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Abstract—Unmanned aerial vehicles (UAVs) are increasingly
adopted to perform various military, civilian, and commercial
tasks in recent years. To assure the reliability of UAVs during
these tasks, anomaly detection plays an important role in today’s
UAV system. With the rapid development of AI hardware and
algorithms, leveraging AI techniques has become a prevalent
trend for UAV anomaly detection. While existing AI-enabled
UAV anomaly detection schemes have been demonstrated to be
promising, they also raise additional security concerns about the
schemes themselves. In this paper, we perform a study to explore
and analyze the potential vulnerabilities in state-of-the-art AI-
enabled UAV anomaly detection designs. We first validate the
existence of security vulnerability and then propose an iterative
attack that can effectively exploit the vulnerability and bypass the
anomaly detection. We demonstrate the effectiveness of our attack
by evaluating it on a state-of-the-art UAV anomaly detection
scheme, in which our attack is successfully launched without
being detected. Based on the understanding obtained from our
study, this paper also discusses potential defense directions to
enhance the security of AI-enabled UAV anomaly detection.

I. INTRODUCTION

Recent years have witnessed significant growth in the
adoption of UAVs, or drones, in various applications, such
as intelligence, surveillance, and reconnaissance (ISR), search
and rescue, and infrastructure inspection [1]–[3]. Meanwhile,
due to the possible software and hardware failures and po-
tential external attacks, the security and reliability of UAVs
are increasingly drawing research attention [4]. The abnormal
status of UAVs will cause them to fail their missions and even
lead to public safety threats, such as crashes in public areas.

To address the growing concerns about UAV security and
reliability, recent research has focused on leveraging AI and
machine learning techniques to design UAV anomaly detection
and recovery schemes [5]–[10]. These schemes typically build
a prediction model for UAV flying status using deep neural
network architectures, and then compare the prediction result
with the actual system measurement to determine whether
the UAV status is abnormal or not. While these AI-enabled
schemes have shown their effectiveness for the anomaly detec-
tion and recovery of UAV flight data, limited attention has been
given to the security of these schemes themselves. Specifically,
existing AI-enabled prediction models for UAV status rely
on time series analysis of UAV’s flight data as they are
continuously produced during the UAV’s operation. However,
multiple recent studies have demonstrated that deep learning

models used for time series data analysis can be vulnerable
to adversarial attacks [11], [12]. If such vulnerabilities also
exist in state-of-the-art AI-enabled UAV anomaly detection
and recovery designs, they can be leveraged by malicious
entities to bypass the detection and launch different attacks to-
wards UAVs. Therefore, it is critical to uncover such potential
vulnerabilities and obtain an improved security understanding
for the integration of AI and UAVs.

To fill this research gap, in this paper we perform the study
on the security property of AI-enabled UAV anomaly detection
with a focus on roll angle data. Roll angle data is one of
the most important parameters to reflect the safe operation
of UAVs and has been widely adopted by recent research
for UAV anomaly detection [5]–[7]. In a typical AI-enabled
anomaly detection design, a UAV’s status is predicted by the
AI model, which is then compared with the actual sensor
reading or system status using a threshold. If the difference
exceeds the threshold, the status is considered as abnormal and
recovery procedure will be applied to adjust the error. There-
fore, identifying vulnerabilities can be initially transformed
as designing adversarial inputs that can change the prediction
of AI models for UAV status but keep the difference within
threshold to avoid being detected. However, the capability
of such attacks constructed using one-time adversarial inputs
is restricted, i.e., the changes caused to the UAV status are
bounded by the threshold to avoid being detected, which can
be eventually adjusted by the UAV system. Therefore, the
challenging question here becomes whether it is possible to
construct effective attacks that can continuously exploit the
potential vulnerabilities to bypass the UAV anomaly detection
and cause significant impact on UAV operations.

To answer this question, this paper first explores the possi-
bility of constructing adversarial inputs towards AI-enabled
UAV anomaly detection, which confirms the existence of
vulnerability. Then, we analyze the upper-bound attack ef-
fectiveness of a single attack with adversarial inputs using
dynamic analysis. On top of that, we propose an effective
iterative attack that is able to gradually change the status of
UAVs without being detected. We evaluate our proposed attack
on the recently proposed AI-enabled UAV anomaly detection
design [5]. Our evaluation results not only validate the security
vulnerability in widely adopted “AI prediction + threshold”
UAV anomaly detection designs, but also demonstrate the
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effectiveness of our iterative attack. Specifically, our attack is
able to change the roll angle of a UAV up to 46 degrees when
appropriately launched, which is not being detected by the
UAV anomaly detection design. Based on the understanding
obtained from our investigation, this paper also discusses
potential defense directions to enhance the security of AI-
enabled UAV anomaly detection.

