L)

Check for
updates

AutoScaleDSE: A Scalable Design Space Exploration Engine
for High-Level Synthesis

HYEGANG JUN, HANCHEN YE, HYUNMIN JEONG, and DEMING CHEN, University of
Illinois at Urbana-Champaign, USA

High-Level Synthesis (HLS) has enabled users to rapidly develop designs targeted for FPGAs from the behav-
ioral description of the design. However, to synthesize an optimal design capable of taking better advantage
of the target FPGA, a considerable amount of effort is needed to transform the initial behavioral descrip-
tion into a form that can capture the desired level of parallelism. Thus, a design space exploration (DSE)
engine capable of optimizing large complex designs is needed to achieve this goal. We present a new DSE
engine capable of considering code transformation, compiler directives (pragmas), and the compatibility of
these optimizations. To accomplish this, we initially express the structure of the input code as a graph to guide
the exploration process. To appropriately transform the code, we take advantage of ScaleHLS based on the
multi-level compiler infrastructure (MLIR). Finally, we identify problems that limit the scalability of existing
DSEs, which we name the “design space merging problem.” We address this issue by employing a Random
Forest classifier that can successfully decrease the number of invalid design points without invoking the HLS
compiler as a validation tool. We evaluated our DSE engine against the ScaleHLS DSE, outperforming it by a
maximum of 59X. We additionally demonstrate the scalability of our design by applying our DSE to large-scale
HLS designs, achieving a maximum speedup of 12X for the benchmarks in the MachSuite and Rodinia set.

CCS Concepts: « Hardware — Resource binding and sharing; High-level and register-transfer level
synthesis;

Additional Key Words and Phrases: High-Level Synthesis, design space exploration, static analysis

ACM Reference format:

HyeGang Jun, Hanchen Ye, Hyunmin Jeong, and Deming Chen. 2023. AutoScaleDSE: A Scalable Design Space
Exploration Engine for High-Level Synthesis. ACM Trans. Reconfig. Technol. Syst. 16, 3, Article 46 (June 2023),
30 pages.

https://doi.org/10.1145/3572959

1 INTRODUCTION

High-level Synthesis (HLS) has been widely adopted due to its ability to generate register-
transfer level (RTL) implementation of a hardware design from a high-level behavioral
description often described in a language like C/C++ [33]. This additional level of abstraction

This work is supported in part by the Xilinx Center of Excellence at UIUC, the BAH HT 15-1158 contract, and the NSF
A3D3 (Accelerated Artificial Intelligence Algorithms for Data-Driven Discovery) Institute.

Authors’ addresses: H. Jun, H. Ye, and H. Jeong, University of Illinois at Urbana-Champaign, 403 Coordinated Science Lab,
1308 W Main Street, Urbana IL, 61801 USA; emails: hgjun2@illinois.edu, hanchen8@illinois.edu, hyunmin2@illinois.edu;
D. Chen, University of Illinois at Urbana-Champaign, 250 Coordinated Science Lab, 1308 W Main Street, Urbana IL, 61801
USA; email: dchen@illinois.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1936-7406/2023/06-ART46 $15.00

https://doi.org/10.1145/3572959

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://orcid.org/0000-0002-7879-6884
https://orcid.org/0000-0002-6646-8146
https://orcid.org/0000-0001-7824-0993
https://orcid.org/0000-0002-3016-0270
https://doi.org/10.1145/3572959
mailto:permissions@acm.org
https://doi.org/10.1145/3572959
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572959&domain=pdf&date_stamp=2023-06-21

46:2 H. Jun et al.

allows hardware engineers to experiment with various design choices simply by changing the
structure of the high-level description and applying different compiler directives. Additionally,
this extra level of abstraction can also serve as a bridge [15, 16, 24, 25] between languages
such as the CUDA [23]/OpenCL [36] programming models and the FPGA implementation. As a
result, many applications have been successfully developed using HLS, such as neural network
accelerators [40], graph accelerators [6], video processing [22], and even general-purpose CPUs
based on the RISC-V ISA [32].

However, for engineers to effectively develop hardware implementations capable of taking full
advantage of the allocated resources, the high-level description of the application must capture the
desired level of parallelism. This can be done through the use of compiler directives that tell the
high-level synthesis compiler to generate RTL with the desired level of parallelism and memory
bandwidth. Nevertheless, the level of parallelism achieved through compiler directives alone is
often sub-optimal, which leads to under- or over-utilizing the available hardware resources.

Thus, to generate high-quality hardware using HLS, the designer must first transform the initial
algorithmic description of the application into a form more suitable for the HLS compiler. This
often means removing variable loop bounds, perfecting the loops, and restructuring the design
into sub-functions. This initial transformation alone usually requires a high level of understanding
of the HLS design process, and various documents and manuals [10, 14, 17] detail the best practices
when developing hardware using HLS.

This initial transformation process typically only scratches the surface in terms of achievable
performance. For example, an essential design technique is to strike a balance between the mem-
ory bandwidth and the level of parallelism. A well-known method is tiling the loops so that data
locality can be achieved [21]; an example of this is shown in Figure 2. However, this process can
be very time-consuming as it requires the designer to transform the code structure while preserv-
ing correctness. This process, often difficult and time-consuming, is further exacerbated when the
number of loops to be tiled is numerous, spanning across multiple functions.

Due to the large number of design choices that can be made, it is challenging for designers
to find a globally optimal solution. Such challenges warranted the development of design space
exploration engines that can automatically find the Pareto optimal solution [4, 5, 39, 41]. How-
ever, these implementations have scalability issues where they cannot search large designs with
multiple loops and functions.

As real-world HLS designs have multiple loops, arrays, and functions, the design space is expo-
nentially proportional to the number of tunable knobs. These knobs can be the compiler directives
that parallelize the loops or increase the bandwidth of memory elements (e.g., through array parti-
tioning). They can also be the tiling strategy of a loop. As can be expected, with the increase in the
number of variables, the scalability of Design Space Exploration (DSE) engines became a signif-
icant issue. An initial solution to this problem can be dividing and conquering the whole design
space. This approach aims to tame the exponential growth of the design space by exploring the
design space for individual loops, finding the Pareto optimal point that corresponds to a specific
tiling, loop parallelism, and memory bandwidth strategy.

However, one major flaw in this approach is the fact that the overall design cannot be divided
into independent design spaces. As real-world HLS designs have multiple loops that share re-
sources and communicate with each other over common memory elements, an optimal solution
for one sub-design space can lead to a worse global solution due to incompatibility between sub-
solutions. As a result, a combined global design point cannot simply be constructed from the sum
of the optimization strategies and performance estimations for each sub-design.

As a result of this discrepancy, a DSE engine that explores the design space using the theoret-
ical estimations will not be able to produce optimal results due to the vast majority of merged

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:3

points not being Pareto Optimal. The best solution to this problem is to evaluate all the design
points in the design space through an HLS compiler to estimate the performance characteristics
accurately. However, each HLS synthesis invocation is expensive in terms of runtime and compu-
tational intensity. Thus, if we were to apply this approach to large designs, the scalability of this
approach would be extremely limited due to the sheer number of design points that need to be
evaluated.

In the case of ScaleHLS DSE [39], to minimize the runtime of the design space exploration phase,
they introduced a quality of result estimator (QoR), eliminating the need to invoke the HLS
compiler for each design point. However, for large-scale designs, the disparity between the QoR
estimation results and the HLS compiler results varied by a wide range (detailed in Section 3.1).
Other works, such as Chimera [41], and AutoDSE [35], due to their reliance on the HLS com-
piler to evaluate every intermediate design points, required long DSE runtimes for up to 24 hours.
Additionally, all existing DSE works surveyed by the paper by Schafer and Wang [34] lack the
ability to transform code leaving a large portion of the potential performance increase on the
table.

1.1 A Scaleable Design Space Engine for HLS

As a solution to these problems, we present AutoScaleDSE, a scalable DSE engine capable of find-
ing the Pareto optimal solution under resource constraints for large real-world HLS designs. Our
design space exploration engine aimed to balance the time spent on design space exploration and
HLS compilation. By identifying a key limitation (Section 3) in accurately estimating the interme-
diate DSE results without invoking the HLS compiler, we were able to decrease the DSE runtime
to a couple of hours while also being able to evaluate thousands of design points. Additionally,
by taking advantage of existing works by the ScaleHLS [39] team, we were able to transform the
source code of the input design, further improving the quality of the final output design. Further-
more, by developing our DSE to be aware of the code structure of the input design, AutoScaleDSE
is able to identify critical dimensions of the design space, allowing us to focus on the aspects most
essential to the design (Section 4.3).

The high-level structure of our DSE engine is shown in Figure 1. Initially, during the “Source
Code Analysis” phase, a lexical analyzer analyzes the source code of the input design, extract-
ing key information regarding the design. Using this information, a graph representation of the
input design is constructed and used to drive the exploration process. Then, during the “Design
Space Exploration” phase, based on the information collected from analyzing the input design, we
explore the design space using a random forest classifier to predict the quality of the intermedi-
ate design points. Subsequently, in the “Design candidate Selection and Transformation” phase,
the most optimal design point is selected from the merged design space, and the corresponding
code transformations and compiler directives are applied and inserted. Finally, during the “Design
Candidate Evaluation and Optimization” phase, based on the quality of the final design candidate
by comparing the DSE and HLS compiler estimation results, we either export the final design or
further improve the candidate design. This final exploration phase is done through a genetic algo-
rithm in conjunction with the input design analysis information to efficiently evolve the quality
of the design with minimal HLS compiler invocations.

The rest of the article is organized as follows. Section 2 introduces the background for the algo-
rithms and tools used in our DSE engine. Section 3 provides experimental results that motivated
us to develop our DSE engine. Section 4 describes how the Random Forest algorithm and the
Evolutionary Algorithm are used to solve the design space merging problem. Section 5 brings ev-
erything together, detailing the building blocks in Figure 1. Finally, in Sections 6 and 7, we present
our evaluation results and conclude this article.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:4 H. Jun et al.

/Source Code Analysis)
- Loop, Array,
Input _| Lexical Function Data_| Graph Graph ROI ||
Design Analyzer Generation Partitioning
N <
[Design Space Exploration S Colored
SSZE’:S Sub-Design| . Graph
- DSE
RF Classifier based
Design Space Mergin
SR ElE ScaleHLS
Tiling Factors, DSE Sub-design
M J Perf. Estimation
erge
Desiggn S <
(Aaci ; - . N\
Space Design Candidate Selection and Transformation
Merged Space Apply
Transformations
| Sample
Design Space
Transformed ScaleHLS Sub-designs
Sub-Design APls
(. S/
/Design Candidate Evaluation and Optimization)
Output | _ Evaluate | HLS Perf. Estimation HLS __Design Candidate
Design Design | Compiler
Sub-Optimal Evolve Design Optimized
Pragmas Pragmas
J

|:| AutoScaleDSE :l ScaleHLS : HLS Compiler

Fig. 1. AutoScaleDSE overview.

2 BACKGROUND

2.1 Definition of a Sub-Design

The smallest quanta of our DSE engine is the loop band, which corresponds to the minimal sub-
design from which we build the global design space. In the context of the article, a sub-design refers
to a nested loop structure or loop band. For example, in Figure 2(a) a sub-design is the portion of
the code between the lines 6 and 14, and in the case of Figure 3(b) the sub-designs correspond to the
lines 6-13, 14-21, and lines 22-29; thus the 3mm benchmark has three sub-designs. Throughout
the article, we use the terms sub-design, loop nest, and loop band synonymously with each other.

2.2 ScaleHLS

ScaleHLS [39] is a next-generation HLS compilation flow developed using the multi-level com-
piler infrastructure (MLIR) [19]. The ScaleHLS project provides a large library of compiler
passes developed for Viavdo HLS that automate the transformation and optimization of code.

