. We want
to emphasise that this is a feature easily revealed
by tuning the resolution parameter in modularity
but is in no way an artefact of using the modular-
ity score: many real network settings are naturally
clustered at different scales.

A common approach to identifying a good
resolution parameter is to calculate communi-
ties at multiple different resolution parameters
and select points in the parameter space where
the identified communities appear to be robust
to modest change (see, e.g., Fenn et al., 2009).
Figure 27.6 shows the number of communities
found by the R-igraph cluster_leiden() function
(Traag et al., 2019) for three different networks,
demonstrating robust results (plateaus) occur at
values above default y = 1.7 The need to undertake
some systematic approach becomes even more
pressing for community detection in multilayer
networks (see Kivela et al., 2014) because of the
introduction of at least one additional parameter
(typically notated w) to set the coupling between
layers (Mucha et al., 2010). Newman (2016)
addressed resolution parameter selection by
identifying a fundamental equivalence between
modularity maximisation and stochastic block-
model inference in the special case of a degree-
corrected planted partition model, leading to an
iterative procedure for finding the vy that self-
consistently maximises both modularity and the
corresponding likelihood. Pamfil et al. (2019)
extended Newman'’s iterative approach to a vari-
ety of multilayer settings. In a different approach,
Weir et al. (2017) developed an efficient post-
processor to find the convex hull of admissible
modularity partitions (CHAMP) for an input col-
lection of community-label partitions, however
obtained, to quickly pick out the domains in y
where each partition maximises modularity, thus
making it easier to find community features that
are robust to changes in y. The bottom right panel
of Figure 27.6 demonstrates this post-processing
for the unweighted karate club, finding the com-
munity-label partitions corresponding to the line
segments along the upper envelope of modularity
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Q(y), where each line in the diagram corresponds
to a single partition of nodes into communities
obtained by cluster_leiden(). Recently, Gibson
and Mucha (2022) combined the SBM equiva-
lence approach with CHAMP to eliminate the
possibility of stochastic fluctuations causing fixed
points of the iterative process to go unstable, thus
making it easier to find appropriate resolution
(and interlayer coupling) parameters.

Once one has a score to optimise, how best to
perform the sorting into groups? That is, given a
computationally complex optimisation problem,
much of the development in community detection
has involved coming up with new heuristic search
procedures. The earliest models were based on
variants of simulated annealing (e.g., UCINET’s
Factions, de Amorim et al., 1990). Most contem-
porary approaches use a more targeted search
procedure using either a divisive or agglomerative
approach. In a divisive approach, one starts with
the full network considered as one ‘root’ commu-
nity, which is then split by cutting it at its weakest
point(s). A commonly used example is Girvan and
Newman’s (2002) ‘edge-betweenness’ approach.
Edge betweenness is the number of shortest paths
between node pairs that cross over that edge.
Edges with high betweenness scores generally
link parts of the network that are otherwise less
linked — that is, they are global bridges. By cutting
the network at these points, natural subgroups will
fall out. Carried out to its full extent, the process of
repeated betweenness calculation and cutting will
result in a tree with the whole graph at the root
and each node individually at the lowest possible
cut level. One way to return a single solution from
such a tree is to select the level with highest modu-
larity (Newman & Girvan, 2004).

Agglomerative approaches start with each node
assigned to its own community and joins them
if doing so improves the objective (e.g., modu-
larity). One generally starts by assigning nodes
to some other node they are connected to (with
a strong edge weight, if relevant), then joining
pairs of nodes that share many neighbours, grow-
ing groups until doing so no longer improves fit.
Unlike edge betweenness, there is no fixed order
to test the joins — particularly early in the process,
there are often many equally good assignments so
some choices have to be made at random. Much
of the effort in these sorts of models is in identify-
ing reasonably good ways to change group assign-
ment, pick which groups to merge and ensuring
that doing so doesn’t inadvertently walk one into
a poor solution.® For example, the ‘fast greedy’
method (Clauset et al., 2004) rapidly increases
modularity by merging communities; the Louvain
method (Blondel et al., 2008) continues to move
one random node at a time between existing
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Figure 27.6 Modularity maximisation at different y resolution parameter values

communities until no further improvement can be
found by a single such move and then lifts hierar-
chically to a smaller graph with nodes correspond-
ing to the communities and repeats; and the recent
improvements moving from Louvain to Leiden
(Traag et al., 2019) include new checks to ensure
that each identified community is a connected
component. Ken Frank’s KliqueFinder (1995)
uses a similar strategy, but optimises the in-group
odds ratio for a shared tie.

