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On the Local Linear Rate of Consensus on the Stiefel Manifold

Shixiang Chen!, Alfredo Garcia?, Mingyi Hong® and Shahin Shahrampour?

Abstract—Coordinated group behavior arising from purely
local interactions has been successfully modeled with distributed
consensus-seeking dynamics, where the local behavior is aimed at
minimizing the disagreement with neighboring peers. However,
it has been recently shown that when constrained by a manifold
geometry, distributed consensus-seeking dynamics may ultimately
fail to converge to a global consensus state. In this paper, we study
discrete-time consensus-seeking dynamics on the Stiefel manifold
and identify conditions on the network topology to ensure
convergence to a global consensus state. We further prove a (local)
linear convergence rate to the consensus state that is on par with
the well-known rate in the Euclidean space. These results have
implications for consensus applications constrained by manifold
geometry, such as synchronization and collective motion, and they
can be used for convergence analysis of decentralized Riemannian
optimization on the Stiefel Manifold.

I. INTRODUCTION

A common question related to the study of biological,
socio-economic or engineering multi-agent systems pertains
to the ways in which coordinated group behavior can be ex-
plained from purely local interactions (e.g., flocking of birds,
schooling of fish and other forms of synchronized behavior).
Consensus is a generic approach that has been successfully
used to this end. The main premise is that local behavior is
expected to reduce disagreement with “neighbors”, i.e., peers
whose state can be observed or readily exchanged according
to a communication network. A measure of local disagreement
can be formally expressed as ¢;(x) := 3 Zivzl Wijllzi—z;||%
where x; € R4*" denotes the state of agent i € {1,..., N},
x" = (z{ x5 ... z}) and W;; > 0 is a weight such that
W,; = Wj; € (0,1] if and only if agents ¢ and j are neighbors
and W;; = 0 otherwise. Gradient descent dynamics of the
form:

Tikt1 = Tik — aVi(Xk),

where o > 0 is the step-size are often referred to as consensus
dynamics. Assuming the network is connected, all agents
asymptotically agree on a state, say *, i.e. limy_, o0 T; 1 = =~
for all ¢ € {1,..., N}, and the asymptotic agreement state
minimizes the consensus potential ¢(x) := %vazl vi(x), a
global measure of disagreement.
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Consensus on manifolds has recently attracted significant
attention [1]-[4] due to its applications to synchronization in
planetary scale sensor networks [5], modeling of collective
motion in flocks in the Earth’s atmosphere [6], synchronization
of quantum bits [7], and the Kuramoto models [3], [8].
However, in a manifold geometry, the individual dynamics of
consensus gradient descent flows (in continuous-time) do not
necessarily converge to an agreement state [1], i.e., p(x) # 0
and individual agents may converge to different states. There-
fore, it is crucial to identify conditions under which consensus
can be achieved when the dynamics are constrained to a
manifold geometry.

In our recent work [9], we have shown consensus dynamics
play a key role in decentralized multi-agent optimization
constrained by the Stiefel manifold geometry, which in turn
has applications in dictionary learning [10] and training deep
neural networks with orthogonal constraints [11], [12].

Let ¢! (x) := Zjvzl Wi |lzi—x;]|% be the local consensus
potential. In this paper, we study consensus dynamics on the
Stiefel manifold described as follows:

L1

where an update along a negative Riemannian gradient di-
rection —grady!(x)) on the tangent space is followed by a
retraction operation Retr, , (-) in order to ensure feasibility.
We show that the consensus dynamics (I.1) converges (locally)
Q-linearly' to the solutions of the following non-convex opti-
mization problem

Lik+1 = Retrwi,k(_a : grad(pg(xk)%

N

min § () = 2 3 plx)

i=1

st. x; €St(d,r), i=1,...,N.

(C-St)

where St(d,r) = {z € R¥>" : 2Tz = I.} is the Stiefel
manifold and I, is the r x r identity matrix. Furthermore, we
prove that the linear rate depends on the connectivity of the
graph and more specifically on the magnitude of the second
largest singular value of W.

