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Abstract—With the rapid development of unmanned aerial
vehicle (UAV) technologies, UAVs are now increasingly leveraged
to perform military and civilian tasks today. Meanwhile, as a
complex cyber-physical system, UAVs are also facing security
and reliability concerns raised by internal systems errors and
external cyber-attacks from multiple aspects. Recent research has
spent efforts on leveraging AI and machine learning techniques
to predict the flying status of UAVs using their flight data for
anomaly detection. However, these methods often ignore the
prediction delay existing in status-changing periods during the
UAV’s operation, which inevitably causes false alarms and opens
a window for malicious adversaries if they are not appropriately
addressed. In this paper, we propose a new approach to enable
effective anomaly detection and recovery for UAV flight data.
Our approach adopts a hybrid design to eliminate false alarms
during the status-changing periods while maintaining the high
reliability of anomaly detection. We evaluate the proposed ap-
proach on flight data collected from multiple UAV flight paths.
Our evaluation results validate the effectiveness of our hybrid
design, which achieves both high anomaly detection accuracy
and reliable recovery.

I. INTRODUCTION

Recent years have witnessed the rapid development of UAV's
in various military and civilian application scenarios, such
as remote sensing, infrastructure inspection, and intelligence,
surveillance, and reconnaissance (ISR) [1]-[3]. Along with
the widespread adoption of UAVs, its security and reliability
has also received increasing attention from both academia and
industry considering the potential internal failures and external
attacks [4], [5]. The abnormal flying status of a UAV not only
affects its own mission but can also cause severe public safety
consequences.

To improve the reliability of UAVs, multiple research at-
tempts have been made to enable anomaly detection and
recovery by analyzing the UAV’s flight data [6]-[13]. This is
because the flight status of a UAV can be directly reflected
by the flight data collected from its sensors. Approaches
proposed in existing research can be mainly classified into two
categories, i.e., model-based [6]-[8] and model-free [9]-[13].
The model-based approaches treat the UAV control process
as a white box and use techniques from control theory for
detection. Differently, the model-free approaches consider the
control process as a black box and leverage Al and machine
learning techniques to classify abnormal statuses. This paper
focuses on the model-free design, which has become a preva-
lent trend in recent research to handle both known abnormal

patterns and unknown faults. In particular, the state-of-the-art
research increasingly adopts long short-term memory (LSTM)
structure in the design of model-free UAV anomaly detection
approaches [11]-[13], because the time-series nature of UAV
flight data makes LSTM become an excellent fit to discover
their spatio-temporal correlation.

Although these recent approaches [11]-[13] have been
demonstrated to be effective overall for the anomaly detection
of UAV flight data, they still suffer from high false-positive
rates at time windows after flight status changes (e.g., turning).
Specifically, the real-time change of flying status of a UAV
triggers immediate changes in the reading of related sensors.
However, the corresponding prediction made by the deep
learning models can be delayed since the flight data trend
right before the UAV status change is typically different. Such
a delay introduces notable gaps between the actual sensor
reading and predicted sensor values, which further leads to
false alarms if these gaps exceed the threshold defined for
anomaly detection. Fig.1 presents an example we evaluated
using the approach proposed in [12], which shows obvious
gaps between the roll angle values from actual sensor reading
and prediction right after a turning is made by the UAV. In
real-time anomaly detection for UAVs, such false alarms can
be eliminated by temperately increasing the threshold for these
flight status-changing periods, nevertheless, it will also restrict
the detection of true anomalies in these periods and open
windows for malicious adversaries to inject manipulated data.
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Fig. 1. Example of Prediction Delay in UAV Turning

In this paper, we propose an effective real-time anomaly
detection approach for UAV flight data, which adopts a hybrid
design to overcome the limitation introduced by the prediction
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delay. To be specific, our approach separates the flight data
of UAVs into the non-status-changing period and the status-
changing period, in which the status-changing period is the
time window that prediction delays are likely to happen due
to the change of flying status. An LSTM-based DNN model
driven by multi-sensor inputs is adopted in our approach for
anomaly detection during the non-status-changing period. With
regard to the status-changing period, an alternative anomaly
detection design is adopted using pre-computed reference data
and a separate DNN model to resolve the negative impacts
introduced by the prediction delay. We implement and evaluate
our proposed approach on multiple real-time UAV flying
patterns generated using PX4 autopilot [14]. The evaluation
results show that our approach achieves high accuracy for
anomaly detection in both non-status-changing periods and
status-changing periods. Compared with existing research that
uses a single DNN model for anomaly detection, our hybrid
approach significantly reduces the false-positive rate without
sacrificing the reliability of anomaly detection. Our results also
demonstrate that our approach supports reliable recovery from
the abnormal status for UAVs thanks to the accurate prediction
achieved by our hybrid design.