2.2.1 ScaleHLS Optimization Passes. ScaleHLS is able to represent and optimize high-level hard-
ware designs at three different abstraction levels, including graph, loop, and directive. At the graph

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:5

1 void kernel_gemm(float alpha, float beta,

2 float C[201[25], float A[20][30],

3 float B[301[25]) {

4 #pragma HLS array_partition variable=A cyclic factor=6 dim=2
5 #pragma HLS ARRAY_PARTITION variable=B cyclic factor=6 dim=1
6 #pragma HLS ARRAY_PARTITION variable=B cyclic factor=5 dim=2
7 #pragma HLS ARRAY_PARTITION variable=C cyclic factor=5 dim=2
8 for (int v5 = 0; v5 < 20; v5 += 1) {

9 for (int v6 = 0; v6 < 5; v6 += 1) {

10 for (int v7 = 0; v7 < 5; v7 += 1) {
11 #pragma HLS PIPELINE II=1
12 for (int v8 = 0; v8 < 5; v8 += 1) {
13 for (int v9 = 0; v9 < 6; v9 += 1) {
14 if ((v9 + (v7 % 6)) == 0) {
15 float v1@ = CLv5I[(v8 + (v6 * 5))1;
16 float v11 = v10 * beta;
1 void kernel_gemm(float alpha, float beta, 17 CLV5I[(v8 + (v6 * 5))1 = v11;
2 float C[20][25], float A[20]1[30], 18 3
3 float B[30][25]) { 19 float v12 = ALV5I[(V9 + (V7 * 6))1;
4 #pragma HLS array_partition variable=A complete dim=2 20 float v13 = alpha * v12;
5 #pragma HLS array_partition variable=B complete dim=1 21 float v14 = B[(v9 + (v7 * 6))I[(v8 + (v6 * 5))1;
6 for (int i = 0; i < 20; i++) { 22 float v15 = v13 * v14;
7 for (int j = 0; j < 25; j++) { 23 float v16 = CLv5][(v8 + (v6 * 5))1;
8 C[i][j] *= beta; 24 float v17 = v16 + v15;
9 #pragma HLS PIPELINE II=1 25 CLv5I[(v8 + (v6 * 5))] = v17;
10 for (int k = 0; k < 30; k++) { 26 }
1 CLi1[j] += alpha * A[il[k] * B[kI[jI1; 27 3}
12 } 28 }
13 } 29 }
14 } 30 3
15 3} 31 3}
(a) gemm small data set. (b) Tiled gemm small data set.

Fig. 2. Applying loop tiling to the gemm benchmark by a factor of (1,5,6).

level, the coarse-grained computation graph is legalized and split into a dataflow graph that can
be executed in a pipelined manner. At the loop level, each node of the graph is lowered to nested
loops, where loop transformations can be applied to improve data locality, parallelism, and pipeline
efficiency. Finally, at the directive level, HLS-specific directives and primitives are used to guide
the micro-architecture generation and improve the hardware performance appropriately.

2.2.2 ScaleHLS Quality of Result Estimator. In order to evaluate the benefit of different opti-
mization passes of ScaleHLS and guide the automated DSE, ScaleHLS provides a QoR estimator to
estimate the latency and resource utilization by analyzing the IR of the design. The QoR estimator
leverages an as-late-as-possible (ALAP) algorithm to schedule the operators in the IR to calcu-
late the clock cycles of the design. During the scheduling phase, the number of on-chip memory
banks is considered in order to schedule the memory load and store operations accurately. For
pipelined loop nests, loop-carried dependencies, and memory port conflicts, are honored when
determining the minimum achievable initiation interval of the pipeline.

2.2.3 ScaleHLS DSE. With the QoR estimator rapidly evaluating each design’s latency and re-
source utilization, ScaleHLS provides an automated DSE to search for the optimized design solu-
tions given the physical constraints of the targeted platform. The ScaleHLS DSE has two phases
of searching: (1) local optimizations that search for the Pareto frontier in the area-latency space of
each loop nest in the targeted design; (2) global optimization based on a dynamic programming al-
gorithm that merges the Pareto frontier of every loop nest in order to generate the Pareto frontier
of the whole design. With the discovered Pareto frontier, the DSE engine is able to determine the
optimized design points with the resource constraints.

2.24 Example Case. The example shown in Figure 2(a) is of the Polybench [29] gemm kernel
using the small dataset (dataset refers to the problem size; changing the dataset changes the size of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:6 H. Jun et al.

void kernel_3mm(float A[40][60], float B[60][50],

1
2 float C[501[80], float D[80][70],
3 float E[40][50], float F[50][70],
4 float G[401[701) {
5 int i, j, k;
6 for (i = 0; i < 40; i++) {
7 for (j = 0; j <50; j++) {
8 E[i103] = o;
1 void kernel_2mm(float alpha, float beta, 9 for (k = 0; k < 60; ++k) {
2 float tmp[40][50], float A[401[70], 10 ECi10j] += ALilCk] * BLKIL31;
3 float B[701[50], float C[501[80], 1 }
‘ float D[401[801) { 1 3
5 int i, j, k; 13 }
6 for (i = 0; i < 40; i++) { 14 for (i = 0; 1 < 50; i++) {
7 for (j = 0; j < 50; j++) { 15 for (j = 0; j <70; j++) {
8 tmpLi]L3] = 0; 16 F[i103] = o;
9 for (k = 0; k < 70; ++k) { 17 for (k = 0; k < 80; ++k) {
10 tmp[i][j] += alpha » A[iJ[k] * BLkI[jI; 18 FLi1C3] += CLilCk] * DCKIC]I1;
1 } 19 }
12 } 20 3
13 3 21 3
14 for (i = 0; i < 40; i++) { 22 for (i = 0; 1 < 40; i++) {
15 for (j = 0; j < 80; j++) { 23 for (j = 0; j <70; j++) {
16 D[i][j] *= beta; 24 GLil[j] = o;
17 for (k = 0; k < 50; ++k) { 25 for (k = 0; k < 50; ++k) {
18 DLilC3] += tmp[il[k] * CCkIL]I1; 26 GLil[j] += E[i1Ck] = FLKIC31;
19 } 27 }
20 } 28 3
21 3 29 3
22 3 30 3
(a) 2mm small data set. (b) 3mm small data set.

Fig. 3. 2mm and 3mm Polybench benchmarks.

the arrays and loops). In the example shown, the loop structure of the gemm benchmark is initially
not perfect. A perfect loop structure is defined as a loop structure where only the innermost loop
has contents [14]. Thus, due to line 8 of Figure 2(a), this example does not have a perfect loop
structure. Various reference manuals recommend this loop structure [14, 17] as it allows for further
compiler optimization in the HLS process. Conventionally to perfectivize this example, the user
has to rewrite the code manually. However, through ScaleHLS the code transformation process
from Figure 2(a) to (b) is as simple as applying the “-affine-loop-Perfectize” and “-affine-loop-tile”
compiler passes.

2.3 Loop Tiling

Loop tiling or loop blocking [38] is a widely used compiler technique that improves the data locality
of various algorithms. This concept can also be used in HLS designs to improve parallelism and
data locality. Figure 2 shows an example where the gemm [29] kernel (Figure 2(a)) has been tiled
by a factor of (1,5,6). Corresponding to the tiling factor of (1,5,6), the loops at lines 7 and 10 of
Figure 2(a) have been split into the loops at lines 9, 10, 12, and 13 of Figure 2(b). Specifically, the
loop at line 7 of Figure 2(a) has been transformed to be represented by the two loops at lines 9 and
12 of Figure 2(b), where the inner point loop (line 12 of Figure 2(b)) has the trip count corresponding
to the tiling factor. The same is true for the loop at line 10 of Figure 2(a) that has been transformed
into the loops at lines 10 and 13 of Figure 2(b). Note that the loop at line 6 of Figure 2(a) with a
corresponding tiling factor of 1 is not transformed into a multi-loop representation in Figure 2(b)
only represented by the single loop at line 8 of Figure 2(b).

2.3.1 Loop Tiling—Degree of Parallelization. Conventionally, without loop tiling, the example
in Figure 2(a) can only be parallelized by applying the loop pipeline or loop unroll HLS compiler
directives to either of the three for-loops in the sub-design. Furthermore, if the “pipeline” directive
is used, the “unroll” directive becomes redundant for other loops in the loop nest. For the gemm

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:7

example in Figure 2(a), as the loop at line 7 has been pipelined, the pipeline directive implicitly
unrolls the portion of the code within the scope of the loop [14]. In this example, the loop at line
10 of Figure 2(a) will be fully unrolled. However, if we wish to increase the kernel’s parallelism,
we cannot simply unroll the other loops in the loop nest using the unroll pragma. Take the
example where the unroll pragma with a factor of 2 is applied to the parent loop of the pipeline
loop of line 7 of Figure 2(a). This “unroll” compiler directive instructs the HLS compiler to create
two instances of the pipelined loop. As a result, the two instances must simultaneously be able
to read the B[k][j] variable as the values are invariant to the unrolled outer “i” loop at line 6 of
Figure 2(a), which is not possible without the restructuring of code.

On the other hand, through loop tiling, HLS designs can be parallelized in a more fine-grained
manner. For example, in Figure 2 the same level of parallelism of 30 is achieved for both cases by
applying the compiler directives as shown. Suppose then we wish to increase the level of paral-
lelization. In that case, for the non-tiled version, the loop at line 7 has to be pipelined, only being
able to control the level of parallelism by adjusting the unroll factor of the loop at line 7 while the
loop at line 10 is fully unrolled. However, if we were to tile the loops, the level of parallelism can
be adjusted by simply changing the tiling factors.

2.3.2 Loop Tiling—Data Locality. Loop tiling also has the added benefit of optimizing for mem-
ory. For example, in the instance in Figure 2(a), due to the pipelined loop being fully unrolled, the
array partition scheme should be completely partitioned to meet the memory bandwidth require-
ments. While for the tiled case, due to greater data locality, the array partitioning can be minimized
for each array. This locality is beneficial for HLS designs due to not having to partition arrays by
a large factor, as large array partition schemes will lead to sub-optimal designs due to complex
interconnects and over-utilization of memory resources [17].

2.4 Definition of Our Design Space

Traditional HLS DSE tools aim to search a vast design space that is comprised of “loop-pipeline,”
“loop-unroll,” and “array-partition,” each having corresponding factors that have to be fine-tuned.
However, this process can often lead to illegal combinations of directives where, for example, an
“unroll” directive is applied to a parent loop of a “pipelined” loop (explained in Section 2.3.1). Thus,
an HLS DSE engine has to be aware of the legal combination of the directives. As a side effect of
this legal combination rule, the degree of parallelism that can be achieved through directives alone
is limited, as explained in Section 2.3.

The ScaleHLS team proposed a different way of capturing the desired level of parallelism
through loop tiling. By implicitly always pipelining the tiled loops as shown in Figure 2, we can
concisely capture the level of parallelism we wish to achieve. This is further aided by systemati-
cally finding the best array partition scheme corresponding to the selected tiling strategy using
the ScaleHLS’ -array-partition API based on the research by Zhao et al. [42]. As a result of these
measures, we can concisely capture our desired design using only the tiling strategy and initiation
interval of the pipeline compiler directive (pipeline-ii). The conciseness stems from how the tiling
strategy implicitly captures loop unrolling and array partitioning. For the “gemm” and “3mm” ker-
nels, the method for how the design points are encoded is shown in Table 1. Throughout the rest
of the article, we use the same method of capturing the level of parallelism through tiling factors,
improving upon the method initially developed by the ScaleHLS team.

3 DESIGN SPACE MERGING

The design space of real-world HLS applications is exponentially vast, proportional to the number
of tunable knobs. This complexity is further compounded by the fact that each loop band has its

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:8 H. Jun et al.

Table 1. Example DSE Outputs

(a) gemm kernel in Figure 2(b). (b) 3mm kernel in Figure 3(b).
Target Knob Name Factors Pipeline-ii Target Knob Name Factors Pipeline-ii
Tiling Strategy | Sub-design 1 (1,5,6) 1 Tiling Strategy | Sub-design 1 (1,25,5) 10
Tiling Strategy | Sub-design 2 (25,1,5) 25
Tiling Strategy | Sub-design 3 (5,5,5) 16

own set of tunable knobs. Examples of these knobs may include the compiler directives loop unroll,
loop pipeline, and array partition, each with a corresponding factor.

As a result, a DSE engine that targets large designs must either shrink the number of knobs or
partition the design space into sub-design spaces. As we aimed to develop a scalable DSE engine,
we opted for the latter approach, partitioning the whole design space into sub-design spaces. In ad-
dition, rather than selecting the optimal combinations of HLS compiler directives, we captured the
desired level of parallelism of a design using the tiling strategy mentioned in Sections 2.3 and 2.4.

The ScaleHLS [39] team has demonstrated favorable results by capturing the level of parallelism
of a single sub-design using the tiling strategy. Through compiler passes, ScaleHLS can unroll and
pipeline the target design to the desired degree of parallelism based on the tiling strategy. As a
result, ScaleHLS DSE can better utilize the given resource constraints due to having a finer control
of the level of parallelism, leading to a comparatively higher quality of the final design.

However, although the “tiling” approach was very successful for single sub-design (gemm
Figure 2(a)) kernels, when the target design consisted of multiple sub-designs that were sequential
and logically linked to each other, the final results were not ideal. Through our experiments, we
learned that this was due to the incompatibility of tiling strategies between sub-designs. In this
section, we introduce and explore the shortcomings of the tiling strategy method. In Section 3.1,
we introduce the method of generating the design space for each sub-design while also evaluating
the QoR estimator of ScaleHLS. Subsequently, Section 3.2 explains how the sub-design spaces are
merged to build a global design. Finally, in Sections 3.3.1 and 3.3.2, we present and analyze the
design space merging problem that limits the overall quality of the final design.