The paper is organized as follows. In Section I-A we discuss
the relevant literature of consensus dynamics on Riemannian
manifolds, and in Section I-B we briefly summarize our tech-
nical contributions that enable the Q-linear characterization of
convergence. In Section II we lay out the mathematical setting
and provide a brief overview of Riemannian optimization.
In Section III we formally state the decentralized consensus
dynamics and describe in a series of remarks the technical
challenges associated with establishing the convergence. In
Section IV we present the global convergence of the dynamics,

'A sequence {az} is said to converge Q-linearly to a if there exists p €
(0,1), such that limg_, o loksizal _
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and in Section V we develop the Riemannian restricted secant
inequality (RSI) and formally establish a local linear rate
of convergence. Finally, in Section VI we illustrate the
convergence characterization with numerical experiments, in-
cluding an application to decentralized manifold optimization
by means of a nested-loop algorithm, where agents alternate
between performing Riemannian gradient updates (outer loop)
and consensus updates (inner loop). Section VII concludes,
and Section VIII includes proofs of all technical results.

A. Literature Review

The literature on optimization on Riemannian manifolds
can be broadly classified into intrinsic and extrinsic meth-
ods. Intrinsic optimization algorithms are defined in terms of
the inherent manifold geometry, such as geodesic distances,
Riemannian gradient, and exponential and logarithm maps.
In contrast, the extrinsic algorithms are based on a specific
embedding of the manifolds in Euclidean space.

Intrinsic methods for optimization on manifolds with
bounded curvature include the discrete-time Riemannian gradi-
ent method (RGM) [13]. This work shows that when applied to
minimizing the consensus potential on Grassmannian manifold
and special orthogonal group SO(d) , the RGM method has
a sub-linear rate of convergence. The dynamics (I.1) differ
from the Riemannian consensus algorithm in [13] in that
the retraction map is used instead of the exponential map to
guarantee feasibility.

The authors of [14] consider stochastic RGM and examine
its application for minimizing the consensus potential on the
manifold of symmetric positive definite matrices. In [15],
RGM is also studied for minimizing the consensus potential
on the Grassmannian manifold and special orthogonal groups.
However, it is only shown that RGM converges to a critical
point. To achieve the global consensus, a synchronization
algorithm on the tangent space, requiring communicating
an extra variable, is presented in [15, Section 7]. Other
results showing global consensus are graph dependent. For
example, the authors of [15] show that global consensus is
achievable on equally weighted complete graphs for SO(d)
and Grassmannian. For general connected undirected graphs,
the survey paper [16] summarizes three solutions to achieve
almost global consensus on the circle (i.e., d = 2 and r = 1):
potential reshaping [8], the gossip algorithm [17] and dynamic
consensus [15]. However, such procedures could suffer from
slow convergence.

Previous work analyzing consensus dynamics on the Stiefel
manifold mostly focused on local convergence. Recently, the
authors of [2], [3] have shown almost global consensus for
problem (C-St) whenever r < %d — 1. More specifically, all
second-order critical points are global optima, and thus, the
measure of stable manifold of saddle points is zero. This
can be proved by showing that the Riemannian Hessian at
all saddle points has negative curvature, i.e., the strict saddle
property in [18] holds true. Therefore, if we randomly initialize
RGM, it will almost always converge to the global optimal
point [3], [18]. Additionally, [3] also conjectures that the
strict saddle property holds for d > 3 and r < d — 2. The

scenarios » = d — 1 and r = d correspond to the multiply
connected (St(d,d — 1) = SO(d)) and not connected case
(St(d,d) = O(d), where O(d) is the orthogonal group.),
respectively, which yields multi-stable systems [1].

However, none of the aforementioned works discusses the
local linear rate of RGM on St(d,r) with » > 1. We
could prove the linear rate if the Riemannian Hessian were
positive definite [19] near a consensus point, but the Rie-
mannian Hessian is degenerate at all consensus points (see
Section V). The linear rate of consensus can be established
by reparameterization on the circle [8] or computing the
generalized Lyapunov-type numbers on the sphere [20], but
it is not known how to generalize them to r > 1. In this paper
we study the convergence of consensus dynamics (I.1) using
the recent advances in non-convex optimization [18] as well
as optimization over Stiefel manifold [19], [21], [22].

B. Summary of Technical Contributions

The characterization of convergence for consensus dynamics
on the Stiefel manifold is enabled by a number of technical
contributions, which we summarize as follows:

1) We identify a sufficient condition on the stepsize & > 0 in
order to guarantee global convergence for the consensus
dynamics (I.1) in Theorem 2 for the case that r < %d— 1.
This result is based on Theorem 1 in the form of a new
descent lemma, which enables us to obtain a better bound
on the algorithm step size compared to the existing work.

