

pubs.acs.org/biochemistry Communication

Dynamic Nuclear Polarization Illuminates Key Protein—Lipid Interactions in the Native Bacterial Cell Envelope

James E. Kent, Bryce E. Ackermann, Galia T. Debelouchina,* and Francesca M. Marassi*

Cite This: Biochemistry 2023, 62, 2252-2256

ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Elucidating the structure and interactions of proteins in native environments is a fundamental goal of structural biology. Nuclear magnetic resonance (NMR) spectroscopy is well suited for this task but often suffers from low sensitivity, especially in complex biological settings. Here, we use a sensitivity-enhancement technique called dynamic nuclear polarization (DNP) to overcome this challenge. We apply DNP to capture the membrane interactions of the outer membrane protein Ail, a key component of the host invasion pathway of *Yersinia pestis*. We show that the DNP-enhanced NMR spectra of Ail in native bacterial cell envelopes are well resolved and enriched in correlations that are invisible in conventional solid-state NMR experiments. Furthermore, we demonstrate the ability of DNP to capture elusive interactions between the protein and the surrounding lipopolysaccharide layer. Our results support a model where the extracellular loop arginine residues remodel the membrane environment, a process that is crucial for host invasion and pathogenesis.

nderstanding how proteins interact with their environments at the atomic level is critical for gaining mechanistic biomedical insights. Nuclear magnetic resonance (NMR) is exceptionally well suited for this purpose as NMR signals are highly susceptible to the local environment of their corresponding sites and therefore capable of reporting on even very weak intermolecular interactions. Taking advantage of these capabilities, the growing fields of in situ and in cell NMR^{1,2} present new opportunities for examining protein structure and interactions in native biological contexts, including the investigation of protein aggregation in cellular lysates,3 the characterization of protein function in native membranes,4-6 and the description of protein-drug interactions in cells.² Despite these advances, however, a known limitation of NMR is its inherently low signal intensity. The extensive signal averaging times required to accumulate sufficient signal over noise can be impractical for complex samples such as native membranes and cells, and can compromise sample stability. Moreover, signals from sites undergoing chemical or dynamic exchange on the millisecond time scale are difficult to detect. These problems can be particularly limiting for solid-state NMR spectroscopy, which still predominantly relies on the observation of low sensitivity nuclei such as ¹³C and ¹⁵N, and can be sensitive to molecular motions that interfere with the recoupling and decoupling schemes employed in the experiments.^{7,8}

The development of high field dynamic nuclear polarization (DNP) for solid-state NMR spectroscopy, reviewed in refs 10–12, provides a key avenue for overcoming these challenges. In a DNP experiment, polarization is transferred from unpaired electron spins to nuclei, typically resulting in enhancements of 10–150 for biological samples. To this end, samples are doped with stable biradicals, and experiments are performed at 90–100 K under magic angle spinning (MAS) conditions. DNP has been used to investigate a wide range of systems, including

amyloid fibrils,^{3,13} nucleic acids and chromatin polymers,^{14–16} membrane-embedded proteins,^{4,7,17} and intact cells.^{18–20} Here, we use DNP-enhanced solid-state NMR spectroscopy to investigate the lipid interactions of the protein Ail, a virulence factor of the plague pathogen *Yersinia pestis*, in intact bacterial cell envelopes.

Previously, we showed that the Y. pestis surface protein Ail can be expressed in the outer membrane of E. coli cells for in situ solid-state NMR structural studies at atomic resolution. The solid-state NMR spectra from isolated bacterial cell envelopes, including both the inner and outer membranes and the interleaving peptidoglycan layer, reflect the eight-stranded β -barrel structure of Ail, and reveal sites that interact with bacterial outer membrane components and human serum factors. Moreover, since Ail expression confers some of its key virulence phenotypes to E. coli, the structural data from these samples can be correlated with activity. Our previous NMR studies of Ail in bacterial cell envelopes, nanodiscs, and liposomes, together with molecular dynamics (MD) simulations and microbiology assays combined with mutagenesis, all suggest that specific interactions occur between key basic side chains of Ail with the outer membrane lipopolysaccharide (LPS) that are important for virulence. 5,21 The data help explain how Y. pestis Ail and LPS coevolved to confer resistance to human innate immunity and act cooperatively to enhance pathogen survival in serum, antibiotic resistance, and cell envelope integrity. ^{22–25} Nevertheless, the NMR