3.1 Sub-Design Design Space Generation

To generate the initial design space for each sub-design, we used the ScaleHLS DSE engine due to
its speed and its ability to optimize code using compiler passes automatically. ScaleHLS DSE is a
tool included with the ScaleHLS package that can explore the design space consisting of compiler
passes, tiling strategies, and conventional compiler directives.

By utilizing ScaleHLS DSE, we can take advantage of the compiler passes developed by the
ScaleHLS team (such as loop perfectization, remove variable bound, and loop order optimization),
allowing for the initial code structure not to be HLS optimal (having variable bounds and non-affine
loops). Additionally, through the QoR estimator, ScaleHLS DSE can explore a massive amount of
design points in a short amount of time, not having to evaluate the design points using the complete
HLS compilation process. Figure 4(a) plots 1,826 design points explored by ScaleHLS DSE for the
gemm [29] kernel (Figure 2(a)), the runtime for the DSE being under 30 seconds. Consistent with
the DSE procedure outlined in the ScaleHLS paper [39], the exploration points are clustered close
to the Pareto frontier, demonstrating the effectiveness of the exploration process.

Additionally, we evaluated the QoR estimator’s accuracy by comparing the QoR estimation re-
sults to Vivado HLS for 85 Pareto optimal points. In Figure 4(b), it can be seen that the accuracy of
the QoR estimator is comparable to Vivado HLS. On average, the latency estimation results of the
QoR estimator had an error rate of 1.8%, while the DSP utilization estimation results had an error

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:9

& % 200
© w0 :
1] 150
300
100
200
100 so
o
o . Wil s .
0 5000 10000 15000 20000 25000 30000 o 5000 10000 15000 20000 25000 30000
Cycle Cycle
* Points Evaluated ® QoR e Vivado HLS
(a) Design Points Explored by ScaleHLS DSE. (b) QoR accuracy evaluation to Vivado HLS.

Fig. 4. Evaluation of ScaleHLS DSE engine and QoR estimator.

rate of 94%. Notably, for each design, the DSP utilization estimation results between ScaleHLS QoR
and Vivado HLS were off by a constant factor. This was because although the ScaleHLS QoR esti-
mator could accurately predict the DSP utilization of a single sub-design, its accuracy diminished
due to the resource sharing between sub-designs.

3.2 Sub-Design Design Space Merging

Design space merging refers to the merging of sub-design spaces to create a global design space. A
typical method used is as follows. Initially, people can generate the sub-design spaces. Thereafter,
they build the global design space by merging sub-designs step by step. During merging, they
assume that a point’s merged latency and resource utilization is the sum of each sub-design’s
latency and resource utilization, and they also assume that resources between sub-designs are not
shared.

Figure 5 illustrates the merging of the sub-designs for the 3mm [29] (Figure 3(b)) benchmark
following the aforementioned merging method. The sub-design spaces correspond to Figures 5(a),
(b), and (c), which are merged to create Figure 5(d). As an example, to create the global design point
with a latency of 27,229 cycles utilizing 289 DSPs, we would combine the design points (7,208 cycle,
84 DSP) + (12,011 cycle, 117 DSP) + (8,010 cycle, 88 DSP). We note that after merging, non-Pareto
optimal points are pruned.

Even though the ScaleHLS QoR estimator can estimate the resource sharing within a single
sub-design, the QoR estimator is unable to estimate resource sharing when the number of sub-
designs is greater than one due to the dramatic increase in complexity of the design space. For this
reason, the ScaleHLS team employed the merging method. This method is shown in the example
above, where we estimate the merged design space’s resource utilization simply by summing each
sub-design’s resources.

3.3 Design Space Merging Problem

The performance characteristics of a merged design point did not necessarily correspond to
the more accurate performance estimations obtained from synthesizing the merged design. To
evaluate how the merged Pareto optimal points translate to the merged design space, we evaluated
300 merged points by synthesizing them using Vivado HLS. The results shown in Figure 6(a)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:10 H. Jun et al.

600 @

500 &
.
400 ® 400 &
.
.
% . v 300 d
300 ®
a .
' .
200 ® 200 ®
3
100 100 ‘
0 ;—.- cee o o o 0 @cs oo
o 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 [200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000
Cycle Cycle
(a) Sub-design 1. (b) Sub-design 2.
600 700
1 3
600
500 &
500
w0 e
’ 400
a
vy 300 [%)
Y o
. 300
200 ®
i 200
100 ‘
100
0 oo 000 . . . 0 000 0 0 o '} . 'y .
o 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 o 500000 1000000 1500000 2000000 2500000 3000000
Cycle Cycle
(c) Sub-design 3. (d) Merged Design Space.

Fig. 5. 3mm sub-design spaces and merged global design space.

were produced using the 3mm [29] Polybench computational kernel (Figure 3(b)) using the small
dataset. For each loop band, the sub-design is explored, and a Pareto curve is generated using
the ScaleHLS DSE. Afterward, we merge the three Pareto curves to produce a computed merged
Pareto curve shown in Figure 6(a) in blue. Next, we evaluate each blue point using Vivado HLS,
and the results are the points in orange in Figure 6(a). Figure 6(a) plots 327 data points that we
gathered using this approach.

Our experiments showed the fallacy of assuming that a merged sub-design point’s performance
and resource utilization is the sum of the sub-design points’ performance and resource utilization.
Additionally, not all merged points could be synthesized by Vivado HLS as the points at (0, 0)
correspond to failed HLS synthesis points.? The results tell us that we cannot merge Pareto points
using the traditional method and assume that the strategies associated with the merged point will
actually translate into real-world performance. If we do so, we easily run into making the error of
choosing a theoretical Pareto optimal point that is, in truth, far from the actual Pareto frontier or,
in the worst case, unsynthesizable.

IThe small dataset is a dimension of the Polybench [29] benchmark, where the size of the dataset defines the size of the
arrays and loops of the particular benchmark.
%For the example presented in Figure 6(a), six design points failed HLS syntheses, or approximately 2%.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:11

"‘# /
W\’

a a
% &
[=] o

300 300

o s & a
200 ‘ d “.'-° “ & . ° 200
“ & % E [-
[] ° o .
100 L 100
[o .
oe o
[5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 [5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Cycles Cycles
e Traditional e Vivado HLS e Traditional e Vivado HLS
(a) Traditional Pareto Front Merging. (b) Enhanced Pareto Front Merging.

Fig. 6. Comparison between Traditional and Merged Pareto optimal points evaluated using Vivado HLS.

3.3.1 Design Space Merging Problem —Initial Analysis. To understand what might be causing
this disparity between theoretical and HLS compiler estimated performance results, we evaluated
four merged design points using the 2mm [29] Polybench benchmark (Figure 3(a)) using the small
dataset. The 2mm kernel was useful for our study due to the simplicity of the design space, as
the benchmark only has two sub-designs. Using this to our advantage, we experimented with the
merging of sub-design points with different tiling strategies. The results are summarized in Table 2.

Using the methodology outlined in Sections 2.3 and 2.4, the tiling factor of (5,10,1)+(10,10,1)
translates the code in Figure 3(a), where the first loop band consisting of three nested loops is
transformed into five loops by their corresponding factor; the same is true for the second loop.
Additionally, because the “pipeline” directive is applied after the third loop, the inner three loops
are subsequently unrolled.®> Thus, the multiple of the tiling factors effectively refers to the de-
gree of parallelism of a loop band. Additionally, as mentioned in Section 2.4, the array partition
scheme that best fits the selected tiling strategy is automatically found using the ScaleHLS’s -array-
partition API based on the research by Zhao et al. [42]. In cases where an array is shared between
sub-designs, the -array-partition API automatically selects the greater partitioning scheme.

The results in Table 2 show that when combining sub-designs that have been tiled, not only
do the tiling factors matter, but also the ordering of the factors must be taken into account. For
loop1, when it is synthesized independently of loop2, the latency for the following tiling factors
(5,10,1) and (10,5,1) are both 2,815 cycles. As for loop2, the independent latency values for the tiling
factors (10,10,1) and (8,16,1) are 1,620 and 1,270, respectively. Finally, the target pipeline ii for all
experiments is the same at 1.

The first three experiments behaved as predicted when we combined the independent sub-
design into a merged design. The total latency was the sum of the individual sub-designs. Interest-
ingly, loop2’s performance degraded considerably in “experiment 4.” The fourth experiment only
differed from “experiment 2” regarding the order of the tiling strategy of loop1. Even though “ex-
periment 4” had the same level of parallelism as “experiment 2,” when they were combined using
a different ordering of tiling strategies, loop2 could not achieve a pipeline ii = 1 and instead ended
up with an ii of 8. Another interesting observation is the results of experiments 1 and 3, in which
even though the order of the tiling strategy was different, the overall latency remained the same.

3We have omitted the transformed code as the compiler-based transformation automatically unrolls the pipelined loop,
making the final code thousands of lines long.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:12 H. Jun et al.

Table 2. Vivado HLS Results of 2mm using Different Tiling Strategies

Tiling Strategy | loop 1cyc. loop2cyc. Act. Pipeline-ii Total cyc.
Exp.1 (5,10,1) + (10,10,1) 2,815 1,620 M- (1) 4,435
Exp.2 (5,10,1) + (8,16,1) 2,815 1,270 1) - (1) 4,085
Exp.3 (10,5,1) + (10,10,1) 2,815 1,620 (1)- (1) 4,435
Exp.4 (10,5,1) + (8,16,1) 2,815 10,031 (1)-(8) 12,846

Table 3. Tiling Strategy and Array Partition Scheme for Experiments 2 and 4

(a) Experiment 2. (b) Experiment 4.

Target Knob Name Dims. Factors Type/ii Target Knob Name Dims. Factors Type/ii
Tiling Strategy | Sub-design1 N/A (5,10,1) ii-1 Tiling Strategy | Sub-design1 N/A (10,5,1) ii-1
Tiling Strategy | Sub-design2 N/A (8,16,1) ii-1 Tiling Strategy | Sub-design2 N/A (8,16,1) ii-1
Array Partition tmp 1 8 cyclic Array Partition tmp 1 10 cyclic
Array Partition tmp 2 10 cyclic Array Partition tmp 2 5 cyclic
Array Partition A 1 5 cyclic Array Partition A 1 10 cyclic
Array Partition B 2 10 cyclic Array Partition B 2 5 cyclic
Array Partition C 2 16 cyclic Array Partition C 2 16 cyclic
Array Partition D 1 8 cyclic Array Partition D 1 8 cyclic
Array Partition D 2 16 cyclic Array Partition D 2 16 cyclic

3.3.2 Design Space Merging Problem—Closer Analysis. In the previous section, we demonstrated
two experiments where the performance characteristics are drastically different depending on the
tiling strategies. To better understand the cause of this degradation in performance, we analyzed
the synthesized design using the “Analysis” tab in Vivado HLS. Additionally, we compared the
automatically generated array partition schemes between experiments 2 and 4, summarized in
Table 3.

Although we expected that the sub-design 2 of “experiment 2” and “experiment 4” would have
the same latencies, the synthesis produced different designs with differing characteristics. Upon
closer inspection of the synthesized design, we found that sub-design 2 of “experiment 4” only
achieved a pipeline-ii of 8, partly due to being unable to read the “tmp” array simultaneously from
the on-chip memory element. This was in contrast to “experiment 2, where the same sub-design
2, paired with sub-design 1 with a tiling strategy of (5,10,1), could start reading the “tmp” array
simultaneously. From the analysis tab alone, for “experiment 4,” the synthesized design appeared
unable to read from the on-chip buffers due to a lack of available memory ports, analogous to the
case when a design is synthesized with an insufficient number of memory ports.

The lack of “apparent” insufficient memory ports had knock-on effects on subsequent operations
within sub-design 2. Most notably, the 128 read operations of array “tmp” (read simultaneously for
experiment 2) could not be simultaneously read in the case of “experiment 4” but had to be consec-
utively read across four control cycles. As a result, subsequent operations could not be scheduled
in parallel and needed additional control cycles, leading to the degradation in performance. Curi-
ously, this degradation in performance did not subside simply by increasing the number of memory
ports; increasing the array partition factor did not lead to an increase in performance.