2) In Theorem 3, we establish a sufficient and necessary
condition for a first-order critical point to be global opti-
mum. We also show via an example that the box region
characterized in Theorem 3 has a tight upper bound.
This helps with identifying suitable local neighborhoods
wherein the convergence of dynamics (I.1) is linear.

3) We identify a surrogate for local strong convexity for
problem (C-St). It is called the Restricted Secant In-
equality (RSI) and is derived in Proposition 2. This
inequality facilitates the proof by allowing us to disregard
the second-order information in the analysis.

4) We prove the local Q-linear rate of convergence of
dist(xy, X*), i.e. the Euclidean distance between xj, and
X*, which is the optimal solution set for the problem
(C-St) in the following form:

X*i={x¢€ St(d,r)N cxy=x=...=2ay}. (12)

We show that the convergence rate asymptotically scales
with the second largest singular value of W, thereby
tending to its counterpart in the Euclidean space. We
characterize two local regions for such convergence in
Theorem 4.

II. PRELIMINARIES
A. Multi-agent Systems

To represent the network, we use a graph G in which
connected nodes can communicate with each other. We assume
that G satisfies the following assumption.
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Assumption 1. We assume that the undirected graph G is
connected and the corresponding weight matrix W is doubly
stochastic and symmetric, i.e.,

c W=WT.
N N

. 1>Wij20;1>Wii>0; ZWij:ZWjizl-
i=1 1=1

Note that a doubly stochastic matrix on an undirected con-
nected network can be constructed easily following Laplacian-
based constant edge weight matrix [23], the Metropolis rule
and the Maximum-Degree rule [24], to name a few. Under As-
sumption 1, any power of the matrix W, i.e., Wt := W!=1W
(t an integer greater than one) is also doubly stochastic and
symmetric. Moreover, the second largest singular value of W¢,
denoted by o4, lies in [0,1). The consensus potential with
weight matrix W is defined as ¢! (x) := 1 31V | ¢t(x) where

1 = 22] 1 1t]H‘r’L_xj||%‘

In what follows, to simplify the notation, we denote the
Stiefel manifold St(d,r) by M. We have the following
notations:

e G=(V,&): the undirected graph with |V| = N nodes.

o x: the collection of all local variables z; by stacking
them, ie., x' = (2] zg ... z}).

o« MN =M x ... x M the N—fold Cartesian product.

o [N] := {1,2,...,N}. For any x € (R™")N | the i-th
block is captured by [x]; = ;.

e Vp(x): Euclidean gradient; Vi;(x) = [Vp(x)];: the

i-th block of V(x).

o T, M: the tangent space of M at point x.

e N, M: the normal space of M at point z.

o Tr(-): trace operator; (x,y) = Tr(x"y) : inner product
on T, M is induced from the Euclidean inner product.

e gradp(x): Riemannian gradient; grady,;(x) =
[gradp(x)];: the i-th block of gradp(x). Hessf(x)
denotes the Riemannian Hessian operator.

e D captures the differential of f and D f(z)[¢] denotes
the directional derivative along &.

- |l2: the Euclidean operator

o Il
norm.

e Pc: the orthogonal projection onto a closed set C.

o 1y € RY: the vector of all ones; J := %INIX,.

Definition 1 (Consensus). Consensus is the configuration
where x; = x; € M for all i,j € [N].

B. Optimality Condition

We introduce some preliminaries about optimization on a
Riemannian manifold. Let us consider the following optimiza-
tion problem over a product matrix manifold M*

min f(x) st. xe MV, (IL1)

Under the Euclidean metric, the Riemannian gradient
grad f(x) on M is given by gradf(x) = P _r~ (Vf(x)),
where Pp_p~ is the orthogonal projection onto Tx MY,
More specifically, the projection onto the ¢—th block of tangent
space, T, M, is given by

1
Pr,my) =y — §$z($:y +y'x),

for any y € R¥*" (see [21]), and
1
ixl(x;ry + yT%‘)'

According to our notation in Section II.A, we have

1
Vi(x) = Sai(z] Vei(x) + Vei(x) i),

The Riemannian Hessian Hess f(x) is given by Hess f(x)[{] =
Prain (D(x = P VF))E]) for any € € ToMY,
i.e., the projection of differential of the Riemannian gradient
[19], [22]. A point x is a first-order critical point (or critical
point) if gradf(x) = 0. x is called a second-order critical
point if gradf(x) = 0 and Hessf(x) = 0

Proposition 1. ( [22]) Let x € MY be a local optimum for
(IL1). If f is differentiable at x, then grad f(x) = 0. Moreover,
if f is twice differentiable at x, then Hessf(x) = 0.