The rest of the paper is organized as follows: In Section
II, we review and discuss related works. In Section III, we
formulate the problem and propose the detailed construction
of our attacks. In Section IV, we evaluate and discuss our
proposed attacks and the identified vulnerability. We discuss
potential defenses in Section V and conclude our paper in
Section VI.

II. RELATED WORK

A. AI-enabled UAV Anomaly Detection
The problem of anomaly detection for UAVs has drawn

a lot of research attention given its importance in assuring
the safety and security of UAV operations [5]–[10], [13]–
[18]. In particular, machine learning and AI techniques are
widely adopted in recent research. The learning-based ap-
proach monitors the status of a system using a trained machine
learning or deep learning model. In [18], neural networks and
Extended Kalman Filter (EKF) are integrated to support the
detection of faults in UAVs’ sensors and actuators. Recently,
Zhong et al. [6] introduced a spatio-temporal correlation based
anomaly detection method for high-dimensional flight data.
In this method, an artificial neural network is first used for
spatio-temporal correlation analysis to select the most corre-
lated flight parameters with the monitored sensor. Then, these
selected parameters are used as the input of a long short-term
memory (LSTM)-based regression model for estimation. Wang
et al. [5] also created a regression model based on LSTM
networks with residual filtering to prevent random noise. The
model’s input is multivariate time series data with several
attitude parameters. The outcomes of their study show that
their methodology can lessen the impact of random noise in
flight data and enhance the sensitivity of the detection to minor
faults. In [7], a multi-output convolutional LSTM is proposed
for multivariate anomaly detection of UAV flight data. This
design combines convolutional neural networks (CNN) and
LSTM to achieve sequence-to-sequence prediction.

B. Adversarial Attacks to Neural Network on Time series Data
Adversarial examples make the neural networks vulnerable

and this was first pointed out by Szegedy et al. [19]. Papernot
et al. [20] shows that the adversarial attacks on the computer
vision domain can be translated to other domains. Since then, a
significant amount of research efforts have been spent towards
adversarial attacks on time series data. Recently, Karim et
al. [11] designed an Adversarial Transformation Network
(ATN) that takes an input time series sample and generates
an adversarial sample to attack the time series classification
models. Xu et al. [12] proposed a method to use gradient
information to generate adversarial attacks for the LSTNet

model. Their goal is to maximize the L1 loss function so
that the model outputs incorrect predictions. They use the
signed gradient and the direction of the gradient is determined
based on where the loss function yields the maximum value.
Mode et al. [21] designed adversarial attacks for multivariate
time series regression models using popular techniques in
the image classification domain like the Fast Gradient Sign
Method (FGSM) and Basic Iterative Method (BIM). Both
methods leverage gradient information of the loss function to
generate adversarial examples.

III. CONSTRUCTION OF ATTACKS

A. Problem Formulation

The AI-enabled UAV anomaly detection can be divided into
two major stages as shown in Fig.1, i.e., 1) predicting the next
status of UAV by feeding measured sensor and system data
into a pre-trained AI-model, and 2) comparing the difference
between prediction data and system reading with a predefined
threshold to determine the abnormal status of the UAV. We
adopt the recently proposed UAV anomaly detection design
[5] as the representative to explore the security vulnerability in
AI-enabled design. In particular, the anomaly detection design
in [5] utilizes a LSTM-based multivariate deep neural network
(DNN) as the AI model. The model integrates inputs from
multiple related sensors to predict the UAV roll angle, which
is then used as an indicator for the abnormal status. LSTM-
based design as well as roll angles are also adopted by other
state-of-the-art AI-enabled UAV anomaly detection [6], [7].

