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When time-reversal symmetry is broken, the low-energy description of acoustic lattice dynamics allows
for a dissipationless component of the viscosity tensor, the phonon Hall viscosity, which captures how
phonon chirality grows with the wave vector. In this work, we show that, in ionic crystals, a phonon Hall
viscosity contribution is produced by the Lorentz forces on moving ions. We calculate typical values of the
Lorentz force contribution to the Hall viscosity using a simple square lattice toy model, and we compare it
with literature estimates of the strengths of other Hall-viscosity mechanisms.
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Introduction.—Recent measurements of giant thermal
Hall signals in many insulating ionic crystals [1–5] have
ignited widespread interest in the processes underlying
chiral phonon transport. The mechanisms by which pho-
nons acquire chirality can be broadly divided in two
classes: (i) intrinsic—i.e., originating from external mag-
netic fields or magnetism that breaks time-reversal sym-
metry (TRS) in crystals [6–25], and (ii) extrinsic—i.e.,
originating from scattering on TRS-breaking crystal defects
[26–29].
In the low-energy elasticity-theory description of acous-

tic waves, intrinsic TRS-breaking is accounted for by a Hall
viscosity contribution to the response of the system’s
viscoelastic stress tensor to an applied strain uλμ [7,11]:

hT̂λμi ¼ Λλμνξuνξ þ ηλμνξu̇νξ: ð1Þ

Here, T̂ is the stress tensor, uλμ ¼ 1
2 ð∂λuμ þ ∂μuλÞ is the

strain tensor, uλ is the atomic displacement field along the
λth direction, and Λ and η are, respectively, the elasticity
and viscosity tensors. The viscosity tensor η can have
dissipationless component, dubbed the Hall (or odd)
viscosity, which is associated with the part of ηλμνξ that
is antisymmetric under exchange of the pairs of indices
ðλμÞ and ðνξÞ.
Dissipationless Hall contributions to the viscosity [7] are

allowed only in systems with broken TRS where they alters
the acoustic phonon spectrum, and mix longitudinal and
transverse modes. Previous theoretical work has addressed
phonon Hall viscosities produced by coupling of acoustic
phonons to a ferroelectric [6], electronic [7–10,12–15], or
spin environment [16–25] in which TRS is broken.
In this Letter, we consider the role of Lorentz forces in

ionic crystals, which act on the electric dipoles produced by
out-of-phase motion of cations and anions. The out-of-
phase lattice vibrations are, in turn, coupled at finite wave
vector to the in-phase modes by elastic forces. By deriving

an effective theory for the low-energy acoustic waves, we
show that Lorentz forces always lead to finite Hall
viscosities that are linear in magnetic field.
The Lorentz-force Hall effect mechanism identified in

this Letter must be present in any ionic crystal and is readily

FIG. 1. Top: Diatomic square lattice with interatomic distance
a, subjected to an out-of-plane magnetic field B. The cation and
anion masses are mþ and m−, and the ion effective charges are
q% ¼ %Z&e. We include centrosymmetric pairwise interactions
between ions characterized by spring constants γ, γ1, and γ2 for
near-neighbor interactions between cations and anions, second-
neighbor interactions cations, and second-neighbor interactions
between anions, respectively. Bottom: optical modes in an ionic
crystal. In the presence of a magnetic field B perpendicular to the
2d crystalline plane, the Lorentz forces on cations and anions
moving in opposite directions do not cancel.
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evaluated for particular materials given a set of lattice force
constants and ionic charges. In order to bring out the
mechanisms that control Hall viscosity trends across
materials, we analyze a two-dimensional model.
Specifically, we focus on the diatomic square lattice
subjected to an out-of-plane magnetic field, sketched in
Fig. 1, to estimate the typical size of contributions to the
Hall viscosity tensor η supplied by this mechanism.
Because of the C4 rotational symmetry of our 2d model,
there is only one independent coefficient in the phonon Hall
viscosity tensor, i.e., ηH ¼ ηxxxy [30]. We find that this
coefficient is proportional to the external magnetic field,
and that its typical numerical value is comparable to those
estimated for other mechanisms. Our results show that
every ionic crystal can display a phonon Hall response,
independently of phonon coupling to external degrees of
freedom. Furthermore, our discovery sheds further light on
the mechanisms underlying the generation of phonon
chirality and angular momentum in ionic insulators, which
have been recently attracting significant attention across
different fields in condensed matter physics and nonlinear
optics [31–38].
Model.—We consider a square lattice with cations and