Pn,, m(y) =

grad; (x) =

C. The Retraction Operator

The second-order retraction [19, Definition 4.1.1] is the
approximation of the exponential mapping, more suitable for
the computation purpose. In this paper, we only use the polar-
decomposition based retraction to present a simple proof. The
polar retraction is given by

Retr, (&) = (x + §)(I, + €772,

which is also the orthogonal projection of x + £ onto M. The
first important property of the retraction (see [22], [25]) is:

[Retry (€) — (= + &)l < MIIE]IE,

Ve e M, VEeT,M,
where M > 0 is a constant given in [22], [25]. More details
on M can be found in Appendix. This property implies that
Retr,.(€) is locally a good approximation to x + £. Secondly,

for all x € M and ¢ € T, M, the following inequality holds
for any y € M [26, Lemma 1]:

|Retrz (&) —ylle < |lz+ & — yllp.

(IL2)

(P1)

(IL.3)

III. DISTRIBUTED RIEMANNIAN CONSENSUS

The discrete-time RGM applied to solve problem (C-St)
is described in Algorithm 1. Since it can be implemented
in a distributed fashion, we name it Distributed Riemannian
Consensus algorithm on Stiefel manifold (DRCS). For large
values of ¢, W' &~ {151} and thus the corresponding graph
is approximately completely connected. Hence, in the analysis
below, we identify sufficient conditions on how large ¢ must
be (which can be interpreted as a requirement on the graph
connectivity) to ensure convergence to a global consensus
state.

For the convergence analysis below, it will also be conve-
nient to link the algorithm with an equivalent formulation of
the optimization problem (C-St). Namely, given that ||z |2 = r
holds true for any x € M, (C-St) is equivalent to

DR WY

=1 j=1
st. x; € M, Vie[N].

max {ht
x (II1.2)
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Algorithm 1 Distributed Riemannian Consensus on Stiefel
manifold (DRCS)

1: Input: random initial point xq € MY, stepsize 0 < a <
2/L; and an integer ¢t > 1, where L; := 1 — An(W?)
and Ay (W) is the smallest eigenvalue of W*.

2: for k=0,1,... do > For each node ¢ € [NV], in parallel
3 Compute V! (xy)
4: Update

Ti k11 = Retrg, (—QPT%,CM (Vgpf(xk))) (I11.1)

5: end for

Hence, DRCS can be seen as applying Riemannian gradient
ascent to solve (II1.2). That is, (III.1) is equivalent to

N
Ti k1 = Retrg, , <a7)Twi,kM ( Z ijajjk)) (I11.3)
j=1

A. Consensus in Euclidean Space: A Revisit

Let us briefly review the consensus with convex constraints
in the Euclidean space (C-E) [27], which will give us some
insights to study the convergence rate of DRCS. Euclidean
consensus can be achieved by solving the optimization prob-
lem below

minp(x) st. z;€C,i=1,...,N, (C-E)

where C is a closed convex set in the Euclidean space. Then,
the iteration is given by [28]

N
Tipi1=Pe [ D Wiz | Vi€ [N]. (EuC)

j=1

Let us denote the Euclidean mean via

XN
&= le and X := 1y ® 2. (11L.4)

One can easily verify that
%k — Xillr < o2|Xk—1 — Xp—1][F. (IL5)

Therefore, the Q-linear rate of (EuC) is equal to 0. On
the other hand, the iteration (EuC) is the same as applying
projected gradient descent (PGD) method to solve the problem
(C-E). That is, we have

X1 = Pen (W @ La)xi) = Pen (x5 — aeVo(xi))
(111.6)
with stepsize a, = 1. Following the proof of linear rate for
strongly convex functions [29, Theorem 2.1.15], one needs the
inequality in [29, Theorem 2.1.12], specialized to our problem
as follows