Received: May 18, 2023 Revised: July 7, 2023 Published: July 17, 2023

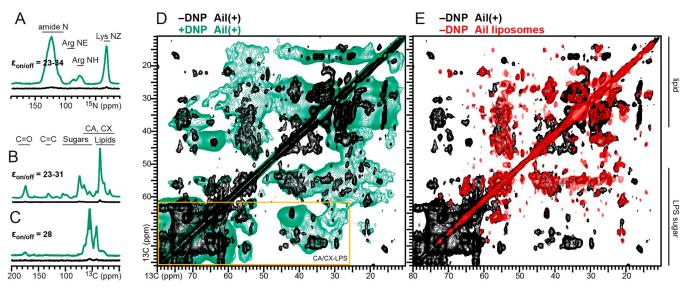


Figure 1. DNP signal enhancement of the 15 N and 13 C MAS solid-state NMR spectra of Ail in *E. coli* cell envelopes. (A–C) One dimensional spectra acquired with (A) 1 H $^{-15}$ N CP, (B) 1 H $^{-13}$ C CP, or (C) 1 H $^{-15}$ N $^{-13}$ C double CP, and with (green) or without (black) microwave irradiation. Signal enhancement factors ($\varepsilon_{\rm on/off}$) were measured as the ratio of signal intensity observed with and without microwave irradiation. (D, E) Two-dimensional 13 C/ 13 C correlation spectrum of Ail in *E. coli* cell envelopes acquired with DNP (green). The spectra from Ail in *E. coli* cell envelopes (black) and Ail in liposomes (red), acquired without DNP are shown for comparison and were described previously. The yellow rectangles mark LPS-related correlations.

Figure 2. (A) Two-dimensional NCA spectrum of 15 N, 13 C-Ail in *E. coli* cell envelopes acquired with DNP (green). Resolved assigned peaks are marked. Asterisks denote new unassigned peaks observed with DNP. The spectrum from Ail in *E. coli* cell envelopes (black) acquired without DNP is shown for comparison and was described previously. (B) Amino acid sequence of Ail. The eight β-strands (β1–β8), four extracellular loops (EL1–EL4), and three intracellular turns (IT1–IT3) are mapped above the sequence. There are eight Arg (blue), 11 Lys (red), and 20 Gly (orange) residues. (C) Snapshot of the Ail β-barrel obtained after 1.5 μs of MD simulation in a *Y. pestis* outer membrane depicting the eight Arg residues.

signals from the LPS binding sites of Ail have been challenging to detect, and this limits our understanding of the precise molecular mechanism for this interaction. In this study, we show that the DNP-enhanced solid-state NMR spectra of Ail in bacterial membranes provide direct evidence of contacts between key Arg side chains of Ail and the outer membrane LPS.

To examine the potential of enhancing the NMR signals from Ail, *in situ*, using DNP, we used a ¹⁵N/¹³C labeled Ail sample in intact *E. coli* cell envelopes. The sample was prepared, as previously described,⁵ by first growing cells in unlabeled media and then transferring them to isotopically labeled media supplemented with both rifampicin and IPTG. Rifampicin halts transcription of the *E. coli* genome and suppresses endogenous protein production, while IPTG