The rest of the paper is organized as follows: In Section
II, we review and discuss related works. Section III presents
the detailed construction of our proposed approach for UAV
anomaly detection. We evaluate and discuss our approach in
Section IV, which is followed by the conclusion in Section V.

II. RELATED WORKS

Existing research efforts on anomaly detection of UAVs’
flight data can be mainly classified into two categories,
including the model-based method [6]-[8] and the model-
free method [9]-[13]. The model-based method usually uses
Kalman Filters to predict future data based on uncertain
measurements from sensors and previous estimations. Ivan
and Nabil [6] applied an unscented Kalman Filter (UKF)
with Gaussian process adaption to detect the fault status in
UAVs’ inertial navigation system. In order to achieve faster
response and lower computation load in fault detection, Liu
et al. [7] proposed an adaptive estimation method using a
bank of UKFs running in parallel for monitoring the actuators’
status in a UAV. Guo et al. [8] developed a fault detection
approach for airspeed using an extended Kalman Filter (EKF)
to estimate the airspeed with multiple sensors. Their approach
is independent of the airspeed measurements and can be
moved to other aircraft with no need to change the filter
process. Although Kalman Filters can keep tracking the status
of navigation and control systems, the estimation accuracy of
this method depends on the corresponding physical model.

Compared with the model-based method, the model-free
design can learn the pattern of training data without the
information and knowledge of the mechanical system. The
classification and regression models used in a model-free
method are usually trained on the normal flight data due
to the lack of faulty data, which is rare and expensive to
acquire in the real world. To address this inevitable imbalance

problem in dataset, Edward e al. [9] used a one-class SVM
learning the normal data pattern to detect and assess the
outliers and abnormal status of an individual aircraft during
the descent period. Li et al. [10] presented a cluster-based
anomaly detection approach to detect the abnormal flights of
commercial aircraft, which outperformed the multiple kernel
anomaly detection algorithm in the detection of continuous
flight parameters. These approaches mentioned above are non-
parametric learning methods and have limited ability to learn
and extract the representation from high-dimensional data. To
deal with this problem, Zhong et al. [11] introduced a spatio-
temporal correlation based anomaly detection method for high-
dimensional flight data. They first used an artificial neural
network for spatio-temporal correlation analysis to select the
most correlated flight parameters with the monitored sensor,
which are used as the inputs of an LSTM regression model for
estimation. Wang et al. [12] designed a regression model based
on LSTM networks with residual filtering to avoid random
noise for the fault detection and recovery of flight data from
UAVs. The results of their experiment demonstrate that their
model can reduce the effect of random noise in flight data
and improve the detection sensitivity to minor faults. When
it comes to the detection for multiple parameters, running
multiple single-output LSTM networks, where each LSTM is
responsible for one parameter, can cause too much redundancy
and is time-consuming as well. To solve this issue, Ahmad
and Zouhair [13] proposed a multi-output convolutional LSTM
for multivariate anomaly detection of UAV flight data, which
combines convolutional neural networks (CNN) and LSTM to
achieve sequence-to-sequence prediction. They claimed their
approach is more suitable and faster in analyzing and detecting
the multivariate flight data. These existing methods adopt
a single model to detect the abnormal status of UAV for
the entire flight path, and hence the effectiveness becomes
restricted during the flight status-changing period.

Data Status LSTM-based
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Detection B and Recovery
Separate
LSTM model

Fig. 2. Framework of LSTM-based Detection System

III. CONSTRUCTION

The overall architecture of our anomaly detection approach
for UAV flight data is presented in Fig.2. During the UAV’s
operation, data from selected sensors are continuously fed into
our approach for pre-processing, including data normalization
and data construction with sliding windows. To determine
the abnormal status of a sensor reading at time ¢, our hy-
brid approach first selects the data analysis procedure based
on whether ¢ falls into status-changing periods or not. For
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non-status-changing periods, an LSTM-based DNN model is
adopted to predict the sensor value at ¢t with sensors inputs
from the sliding window before ¢. For status-changing periods,
we adopt a delay-mitigation procedure to predict the sensor
value at ¢t with a reference check design and a separate
regression model. Finally, the predicted sensor value at ¢ will
be compared with the actual sensor reading data using a
pre-defined threshold to determine whether the sensor data
is abnormal or not, and the abnormal sensor data will be
recovered. We now present the detailed construction of each
procedure in our approach.