. pL
- ,V Z
(=%, Vo) > L

1
A2 2
X —X + — c X .
H ”F [H ( )”F
(IH.7)
The constants are given by

pwi=1—=X(W) and L:=1-Ay(W),

where A\o(W) is the second largest eigenvalue of W, and
An (W) is the smallest eigenvalue of W, respectively. This
inequality can be obtained using the eigenvalue decomposition
of Iy —W. We provide the proof in the Appendix, and we call

« . . [T . . . 2
(II1.7) “restricted secant inequality”. With this, if o, = T
we get I

~ — MU\ ~
X — X < (——— Xo — X .
[k — X llr < (LJru) l[x0 — Xollr

It can be shown by simple calculations that E—IZ < 09. This
suggests that the PGD can achieve faster convergence rate with
Qe = % When o, = 1, the rate of oo can be shown via
combining (II1.7) with L||x —%||r > || Ve(x)||F > pllx —X||k.
The proof is provided in the Appendix.

B. Consensus on Stiefel Manifold: Challenges and Insights

The DRCS iteration (IIl.1) is an extension of Euclidean
consensus with convex constraint [28], where the projection
onto convex set is replaced with a retraction operator, and the
Euclidean gradient is substituted by the Riemannian gradient.
The standard results [19], [22] on RGM already show global
sub-linear rate of DRCS. However, to obtain the local Q-linear
rate, we need to exploit the specific problem structure. To
analyze DRCS, there are two main challenges.

First, due to the non-linearity of M, the Euclidean mean
=% Zfil x; is infeasible. We need to use the average
point defined on the manifold. The second challenge comes
from the non-convexity of M. Previous work (e.g., [28])
usually discusses the convex constraint in the Euclidean space,
which depends on the non-expansive property of the projection
operator onto convex constraint. We cannot use this property
due to non-convexity of the Stiefel manifold.

To solve these issues, we use the so-called induced arith-
metic mean (IAM) [15] of x1,...,xn over M, defined by

N
T € argminz |y — ]|
yeM 3

N
= argmax(y, Z x;) = Pm(2), (TIAM)

yeM i=1
where Paq(+) is the orthogonal projection onto M. Note that
when % does not have full column rank, then Pp(Z) has
multiple solutions. In this scenario, we can let  be any
element of Ppq (). We define

Tp € Pm(Zr) and X =1y ® Ty, (II1.8)

to denote IAM of w1 y,...,zn, The IAM X is also the
projection of x onto the consensus set. The distance between
x and X* is given by

N
1 1
12 *\ : n2 - - w2
dist™(x, &) = min Eﬂ ly = zille = w71l = llF.

The terminology IAM is derived from [30], where the IAM
on SO(3) is called the projected arithmetic mean. The IAM is
different from the Fréchet mean [13], [31], [32] (or the Karcher
mean [33], [34]). We use IAM since it is computationally
convenient and easier to adapt to the Euclidean linear structure.
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The following lemma suggests that dist(x, X*) < /2 implies
that Pa(Z) = Z is unique.

Lemma 1. For x € MY if dist(x, X*) < v/2, then P (3)
is unique.

Therefore, when dist(x, X*) < /2, we can define the | Fooo
distance between x and X'* as

dist p oo (%, X*) = ||x — X||p,00 1= max ||z; — Z||r. (F,c0)
€[N

Throughout the remainder of this paper, whenever we use
the notation ||x — X||r,.0, we implicitly assume the condition
dist(x, X*) < /2, which ensures that the notation is well-
defined.

Then, we build the connection between the Euclidean mean
and IAM in the following lemma, which will be key to
convergence analysis of Algorithm 1.

Lemma 2. For any x €¢ MY, let x = 15 ® & as in (IIL.4).
Similarly, let x = 1y ® &, where X is defined in (IAM). We
have

gl = xlE < Il = %7 < [lx = %[z 1L9)
Moreover; if ||x — %||2 < N/2, one has
R 2./7||x — x||2
I _x”ngfHN £, (P2)
and
4 _ %4
Ix— %|2 > ||x — x|2 - Arix =Xl (II1.10)

N

The inequality (IIL9) is tight, since we have }||x — x|z =
%[ = N when 33, #; = 0 and [|x—%[| = [|Jx — ]|}
when x1 = x2 = ... = xy. The inequality (P2) suggests that
the Euclidean mean will converge to IAM quadratically if x
is close to x.