AI Model

Input 
source-1

Input 
source-n

…

Prediction of 
the next status

Measurement of 
the next status

Abnormal if the difference 
larger than threshold

Fig. 1. Overall of AI-enabled UAV Anomaly Detection

We now denote the DNN model for prediction as f(·) and
the prediction using f(·) at timestamp t with input Xt as
f(Xt) ! Pt. Here Xt is a sliding window of grouped sensor
input sequences before t and they are used to predict the sensor
value at the next time step. They can be denoted as

Xt =

2

664

x1,t�D+1, x1,t�D+2, · · · , x1,t�1

x2,t�D+1, x2,t�D+2, · · · , x2,t�1

. . .
xn,t�D+1, xn,t�D+2, · · · , xn,t�1

3

775 (1)
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where xi,t�j is the input from the i-th sensor at j-th times-
tamp before t. The anomaly detection at timestamp t can be
represented as (g(f(Xt), Yt)  T ) where T is a pre-defined
threshold and g(.) is the method to compare the prediction
value and the actual measurement of the target sensor Yt.
Therefore, the attack toward such an anomaly detection design
can be formulated as

�t, �t s.t. g(f(Xt + �t), Yt + �t)  T (2)

where �t is the modification applied to target sensor’s reading
at timestamp t and �t is the adversarial perturbation injected
before timestamp t. When �t can cause the corresponding
change of prediction that makes g(f(Xt + �t), Yt + �t)  T ,
then the abnormal change �t injected to the target sensor
will not be detected by the UAV anomaly detection system.
Different from �t that is applied for attacking directly at
timestamp t, applying �t can take multiple timestamps. This
is because Xt covers a sliding window of timestamps and
adversarial perturbation for a particular timestamp needs to
be applied at that particular timestamp. Thus, the design of
a successful attack at timestamp t needs to gradually affect
sensor readings before t and eventually cause the prediction
at t to become close to the attacked sensor reading Yt + �t to
avoid being detected. Based on our initial analysis, we now
present the detailed construction of our proposed attack.

B. Detailed Construction of Attack
The construction of our attack is going to leverage the vul-

nerability of the threshold-checking design in AI-enabled UAV
anomaly detection. First, due to the existence of threshold-
checking, a single attack can be easily launched at timestamp
t with a small �t that makes g(f(Xt), Yt + �t)  T . In this
kind of single attack, �t is likely to be bounded by T because
the predicted value f(Xt) will be close to the normal sensor
reading Yt, which can eventually be tolerated by the UAV
system. Although such single attacks cannot directly affect
the UAV system, it can be leveraged as the building block to
construct effective attacks and exploit the vulnerability.

To be specific, by continuously launching single attacks
with small attacking values, we are able to form a sliding
window of attacked data (Xt+�t) before timestamp t without
being detected. Therefore, the prediction value f(Xt + �t) at
t will also be changed. By denoting the prediction difference
as ✏t = f(Xt + �t) � f(Xt), the attacking capability of the
next single attack at timestamp t is also increased from �t to
�t + ✏t. While attacks towards a single sliding window only
increase the attacking capability by ✏t, it can be accumulated
as a large increment if such attacks are continuously launched
for sequences of sliding windows as the example shown in
Fig.2.

Based on this concept, we propose the detailed construction
of our iterative attack in Algorithm 1, in which attacking
values are incrementally raised to reach the attacking goal.
Specifically, our algorithm first sets an attacking goal �⇤, i.e.,
at the end of the attack our algorithm aims to modify the
value of the target sensor by �⇤ as Y + �⇤. Meanwhile, an

Attacking value
t1 !
t2 !
t3 !
t4 !+"1

t5 !+"1

t6 !+"1+"2
t7 !+"1+"2

… …

Prediction of t4 increases 
due to !

Prediction of t6 increases 
due to ! and !+"1

Prediction of t8 increases 
due to !+"1 and !+"1+"2

Fig. 2. Example of Accumulated Attacking Capability

Algorithm 1: Construction of Iterative Attack
Input: �⇤ : attacking goal,

G: offline gradient vector,
D: Sliding window size,
↵, µ: attacking value incremental parameters

Set j = 0, � = 0, � =initial attacking value;
while � < �⇤ do

Set i = 1;
while i  D do

Launch single attack with �
end
� = � + �
� = � + (↵ ⇤G[j])
↵ = (1 + µ)↵
j = j+1;

end

initial attacking value will be estimated for the first round of
attack based on the potential threshold used by the UAV’s
anomaly detection system. The attacking value � will be
adjusted according to the gradient vector pre-computed offline.
To generate the gradient vector, we first performed multiple
offline attacks over the flight data of different flight paths.
Then, the average of gradient time series from different
attacks with the same trend (e.g., increasing or decreasing
the target sensor value) is adopted from the pre-computed
gradient vectors. We use the offline average gradient vectors
to estimate online gradient with a similar flying path because
the parameters to compute them are typically not available for
adversaries during real-time attacks. Our algorithm also uses
two additional parameters ↵, µ to adjust the increment of the
attacking value during the attack.