anions on opposite sublattices that is subjected to an out-of-
plane magnetic field B, as depicted in Fig. 1. The cation and
anion have masses mþ and m− and charges q% ¼ %Z&e,
respectively, with e > 0 being the electron charge and Z&

the effective ionic charge number. We assume centrosym-
metric forces with spring constants γ, γ1, and γ2 for
interactions between cation and anion nearest neighbors,
cation second nearest neighbors, and anion second nearest
neighbors, respectively.

At wave vector k, the lattice displacement along the ith
direction of the nth ion (with n ¼ %) in the lth cell can be
written as

unμlðk;ωÞ ¼ m−1=2
n unμeik·RnðlÞ−iωt: ð2Þ

Here, unμ is the lattice vibration amplitude of the nth atom
along the μth direction, RnðlÞ is a lattice translation vector,
and ω the normal mode frequency. In the harmonic
approximation, the equation of motion for the vibration
amplitude unμ is

ω2unμ ¼
X

m;ν

Dμνðmn;kÞumν þ
X

ν

iωBqn
mn

unνϵμν; ð3Þ

where ϵμν is the 2d Levi-Civita tensor. The element
Dμνðmn;kÞ of the dynamical matrix reads as

Dμνðmn;kÞ ¼ −
X

l0

γnmffiffiffiffiffiffiffiffiffiffiffiffiffi
mmmn

p eμðmÞeνðmÞeik·Rnmðl0Þ; ð4Þ

where êðmÞ is the unit vector along the translational vector
Rnmðl0Þ connecting the mth atom in the l0 unit cell to the
nth atom in the l ¼ 0 unit cell, while γnm > 0 is the spring
constant between nth and mth ions. Plugging Eq. (4) into
Eq. (5), we can rewrite the equations of motion as

ω2

"
uþ

u−

#
¼ Aðk;ωÞ

"
uþ

u−

#
; ð5Þ

where

Aðk;ωÞ ¼

2

6666666666664

2γþ2γ1ð1−cos kxa cos kyaÞ
mþ

iωZeB−2γ1 sin kxa sin kya
mþ

− 2γ cos kxaffiffiffiffiffiffiffiffiffiffi
mþm−

p 0

− 2γ1 sin kxa sin kyaþiωZeB
mþ

2γþ2γ1ð1−cos kxa cos kyaÞ
mþ

0 − 2γ cos kyaffiffiffiffiffiffiffiffiffiffi
mþm−

p

− 2γ cos kxaffiffiffiffiffiffiffiffiffiffi
mþm−

p 0
2γþ2γ2ð1−cos kxa cos kyaÞ

m−
− 2γ2 sin kxa sin kyaþiωZeB

m−

0 − 2γ cos kyaffiffiffiffiffiffiffiffiffiffi
mþm−

p iωZeB−2γ2 sin kxa sin kya
m−

2γþ2γ2ð1−cos kxa cos kyaÞ
m−

3

77777777775

; ð6Þ

with a being the lattice constant. In the following, we set ky ¼ 0 and we focus on the long-wavelength limit of the phonon
dynamics by assuming that kxa ≪ 1. It is convenient to work in the basis of eigenmodes of Eq. (5) for kx ¼ 0 and B ¼ 0,
which are the in-phase (ua) and out of phase (uo) ionic motions,

uaμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m−
m− þmþ

r "
u−μ þ

ffiffiffiffiffiffiffi
mþ
m−

r
uþμ

#
; ð7Þ

uoμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mþ
m− þmþ

r "
u−μ −

ffiffiffiffiffiffiffi
m−
mþ

r
uþμ

#
: ð8Þ
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In this basis, we can rewrite the dynamical matrix (6) as

Aðkx;ωÞ ¼

2

6666666664

ð2γþγ1þγ2ÞðkxaÞ2
mþþm−

0 ½mþðγþγ2Þ−m−ðγþγ1Þ(ðkxaÞ2ffiffiffiffiffiffiffiffiffiffi
mþm−

p ðmþþm−Þ
− iZeBωffiffiffiffiffiffiffiffiffiffi

mþm−
p

0 ðγ1þγ2ÞðkxaÞ2
mþþm−

iZeBωffiffiffiffiffiffiffiffiffiffi
mþm−

p ðmþγ2−m−γ1ÞðkxaÞ2ffiffiffiffiffiffiffiffiffiffi
mþm−

p ðmþþm−Þ

½mþðγþγ2Þ−m−ðγþγ1Þ(ðkxaÞ2ffiffiffiffiffiffiffiffiffiffi
mþm−

p ðmþþm−Þ
− iZeBωffiffiffiffiffiffiffiffiffiffi

mþm−
p 2γðmþþm−Þ2þðγ2m2

þþγ1m2
1−2γmþm−ÞðkxaÞ2

mþm−ðmþþm−Þ
− iZeBðmþ−m−Þω

mþm−

iZeBωffiffiffiffiffiffiffiffiffiffi
mþm−

p ðmþγ2−m−γ1ÞðkxaÞ2ffiffiffiffiffiffiffiffiffiffi
mþm−

p ðmþþm−Þ
iZeBðmþ−m−Þω

mþm−
2γðmþþm−Þ2þðm2

þγ2þm2−γ1ÞðkxaÞ2
mþm−ðmþþm−Þ

3

7777777775

:

ð9Þ

Equation (9) shows that the in-phase motion is coupled
to the out-of-phase motion when either kx or B is nonzero.
The longitudinal (transverse) in-phase motion of the cations
and anions is coupled to out-of-phase longitudinal (trans-
verse) motion via elastic forces, which vanish as kx → 0. In
contrast the Lorentz force yields a wave vector–indepen-
dent interaction between the longitudinal in-phase motion
and the out-of-phase transverse motion. When the cation
and anion have different masses, the Lorentz force also
directly couples the transverse and longitudinal out-of-
phase motions.
Phonon Hall viscosity.—When TRS is broken, the action

of a two-dimensional phonon system allows for a non-
dissipative Hall viscosity term [25], i.e.,

SH ¼
Z

d2x dt
$
−
ηH
2
ð∇2uaxu̇ay −∇2uayu̇axÞ

%
: ð10Þ

To make contact with the definition of phonon Hall
viscosity ηH introduced in Eq. (10), we derive a low-
energy theory for the in-phase modes ua by integrating
over out-of-phase modes in the imaginary-time phonon-
system action S½ua;uo( corresponding to Eq. (9). The
effective action Sa for the low-energy nearly in-phase
modes is

e−Sa½ua( ¼
Z

Du&
oDuoe−S½ua;uo(: ð11Þ

To leading order in the small parameters kxa and ωc=ωo,
the resulting equations of motion are

ω2

$
1þ ω2

c

ω2
o

%
uax ¼ c2l ðkxaÞ2uax

þ iωωc

ω2
o

½mþðγ þ 2γ2Þ −m−ðγ þ 2γ1Þ(ðkxaÞ2

ðmþ þm−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþm−

p uay; ð12Þ

ω2

$
1þ ω2

c

ω2
o

%
uay ¼ c2t ðkxaÞ2uay

− iωωc

ω2
o

½mþðγ þ 2γ2Þ −m−ðγ þ 2γ1Þ(ðkxaÞ2

ðmþ þm−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþm−

p uax: ð13Þ

Here, ωo is the optical phonon frequency at the Γ ¼ ð0; 0Þ
point, ωc is the cyclotron frequency, and cl and ct are the
longitudinal and transverse phonon velocities:

ωo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γðmþ þm−Þ

mþm−

s

; ωc ¼
Z&eB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþm−

p ;

cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ þ γ1 þ γ2
mþ þm−

s

; ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1 þ γ2
mþ þm−

r
: ð14Þ

The phonon Hall viscosity ηH can be extracted from
Eqs. (10), (12), and (13) by identifying ρ ¼ a−2ðmþ þm−Þ
[39]. We find that

ηH ¼ ωc

ω2
0

mþðγ þ 2γ2Þ −m−ðγ þ 2γ1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
m−mþ

p ;