Theoretically, the automatically generated array partition schemes appear sufficient for the tar-
get design. For example, for experiment 4, with a tiling strategy of (10,5,1) + (8,16,1), the shared
memory element “tmp[i][j]” should have an array partitioning scheme of (dim = 1, factor = 10) and
(dim = 2, factor = 5) for sub-design 1 corresponding to unrolling the first and second loop in lines 6
and 7 in Figure 3(a) by a factor of 10 and 5 (method outlined in Section 2.3). While for sub-design 2,
as the tiling strategy (8,16,1) corresponds to unrolling the first and second loop in lines 14 and 15
in Figure 3(a) by a factor of 8 and 16, the array partition scheme for “tmp[i][k]” should be (dim = 1,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:13

Table 4. Classifier Data Preprocessing and Accuracies

(a) Example of tiling data preprocessing. (b) Accuracy of various classification methods.
Input (1.1,1.2,1.3) + (2.1,2.2,2.3) + (3.1,3.2,3.3) Classification Method Accuracy
RFC Model 1 RFC Model 2 RFC Model 3 GCD 56.39%
Grouped | (1.1,2.1,3.1) (1.2,2.2,3.2) (1.3,2.3,3.3) Linear Classifier 53.84%
Randomized | (2.1,1.1,3.1) (3.2,1.2,2.2) (2.3,3.3,1.3) Raw RF Classifier 61.22%
Grouped RF Classifier: Vote > 1 84.61%

Grouped RF Classifier: Vote > 2 72.99%
Grouped RF Classifier: Vote > 3 44.71%
Randomized RF Classifier: Vote > 1 97.03%
Randomized RF Classifier: Vote > 2 82.56%
Randomized RF Classifier: Vote > 3 44.15%

The XY notation in Table 4(a) refers first to the sub-design designation (X) and second to the specific loop number (Y)
within the sub-design.

factor = 8).* When combined, as we select the larger partitioning factor, the final array partitioning
scheme for “tmp” (dim = 1, factor = 10) and (dim = 2, factor = 5) (summarized in Table 3(b)) should
be sufficient.

The discrepancy between theory and experimental data hints toward a more fundamental reason
for the incompatibility between specific tiling strategies. We theorized that depending on the tiling
strategy, certain sub-design implementations are compatible or not compatible with other sub-
design implementations. From the limited analysis above, we devised two solutions to the sub-
design merging problem. Firstly, we aimed to find a method that can predict the compatibility of
sub-designs without invoking the HLS compiler. Secondly, we aimed to find a way to increase sub-
design compatibility by minimally modifying the overall design after sub-design merging. In the
next section, we present our solutions that significantly increase the overall performance of HLS
designs that contain more than one sub-design.

4 ENHANCED DESIGN SPACE MERGING

The experiments conducted in Section 3 suggest that the order of the tiling strategy, as well as
the tiling factors, are an important metric to consider when combining sub-design spaces. Upon
careful deliberation, this is to be expected as the tiling strategy implicitly captures the degree of
parallelism and memory bandwidth of a design (by using the “-array-partition” ScaleHLS API, the
array partition scheme is algorithmically built based on the tiling strategy). Thus, by specifying
a tiling strategy, we constrain the design to a set of resources. It is then up to the HLS compiler
to find the optimal design within the given constraints. However, due to the fact that the main
operations of high-level syntheses, such as task scheduling and resource binding being NP-hard,
the results from the heuristic algorithms may not always be optimal. As a result, certain tiling
strategies work well with each other while others do not, as shown in Figure 6(a).

Thus, our goal was to predict the likelihood of whether two sub-designs will be compatible
with each other. Additionally, we devised a method for complementing the prediction method.
We accomplished this initial goal using a random forest classifier that could, without invoking
the HLS compiler, predict the compatibility of two sub-designs. Subsequently, to account for the
unavoidable mispredictions of our classifier, we use a genetic algorithm to enhance the quality of
our final design by optimizing critical compiler directives. In this section, we present our classifier
and our genetic algorithm-based approach.

% As the second loop in line 15 in Figure 3(a) does not generate indices for the second dimension of the “tmp” array, parti-
tioning of the second dimension is unnecessary.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:14 H. Jun et al.

4.1 Predicting Sub-Design Compatibility using a Random Forest Classifier

Our initial goal was to prune the non-optimal Pareto points that existed in the design space shown
in Figure 6(a). These points correspond to the “degraded” design in experiment 4 mentioned in
Section 3.3.2. However, to be able to systematically search the design space in a reasonable amount
of time, we could not rely on the HLS compiler to test for the compatibility of the sub-designs as
each HLS invocation is computationally intensive and time-consuming.

Thus to solve this problem, we generated 2,601 different tiling combinations for the “3mm [29]
small dataset Kernel” and checked their compatibility using Vivado HLS. Out of the 2,601 data
points, 59% were valid compatible points while 41% were non-valid incompatible points.” We se-
lected the 3mm kernel as it was both small in the respect that we can generate the ground truth
dataset in a reasonable amount of time while also being complex enough that insights gained from
the dataset are generally relevant. The 3mm kernel is a reasonable estimation of interconnected
loops that exist in many applications, such as the matrix multiplication in convolutional neural
nets or the Floyd-Warshal [18] algorithm used in many graph-based applications.

Initially, we tried to analytically find a pattern between the tiling strategies using the greatest
common divisor (GCD) method. However, this approach proved to be barely better than ran-
domly guessing. Subsequently, we experimented with machine learning, initially starting with a
linear classifier but ultimately using the Random Forest Classifier because of the classifier’s high
accuracy of 97.03% in predicting the compatibility of sub-designs.

4.1.1 The Greatest Common Divisor Method. Initially, we attempted to predict the compatibility
of tiling strategies based on the GCD of the product of the tiling factors by pruning points when
the GCD is less than 3. For example, in experiment 1 in Table 2, we first find the products of the
tiling factors, which in this case are 50 and 100, corresponding to sub-designs 1 and 2. As the GCD
between 50 and 100 is 50, we keep experiment 1. However, for experiment 4, as the GCD between
50 and 128 is 2, we prune experiment 4. However, this approach had a lot to desire as this approach
pruned valid points such as experiment 2 that also had a GCD of 2. We quickly abandoned this
approach when we found that when we applied the the GCD method to the 2,601 dataset, the
accuracy of the GCD method was only 56.39%.

4.1.2 Taking Advantage of Machine Learning. At this point, we realized that this problem could
be solved using well-developed machine learning algorithms. To train and test the machine learn-
ing models, we randomly split 80% of the 2,601 dataset to create the training set, while the remain-
ing 20% was used as the test set. Using this dataset, our first attempt at machine learning used the
Linear layer in the Pytorch [26] library. However, the accuracy at best was only 53.84%, which was
worse than the GCD method. From this, we concluded that the low accuracy is due to the problem
set not being linearly separable [8]. Having learned of the non-linearity of our dataset, we initially
experimented with Convolutional Neural Nets (CNNs)® [20] but quickly transitioned to using
the Random Forest Classifier [12].

4.1.3 Random Forest Classifier. We implemented the Random Forest (RF) Classifier [12] using
the Python package scikit-learn [27]. This decision was based on fast training times and its ability
to learn non-linear relationships from a comparatively small dataset. Random forest models also
minimize the over-fitting issue of traditional decision trees by using multiple randomly generated

SThis statistic again shows the severity of the degradation in performance when blindly combining sub-designs.
® Although CNN's have proved to be extremely powerful in the classification of data, due to the comparatively small dataset
size and the small number of features of our data, we concluded that CNNs were not suitable for our use case [31].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:15

ALGORITHM 1: Classifier

procedure CrassiriER(combined_space, new_point)
recent « get_2most_recent_stratergies(combined_space)
for stratergy in {recent, new_point} do
if 3 < num_factors then
stratergy « get_most_significant_factors(straterqgy)
else
stratergy « pad_with_ones(stratergy)
end if
end for
prediction_1 « RF_model_1(randomize(order1_tiling_factors, orderl_new_point))
prediction_2 < RF_model_2(randomize(order2_tiling_factors, order2_new_point))
prediction_3 < RF_model_3(randomize(order3_tiling_factors, order3_new_point))
if prediction_1 + prediction_2 + prediction_3 > 1 vote then
prediction < True
else
prediction < False
end if
return prediction
end procedure

decision trees. The inputs to the random forest classifier are the tiling strategies, as they essentially
encapsulate the target design of our design.

The initial implementation of the compatibility predictor using the Random Forest Classifier
consisted of a single model trained using the training set mentioned above. However, the accuracy
of the predictor without any preprocessing of the data could not significantly outperform the GCD
method, with an accuracy of only 61.22%.

With the intuition gained from the experiments in Section 3.3.2, we theorized that the order of
the tiling strategy per sub-design might have a more direct impact on the final design as the tiling
order corresponded to the loop nesting order, and subsequently, the array partition scheme. As a
result, we preprocessed the tiling data by grouping them into groups corresponding to their order.
Afterward, we assigned a random forest model to each group and trained them using the training
set. Using the three random forest models, the prediction of whether the set of tiling strategies was
compatible with each other was based on a threshold of the number of votes between the models.
For example, for the 2mm example in Figure 3(a), the for-loops are grouped according to the level,
i.e., (lines 6 and 14), (lines 7 and 15), and (lines 9 and 17).

When we evaluated them using the testing set, we achieved an accuracy range of 44%-84%,
depending on the number of votes. After this initial success, to minimize the overfitting of the
models to the training set, we randomized the order of tiling strategies within a group and, with
subsequent hyper-parameter tuning, were able to achieve an accuracy range of 44%-97%. The data
preprocessing steps and the various model accuracies are summarized in Table 4(a) and (b).

4.2 Using the Random Forest Classifier for Different Designs

As it is incredibly inefficient and resource-intensive to train the random forest classifier during the
runtime of the DSE engine, we implemented our flow so that it could discern non-Pareto optimal
points using a pre-trained classifier. The pre-training of the random forest classifier can be done

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:16 H. Jun et al.

Table 5. Merging of Sub-Design Points Using Our Random Forest Classifier

Step Combined Design Space Classifier Input New Points
1 1 1 1| 1 1 1 1 1 1 s1.tl s1.t2
2 |sl.tl sl.t2 s1.tl s1.t2 1|s2.t1 s2.t2 1 1 1 1 s2.t1 s2.t2
3 |[sl.tl sl.t2{s2.tl s2.t2 s1.t1 s1.t2 1{s2.t1 s2.t2 1 |s3.t1 s3.t2 s3.t3 s3.t1 s3.t2 s3.13
4 |s1.tl s1.t2{s2.t1 s2.t2|s3.t1 s3.t2 s3.t3 s2.t1 s2.t2 1|s3.t1 s3.t2 s3.t3|s4.t1 s4.t2 s4.t3|s4.t1 s4.t2 s4.t3 s4.t4
5 |[sL.tl s1.t2{s2.t1 s2.t2|s3.t1 s3.t2 s3.t3[s4.t1 s4.t2 s4.t3 s4.t4

For elements denoted as sx.ty, “x” refers to the specific sub-design while “y” refers to the specific tiling factor.

using any dataset that generally best represents the target HLS design we are optimizing (in our
case, the 2,601 dataset generated using the 3mm benchmark).

The pre-trained random forest classifiers mentioned above guided the merging process for all
the benchmarks in this study. Nevertheless, many situations existed where the problem we tried
to classify did not precisely have nine tiling strategies aligning with the inputs of the pre-trained
random forest classifiers. We note that the nine tiling strategies correspond to the number of loops
the 3mm benchmark shown in Figure 3(b) has. Also, we could not rely on the sub-designs to always
have three loops, where the number of loops in a sub-design could be greater than or less than
three.

In instances where the number of tiling strategies we had for input to the classifier was less
than nine, padding the inputs with 1s so that they totaled nine would allow the classifier to work
as intended with minimal accuracy loss. When padding, care was taken to preserve the order of
the loops. For example, in the case of a sub-design with two loops with a tiling strategy of (5,10),
the 1 is padded last to preserve the correct order for 5 and 10 so that the final tiling strategy is
(5,10,1) rather than (1,5,10). This solution was possible as a tiling strategy of 1 does not capture
any degree of parallelism and is ignored by the classifier. However, when the number of inputs to
the classifier was greater than nine, care was needed so that more essential tiling factors were not
lost.

As outlined in Section 4.1.3, the key reason our random forest classifier successfully predicts the
compatibility of different sub-design strategies is mainly due to how the tiling strategy is grouped
based on the order of the loops. As a result, when the number of loops in the sub-design and the
corresponding tiling factors are greater than three, we drop the tiling factors of the deeper loops so
that the first three outer loops are correctly grouped. For example, in the case of a sub-design with
a strategy of (1,2,3,4,5), we drop 4 and 5 rather than 1 and 2 so that the outer loops are appropriately
grouped. In the case in which the number of sub-designs is greater than three, we only use the
most recent two sub-designs to predict the compatibility of the incoming merged sub-design. That
is, when predicting the compatibility between the existing merged design space with the incoming
sub-design space, we used the two most recently merged sub-designs to predict compatibility with
the incoming sub-design space.

The algorithm for preprocessing input data during DSE runtime is outlined in Algorithm 1;
additionally, an example case for merging four sub-designs is shown in Table 5. This example
demonstrates the process of generating a merged design point for an input design that consists of
four sub-designs. As a result, it consists of step one where the sub-design point is initially added
to the merged design space. Subsequently, the following three steps correspond to the merging of
a sub-design point to the existing merged design point. Thus, the example consists of four steps,
while the fifth step is shown to illustrate the final merged design point.