TABLE I
LIST OF SENSOR PARAMETERS
Roll Angle Actuator Yaw Angle
Pitch Angle Roll Rate
Yaw Angle Pitch Rate
Actuator Roll Angle Yaw Rate
Actuator Pitch Angle Airspeed

A. LSTM-based DNN Anomaly Detection

Given the fact that a UAV system is equipped with various
sensors and many of them are correlated with each other to
some extent, our approach combines inputs from correlated
sensors when predicting the value of a selected sensor for
anomaly detection. In this paper, we focus on anomaly detec-
tion by analyzing roll angle data, which is one of the important
parameters to reflect the safe operation of UAVs and has been
widely adopted for anomaly detection [12], [13], [15], [16]. 9
additional collaborated sensor parameters to the roll angle are
included to support the analysis as summarized in Table I.

During the pre-processing, raw sensor inputs at each time
point ¢ is first processed using min-max normalization and
denoted as

nx1l
Vi = (31,t7 S92ty spit), Ve €R

where s; 4,1 <4 < n is the value of the i-th sensor at time
t. To predict the sensor value at time ¢, a sliding window of
grouped sensor input sequences before ¢ will be fed into the
DNN model, which is denoted as

Xt =Vicm, Vicmt1:---5 Vi1) . Xe ERV™ > m

where m is the length of sliding window. The DNN model
consists of two stacked LSTM layers, a fully connected layer,
and an output layer as depicted in Fig.3.

During the real-time anomaly detection, the UAV utilizes the
pre-trained DNN model with X, as the input at time ¢ and
obtains a predicted roll angle value ;. An error e; between the
predicted value y; and actual sensor reading y; is calculated
with a low-pass infinite impulse response (IIR) filter as

a = |y — il
et =« lf t= 0
et =a+ f(e;—1 —«) otherwise

. Prediction

Data Vector

Input layer

LSTM layer LSTM layer FC layer Output layer

Fig. 3. Architecture of LSTM-based DNN Model

The IIR filter is applied to avoid the fluctuations caused by
noises and [ is the filter coefficient. The sensor reading
is considered as abnormal is the error e; is greater than the
pre-defined anomaly threshold.

In our design, the anomaly threshold is calculated based
on the filtered errors between the predicted values and the
corresponding target values obtained during the training of the
DNN model as Threshold = u+ k x o, where p and o are
the mean value and standard deviation of the filtered training
errors respectively, and k is a constant that can be adjusted
to get an acceptable threshold to optimize anomaly detection
performance.

20
15
10

Roll Angle
o

—— Sensor data
--=- Prediction
+ False alarm

0 250 500 750 1000
Data Points

1250 1500 1750

Fig. 4. Example of False Alarms in Status-changing Periods

B. Delay-aware Anomaly Detection for Status-changing Peri-
ods

Although the LSTM-based DNN anomaly detection can ef-
fectively handle non-status-changing periods, its performance
struggles during the status-changing periods due to the delay
in its prediction. As an example shown in Fig.4, such a
delay introduces multiple false alarms for each status-changing
period caused by the turning of a UAV. Therefore, instead of
using the prediction values from the LSTM-based DNN model
for overall anomaly detection as reference points, new effective
references shall be identified for these status-changing periods.

In our design, two types of reference points are introduced
for status-changing periods. First, we pre-compute and store
reference data of the targeted sensor for the first r time points,
which can be estimated using the average values obtained
from offline experiments for the same status change under
different flying patterns. Although such an estimation is not
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likely to be exactly the same as the actual sensor reading in the
real-time analysis due to different environmental factors and
system noises, their difference still has a high possibility to be
bounded by the pre-defined threshold and hence significantly
reduces the false positive rate. In addition, a separate LSTM-
based DNN model is trained specifically using data from
status-changing periods, which takes sensor inputs from a
sliding window of r time points. Therefore, the DNN model is
used for anomaly detection after the first » time points in the
status-changing period. The value of r is determined by the
input of the DNN model to enable effective anomaly detection,
which is set as r = 3 according to our experimental analysis.

During the UAV operation, its flying status change is asso-
ciated with the corresponding control command. Therefore,
when a status change control command is received or the
planned command is triggered, the UAV system will switch
to the delay-aware anomaly detection strategy for a short time
period until the delay has been mitigated.

C. Recovery from Abnormal Status

The abnormal detection in our proposed approach relies on
the real-time prediction from DNN models and pre-computed
reference data. In particular, when the sensor data is identi-
fied as abnormal, it will be replaced with the corresponding
prediction value or reference data for recovery. After that, the
UAV system will adopt the recovery value for further UAV
operations and anomaly detection.