¼ mþðγ þ 2γ2Þ −m−ðγ þ 2γ1Þ
2γðmþ þm−Þ

Z&eB: ð15Þ

Equation (15) shows that acoustic phonons in ionic crystals
can acquire a dissipationless Hall viscosity whose strength
is proportional to the magnetic field. This is the central
result of our work.
The strength and sign of the phonon Hall viscosity (15)

strongly depends on the ratio x ¼ m−=mþ between the mass
of cations and anions.Forx ≫ 1, theHall viscosity is negative
and approaches the value ηH ∼ −ð1=2 þ γ1=γÞZeB. For
x ¼ ðγ þ 2γ2Þ=ðγ þ 2γ1ÞηH crosses zero, to then increase
until it reaches its saturation value ηH ∼ ð1=2þ γ2=γÞZeB
for x ≪ 1. We therefore expect positive Hall viscosities in
oxides because their anions are light.
Since the Lorentz force couples transverse and longi-

tudinal motion only when the ion motion is out of phase,
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the denominator in Eq. (15) is proportional to ω2
o, instead of

c2l − c2t . The role of the phonon force constants is to couple
in-phase and out-of-phase motion at finite wave vectors.
Choosing Cu and O as typical cation and anion masses,

we take the optical phonon frequency of a CuO2 plane, i.e.,
ω0 ∼ 2.5 THz [40], and set γ1 ∼ γ=2 and γ2 ∼ 3γ=4. We
find that the typical numerical value of ηH at B ¼ 10 T
is ∼5 × 10−18 kg s−1.
The wave equations (12) and (13) explicitly couple

longitudinal and transverse phonon modes. We characterize
the chirality of acoustic phonon modes by the polarization
pa defined as the ratio of the transverse to the longitudinal
component in the dominantly longitudinal mode. For wave
vectors in the x̂ direction pa ≡ juay=uaxj. From Eqs. (12)
and (13),

pa ≈
clðkxaÞ

2γ
jηHj; ð16Þ

at long wavelengths. As shown by the overlapping blue
lines in Fig. 2, Eq. (16) is in excellent agreement with the
polarization obtained numerically from Eq. (9). However,
according to Eq. (16), pa is nonzero only if ηH ≠ 0, while
the polarization pa calculated from Eq. (9) vanishes at all
wave vectors only when the elastic coupling between the
in-phase motion and out-of-phase dynamics vanish entirely,
i.e., when mþ ¼ m− and γ1 ¼ γ2. The more stringent
condition for the absence of field-induced coupling
between longitudinal and transverse modes is captured
when terms of order ðkxaÞ4B are retained in the low-energy
effective model.
Figure 2 additionally displays the dependence of the

polarization po ¼ juoy=uoxj of the out-of-phase longi-
tudinal mode on the magnetic field (orange line). Since

Lorentz forces directly couple transverse and longitudinal
out-of-phase modes, the polarization of the out-of-phase
mode is several order of magnitude larger (∼104 for our
parameters) than the polarization of the in-phase mode.
When the Lorentz force coupling the transverse and longi-
tudinal out-of-phase motion vanishes, i.e., A34ð43Þ ¼ 0 in
Eq. (9), the polarization p0 is significantly reduced (green
line). We find that, however, p0 does not vanish as long as
there is a finite elastic coupling between in-phase and out-of-
phase modes (γ1 ≠ γ2).
In addition to coupling longitudinal and transverse

phonons, Lorentz forces also give rise to small changes
in acoustic phonon frequencies. To leading order in the
parameters kxa and ωc=ωo, Eqs. (12) and (13) imply that
both the longitudinal and transverse phonon frequencies are
reduced by a factor of 1 − ω2

c=2ω2
o. With our parameters,

one finds ω2
c=ω2

o ∼ 10−9.
Discussion and conclusions.—In this Letter, we have

derived a low-energy effective model for the lattice vibra-
tions of an ionic crystal subjected to a static magnetic field
which accounts for the influence of Lorentz forces. We find
that the long-wavelength in-phase lattice dynamics is
characterized by a finite phonon Hall viscosity, which
implies chiral phonon transport. The Lorentz force con-
tribution to the Hall viscosity is rooted in the coupling
between the in-phase motion and out-of-phase motion of
cations and anions at finite wave vectors. This mechanism
leads to typical values of the phonon Hall viscosity ηH ∼
5 × 10−18 kg s−1 at magnetic field B ¼ 10 T. In comparison
Barkeshli et al. investigated phonon coupling to a variety of
TRS-broken electronic states, and estimated [7] resulting
Hall viscosities in the range ηH ∼ 10−19–10−15 kg s−1.
Our results apply to layered 3d crystals as well when