In step 1 of Table 5 as the combined design space is empty, the new sub-design points are directly
inputted into the combined space circumventing the classifier. In step 2, we predict the compatibil-
ity of the new design point and the existing combined space using the classifier. In this example,
as the number of tiling strategies for both design points is two, we pad the empty dimensions with

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:17

Table 6. Enhanced Worst Case Design Points Using an
Evolutionary Algorithm

Latency Speedup DSP FF LUT

omm Non-Pareto 784 ps 1x 78% 45% 65%
Evolved-Point | 143 ps 5.4% 58% 42% 78%

3mm Non-Pareto 1,755 ps 1x 27% 22% 67%
Evolved-Point | 414 ps 4.2x 41% 54% 87%

1s taking care to preserve the order. In step 3, this process is repeated, but in this case, as the num-
ber of tiling strategies for sub-design point 3 is three, no padding is needed. Finally, in step 4, as
the number of tiling strategies the new sub-design point has is four, we drop the least significant
strategy, which in this case is s4.t4, as this corresponds to the tiling strategy lowest in the loop
hierarchy. Additionally, due to the existing merged design point consisting of more than two sub-
designs, the two most recent sub-design points are used as inputs to the classifier. Finally, in step
5, we can observe the contents of the merged design points. We note that if at any point during the
merging process, the classifier predicts the new point to be incompatible with the existing point,
the new sub-design point is dropped.

Through this approach, we could minimize the number of non-valid/non-Pareto points men-
tioned in Section 3.3 and shown in Figure 6(a). The result is shown in Figure 6(b); compared to
Figure 6(a), the number of non-Pareto points has significantly decreased. Out of the 327 points in
Figure 6(a), after the classifier was applied, the number of points that survived the merging pro-
cess was a little over 80 points and are the points shown in Figure 6(b). Additionally, when our
pre-trained RF classifier was applied to other benchmarks in the Polybench [29] suite, the accu-
racy of the predicted results did not drastically decrease, with an accuracy of 91.37% and 87.55%
for the 2mm and correlation benchmarks, respectively. The key takeaway from the comparison
was that the classifier effectively reduces the number of non-Pareto points but at the cost of losing
total design points as the number of sub-design space mergings increases. In other words, we can
decrease the number of non-Pareto points at the cost of shrinking the design space, limiting the
valid points that could be compatible with subsequent sub-designs.

4.3 Complementing the Limits of the Random Forest Classifier

Although the random forest classifier was able to reduce the number of non-Pareto optimal points,
it was unsuccessful in completely removing them. Additionally, due to the use of a pre-trained
Random Forest Classifier, we had to pre-process the input, either having to pad or drop data. As
a result, the quality of the merged design space degraded as the number of sub-designs grew. We
theorize that the reason behind this degradation is firstly due to the random forest classifier not
being able to capture the relationships between tiling strategies due to the padding and dropping
of tiling factors. Secondly, due to the grouping of tiling factors based on their order, we theorize
that this is at the cost of losing the relationship information that may exist across groups.

Based on the intuition gained through the experiments in Section 3.3.2, we suspected that some
sub-design combinations were incompatible with each other due to memory bandwidth issues
between logically connected sub-designs. Thus, we hoped that by fine-tuning the array partition
schemes of a design, we would be able to alleviate the problems of this memory bandwidth issue.
However, through analysis alone, it was extremely difficult to find a more optimal array partition
scheme as theoretically, the automatically generated partition schemes should have been sufficient
(Section 3.3.2).

We speculated that the reason that some merged design points are not Pareto optimal was due
to the HLS process not being effective for certain design constraints. The DSE problem for HLS

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:18 H. Jun et al.

designs is a well-studied topic in HLS research [3, 9, 11, 28]. In the paper by Ferrandi et al. [9],
they advocated for and proposed using Evolutionary algorithms for HLS DSE as the sub-tasks of
high-level synthesis (scheduling, resource binding, etc.) are notoriously NP-complete. Additionally,
through their implementation of the Evolutionary Algorithm, the Chimera [41] team was able to
report favorable results for Vivado HLS. Inspired by these works, we implemented an evolutionary
algorithm that was able to augment our flow so that non-Pareto optimal points could be enhanced
for use in the final design.

Our implementation of the evolutionary algorithm, specifically the genetic algorithm (GA)
[2], shares the basic building blocks of crossover and mutation. However, unlike previous works
by Yu et al. and Ferrandi et al., which used GA for HLS DSE, the knobs to be explored are limited
to the array partition schemes of arrays shared between sub-designs. This decision to restrict the
knobs to the arrays partition schemes shared between sub-designs stems from bandwidth limita-
tions we observed in Section 3.3.2. This restriction also has an added benefit where we could limit
the number of knobs explored by the GA as the complexity of the search space is a well-known
limitation of genetic algorithms.

For a single sub-design, our experiments found that the genetic algorithm approach to DSE
could not beat the array partition schemes produced by analyzing the memory access patterns
[42]. This was an expected outcome as the memory bandwidth contention was not present in a
single sub-design. However, for merged designs, due to the sub-designs competing for the same
resources during HLS synthesis, in some instances, the result from the HLS compiler was many
times worse than the sum of the performance characteristics of the sub-designs (Section 3.3.1). As
a result of these factors, when we only targeted the shared arrays using the genetic algorithm,
significant gains in performance and resource utilization could be achieved.

We evaluated the effectiveness of our genetic algorithm using two non-Pareto points, each
from the 2mm, and 3mm Polybench [29] benchmarks, and is reported in Table 6. The two cases
are examples of non-Pareto optimal design points, such as the points at the 40,000 cycle mark
in Figure 6(b). Using the proposed genetic algorithm, we were able to increase the design points’
performance by finding a more optimal array partition scheme for shared arrays used in the
design.

Two examples best describe the effectiveness of our GA algorithm and the counterintuitive solu-
tions it produces. The performance characteristics are shown in Table 6, while the array partition
schemes before and after the GA method was applied are summarized in Table 7. In the case of
the 2mm (Figure 3(a)) kernel, we employed the GA to the shared array “tmp” with an initial array
partition scheme of (cyclic, factor = 5, dim = 1) and (cyclic, factor = 10, dim = 2). However, after
the GA was used, the new array partition scheme for “tmp” became (cyclic, factor = 5, dim = 1),
eliminating the array partition scheme for the second dimension of the array. Similarly, in the case
of the 3mm (Figure 3(b)) example, before the GA was applied, the array partition scheme for “E”
was (cyclic, factor = 8, dim = 1) and (cyclic, factor = 5, dim = 2) while the array partition scheme
for “F” was (cyclic, factor = 10, dim = 1) and (cyclic, factor = 5, dim = 2). After the GA was applied,
the array partition scheme for E became (cyclic, factor = 5, dim = 2) while F became (cyclic, factor
=10, dim = 1). Surprisingly, in both examples, we increased the overall design’s performance by
decreasing the memory bandwidth of the share elements.

Upon closer inspection of the synthesized design, using the “Analysis” tab in Vivado HLS, the
implemented design before and after the GA was applied was completely different. For example,
in the 2mm example, although initially, the reading of data from memory was slower due to the
decrease in memory ports, performance gains were made due to subsequent tasks being scheduled
concurrently. In comparison, before GA was applied, even though the reading of data from memory
was faster, the design’s overall performance suffered due to subsequent tasks being sequentially

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:19

Table 7. Array Partition Schemes for Shared Arrays for the 2mm and 3mm Kernels before and
after the GA Algorithm is Applie

(a) 2mm. (b) 3mm.
Target Knob Name Dimensions Factors Type Target Knob Name Dimensions Factors Type
Before GA: Array Partition | tmp 1 5 cyclic Before GA: Array Partition| E 1 8 cyclic
Before GA: Array Partition | tmp 2 10 cyclic Before GA: Array Partition| E 2 5 cyclic
After GA: Array Partition | tmp 1 5 cyclic Before GA: Array Partition| F 1 10 cyclic
Before GA: Array Partition| F 2 5 cyclic
After GA: Array Partition E 2 5 cyclic
After GA: Array Partition F 1 10 cyclic

scheduled. This observation is in line with the arguments for the genetic algorithm in the paper
by Ferrandi et al. [9].

4.4 A Two-Pronged Solution to the Merging Problem

The effectiveness of the GA algorithm hints at the underlying reason why merged design
points are sometimes not the sum of the sub-design points explained in Section 3 and shown
in Figure 6(a). From the evidence presented in Sections 3 and 4, we conclude that for certain
resource constraints, the HLS compiler is unable to produce an optimal design. Thus, to ensure
the scalability of our DSE engine, we attempt to solve this problem with a two-pronged approach.
Firstly, we minimize the number of non-Pareto points in the design space through the use of
a pre-trained random forest classifier. The minimization of non-Pareto optimal points has the
added benefit of increasing the quality of the merged design space by limiting the likelihood
of non-Pareto optimal points being subsequently merged. Secondly, in the event that a merged
design point is not Pareto optimal (due to the RF classifier’s margin of error), we apply the genetic
algorithm to the shared memory elements to find a solution that is more compatible with the HLS
compiler. Through these methods, we can increase our DSE engine’s scalability, allowing us to
develop the DSE engine presented in the next section.

5 ASCALABLE DESIGN SPACE ENGINE

In this section, we bring everything together, detailing how the building block fits together to
become AutoScaleDSE shown in Figure 1. Initially, the lexical analyzer extracts the necessary in-
formation about the design needed for our flow, such as the array sizes, loop trip count, and the
number of function calls. Based on this information, a function call graph is generated, embedded
with information such as the hierarchical structure of the design, the computational intensity of
a sub-design, and the dependencies between sub-designs. The overall design is then divided into
separate regions of interest (ROIs) based on the function call graph. The ROI may consist of a
single function or span across functions, based on the dependency analysis. Each ROI has its local
resource allocation and is optimized as though it is a distinct HLS design using the methods pre-
sented in Section 4. Using the colored graph that partitions the design, we explore the design space
of each sub-design using ScaleHLS DSE [39], capturing the explored design space only using the
tiling factors, pipeline-ii, and performance estimation. Subsequently, we merged the sub-design
spaces using the pre-trained random forest classifier. Having constructed a merged design space
for the input design, we select the most optimal design point and then apply the corresponding
strategies (transforming code and inserting compiler directives) using ScaleHLS APIs. At this point,
we evaluate the design candidate using an HLS compiler to gain a more accurate performance esti-
mation. We export the design if the HLS compiler estimations are within a margin of our computed
performance estimations (Section 3.2). However, if the results are sub-optimal, we identify criti-
cal compiler directives exporting the final design after the critical compiler directives have been
further optimized using the genetic algorithm. More details on this flow will be discussed next.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:20 H. Jun et al.

kernel_3mm

Lospe ['Loope', 'for (i = ©; i < 40; i++) {', 'kernel_3mm', '40']
L— Loop1 ['Loopl', 'for (j = ©; j < 50; j++) {', 'kernel_3mm', '50']

L— Loop2 ['Loop2', 'for (k = ©; k < 60; ++k) {', 'kernel_3mm', '60']
Loop3 ['Loop3', 'for (i =©; i < 50; i++) {', 'kernel_3mm', '50']
L— Loop4 ['Loop4', 'for (j =0©; j < 70; j++) {', 'kernel_3mm', '70']

L— Loops ['Loop5', 'for (k = @; k < 89; ++k) {', 'kernel_3mm', '89']
Loop6 ['Loop6', 'for (i = ©; i < 40; i++) {', 'kernel_3mm', '40']
L— Loop7 ['Loop7', 'for (3 =0; j < 70; j++) {', 'kernel_3mm', '70']

L— Loops ['Loop8', 'for (k = ©; k < 50; ++k) {', 'kernel_3mm', '50']

(a) Loop Structure. (b) Loop Information.

('kernel_3mm', 3, '-4-5', 1400000)

('kernel_3mm', 6, '-7-8', 700000)

('kernel_3mm', ©, '-1-2', 600000)

(c) Computational Intensity.

['Arraye', 'A[40][60]', 'A', 'kernel_3mm', 2, '40', '60', 'dependencies', 0]
['Arrayl', 'B[e@][5@]', 'B', 'kernel_3mm', 2, '68', '5e', 'dependencies', @]
['Array2', 'C[5e@][80]', 'C', 'kernel_3mm', 2, '50', '80', 'dependencies', 3]
['Array3', 'D[8@][70]', 'D', 'kernel_3mm', 2, '89', '70', 'dependencies', 3]
['Array4', 'E[40][50]', 'E', 'kernel_3mm', 2, '40', '58', 'dependencies', @, 6]
['Array5', 'F[5@][70]', 'F', 'kernel_3mm', 2, '5@', '70', 'dependencies', 3, 6]
['Array6', 'G[4@][70]', 'G', 'kernel_3mm', 2, '40', '7@', 'dependencies', 6]

(d) Array Information.
Fig. 7. An example of the information gathered by the Lexical Analyzer.