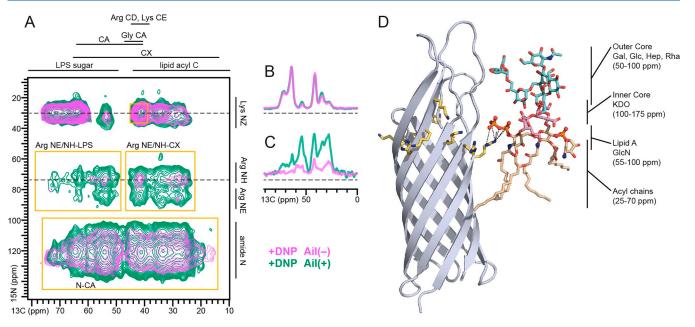


Figure 3. Two-dimensional NHHC spectra acquired with DNP. (A–C) Spectra were acquired for (¹⁵N,¹³C)-Ail(+) (green) or (¹⁵N,¹³C)-Ail(–) (pink) *E. coli* cell envelopes. Spectral regions of correlation are marked (gold boxes). One-dimensional slices (B, C) were taken at specific ¹⁵N chemical shifts (dashed lines) of side chain nitrogens from Arg and Lys. (D) Snapshot of Ail obtained after 1.5 μs of MD simulation in an *Y. pestis* outer membrane showing that Arg27 in the LPS-recognition motif establishes multiple interactions with lipid A of an LPS molecule. Characteristic ¹³C chemical shifts of the different LPS groups are marked. MD simulations were described previously.²¹

induces Ail expression.²⁶ This protocol of targeted isotopic labeling is critical for suppressing background NMR signals from other cellular components and for yielding high-resolution solid-state NMR spectra of Ail *in situ*.⁵ We then doped the sample with 10 mM of the nitroxide-based biradical AMUPol, and cryoprotected the sample in a mixture of 60% glycerol-d₈, 35% D₂O, and 5% H₂O. DNP experiments were performed at 600 MHz and 100 K, with a 12 kHz MAS frequency.

Comparison of the one-dimensional spectra obtained with and without electron polarization by microwave irradiation (Figure 1A–C) demonstrates that DNP yields significant signal enhancement factors ($\varepsilon_{\rm on/off}$) in the range of $\varepsilon_{\rm on/off}$ = 23–34 for 1 H– 15 N cross-polarization (CP), $\varepsilon_{\rm on/off}$ = 23–31 for 1 H– 13 C CP, and $\varepsilon_{\rm on/off}$ = 28 for 1 H– 15 N– 13 C double CP. DNP signal enhancement is also evident in the two-dimensional 13 C/ 13 C correlation spectrum (Figure 1D,E). Although the DNP spectrum exhibits significant line broadening due to the immobilization of ensembles of multiple conformational states at very low temperature (100 K), it compares very well with the spectrum obtained at high temperature (278 K) without DNP. The overall pattern of cross peaks is conserved, with detectable signals from Ala, Ile, Pro, Ser, Thr, and Val spin systems, indicating broadly similar side chain conformations.

Some signals from non-Ail cell envelope components are also enhanced, arising from natural abundance ¹³C and incorporation of some ¹³C from the labeled media. These present opportunities to probe specific interactions of Ail with the cell envelope. Previously, ⁵ we showed that several of these signals are visible only in the spectra of Ail(+) cell envelopes, but not Ail(+) liposomes, or Ail(-) cell envelopes prepared in an identical manner to the Ail(+) cell envelopes but from bacteria transformed with an empty plasmid lacking the *ail* gene (Figure 1E). This suggests that they reflect specific interactions of Ail with the bacterial membrane environment.

These resonances could correspond to contacts between His, Lys, Arg, and Tyr side chains of Ail (30–45 ppm) and LPS sugar moieties (60–75 ppm) or, alternatively, LPS and lipid contacts resulting from a general ordering effect of Ail on the outer membrane of *E. coli*.

The ¹⁵N-filtered two-dimensional ¹⁵N/¹³C correlation NCA spectrum acquired with DNP at 100 K also exhibits a significant signal enhancement (Figure 2A). It compares very favorably with its counterpart acquired at 278 K, notwithstanding the line broadening, with numerous identifiable signals that could be assigned based on their 278 K assignments. Twenty Gly peaks are expected based on the amino acid sequence of Ail (Figure 2B), and additional signals are observed in the ¹⁵N/¹³CA spectral region associated with Gly (¹³C, 42-48 ppm; ¹⁵N, 101-121 ppm), with one new signal (¹³C, 44.5 ppm; ¹⁵N, 121.0 ppm) tentatively assignable to Gly19 in the first extracellular loop of Ail, based on comparison with resonance assignments made in decylphosphocholine micelles.^{27–29} These results illustrate the greater amount of information that is available from NMR spectra obtained at low temperature. Moreover, the observation of discrete, resolvable peaks reflects relative order, within narrow conformational ensembles, for their corresponding protein sites rather than high conformational disorder.