The successful execution of our algorithm also depends
on the appropriate estimation of the threshold to assure
g(f(Xt), Yt + �)  T . Given the fact the actual threshold
used by the UAV may not be available to external entities,
we estimate the threshold using offline dynamic analysis by
applying different thresholds to the UAV anomaly detection
scheme. As a small threshold (Ts) can cause high false positive
rate and a large threshold (Tl) can cause high false negative
rate, a reasonable threshold adopted by the UAV system
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shall be within (Ts, Tl) to achieve high detection accuracy.
Therefore, the estimated threshold shall also be chosen from
(Ts, Tl). The selection of the estimated threshold raises a
trade-off between the probability of being detected and the
attacking speed. On one hand, a small threshold has a high
probability to be smaller than the actual threshold and assures
that g(f(Xt), Yt +�)  T when launching the attack with �.
On the other hand, a large threshold allows a larger attacking
value � in each round and hence can achieve the attacking
goal faster.

C. Discussion
In our proposed attack, the attacking value is applied to

the target sensor only. While it is the major factor that
contributes to the prediction f(Xt) in anomaly detection,
Xt = [X[1]t, X[2]t, · · · , X[n]t] also contains inputs from
other related sensors. When applying an attacking value � to
the target sensor in Xt (say X[k]t), we have

Xt + � = [X[1]t, · · · , X[k]t + �, · · · , X[n]t]

f(Xt + �)� f(Xt) < �

With the iterative attacks going on, the accumulation of
attacking values in the prediction f(Xt + �) is slower than
that directly applied to the target sensor Yt+�, and eventually
makes their gap become larger than the threshold and fails
the attack. As shown in Fig.3, such a gap keeps increasing
while continuously attacking. Therefore, although our attack
is able to significantly change the target sensor value, it is still
bounded by the threshold of the anomaly detection system
at some point. A more detailed evaluation in terms of such
limitations is provided in Section IV.

Fig. 3. Example of Prediction Gap

IV. EVALUATION

A. Experimental Setup
The evaluation of our proposed attack is performed on

the LSTM-based UAV anomaly detection design recently
proposed in [5]. This design adopts a neural network with

an input layer, one stacked LSTM layer, and an output layer
that compiles the data extracted by previous layers to form
the final output. 10 sensors are used as inputs as summarized
in Table I and the prediction is made toward roll angle for
anomaly detection. UAV flight data to train the anomaly
detection system is generated using PX4 autopilot [22] and
QGroundControl [23] with 10 different flight paths. By setting
the sliding window size as 5, our dataset consists of 3,000
sliding windows of sensor data for training after reformulation
and normalization. The attacking data is generated in real-time
and injected into the simulation of UAV operations in PX4
autopilot. The final estimated threshold is set as T = 3.69,
which is consistent with the parameters adopted in the anomaly
detection design in [5]. The initial attacking value is set from
2.5 to 3.5. We also set µ = 0.01 to optimize the effectiveness
of our attack according to our experiments. All experiments
are performed on a desktop computer with i7 8-core CPU,
32GB memory, and one RTX 3070 GPU.

TABLE I
SENSOR INPUTS

Index Sensor Data Unit
1 Roll Angle degree
2 Pitch Angle degree
3 Yaw Angle degree
4 Actuator Roll Angle degree
5 Actuator Pitch Angle degree
6 Actuator Yaw Angle degree
7 Roll Rate degree/s
8 Pitch Rate degree/s
9 Yaw Rate degree/s
10 Airspeed m/s

B. Experimental Results
In our evaluation, we first validate that our attack can

be successfully launched to the AI-enabled UAV anomaly
detection. As shown in Fig.4, our attack is able to cause the
prediction design in anomaly detection to increase together
with the attacked sensor value, and hence avoid being detected
by the threshold-checking design. It is also noteworthy that our
attack is able to maintain the attacked sensor and prediction
value at a certain level when necessary. While our attack fails
after changing the roll angle by 46� due to the existence of
other sensor inputs as discussed in Section III-C, it is already
a considerable amount of changes in practical UAV operations
and can significantly affect the security and safety of UAVs.