IV. EVALUATION
A. Experiment Setup

In our experiment, we simulated 10 different UAV flight
paths using PX4 autopilot [14] and QGroundControl [17],
which involve different status-changing periods. Data from 10
sensor parameters as described in Table I are collected for the
anomaly detection of the UAV’s roll angle data. By setting
the sliding window size as 5, our dataset consists of 3,000
sliding windows of sensor data for training after reformulation
and normalization. In our training, the batch size is set as 16
and the number of epochs is 300. The test dataset has 1700
data points, in which 200 abnormal data points are randomly
injected as shown in Fig.5.
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Fig. 5. Normal roll angle and Abnormal roll angle
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Fig. 6. ROC Curve

We use Mean Square Error (MSE) and Mean Absolute Error

(MAE) for regression evaluation, which can be calculated by
I X

MSE = n Z(yi — i)

I X
MAE = EZ|yi_yi‘
i=1

i=1

MSE indicates how the prediction results deviate from the
target values and MAE reflects the prediction error directly.
True positive rate (TPR), false positive rate (FPR), false
negative rate (FNR), and true negative rate (TNR) are used
to measure the accuracy of anomaly detection.

B. Results

As the selection of threshold plays a critical role in the
effectiveness of anomaly detection, we first evaluate our pro-
posed approach using different thresholds to balance the trade-
off between TPR and FPR. In our evaluation, we set filter
coefficient 5 = 0.1 and vary the value k from 1 to 2 with
a step of 0.1. As the ROC curve shown in Fig.6, optimized
thresholds can be obtained when k is in the range of [1.1, 1.6].
In the rest of our evaluation, the threshold is set to 1.48 with
k = 1.2 based on the optimized range we obtained.

The evaluation results of our approach in terms of anomaly
detection effectiveness are summarized in Table II. We also
evaluated the model-free approach proposed in [12] using the
same flight path for comparison. As presented in Table II, our
proposed hybrid approach is able to detect all abnormal data
points while achieving a 0 FPR. As a comparison, while [12]
also achieves good performance for the detection of abnormal
data points with a T PR = 0.97, it suffers from a high FPR at
0.24. The high FPR of [12] is mainly caused by its prediction
delay in the status-changing periods as shown in Table II,
which reaches 0.79 and can significantly affect the reliability
of anomaly detection in these periods. As discussed in Section
III-B, such a prediction delay makes the prediction values
from the DNN model becomes ineffective to serve as reference
data for anomaly detection. Differently, thanks to the hybrid
design in our approach, it can successfully eliminate the FPR
by handling the delay with adjusted reference data.

In our approach, abnormal data are replaced with the pre-
diction values or reference data for recovery. Therefore, the re-
covery capability depends on the accuracy of prediction values
and reference data generated by our approach. As presented in
Table III, our approach achieves low MAE and MSE for both
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TABLE II
ANOMALY DETECTION EFFECTIVENESS AND COMPARISON
Anomaly Detection - Overall
FPR | FNR | TPR TNR
Our Approach 0 0 1.0 1.0
[12] 0.24 | 0.03 | 0.97 0.76
Anomaly Detection - Status Changing Periods
FPR | FNR | TPR TNR
Our Approach 0 0 1.0 1.0
[12] 0.79 | 0.17 | 0.83 0.21

the overall flight path and the status-changing periods, which
indicates the accurate prediction for recovery. As shown in
Fig.7, while random abnormal data are continuously injected,
our approach is able to help the UAV successfully recover
from the abnormal status. As a comparison, the prediction
accuracy of [12] is significantly reduced during the status-
changing periods as indicated by its high MAE and MSE
values in these periods shown in Table III.

TABLE III
PREDICTION ACCURACY AND COMPARISON

Regression Evaluation - Overall
MAE MSE
Our Approach | 0.1263 0.0590
[12] 0.8139 2.9563
Regression Evaluation - Status Changing Periods
MAE MSE
Our Approach | 0.7091 0.6934
[12] 3.5606 15.7858
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Fig. 7. Example of Abnormal Recovery

V. CONCLUSION

This paper performs a study on anomaly detection and
recovery for UAV flight data. Our study first identifies the
prediction delay issue in model-free anomaly detection, which
can cause high false-positive rates in UAV’s status-changing
periods. With this observation, this paper then designs a
hybrid approach to overcome false alarms during the status-
changing periods, which hence enables the UAV to perform

accurate anomaly detection and reliable recovery. Our pro-
posed approach is evaluated using different UAV flight paths.
A comparison between our approach and existing research
is also conducted in our evaluation. The evaluation results
demonstrate the effectiveness of our approach in terms of flight
data prediction, anomaly detection, as well as recovery from
the abnormal status.
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