Notably, the combined effects of DNP and low temperature also yield a significant enhancement of the signals from Arg side chains (¹³C, 40–45 ppm; ¹⁵N, 80–90 ppm) which are observable in the NCA spectra due to the similarity of the NE-CD and N-CA spin groups (Figure 2A). All eight Arg NE-CD signals are visible, in line with the eight Arg residues in the Ail sequence (Figure 2B). Three Arg are structurally buried in the barrel interior near the intracellular membrane surface (R34, R80, and R155), while the others are located at the extracellular membrane surface (R14, R27, R51, R52, and R110) where they can interact with LPS polar groups (Figure 2C). Here too, the observation of discrete signals at low

temperature indicates that their corresponding Arg sites must each adopt a relatively ordered conformational state, since the freezing out of multiple conformations for each site would be expected to result in extensive line broadening and loss of signal intensity. This result also indicates that the AMUPol polarization agent does not induce appreciable paramagnetic broadening in the NMR spectra.

To examine the potential of Ail-LPS contacts as a source of conformational order, we acquired two-dimensional NHHC spectra³⁰ where through-space contacts between ¹H bound to ¹³C and ¹⁵N nuclei are observed as correlations between their respective ¹³C and ¹⁵N nuclei (Figure 3A). We recorded spectra with DNP, at 100 K, for Ail(+) and control Ail(-) cell envelopes.

For Ail(+) compared to Ail(-) cell envelopes, appreciable signal increase is observed for correlations involving amide (15 N \sim 120 ppm) and guanidinium (15 N \sim 70–80 ppm) nitrogens, including Arg side chains, across the entire 13 C spectral region (13 C \sim 15–75 ppm). By contrast, the signal intensity involving amine (15 N \sim 30 ppm) nitrogens, including Lys side chains, is essentially identical for Ail(+) and Ail(-) samples, with the exception of correlations to CA carbons (54 ppm), which are somewhat more intense in Ail(+). Here, the abundant amine 15 N signal intensity in the Ail(-) cell envelopes may be attributed to amine groups from LPS. The dramatic difference in signal intensity for these regions can also be seen in one-dimensional 13 C slices extracted from the spectra (Figure 3B,C).

A closer inspection of the Arg guanidinium spectral region reveals that much of this signal reflects intraresidue contacts (CA \sim 55 ppm; CB \sim 32 ppm; CG \sim 28 ppm; CD \sim 44 ppm). The 13 C signals observed between 62 and 78 ppm, however, are consistent with the chemical shifts of the peptidoglycan layer, the LPS lipid A moiety (glucosamine, 55–100 ppm; acyl chain, 25–70 ppm) or the LPS core sugars. The unique presence of these correlations in the Ail(+) sample strongly suggests that they reflect interactions between Arg residues on the protein and the outer leaflet LPS. On the other hand, the negligible difference for the characteristic Lys amine NH signals between the Ail(+) and control Ail(-) suggests that interactions between Ail Lys side chains and LPS are not likely.

This is also consistent with our previous solution NMR and MD simulation data, which suggest key roles for Arg side chains in establishing specific hydrogen bonds with LPS. Finally, the overall decrease in the intensity of the amide N signals, which is uniform throughout the entire ¹³C chemical shift range, is attributed to the effective lack of isotopically labeled protein in the control Ail(–) samples. This is consistent with our previous results showing that Ail(–) bacteria, which are transformed with an empty plasmid lacking the *ail* gene, but otherwise grown in an identical manner as Ail(+) bacteria, show no evidence of protein signals when compared with the spectra of Ail(+) preparations.