5.1 Lexical Analyzer and Graph Generator

5.1.1 Lexical Analyzer. We developed a lexical analyzer that captures the necessary informa-
tion for generating the function call graph that guides the entire DSE process. The data extracted
from the input code include the number of loop bands, loop bounds, array dimensions/size, array
accesses within loops, number of operations per loop, function calls, and function declarations. An
example of the information collected by the lexer is summarized in Figure 7 pertaining to the 3mm
benchmark (Figure 3(b)).

Figure 7(a) is a printout of the initial call graph used to represent the loop structure of the
design. Figure 7(c) contains information on the loops associated with each sub-design and the
computational intensity of each sub-design. The computational intensity is estimated by counting
the number of operations and multiplying it by the trip count of the loops. For example, the third
entry in Figure 7(c) corresponds to the portion of the code in Figure 3(b) between lines 6 and 13.”
The first element, “kernel_3mm” refers to the scope of the sub-design. The second element, “0” is
the unique identifier given to the outermost loop in the sub-design, while the third element, “-1-2”
is the identifier of the loops nested within the sub-design. Finally, the element “600000” refers to the
computational intensity of the sub-design, which is proportionate to the least intensive sub-design
in the 3mm benchmark of the sub-design of lines 6-13 of Figure 3(b).

Figure 7(b) is the printout of the information regarding the loops, keeping track of the loop
identifiers, scope, and loop bound for each loop in the design. Finally, Figure 7(d) is the printout of
the information about arrays, such as unique identifiers, array names, scope, dimension, and size
of the arrays. Most importantly, we keep a record of the sub-designs where the particular array
has been accessed. For example, array “E,” which is accessed by sub-designs in Figure 3(b) between

7We note that the first sub-design is recorded as the third entry in Figure 7(c) due to the list being sorted based on compu-
tational intensity.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis

backprop
L— Loop39

a-matrix_vector_product_with_bias_input_layer
a-add_bias_to_activations
— Loop2
— Loop7
d-RELU
E Loop8
L— Loop3
g-soft_max
h-take_difference
Loopll
L— Loop13
Loop1s
— Loopl7
Loop19
Loop21
Loop24
Loop27
Loop3e
Loop33
Loop36

Loop4

[Loop3
c-matrix_vector_product_with_bias_second_layer

a-add_bias_to_activations
— Loop2

L— Loops
f-RELU

Loop@
L— Loop1e

L— Loop12

L— Loop14

L Loopl6

L— Loop18

— Loop20

L— Loop22

— Loop25

L— Loop28

— Loop31

L Loop34

L— Loop37

Loop48

— Loop5
b-RELU

Loopé

L— Loop3
e-matrix_vector_product_with_bias_output_layer

a-add_bias_to_activations
L— Loop2

Loopl
i-get_delta_matrix_weights3
j-get_oracle_activations2
k-get_delta_matrix_weights2
1-get_oracle_activationsl
m-get_delta_matrix_weightsl
n-update_weights

Loop23

Loop26

Loop29

Loop32

Loop35

Loop38

46:21

backprop
Loop39

Loop4@
a-matrix_vector_product_with_bias_input_layer
Loopd
L— Loops
a-add_bias_to_activations
— Loop3
b-RELU

L— Loop2
c-matrix_vector_product_with_bias_second_layer
L Loop7
a-add_bias_to_activations
d-RELU
- Loop2

[Loop6
L— Loop3
e-matrix_vector_product_with_bias_output_layer

a-add_bias_to_activations
Loop3
f-RELU
L— Loop2

-soft_max
T: Loop®
Loopl

h-take_difference
Loop1e
et_delta_matrix_weights3
Loopll
L— Loop12
j-get_oracle_activations2
— Loop13

L— Loop14
k-get_delta_matrix_weights2
L— Loop1s

L— Loop16
-get_oracle_activationsl
L— Loop17

L— Loop18
m-get_delta_matrix_weightsl
— Loop19

L— Loop2e

i-g
—

-

(a) Graph representation of the Back-Propagation (b) The ROIs for the Back-Propagation Benchmark.
Benchmark.

Fig. 8. The Back-Propagation MachSuite Benchmark graph representation and ROI partitioning.

lines 6 and 13 and 22 and 29, has been correctly identified by the lexer to be accessed by the sub-
designs identified by indices 0 and 6 corresponding to the index given to the outermost loop of a

sub-design.

5.1.2 Graph Generation. We generate a function call graph representing the input design by
processing the information passed from the lexer. Most importantly, we embed information regard-
ing how closely correlated each sub-design is to each other. For example, in Figure 7 sub-design, 0
and 6 are more closely linked to each other than 0 and 3 due to the sharing of the “E” array. This

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:22 H. Jun et al.

ALGORITHM 2: Partition ROI
procedure PArTITION_ROI
CI « get_computational_intensity
IP « get_inflection_point
ROI_list « get_ROI_seed(IP)
while ROI_list | = coverdesign do
for ROI in ROI list do
ROI « expand_ROI_towards_correlated_nodes
end for
end while
return ROI list
end procedure

information is critical to the following ROI partition phase. An automatically generated graph is
shown in Figure 8 that represents the structure of the MachSuite backprop [30] benchmark.

5.2 ROI Partitioning

5.2.1 Motivation. In Section 4, we introduce our method for merging sub-designs. Although we
succeeded in improving the quality of the merged design space, the gains we achieved diminished
as the size and complexity of the design increased. Initially, this degradation was so prevalent that
merging all the sub-design spaces was not possible for large designs with multiple sub-designs,
such as the example shown in Figure 8 of the MachSuite [30] backprop benchmark.

The sub-design merging was not feasible for large designs with multiple subroutines and
sub-design because the number of design points sharply decreased during the merging process.
Analysis showed that when our classifier was applied to two disparate sub-designs that were not
directly linked, the lack of shared resources and dissimilar computational patterns would lead to
the two sub-designs being classified as incompatible. As a result, these incompatible points would,
in subsequent mergings, misclassify the whole merged design point as not valid, whereas, in some
instances, would classify the entire design space as non-compatible. For example, in Figure 8,
Loop21 is more closely correlated to Loop27 than to Loop21, because Loop27 exists within the
same scope sharing resources and being computationally similar, while Loop6 exists in a different
scope, not directly being linked to Loop21.

As a result of this phenomenon, to successfully merge the sub-designs using the methods out-
lined in Section 4, we needed to merge the sub-designs while being aware of the context that the
sub-design fits into. Thus, the problem boiled down to appropriately grouping the sub-designs
into different ROIs that consisted of closely linked sub-designs. Our attempt to solve this problem
was the primary motivation for generating the function call graph outlined in Section 5.1 so that
we could appropriately group the sub-designs into different ROIs by partitioning the generated
graph.

5.2.2 Partition. Initially, we were able to find a couple of examples of computational graph
partitioning methods developed for GPU streaming applications [13, 37]. However, our graph, not
being a computational dataflow graph but a function call graph that only captured the relationships
between subroutines and sub-designs, was unsuitable for graph partitioning methods developed
for GPU applications. As a result, such prior methods were unsuitable for the graph we generated
while also not being able to solve the “grouping of linked sub-design” problem that we needed to
solve to apply the sub-design merging method of our DSE to large designs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:23

However, still inspired by the existing graph partitioning works [13, 37] and the maximum
independent set problem [1] in graph theory, we implemented a solution that was able to group
closely linked sub-designs into different ROIs. Ultimately, our partitioning/grouping algorithm
was able to group sub-designs using an expanding method from a seed node so that we could
successfully apply our sub-design merging algorithm to large designs with multiple subroutines.

We employ a simple algorithm for partitioning the overall design into distinct ROIs summa-
rized in Algorithm 2. We initially select the seed sub-designs from which we expand. The number
of seeds is determined by the distribution of the computational intensity of sub-designs. For ex-
ample, if the sorted computational intensity of sub-designs is in the set CI = {9,000, 8,000, 1,000,
500, 400}, as there is a sharp decline in the computational intensity after 8,000, the sub-designs
corresponding to 9,000 and 8,000 are selected to be the seeds. If a sharp decrease in computational
intensity is not present, computationally intensive sub-designs are chosen proportionally based on
the total number of sub-designs in the input design. Afterward, we expand the ROI in each step,
giving weight to expand toward more closely correlated sub-designs. Eventually, the ROI partition
algorithm terminates when all sub-designs are covered.

Figure 8(b) shows how the backprop benchmark has been divided into different ROIs, repre-
sented in different colors. For this example, the starting sub-design seeds were Loop6, Loop17, and
Loop27. We can observe that the sub-designs in the red ROI are in the same scope while ROIs in
green and blue transcend function boundaries. This is because, during the expansion phase, Loop17
did not expand toward Loop27, while Loop27 gave greater weight to sub-designs that share the
same scope. Thus, through our ROI expansion algorithm, we could find an approximate solution
to the grouping problem.

5.3 Design Space Exploration

5.3.1 ROl Design Space Exploration. The ROI Design Space Exploration phase of our flow is
based on the methods outlined in Section 4. During this phase, each ROI is explored as if it is an
independent HLS design. Thus, each ROI has a resource constraint that it needs to satisfy, which
is a percentage of the overall resource constraint calculated based on the ROI's computational
intensity.

We start the DSE process by initializing the sub-design space using ScaleHLS DSE. Subsequently,
we merge the sub-designs using the same random forest classifier we developed to create a merged
design space. At this stage, we sample a merged design that we evaluate using Vivado HLS to
correct for the merging of sub-designs not being able to account for resource sharing. As shown
in Figure 6(a), the error between the traditional merged design space (blue) and the Vivado HLS
estimation results (orange) in the DSP dimension is off by a certain factor. Thus, we can correct
the traditional merged design space by shifting the space globally by the error factor between the
theoretical and HLS evaluated results.

Based on the corrected merged design space, we select a design point that best satisfies the given
resource constraints, whether latency or resource utilization (area). Afterward, we again evaluate
the selected design point using an HLS compiler to decide whether using the genetic algorithm is
warranted. If the estimated results by the HLS compiler closely match the theoretical performance
we computed, we forgo using the genetic algorithm to explore the ROI further. If, on the other hand,
the estimated results differ by a certain predetermined margin, we apply the genetic algorithm to
improve the selected design point further.

5.3.2 Combined Design Space Exploration. We repeat this process for all ROIs until we are left
with a design candidate for each ROI. Subsequently, using the ROI design candidates, we con-
struct the overall preliminary design by merging the ROI design points and then applying the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:24 H. Jun et al.

Table 8. AutoScaleDSE vs. ScaleHLS DSE Using the Polybench [29] Medium Dataset

No. Designs ~ Prob. Sizes | Implementation | Latency Speedup DSP FF LUT

Baseline 16 ms 1X 0% 0% 0%

bicg 2 390, 410 ScaleHLS 42.050 ps 380 50% 24% 37%
AutoScaleDSE | 42.050 ps 380% 50% 24% 37%

Baseline 1.367 s 1X 0% 0% 1%

correlation 4 240, 260 ScaleHLS 0.942 s 1.5% 15% 18% 51%
AutoScaleDSE | 15.467 ms 88x% 4% 7% 27%

Baseline 1.542 s 1X 0% 0% 0%

2mm 2 180, 190, 210, 220 ScaleHLS 8.281 ms 186X 55% 21% 46%
AutoScaleDSE | 1.722 ms 895% 76% 17% 46%

Baseline 2.054 s 1X 0% 0% 0%

3mm 3 ;zg 190.:200.210. | gealeHLS | 72.930ms 28x 35% 20% 33%
AutoScaleDSE | 1.996 ms 1,029 61% 17% 37%

corresponding tiling and array partition strategies using ScaleHLS APIs. Finally, we apply the ge-
netic algorithm to fine-tune the combined design so that the HLS compiler can generate the best
possible designs based on the constraints. Ultimately, we output the final design, the result from
our DSE flow.

6 EXPERIMENTAL RESULTS

We evaluated the quality of our DSE engine using four Polybench [29] benchmarks with the addi-
tion of two large-scale benchmarks from the MachSuite [30] and Rodinia [7] benchmark sets. The
presented results in Tables 8 and 11 have been collected from the report generated by Vivado HLS
2019.2 targeting the “xc7z045-ffg900-2” device.

6.1 Evaluation of Small-Scale Kernels

The four different computational kernels presented in Table 8 are designs that consist of multiple
sub-designs that best demonstrate the strengths and weaknesses of our DSE. We refrained from
presenting evaluation results of single sub-design kernels due to the ScaleHLS [39] team already
demonstrating the quality and scalability for these cases. Additionally, single sub-design kernels
have been omitted because the results of AutoScaleDSE and ScaleHLS DSE are identical due to the
former using the latter as a building block. We used the dataset/problem size “medium” as the array
sizes and loop bounds that correspond to the problem size allowing us to demonstrate the capability
of our DSE while also satisfying the resource constraints of the target device. Accordingly, we can
see that array sizes and loop bounds vary by the factors in the set {40, 50, 60, 70, 80}.