An alternative heuristic strategy is to allow
some process to operate on the network that would
itself reveal groups, and then use that result as a
proxy for finding groups directly. For example,
Moody (2001) reasoned that a peer-influence pro-
cess should reveal cohesive groups, since within-
group ties would push members to hold similar
ideas that are distinct from other groups (Friedkin,
1998). This model simulates a peer-influence pro-
cess over multiple random variables, then clusters
nodes based on their resulting scores.” Richards’
(1995) Negopy program used a similar sort-
ing process based on node IDs as the initialisa-
tion stage in its search process, which was then
improved on using rule-based sorting techniques.
Contemporary methods using this tactic have
focused either on a simulated communication pro-
cess (packet passing methods, such as label propa-
gation (Raghavan et al., 2007)) by following the
intuition that peer groups will share more inter-
nally to the group than externally, or by simulat-
ing random walks on the network, assuming that
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a random walker will tend to get ‘stuck’ within
communities (Pons & Latapy, 2005).

Eigenvector-based Approaches

Many researchers recognised the qualitative simi-
larity between finding communities in a network
and the problem of finding lower-dimensional
representations of high-dimensional data objects
in general. Intuitively, just as items in a scale
should all be more similar to each other than not,
peers in a community should all be close to each
other (in some sense) in the network. Early
approaches (MacRae, 1960; Cairns & Cairns,
1995) used this analogy directly and applied PCA
to (some transformation of) the (valued) adja-
cency matrix. The main advantage of this model
was ease of use, but an additional feature is that
groups are non-exclusive — nodes with strong ties
to multiple groups will have significant loadings
on both groups.

This initial simple model has fallen out of
favour in recent work (though it still appears some-
times as a starting point for heuristic improve-
ment approaches) in favour of eigenvector-based
approaches with more principled mathematical
foundations (see, e.g., Chung, 1997). Fiedler
(1973) introduced spectral partitioning in terms of
the eigenvectors of the (combinatorial) Laplacian
matrix.'® Recently, Priebe et al. (2019) com-
pared and contrasted the types of communities
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identified via eigendecomposition of the normal-
ised Laplacian matrix versus those identified in
the adjacency matrix. In the simplest versions, the
elements of a single eigenvector of the correspond-
ing matrix are used to split the network into two
parts, and then the process is repeated recursively
on each part. Alternatively, a higher-dimensional
decomposition may be used to directly partition
into multiple parts (as in Priebe et al., 2019). The
two obvious advantages of these approaches are
the quick performance on large networks and
use of a clear mathematical framework that allows
developers to build on the large body of work in
related spectral methods. Practically, these mod-
els (like all methods) work very well if clustering
is clear and seem to work well enough when the
problem is data reduction on very large networks,
where a node misassignment here or there is not
too critical. Because the models work on lower-
dimensional summaries of the full network, how-
ever, some oddities can occur that are easier to
control in the node-sorting approaches discussed
above — such as ensuring that each community is a
connected component.

Stochastic Block Models

The final common approach leverages advances in
the statistical models of networks to identify com-
munities. Stochastic block models (SBMs) are
generative models, describing a probabilistic pro-
cess to generate a network with the characteristics
defined by the model (Holland et al., 1983;
Wang & Wong, 1987; Snijders & Nowicki, 1997;
Lee & Wilkinson, 2019). The simplest SBM with
K blocks is given by

A;|U,U, ~ Bern (U] QU

where A is the adjacency matrix, U is an NxK
matrix of block membership where Uj;; = 1 if node
i is a member of block j and 0 otherwise, and Q is
a KxK matrix defining the probability of ties
within and between blocks. If Q is diagonally
dominant — for example, Q;; is much greater than
Qj (i # j) — then blocks are (‘assortative’) com-
munities. While this is the most common use of
stochastic blockmodels, one can specify Q in any
configuration. Moreover, one need not assume
hard boundaries on block membership: mixed
membership SBMs allow nodes to have partial
membership in multiple groups that sum to 1 (ele-
ments of U are continuous rather than binary) or
overlapping models where nodes can be in multi-
ple groups simultaneously (Airoldi et al., 2008).
In practice, we usually know A but not U, so the
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goal is to assign nodes to labels in U in a way that
maximises the match with the observed data (see
Lee and Wilkinson, 2019, for review).

There are multiple implementations of stochas-
tic blockmodels, which can differ both in formal
aspects of the model (assumed distributional
properties, degree corrections, hard clustering vs
soft, inclusion of observed or latent covariates, for
example) as well as the search initialisation (often
using methods like k-means or spectral cluster-
ing for initial group assignments) and model
maximisation routines (MCMC, EM likelihood
maximisation, etc.). Practically, models often
require users to pre-specify the number of clusters
searched for (but see Leger, 2016, which maxim-
ises within a user-specified range). Importantly,
recent advances have improved the computational
performance in fitting SBMs (Peixoto, 2014).
Substantively, results are often similar to eigen-
vector approaches and similarly carry no guaran-
tee of connected clusters, unless that is included in
a post-processing step. The canonical form of the
model does not have any resolution parameter, so
users would have to build that in through appropri-
ate information criteria or, more likely in practice,
explore stability by forcing lower or higher num-
bers of communities.