In summary, we demonstrated that DNP-enhanced NMR spectroscopy, together with selective labeling strategies, can be used to characterize proteins in their native membrane context with high efficiency and specificity. Despite the line broadening that typically accompanies protein spectra at low temperatures, the spectra of the Ail outer membrane protein are of sufficient quality to allow the identification of many resolved cross peaks and the observation of new peaks that are absent in room temperature spectra. Of note, the new peaks that appear in the

Gly and Arg regions of the spectra, for example, display relatively narrow line widths, indicating that these sites have well-defined conformations at low temperature. The sensitivity enhancement afforded by DNP, on the other hand, has allowed us to observe potential interactions between the Ail Arg side chains and LPS of the outer membrane layer, indicating that these residues can play a fundamental role in the restructuring of the lipid environment around the protein. This was predicted from microbial assays where mutation of key Ail Arg sites resulted in disruption of membrane integrity, suppressed antibiotic resistance, and suppressed resistance to human serum, reflecting mutually constructive interactions between Ail and LPS and highlighting the importance of the Ail-LPS assembly as an organized whole, rather than its individual components.²¹ Our results showcase the ability of DNP-enhanced NMR spectroscopy to capture elusive interactions in native samples and to expand the size and complexity of biological systems that can be characterized at atomic resolution. We look forward to future studies that extend these capabilities to Ail in whole cells and to illuminating its interactions with relevant human host proteins.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.biochem.3c00262.

Detailed descriptions of the associated materials and methods (PDF)

Accession Codes

Ail: A0A5P8YI02.

AUTHOR INFORMATION

Corresponding Authors

Francesca M. Marassi — Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States; Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548, United States; orcid.org/0000-0003-2695-5844; Email: fmarassi@

Galia T. Debelouchina – Department Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States; orcid.org/0000-0001-6775-9415; Email: gdebelouchina@ucsd.edu

Authors

James E. Kent — Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States;
orcid.org/0000-0002-4856-525X

Bryce E. Ackermann – Department Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.biochem.3c00262

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

This study was supported by grants from the National Institutes of Health (R35 GM 118186 to F.F.M. and R35

GM138382 to G.T.D.) and the National Science Foundation (NSF MRI CHE 2019066 to G.T.D.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Marassi and Debelouchina lab group members for helpful discussions.