With regard to the attacking speed, Fig.5 shows that our
attack can reach the maximum change of roll angle with 28.9
seconds. In particular, the attacking time increases significantly
when the attacking goal becomes larger than 40�. This is
because when the attacking goal is close to the maximum
attacking capability, the increasing rate of attacking values
needs to be slowed down to avoid being detected. As shown
in Table II, larger values can be selected for incremental
parameter ↵ to achieve a higher attacking speed for small
attacking goals. As a comparison, the value of ↵ has to be
reduced to small ones when attacking goals are close to the
boundary.
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Fig. 4. Successful Attacks to the AI-enabled UAV anomaly detection

Fig. 5. Attacking Time for Different Attacking Goals

To further understand how the threshold adopted by the
anomaly detection system can affect the attacking effectiveness
of our attack, we evaluate the maximum roll angle that
can be changed by our attack under different thresholds. In
particular, we set the range of the estimated threshold from
0.6 to 6, which achieves false positive rate and false negative
rate at 0 respectively for anomaly detection without attacks.
As presented in Fig.6, the attacking capability of our attack
increases with the threshold. This is because a larger threshold
allows a bigger gap between the prediction value and target
sensor value, which provides more room for our attacks to
succeed.

V. DEFENSE DISCUSSION

In this section, we discuss the potential defense directions
against the proposed attack based on the understanding of the
identified vulnerability obtained in this paper.

A. Increasing the Weight of Related Sensors in Prediction
As discussed in Section III-C, the involvement of related

sensors in the prediction of the target sensor value helps the

TABLE II
SELECTION OF ↵

Time(s) Roll Angle Changed by Attack Value of ↵
0.5 4 165
0.6 6 165
0.7 7 165
0.8 9 165
0.9 12 165
1 13 155
1.1 15 155
1.2 17 155
1.3 18 145
1.4 19 130
1.5 20 130
1.6 22 130
1.7 23 130
1.9 25 130
2 26 130
2.1 27 130
2.3 28 130
2.4 29 125
2.5 30 120
2.6 31 120
2.7 32 120
3.1 33 105
3.5 34 90
4 35 80
4.1 36 80
5.5 38 55
6.8 40 45
10 41 25
10.2 42 25
10.5 43 25
14.3 44 25
21.2 45 15
28.9 46 10

Fig. 6. Threshold verses Maximum Attacking Capability

anomaly detection system to detect our proposed attack when
it changes the target sensor too much. Therefore, when in-
creasing the weights of these related sensors in the prediction,
attacks performed to the target sensor will only have a lower
impact on the prediction. In such a case, the gap between
the attacked prediction and the attacked target sensor value
will grow fast and make the attack to be detected in the early
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stage. However, adjusting the weights of other sensors can also
affect the overall accuracy of anomaly detection when there
is no attack. Hence, we suggest involving additional sensor
inputs or system parameters that are directly related to the
target sensor in the prediction, such as roll rate for the roll
angle prediction.

B. Using Dynamic Thresholds for Adaptive Detection

As shown in our experimental results, the attacking ca-
pability of our attack is directly affected by the threshold.
Therefore, instead of adopting the same threshold in the
UAV anomaly detection, dynamic thresholds can be leveraged
to improve the sensitivity of the detection. For example, if
75% of the threshold T has been exceeded continuously for
certain rounds of detection, the system can temporally set
T = T ⇤x, where x 2 [0.5, 0.8]. By using dynamic thresholds,
the system will perform adaptive detection that enhances the
detection sensitivity when the status of the target sensor stays
close to abnormal. In addition, adopting dynamic thresholds
will also make the adversary difficult to estimate the actual
threshold adopted by the detection system and hence limiting
its attacking capability.

VI. CONCLUSION

This paper performs a study on the security property of AI-
enabled UAV anomaly detection. Outcomes from this paper
contribute to the understanding of vulnerabilities in AI-enabled
UAV anomaly detection schemes and will help improve secu-
rity awareness when designing and deploying such schemes.
Specifically, this paper first validates that the “AI prediction +
threshold” design mode in typical AI-enabled UAV anomaly
detection can be leveraged to launch attacks. Then, we propose
an iterative attack and demonstrate the identified vulnerability
can be effectively exploited and cause a significant impact on
the security and safety of UAV operations. We evaluate our
attack on a state-of-the-art AI-enabled UAV anomaly detection
scheme, which demonstrates the effectiveness of our attack.
Additional evaluation of our attack is also carried out to obtain
a better understanding of the security property. Moreover, this
paper also discusses the potential defense directions to im-
prove the security and reliability of AI-enabled UAV anomaly
detection.
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