We now show the relation between V' (x) and grade® (x).
Denoting Py, as the orthogonal projection onto the normal
space N, M, a useful property of the projection P, a(y —
x),Yy € M [26, Section 6] is that

Prom(@ —y) =z —y = Pynm(z—y)
:x—y—%x ((Jc—y)Taﬁ—&—xT(x—y)) (P3)

=x—y—%x(x—y)T(x—y),

where we used ="z = y Ty = I,.. This property implies that
Prom(z —y) =z —y+O(|ly —z[f).

We will use (P3) to derive a descent lemma on the Stiefel
manifold similar to the Euclidean-type inequality [29], which
is helpful to identify the stepsize for global convergence. The
stepsize « will be determined by the constant L, in Theorem 1
and the constant M in equation (P1).

Theorem 1 (Descent lemma). For the function ©'(x) defined
in (C-St), we have

o' (y) - [¢'(x) + (gradg’ (x),y — x)]

I (IIL11)
< 7t||y_XH127’ VX,yEMN7

where Ly = 1 — An(W?) and A\n(W?) is the smallest
eigenvalue of W.

By now, we have obtained three second-order properties
(P1), (P2) and (P3). This will help us to solve the non-
linearity issue and get a similar Riemannian restricted secant
inequality. Before that, in the next section, we show the global
convergence of Algorithm 1 with a tight estimation of the
stepsize a; see discussions on L; in Appendix.

IV. GLOBAL CONVERGENCE ANALYSIS

We study the global convergence of sequence {xj} gener-
ated by (III.1). We note that the almost sure convergence to
consensus when r < %d — 1 for the continuous-time gradient
flow was established in [3]. In contrast, we consider discrete-
time dynamics, which in turn requires the use of the retraction
operator to ensure feasibility. In this section, we characterize
bounds on the stepsize « to ensure convergence under the
constraint r < %d — 1 (Theorem 2). While we cannot prove
global convergence for general r, d, we can still build on the
results of [25], [35], [36] to provide a necessary and sufficient
condition for the optimality of critical points (Theorem 3),
which characterizes the landscape of the problem and implies
that the convergence to optimal set can only be established
in local regions. Our main results on the local linear rate are
presented in Section V, and they hold for any r, d.

Definition 2 (Lojasiewicz inequality). We say that x € MY
satisfies the Lojasiewicz inequality for gradient gradf(x) if
there exist A > 0, A > 0 and 6 € (0,1/2] such that for all
y € MN with ||y — x||r < A, it holds that

1f(y) = F(x)]' 77 < Allgradf(x)]|F- (t)

Since ¢?(x) is a real analytic function, and the Stiefel
manifold is a compact real-analytic submanifold, it is well
known that a L.ojasiewicz inequality holds at each critical point
of problem (C-St) [36]. Therefore, we know that the sequence
{xx} converges to a single critical point with properly chosen
«, which is a stronger convergence result than the subsequence
convergence in [22]. The exponent ¢ decides the local conver-
gence rate.

Lemma 3. Let G := maxye v ||grade’(x)||r. Given any
t>1and o € (0, —2__ ) where M is the constant in
(P1), the sequence( {;ﬁGgEZteZ’awd by Algorithm 1 converges
to a critical point of problem (C-St) sub-linearly. Furthermore,
if some critical point is a limit point of {xy} and has exponent
0 =1/2in (), {¢'(xk)} converges to 0 Q-linearly and the
sequence {xy} converges to the critical point R-linearly®.

The proof can be found in [37], which follows [36, Section
2.3] and [22], but here we use the descent lemma (Theorem 1).
Lemma 3 shows the convergence to a critical point. However,
we are more interested in the convergence to consensus states
(see Definition 1), i.e., global optima. In Theorem 2 we prove
that DRCS almost always converges to the optimal point set
X'* [18], which is a discrete-time version of [3, Theorem 4].

2A sequence {ay} is said to converge R-linearly to a if there exists a
sequence {ey} such that |ar — a| < e, and {e} converges Q-linearly to 0.
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Theorem 2. When r < 2d — 1, let o € (0,Cpq,pt), where
Cm,pr = min{G, , m} # and B are two constants
related to the retmctlon (defined in [18, Prop. 9]°). Let X be
a random initial point of Algorithm 1. Then, the set {xo €
MPN :{x} converges to a point of X*} has measure 1.