Table 8 presents the comparison results between AutoScaleDSE and ScaleHLS DSE. This com-
parison was possible due to ScaleHLS DSE using the traditional approach to merge the sub-designs.
Thus, by comparing our approach outlined in Section 4 to ScaleHLS DSE, we can measure the ef-
fectiveness of our merging strategy. We note that the “No. Designs” column in Table 8 refers to
the number of sub-designs, while the “Prob. Sizes” column relates to the sizes of the arrays and
the loop bounds of loops used in the presented kernel.

6.1.1 Bicg. For this case, both ScaleHLS DSE and AutoScaleDSE were able to produce a result
that improved the latency for this kernel by 380x compared to the baseline that is not optimized.
This dramatic increase in performance is due to the relative simplicity of the “bicg” kernel. The
“bicg” kernel consists of only two sub-designs, one of which is a single for-loop while the other is a
nested for-loop with a depth of two. As can be seen in the summary of the tiling strategy and array
partition scheme in Table 9(a), both ScaleHLS and AutoScaleDSE chose the same design point in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:25

Table 9. Summary of the Tiling Strategy and the Accompanying Array Partition Strategy Chosen by
ScaleHLS and AutoScaleDSE for the Bicg and Correlation Benchmarks

(a) bicg. (b) correlation.
Target Knob |Name DIM Factors Type Target Knob |Name DIM Factors Type
Tiling Strategy |SD1 ~ N/A (65) ii-1 Tiling Strategy [SD1 ~ N/A (40,4) ii-2
Tiling Strategy |SD2 ~ N/A (5,65) ii-8 Tiling Strategy [SD2 ~ N/A (30,5) ii-2
Array Partition | A 1 5 cyclic Tiling Strategy [SD3 ~ N/A (20,6) ii-1
Array Partition | A 2 65 cyclic Tiling Strategy [SD4 N/A (1,1,20) ii-3
ScaleHLS Array Partition | s 1 65 cyclic ScaleHLS Array Partition | data 1 20 cyclic
Array Partition | q 1 5 cyclic Array Partition | data 2 40 cyclic
Array Partition | p 1 65 cyclic Array Partition | mean 1 40 cyclic
Array Partition | r 1 5 cyclic Array Partition | stddev 1 30 cyclic
Tiling Strategy [SD1 ~ N/A (65) ii-1 Tiling Strategy |SD1 ~ N/A (40,4) ii-2
Tiling Strategy |SD2 ~ N/A (5,65) ii-8 Tiling Strategy |SD2 ~ N/A (40,4) ii-2
Array Partition | A 1 5 cyclic Tiling Strategy [SD3 ~ N/A (26,4) ii-1
Array Partition | A 2 65 cyclic Tiling Strate SD4 N/A (1,20,1) ii-3
AutoScaleDSE Arra§ Partition | s 1 65 czclic AutoScaleDSE Arra;g/ Partitii}rll data 1 26 cyclic
Array Partition | q 1 5 cyclic Array Partition | data 2 40 cyclic
Array Partition | p 1 65 cyclic Array Partition [mean 1 40 cyclic
Array Partition | r 1 5 cyclic Array Partition | stddev 1 40 cyclic

SDx refers to specific sub-designs, while x denotes the specific sub-design. DIM refers to the dimension of the array that
is being partitioned.

the merged design space, and thus the performance difference between the two DSE engines is
identical.

Analysis showed that the two DSE engines chose the same design points because of the bench-
mark’s relative simplicity. In the case of bicg, the two sub-designs minimally shared resources
only being linked through array “s” As a result, for this case, the merging problem was not as pro-
nounced as in the other cases, such as the example shown in Figure 6(a). Thus, due to the merged
design space being mostly Pareto optimal, the results produced by AutoScaleHLS and ScaleHLS
DSE were identical.

6.1.2 Correlation. In the case of the correlation kernel, ScaleHLS DSE was only able to increase
the latency speedup by a minimal 1.5X compared to the baseline without any optimizations.
Having analyzed the synthesized results of ScaleHLS DSE and the code, the minimal latency gain
is due to ScaleHLS DSE’s inability to find the tiling strategy for a sub-design effectively. This
shortfall is due to the loops in one sub-design having a loop bound of 239. The loop bound of
239 being a prime is thus not able to be tiled in any other way other than 239, for which case,
due to the large tiling factor, the synthesized design is extremely inefficient. The additional use
of “sqrtf” library functions further complicates the exploration of the design, contributing to the
under-performance of the ScaleHLS DSE. On the other hand, AutoScaleDSE achieved an increase
in latency speedup of 88x compared to the baseline with considerably less resource utilization.
The latency characteristics is a 59x improvement to ScaleHLS DSE and is due to AutoScaleDSE’s
ability to select tiling strategies that are more compatible with each other.

Further analysis of the tiling strategies demonstrates the severity of the design space merging
problem in the case of the correlation kernel, where the sub-designs are closely linked and share
numerous memory resources. We can calculate the degree of parallelism of the design by multiply-
ing the tiling factors summarized in Table 9(b). For the ScaleHLS design, the degree of parallelism
is calculated to be 57,600,000, while for the AutoScaleHLS design, the degree of parallelism works
out to be 53,248,000. We can see that even though ScaleHLS DSE has a higher degree of parallelism
of approximately 8%, the corresponding design’s latency was only 2% when compared to the final
design of AutoScaleDSE. We theorize that this is due to the “design space merging problem,” where
as a consequence of the incompatibility between tiling strategies, ScaleHLS DSE results in a design
that is inferior to the result produced by AutoScaleDSE that has a lower degree of parallelism.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:26 H. Jun et al.

Table 10. Summary of the Tiling Strategy and the Accompanying Array Partition Strategy Chosen by
ScaleHLS and AutoScaleDSE for the 2mm and 3mm Benchmarks

(a) 2mm. (b) 3mm.

Target Knob |Name DIM Factors Type Target Knob |[Name DIM Factors Type
Tiling Strategy |SD1 ~ N/A (5,38,1) ii-2 Tiling Strategy |SD1 ~ N/A (12,2,48) ii-3
Tiling Strategy |SD2 ~ N/A (1,10,19) ii-2 Tiling Strategy |SD2 ~ N/A (10,14,1) ii-2
Array Partition [tmp 1 5 cyclic Tiling Strategy |SD2 ~ N/A (1,10,19) ii-3

Array Partition [tmp 2 38 cyclic Array Partition | A 1 12 cyclic

ScaleHLS Array Partition | A 1 5 cyclic Array Partition | A 2 18 cyclic

Array Partition | B 2 38 cyclic Array Partition | B 1 8 cyclic

Array Partition | C 1 19 cyclic ScaleHLS Array Partition | B 2 2 cyclic

Array Partition | C 2 10 cyclic Array Partition | C 1 10 cyclic

Array Partition | D 2 10 cyclic Array Partition | D 2 14 cyclic

Tiling Strategy |SD1 ~ N/A (9,19,1) ii-2 Array Partition | E 1 12 cyclic

Tiling Strategy |SD2 ~ N/A (9,10,19) ii-2 Array Partition | E 2 19 cyclic

Array Partition [tmp 1 9 cyclic Array Partition | F 1 19 cyclic

Array Partition | tmy 2 19 cyclic Array Partition | F 2 14 cyclic

AutoScaleDSE Arra§ Partition | A ’ 1 9 czclic Array Partition | G 2 10 cyclic
Array Partition | B 2 19 cyclic Tiling Strategy [SD1 ~ N/A (18,2,4) ii-1
Array Partition | C 1 19 cyclic Tiling Strategy |SD2 ~ N/A (2,42,2) ii-1
Array Partition | D 1 9 cyclic Tiling Strategy |SD2 ~ N/A (12,6,2) ii-1

Array Partition | A 1 18 cyclic

Array Partition | A 2 4 cyclic

Array Partition | B 1 4 cyclic

Array Partition | B 2 2 cyclic

Array Partition | C 1 2 cyclic

AutoScaleDSE Array Partition | C 2 2 cyclic

Array Partition | D 1 2 cyclic

Array Partition | D 2 42 cyclic

Array Partition | E 1 18 cyclic

Array Partition | E 2 2 cyclic

Array Partition | F 1 2 cyclic

Array Partition | F 2 42 cyclic

Array Partition | G 1 12 cyclic

Array Partition | G 2 6 cyclic

SDx refers to specific sub-designs, while x denotes the specific sub-design. DIM refers to the dimension of the array that
is being partitioned.

6.1.3 2mm and 3mm. These two examples best demonstrate the benefits of the enhanced merg-
ing methods described in Section 4. 2mm and 3mm are more complex in comparison to the “bicg,”
and “correlation” as all sub-designs for these kernels are nested loops with a depth of 3 as shown in
Figure 3. Additionally, the variation in array sizes and loop bounds are greater as the 2mm kernel
has four different variations while the 3mm kernel has five. This complexity all contributes to the
traditional merged design space not being accurate. Thus, for these cases, AutoScaleDSE is able to
improve the quality of the final design dramatically.

For the 2mm kernel summarized in Table 10(a), the ScaleHLS DSE results in a speedup of 186x
in latency compared to the baseline without any optimizations. AutoScaleDSE is further able to
increase the latency speedup factor by approximately 5x with a minimal increase in resource
utilization. In the case of the 3mm kernel summarized in Table 10(b), AutoScaleDSE is able to
considerably improve upon the latency speedup results of ScaleHLS DSE by 38x with a minimal
increase in resource utilization. This result is more surprising when we compare the degree of
parallelism between ScaleHLS DSE and AutoScaleDSE for the 2mm and 3mm kernels using the
tiling strategies summarized in Table 10. In the case of the 2mm kernel, the degree of parallelism
(product of the tiling factors) for ScaleHLS DSE is 36,100 while AutoScaleDSE is 29,241. While for
the 3mm kernel, the degree of parallelism for ScaleHLS DSE is 30,643,200 while AutoScaleDSE
is 3,483,648. For the 2mm case, even though the ScaleHLS DSE design has a higher degree of
parallelism, it is outperformed by AutoScaleDSE by 5X. This disparity is even more pronounced
in the 3mm case, where the degree of parallelism for ScaleHLS DSE is greater than AutoScaleDSE
by nearly an order of magnitude while being outperformed by AutoScaleDSE by 38x.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:27

Table 11. AutoScaleDSE Evaluation Results for MachSuite [30] and Rodinia [7] Benchmarks

No. Array Sizes |Implementation|Latency Speedup BRAM18K DSP FF LUT
backprop 3, 64, 192, 489, 832, Baseline 754 ms 1x 3% 24% 19% 32%
MachSuite 2,119, 4,096 AutoScaleDSE |62.669 ps 12X 11% 87% 41% 75%
lud - tiled 20 256 6553 Baseline 1.650 s 1% 0% 1% 1% 3%
Rodinia ’ AutoScaleDSE | 0.846 p's 2% 38% 15% 21% 55%

Interestingly and predictably, this increase in performance between ScaleHLS DSE and Au-
toScaleDSE is in line with the complexity of the two kernels. As the number of sub-designs grew
and the complexity of the design in terms of variation in array sizes and loop bounds grew, the
gains from ScaleHLS DSE decreased; at the same time, the quality of AutoScaleDSE results in-
creased, thus providing further evidence that the merging problem (Section 3) is intensified as the
complexity and the number of sub-designs increase.

6.2 Evaluation of Large-Scale Kernels

We present the results of applying AutoScaleDSE to large-scale benchmarks with multiple sub-
designs across multiple functions shown in Table 11. Using these benchmarks, we demonstrate
the efficacy of the flow presented in Section 5. AutoScaleDSE was able to automatically identify
sub-designs, merging each design space and selecting the optimal global strategy based on the
resource constraints. Additionally, the transformation of code was entirely automated using the
APIs provided by ScaleHLS to eliminate the human element in design space exploration.

Unfortunately, we could not find a comparable DSE engine as ScaleHLS DSE cannot parse
multifunction designs while other DSEs such as Chimera [41] or Comba [42] are unable to
transform code. Additionally, we note that although the complexity of the large-scale benchmarks
is vastly more complex compared to the 2mm and 3mm kernels, the increase in performance is
not as dramatic. We attribute this disparity to the large-scale benchmarks having sub-designs
(loops) with variable bounds not optimizable by ScaleHLS DSE. We also note that the sub-designs
primarily consist of nested loops with a depth of 2.