REFERENCES

- (1) Theillet, F. X. In-Cell Structural Biology by NMR: The Benefits of the Atomic Scale. *Chem. Rev.* **2022**, *122*, 9497–9570.
- (2) Luchinat, E.; Cremonini, M.; Banci, L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. *Chem. Rev.* **2022**, 122, 9267–9306.
- (3) Frederick, K. K.; Michaelis, V. K.; Corzilius, B.; Ong, T. C.; Jacavone, A. C.; Griffin, R. G.; Lindquist, S. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. *Cell* **2015**, *163*, 620–628.
- (4) Kaplan, M.; Narasimhan, S.; de Heus, C.; Mance, D.; van Doorn, S.; Houben, K.; Popov-Celeketic, D.; Damman, R.; Katrukha, E. A.; Jain, P.; Geerts, W. J. C.; Heck, A. J. R.; Folkers, G. E.; Kapitein, L. C.; Lemeer, S.; van Bergen En Henegouwen, P. M. P.; Baldus, M. EGFR Dynamics Change during Activation in Native Membranes as Revealed by NMR. *Cell* **2016**, *167*, 1241–1251.
- (5) Kent, J. E.; Fujimoto, L. M.; Shin, K.; Singh, C.; Yao, Y.; Park, S. H.; Opella, S. J.; Plano, G. V.; Marassi, F. M. Correlating the Structure and Activity of Y. pestis Ail in a Bacterial Cell Envelope. *Biophys. J.* **2021**, *120*, 453–462.
- (6) Takahashi, H.; Ayala, I.; Bardet, M.; De Paepe, G.; Simorre, J. P.; Hediger, S. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. *J. Am. Chem. Soc.* **2013**, *135*, 5105–5110.
- (7) Bajaj, V. S.; van der Wel, P. C. A.; Griffin, R. G. Observation of a Low-Temperature, Dynamically Driven Structural Transition in a Polypeptide by Solid-State NMR Spectroscopy. *J. Am. Chem. Soc.* **2009**, *131*, 118–128.
- (8) Ni, Q. Z.; Markhasin, E.; Can, T. V.; Corzilius, B.; Tan, K. O.; Barnes, A. B.; Daviso, E.; Su, Y.; Herzfeld, J.; Griffin, R. G. Peptide and Protein Dynamics and Low-Temperature/DNP Magic Angle Spinning NMR. *J. Phys. Chem. B* **2017**, *121*, 4997–5006.
- (9) Hall, D. A.; Maus, D. C.; Gerfen, G. J.; Inati, S. J.; Becerra, L. R.; Dahlquist, F. W.; Griffin, R. G. Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. *Science* **1997**, *276*, 930–932.
- (10) Chow, W. Y.; De Paëpe, G.; Hediger, S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. *Chem. Rev.* **2022**, *122*, 9795–9847.
- (11) Biedenbänder, T.; Aladin, V.; Saeidpour, S.; Corzilius, B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. *Chem. Rev.* **2022**, *122*, 9738–9794.
- (12) Jaudzems, K.; Polenova, T.; Pintacuda, G.; Oschkinat, H.; Lesage, A. DNP NMR of biomolecular assemblies. *J. Struct. Biol.* **2019**, 206, 90–98.
- (13) Bahri, S.; Silvers, R.; Michael, B.; Jaudzems, K.; Lalli, D.; Casano, G.; Ouari, O.; Lesage, A.; Pintacuda, G.; Linse, S.; Griffin, R. G. 1 H detection and dynamic nuclear polarization—enhanced NMR of A β $_{1-42}$ fibrils. *Proc. Natl. Acad. Sci. U. S. A.* **2022**, *119*, e2114413119.
- (14) Daube, D.; Vogel, M.; Suess, B.; Corzilius, B. Dynamic nuclear polarization on a hybridized hammerhead ribozyme: An explorative study of RNA folding and direct DNP with a paramagnetic metal ion cofactor. *Solid State Nucl. Magn. Reson.* **2019**, *101*, 21–30.
- (15) Conroy, D. W.; Xu, Y.; Shi, H.; Gonzalez Salguero, N.; Purusottam, R. N.; Shannon, M. D.; Al-Hashimi, H. M.; Jaroniec, C. P. Probing Watson-Crick and Hoogsteen base pairing in duplex DNA using dynamic nuclear polarization solid-state NMR spectroscopy. *Proc. Natl. Acad. Sci. U. S. A.* 2022, 119, No. e2200681119.