The key advantage of the SBM approach is the
core integration with generative statistical mod-
elling frameworks for networks. This integration
allows one to build on the formal insights from
that literature, including the ability to test graphs
against fundamental limits on community detect-
ability (Abbe, 2018), to test alternative models,
and include other data-generating features simul-
taneously. For example, latent network models
(Krivitsky et al. 2009) provide the ability to fit
latent-space models with clustering, which allows
one to better capture natural heterogeneity in
latent-space models of networks.

Each of the three approaches to community
detection discussed here — heuristic sorts, eigen-
value decomposition and stochastic blockmodels —
have deep roots that could each occupy a review
in their own right. We emphasise that real-world
data is typically too complex to be conclusively
modelled with a single technique. Indeed, we
want to re-emphasise our analogy to unsuper-
vised clustering of point-cloud data. When data
is inherently well clustered, many different algo-
rithms will find the same or highly similar clus-
ter structures. But many real-world cases are
less structured, resulting in different algorithms
finding differing results. These general observa-
tions are intimately connected to no free lunch
theorems that identify how the improvement of
an algorithm across part of an overall problem
domain is balanced by diminished performance
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elsewhere (Peel et al., 2017). That is, in practice,
some algorithms might be more or less useful in a
specific application.

CONCLUSION

With this chapter we have briefly discussed some
of the varied approaches that are available for
identifying cohesion and communities in network
data, using the two-dimensional rubric of connec-
tivity and boundary salience. We advise users to
consider the many different available techniques
as a collection of exploratory tools that can be
used to try and better understand their data,'! and
to think carefully about how the problem a
researcher is asking fits into the two dimensions
of Figure 27.1. Is your question primarily about
connectivity? If so, cohesive blocking or pairwise
connectivity scoring might be most appropriate or
techniques that allow for overlapping cluster
membership. Is your question primarily about
boundary salience? Then you should think care-
fully about what constitutes boundaries in your
setting and attempt to identify the socially active
variables that define the boundaries. If your prob-
lem is simultaneously about boundaries and con-
nectivity, or if boundaries admit to no clear
external label, then consider an ensemble of dif-
ferent community detection routines and explore
resolution parameter limits thoroughly.
Fundamentally, it is up to researchers to ask them-
selves how specific community labels might
match or contradict their theoretical concerns —
only then are we able to substantively understand,
evaluate and benefit from these approaches.
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Notes

1 "You can't join Mathletes, it's social suicide!”
(Waters et al., 2004).
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2 Colour figures online. We note that there are
myriad sorts of generalised structures that can
be layered over categories, including many types
of hierarchies and chain-generalised exchange
systems.

3 Moody and White's (2003) original procedure
ignored induced graphs that would result in sin-
gle nodes or strings of cutsets, as these tend to
be uninteresting substantively — i.e., there is little
value in inducing a subgraph and further examin-
ing it if you already know that its composed solely
of cutnodes from the parent graph. Similarly,
complete cliques are often substantively interest-
ing but there’s no reason to go any further.

4 Terms differ significantly across research tradi-
tions here. In sociology and social network analy-
sis ‘cohesive peer groups’ or ‘social cliques’ or
‘crowds’ are commonly used to define socially
salient network subgroups. But ‘group’ and
‘clique’ have specific different meanings in math-
ematics and computer science, where much of
the recent work in this field has originated, and
has instead come under the heading of ‘commu-
nity detection’. Here we generally use the terms
‘peer group’ and ‘community’ interchangeably
unless the context requires greater specificity.

5 We have collected a set of comparisons in table
form here: people.duke.edu/~jmoody77/Cluster-
Comparisons.pdf

6 Numerous other such scores exist to be used
as objective functions for community detection
(see, e.g., the different options available in the
leidenalg python package, github.com/vtraag/
leidenalg).

7 Football example from Girvan and New-
man, 2002, available at www-personal.umich.
edu/~mejn/netdata/; Enron email example from
R-igraphdata.

8 These sorts of assignment changes and checks
are deceptively complicated. One might think
it simple to sort nodes to the set where most
of their peers are: if ego has mode of peers in
group j, make ego’s assignment ‘j’. But, in prac-
tice, assigning one node affects the fit of every
other node they are connected to, which leads to
a sequence of changes implied by every assign-
ment; a sorting that thus convergences on ‘best’
is not trivial.

9 In practice, this particular algorithm ends up being
quite close to leading eigenvector approaches, so
it's probably best to use that instead.

10 The Laplacian matrix is defined as: L = D-A; where
D is a matrix with (weighted) degrees on the
diagonal and Os elsewhere and A is the adjacency
matrix.

11 At the same time, we acknowledge that our per-
spective is not universally agreed with (see, e.g.,
Peixoto, 2022, for a very different opinion).
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