considering phonons with wave-vector oriented parallel to
the 2d layers. In the limit of vanishing interlayer coupling,
one could obtain the 3d phonon Hall viscosity simply by
redefining ηH → ηH=a. We use a diatomic square lattice toy
model to estimate typical viscosity values. However, our
conclusions are not particular to the system analyzed as
they rely on two key ingredients that are present in every
ionic crystal: (i) a wave vector–dependent coupling
between the in-phase and out-of-phase motion of the
cations and anions (7), (8), i.e., the eigenvectors of the
dynamical matrix (6) at the Γ point; (ii) a wave vector–
independent coupling between the magnetic field and the
out-of-phase modes. Thus, we anticipate any ionic crystal
subjected to an out-of-plane magnetic field to be charac-
terized by a finite phonon Hall viscosity. Our model can be
easily generalized to more complex crystalline structures,
for which first-principles methodologies can be used to
estimate the parameters entering the phonon Hall viscos-
ity (15).
The emergence of the phonon Hall effect in ionic crystals

subjected to a static magnetic field has been investigated
within a quantum treatment by Agarwalla et al. [41].

FIG. 2. Blue line: dependence of the polarization pa of the
longitudinal in-phase mode on the magnetic field, calculated from
Eqs. (16) and (9). The two sets of data overlap. Orange and green
line: dependence of the polarization po of the longitudinal out-of-
phase mode on the magnetic field when choosing Cu and O as
cation and anion masses and when setting mþ ¼ m−, respec-
tively. If not otherwise specified, the figures are plotted using the
parameters listed in the main text.
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Our classical approach yields an analytical expression for
the Hall viscosity, is more transparent, and provides better
insight into the parameters that control its strength,
allowing comparisons with other phonon Hall viscosity
mechanisms.
Experimentally probing the phonon Hall viscosity has

proven to be a challenging task. The renormalization of the
long-wavelength acoustic phonon spectrum is far below the
resolution limits of conventional spectroscopic probes.
Moreover, such measurement would not carry any infor-
mation about the sign of the Hall viscosity. However, it has
been recently shown that a finite phonon Hall viscosity is
responsible for circular birefringence of transverse acoustic
waves [11]. Thus, it yields an acoustic Faraday rotation that
can be probed via acoustic cavity interferometry [42,43].
Another candidate probe is time-dependent x-ray diffrac-
tion, which allows us to directly image acoustic phonon
modes [44].
Naturally, the phonon Hall viscosity yields chiral phonon

transport. In an ionic crystal with no magnetic order or
symmetry-broken electronic states one might expect our
reported phonon Hall viscosity to be the source of phonon
Hall signals. Recently, though, it was shown that scattering
on charged defects, which are common in ionic crystals,
can also lead to skew scattering [26]. However, the
resulting phonon Hall effect is predicted to display a
temperature dependence ∝ T−1, in contrast to the ∝ T5

dependence of the signal ascribed to impurity scattering of
acoustic phonons with finite Hall viscosity [8], which
should make the two signals easily distinguishable.
Finally, future work should address the role of phonon
anharmonicity.
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Pyon, T. Takayama, H. Takagi, S. Ono, N. Doiron- Leyraud,
and L. Taillefer, Nature (London) 571, 376 (2019).

[2] M.-E. Boulanger, G. Grissonnanche, S. Badoux, A. Allaire,
E. Lefrancois, A. Legros, A. Gourgout, M. Dion, C. H.
Wang, X. H. Chen, R. Liang, W. N. Hardy, D. A. Bonn, and
L. Taillefer, Nat. Commun. 11, 5325 (2020).

[3] G. Grissonnanche, S. Theriault, A. Gourgout, M.-E.
Boulanger, E. Lefrancois, A. Ataei, F. Laliberté, M.
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