- (16) Elathram, N.; Ackermann, B. E.; Debelouchina, G. T. DNP-enhanced solid-state NMR spectroscopy of chromatin polymers. *J. Magn Reson Open* **2022**, *10*–*11*, 100057.
- (17) Kaplan, M.; Cukkemane, A.; van Zundert, G. C.; Narasimhan, S.; Daniels, M.; Mance, D.; Waksman, G.; Bonvin, A. M.; Fronzes, R.; Folkers, G. E.; Baldus, M. Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR. *Nat. Methods* **2015**, *12*, 649–652.
- (18) Narasimhan, S.; Scherpe, S.; Lucini Paioni, A.; van der Zwan, J.; Folkers, G. E.; Ovaa, H.; Baldus, M. DNP-Supported Solid-State NMR Spectroscopy of Proteins Inside Mammalian Cells. *Angew. Chem., Int. Ed. Engl.* **2019**, *58*, 12969–12973.
- (19) Schlagnitweit, J.; Friebe Sandoz, S.; Jaworski, A.; Guzzetti, I.; Aussenac, F.; Carbajo, R. J.; Chiarparin, E.; Pell, A. J.; Petzold, K. Observing an Antisense Drug Complex in Intact Human Cells by in-Cell NMR Spectroscopy. *Chembiochem* **2019**, *20*, 2474–2478.
- (20) Ghosh, R.; Xiao, Y.; Kragelj, J.; Frederick, K. K. In-Cell Sensitivity-Enhanced NMR of Intact Viable Mammalian Cells. *J. Am. Chem. Soc.* **2021**, *143*, 18454–18466.
- (21) Singh, C.; Lee, H.; Tian, Y.; Schesser Bartra, S.; Hower, S.; Fujimoto, L. M.; Yao, Y.; Ivanov, S. A.; Shaikhutdinova, R. Z.; Anisimov, A. P.; Plano, G. V.; Im, W.; Marassi, F. M. Mutually constructive roles of Ail and LPS in Yersinia pestis serum survival. *Mol. Microbiol.* **2020**, *114*, 510–520.
- (22) Parkhill, J.; Wren, B. W.; Thomson, N. R.; Titball, R. W.; Holden, M. T.; Prentice, M. B.; Sebaihia, M.; James, K. D.; Churcher, C.; Mungall, K. L.; Baker, S.; Basham, D.; Bentley, S. D.; Brooks, K.; Cerdeno-Tarraga, A. M.; Chillingworth, T.; Cronin, A.; Davies, R. M.; Davis, P.; Dougan, G.; Feltwell, T.; Hamlin, N.; Holroyd, S.; Jagels, K.; Karlyshev, A. V.; Leather, S.; Moule, S.; Oyston, P. C.; Quail, M.; Rutherford, K.; Simmonds, M.; Skelton, J.; Stevens, K.; Whitehead, S.; Barrell, B. G. Genome sequence of Yersinia pestis, the causative agent of plague. *Nature* 2001, 413, 523–527.
- (23) Deng, W.; Burland, V.; Plunkett, G., 3rd; Boutin, A.; Mayhew, G. F.; Liss, P.; Perna, N. T.; Rose, D. J.; Mau, B.; Zhou, S.; Schwartz, D. C.; Fetherston, J. D.; Lindler, L. E.; Brubaker, R. R.; Plano, G. V.; Straley, S. C.; McDonough, K. A.; Nilles, M. L.; Matson, J. S.; Blattner, F. R.; Perry, R. D. Genome sequence of Yersinia pestis KIM. *J. Bacteriol.* 2002, 184, 4601–4611.
- (24) Knirel, Y. A.; Anisimov, A. P. Lipopolysaccharide of Yersinia pestis, the Cause of Plague: Structure, Genetics, Biological Properties. *Acta Naturae* **2012**, *4*, 46–58.
- (25) Kolodziejek, A. M.; Hovde, C. J.; Minnich, S. A. Yersinia pestis Ail: multiple roles of a single protein. *Front Cell Infect Microbiol* **2012**, 2, 103
- (26) Almeida, F. C.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Americo, T. A.; Pais, A. P.; Leite, A.; Netto, L. E.; Giordano, R. J.; Valente, A. P. Selectively labeling the heterologous protein in Escherichia coli for NMR studies: a strategy to speed up NMR spectroscopy. *J. Magn. Reson.* **2001**, *148*, 142–146.
- (27) Ding, Y.; Fujimoto, L. M.; Yao, Y.; Plano, G. V.; Marassi, F. M. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. *Biochim. Biophys. Acta* **2015**, *1848*, 712–720.
- (28) Marassi, F. M.; Ding, Y.; Schwieters, C. D.; Tian, Y.; Yao, Y. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation. *J. Biomol. NMR* **2015**, *63*, 59–65.
- (29) Dutta, S. K.; Yao, Y.; Marassi, F. M. Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers. *J. Phys. Chem. B* **2017**, *121*, 7561–7570.
- (30) Lange, A.; Luca, S.; Baldus, M. Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. *J. Am. Chem. Soc.* **2002**, *124*, 9704–9705.
- (31) Laguri, C.; Silipo, A.; Martorana, A. M.; Schanda, P.; Marchetti, R.; Polissi, A.; Molinaro, A.; Simorre, J. P. Solid State NMR Studies of Intact Lipopolysaccharide Endotoxin. *ACS Chem. Biol.* **2018**, *13*, 2106–2113.