As aresult, in Table 11 we can see that the performance gains from using AutoScaleDSE on large-
scale designs are not as dramatic as the results presented in Table 8. For the backprop MachSuite
[30] benchmark, we achieved a latency gain of 12X compared to the unoptimized baseline, while for
the lud-tiled Rodinia [7] benchmark, the performance gains were only 2x. We attribute the extent
of variable loops used within the benchmarks to the diminishing gains in latency. This is consistent
with the lud-tile benchmark using variable loops in sub-designs that were computationally critical
to the overall design.

Despite these challenges, the results shown demonstrate the viability of the flow presented in
Section 5. AutoScaleDSE was able to automate the process of design exploration and code trans-
formation, producing a result superior to the initial design, an extremely time-consuming process
if done manually.

7 CONCLUSION

To the best of our knowledge, AutoScaleDSE is the first to identify and effectively solve the sub-
design merging problem for HLS design space exploration. We present experimental results show-
ing that the merging problem is indeed a limiting factor to the divide-and-conquer approach to HLS
design space exploration for multi-loop designs. Having presented the sub-design merging prob-
lem, we formulate and implement a solution using a pre-trained random forest classifier, achieving
an accuracy of 97%, and the genetic algorithm to appropriately merge sub-design points without

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

46:28 H. Jun et al.

having to evaluate them using an HLS compiler individually. Building upon this, we present a flow
that can automatically explore large-scale designs using a top-down approach, being aware of the
code structure. Finally, we report experimental results demonstrating the efficacy of the developed
methods.

REFERENCES

[1] Brenda S. Baker. 1983. Approximation algorithms for NP-complete problems on planar graphs. In Proceedings of the

24th Annual Symposium on Foundations of Computer Science (SCFS 1983). 265-273. https://doi.org/10.1109/SFCS.1983.7

Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. 1998. Genetic Programming: An Introduc-

tion: On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann Publishers Inc., San

Francisco, CA.

[3] M. C. Bhuvaneswari, D. S. Harish Ram, and R. Neelaveni. 2015. Design Space Exploration for Scheduling and Allocation

in High Level Synthesis of Datapaths. Springer India, New Delhi, 69-92. https://doi.org/10.1007/978-81-322-1958-3_5

Deming Chen, Jason Cong, Yiping Fan, and Lu Wan. 2010. LOPASS: A low-power architectural synthesis system

for FPGAs with interconnect estimation and optimization. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 18, 4 (2010), 564-577. https://doi.org/10.1109/TVLSI.2009.2013353

Deming Chen, J. Cong, and Junjuan Xu. 2005. Optimal module and voltage assignment for low-power. In Proceedings

of the Asia and South Pacific Design Automation Conference (ASP-DAC’05), Vol. 2. 850-855. https://doi.org/10.1109/

ASPDAC.2005.1466475

Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2021. ThunderGP: HLS-

based graph processing framework on FPGAs. In Proceedings of the 2021 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA’21) (Virtual Event, USA). Association for Computing Machinery, New York,

NY, 69-80. https://doi.org/10.1145/3431920.3439290

[7] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shaochong Zhang. 2018. Understanding
performance differences of FPGAs and GPUs. In Proceedings of the 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM’18). 93-96. https://doi.org/10.1109/FCCM.2018.00023

[8] G. Cybenko. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and
Systems (MCSS) 2, 4 (Dec. 1989), 303-314. https://doi.org/10.1007/BF02551274

[9] Fabrizio Ferrandi, Pier Luca Lanzi, Daniele Loiacono, Christian Pilato, and Donatella Sciuto. 2008. A multi-objective
genetic algorithm for design space exploration in high-level synthesis. In Proceedings of the 2008 IEEE Computer Society
Annual Symposium on VLSI. 417-422. https://doi.org/10.1109/ISVLSI.2008.73

[10] Michael Fingeroff. 2010. High-Level Synthesis Blue Book, Xlibris Corporation.

[11] Xiaohao Gao and Takeshi Yoshimura. 2013. Genetic Algorithm based pipeline scheduling in high-level synthesis. In
Proceedings of the 2013 IEEE 10th International Conference on ASIC. 1-4. https://doi.org/10.1109/ASICON.2013.6811982

[12] Tin Kam Ho. 1995. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis
and Recognition, Vol. 1. 278-282. https://doi.org/10.1109/ICDAR.1995.598994

[13] Huynh Phung Huynh, Andrei Hagiescu, Weng-Fai Wong, and Rick Siow Mong Goh. 2012. Scalable framework for
mapping streaming applications onto multi-GPU systems. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’12). Association for Computing Machinery, New York, NY,
1-10. https://doi.org/10.1145/2145816.2145818

[14] Xilinx Inc. 2020. Vivado Design Suite User Guide UG902 (v2020.1). https://www.xilinx.com/content/dam/xilinx/support/
documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf.

[15] Xilinx Inc. 2022. SDAccel: Enabling Hardware-Accelerated Software. https://www.xilinx.com/products/design-tools/
legacy-tools/sdaccel html.

[16] Intel. 2022. Intel® FPGA SDK for OpenCL™ Software Technology. https://www.intel.com/content/www/us/en/software/
programmable/sdk-for-opencl/overview.html.

[17] R. Kastner, J. Matai, and S. Neuendorffer. 2018. Parallel programming for FPGAs. arXiv:1805.03648. https://arxiv.org/
abs/1805.036438.

[18] Gary J. Katz and Joseph T. Kider. 2008. All-pairs shortest-paths for large graphs on the GPU. In Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware (GH’08). Eurographics Association, Goslar, DEU,
47-55.

[19] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle, Albert Cohen, Tatiana Shpeisman,
Andy Davis, Nicolas Vasilache, and Oleksandr Zinenko. 2020. MLIR: A compiler infrastructure for the end of Moore’s
law. arXiv:2002.11054. https://arxiv.org/abs/2002.11054.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE 86, 11 (1998), 2278-2324. https://doi.org/10.1109/5.726791

[2

—

[4

[laa)

(5

—_

G

—

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

https://doi.org/10.1109/SFCS.1983.7
https://doi.org/10.1007/978-81-322-1958-3_5
https://doi.org/10.1109/TVLSI.2009.2013353
https://doi.org/10.1109/ASPDAC.2005.1466475
https://doi.org/10.1145/3431920.3439290
https://doi.org/10.1109/FCCM.2018.00023
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/ISVLSI.2008.73
https://doi.org/10.1109/ASICON.2013.6811982
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1145/2145816.2145818
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/products/design-tools/legacy-tools/sdaccel.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
http://arxiv.org/abs/1805.03648.
https://arxiv.org/abs/1805.03648
https://arxiv.org/abs/2002.11054
https://doi.org/10.1109/5.726791

AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis 46:29

[21] JunyiLiu, John Wickerson, and George A. Constantinides. 2017. Tile size selection for optimized memory reuse in high-
level synthesis. In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications
(FPL’17). 1-8. https://doi.org/10.23919/FPL.2017.8056810

Xinheng Liu, Yao Chen, Tan Nguyen, Swathi Gurumani, Kyle Rupnow, and Deming Chen. 2016. High level synthesis

of complex applications: An H. 264 video decoder. In Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. 224-233.

[23] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. 2020. CUDA, release: 10.2.89. https://developer.nvidia.com/cuda-
toolkit.

[24] Alexandros Papakonstantinou, Karthik Gururaj, John A. Stratton, Deming Chen, Jason Cong, and Wen-Mei W. Hwu.
2009. FCUDA: Enabling efficient compilation of CUDA kernels onto FPGAs. In Proceedings of the 2009 IEEE 7th Sym-
posium on Application Specific Processors. 35-42. https://doi.org/10.1109/SASP.2009.5226333

[25] Alexandros Papakonstantinou, Yun Liang, John A. Stratton, Karthik Gururaj, Deming Chen, Wen-Mei W. Hwu, and
Jason Cong. 2011. Multilevel granularity parallelism synthesis on FPGAs. In Proceedings of the 2011 IEEE 19th Annual
International Symposium on Field-Programmable Custom Computing Machines. 178-185. https://doi.org/10.1109/FCCM.
2011.29

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zem-

ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin

Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Py-

Torch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing

Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran As-

sociates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-

learning-library.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.

Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.

[28] Nam Khanh Pham, Amit Kumar Singh, Akash Kumar, and Mi Mi Aung Khin. 2015. Exploiting loop-array dependencies
to accelerate the design space exploration with high level synthesis. In Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE’15). 157-162.

[29] Louis-Noél Pouchet and others. 2012. Polybench: The polyhedral benchmark suite. 437 (2012), 1-1.
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=TCppIZYAAAA]J&citation_for_view=
TCpplZYAAAAJ:Y0pCki6q_DKC.

[30] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. 2014. MachSuite: Benchmarks for
accelerator design and customized architectures. In Proceedings of the 2014 IEEE International Symposium on Workload
Characterization (ISWC’14). 110-119. https://doi.org/10.1109/IISWC.2014.6983050

[31] Shahbaz Rezaei and Xin Liu. 2019. Deep learning for encrypted traffic classification: An overview. IEEE Communica-
tions Magazine 57, 5 (2019), 76-81. https://doi.org/10.1109/MCOM.2019.1800819

[32] Simon Rokicki, Davide Pala, Joseph Paturel, and Olivier Sentieys. 2019. What you simulate is what you synthesize:
Designing a processor core from C++ specifications. In Proceedings of the 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’19). 1-8. https://doi.org/10.1109/ICCAD45719.2019.8942177

[33] Kyle Rupnow, Yun Liang, Yinan Li, and Deming Chen. 2011. A study of high-level synthesis: Promises and challenges.

In Proceedings of the 2011 9th IEEE International Conference on ASIC. 1102-1105. https://doi.org/10.1109/ASICON.2011.

6157401

Benjamin Carrion Schafer and Zi Wang. 2020. High-level synthesis design space exploration: Past, present, and future.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 10 (2020), 2628-2639. https://doi.

org/10.1109/TCAD.2019.2943570

Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. AutoDSE: Enabling software programmers to

design efficient FPGA accelerators. ACM Transactions on Design Automation of Electronic Systems 27, 4 (Feb. 2022),

Article 32, 27 pages. https://doi.org/10.1145/3494534

[36] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel programming standard for heterogeneous
computing systems. Computing in Science & Engineering 12, 3 (2010), 66—73. https://doi.org/10.1109/MCSE.2010.69

[37] Dani Voitsechov and Yoav Etsion. 2014. Single-graph multiple flows: Energy efficient design alternative for
GPGPUs. In Proceedings of the 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA’14).
205-216. https://doi.org/10.1109/ISCA.2014.6853234

[38] M. Wolfe. 1989. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing (Super-
computing’89). Association for Computing Machinery, New York, NY, 655-664. https://doi.org/10.1145/76263.76337

[39] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen Neuendorffer, and Deming Chen. 2021.
ScaleHLS: Scalable high-level synthesis through MLIR. CoRR abs/2107.11673 (2021). arXiv:2107.11673. https://arxiv.
org/abs/2107.11673.

[22

—

[27

—

(34

flan)

(35

—

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

https://doi.org/10.23919/FPL.2017.8056810
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1109/SASP.2009.5226333
https://doi.org/10.1109/FCCM.2011.29
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=TCppIZYAAAAJ&citation_for_view=TCppIZYAAAAJ:Y0pCki6q_DkC
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/MCOM.2019.1800819
https://doi.org/10.1109/ICCAD45719.2019.8942177
https://doi.org/10.1109/ASICON.2011.6157401
https://doi.org/10.1109/TCAD.2019.2943570
https://doi.org/10.1145/3494534
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/ISCA.2014.6853234
https://doi.org/10.1145/76263.76337
https://arxiv.org/abs/2107.11673

46:30 H. Jun et al.

[40] Hanchen Ye, Xiaofan Zhang, Zhize Huang, Gengsheng Chen, and Deming Chen. 2020. HybridDNN: A framework
for high-performance hybrid DNN accelerator design and implementation. In Proceedings of the 2020 57th ACM/IEEE
Design Automation Conference (DAC’20). 1-6. https://doi.org/10.1109/DAC18072.2020.9218684

[41] Mang Yu, Sitao Huang, and Deming Chen. 2021. Chimera: A hybrid machine learning-driven multi-objective design
space exploration tool for FPGA high-level synthesis. In Intelligent Data Engineering and Automated Learning — IDEAL
2021: Proceedings of the 22nd International Conference (IDEAL’21) . Springer-Verlag, Berlin, 524-536. https://doi.org/10.
1007/978-3-030-91608-4_52

[42] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. 2017. COMBA: A comprehensive
model-based analysis framework for high level synthesis of real applications. In Proceedings of the 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’17). IEEE, 430-437.

Received 18 June 2022; revised 30 September 2022; accepted 1 November 2022

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 46. Pub. date: June 2023.

https://doi.org/10.1109/DAC18072.2020.9218684
https://doi.org/10.1007/978-3-030-91608-4_52