Proof. 1t is shown in [3] that all second-order critical points
of problem (C-St) are global optima whenever r < %d — 1.
Combining this and the Lojasiewicz inequality, we can use
[18, Theorem 2, Corollary 6] to complete the proof. O

Theorem 2 needs the condition r» < %df 1. For general d, r,
we cannot prove global convergence, but we can characterize
the landscape of the problem. The next theorem shows that
when the states of neighboring agents are close enough to
each other, any first-order critical point is global optimum.

Theorem 3. Suppose that x is a first-order critical point of
problem (C-St). Then, x is a global optimal point if and only
if there exists some y € R¥" (with |ly|la < 1) such that
(xi,y) > r—1 for all i € [N]. Moreover, a first-order critical
point x is a global optimal point if and only if

x€L:={x:|x—%|ro < V2}
Proof. Let B := W' ® I,. The necessity is trivial by letting
y = [Bx]; if 1y = z3 = ... = zx. Now, if x is a first-order
critical point, then it follows from Proposition 1 that
1
= Vi (%) = 5zil] Vei(x) + Vi (x) o)
(Vi (x) — 2:Vi(x)

By our definition, we have Vi € [N]

grady} (x)

1
= (la — gziz Tz;) =0, Vie[N].

Vi (x) — V(%) "z = —[Bx]i + ;([Bx]] z;).
Note that since [; — xle is invertible, one has
[Bx]; — z;([Bx]; z;) =0, Vi€ [N]. (IV.1)
Multiplying both sides by z; yields
x] [Bx]; = [Bx|] z;, Vi€ [N]. (Iv.2)

For the sufficiency, let I'; := Zjvzl w; (x;'—;Ll), i € [N]. From

IV.1), we get

z; I —Z

Summing above over i € [N] yields Zil x 'y =
Zi\; x;. Taking inner product with y on both sides gives
> i1 (W, 2i(I, = T';)) = 0. Note that I, —I'; is symmetric for
all 7 due to (IV.2) and it is also positive semi definite. Since
(i,y) > r—1 for all 4, we get that Q; := 1 (2] y+y z;) is
positive definite. Then, it follows that

(y, 2i(I = T)) =

The equation Zi:l (y, x; (I,
T';, which also implies 1 =22 = ...

Vi € [N]. (IV.3)

.’L‘J,

Tr(Q (I, — T,)QM?) > 0.

—T;)) = 0 suggests that I, =
— x5 by (IV.3).

3Specifically, they are given in Appendix.

Furthermore, suppose y =  which is the IAM of x. The
condition ||x — X|roo < V2 means that |7 — z;]|2 < 2, or
equivalently, (y,z;) > r — 1 for all i € [N]. O

Theorem 3 establishes a sufficient and necessary condition
for a first-order critical point to be global optimum. In Exam-
ple 1 (see Appendix), we show that there exists a first-order
critical point x satisfying max;e(nj [|#; — Z|[r = V2 which is
not global optimal. Therefore, the upper bound for the radius
of L is also tight in Theorem 3.

When r = 1, the region L is the same as that of S defined
in [13]. Specifically, on the sphere S9!, S corresponds to
the hemisphere, which is the largest convex set on S,
Geometrically, it means that x; cannot be the antipode of any
x;, which is known as the cut locus [31]. However, the region
S is unknown for general case r > 1. In [8], [13], [20], it was
shown that the continuous Riemannian gradient flow starting
in £ converges to X* on sphere S?~! and the convergence
rate is linear [8], [20]. However, it is still unclear whether
an algorithm could achieve global consensus initialized in £
when r > 1. The main challenge here is that the vanilla
gradient method cannot guarantee that the sequence stays in
X — X||F.0o < v/2. In Lemma 4, we can also obtain the same
result on S~ (r = 1) as that of [20], but we need a different
proof since we work with Euclidean distance. The proof is
provided in [37] due to the space limitation. The generalization
to > 1 is challenging and interesting for future study.

Lemma 4. Let r = 1 and assume that there exists a y €
St(d, 1) such that the initial point xo of Algorithm 1 satisfies
(®i0,y) >0, Vi€ [N]for some § > 0. Then, the sequence
{x1.} generated by Algorithm 1 with o < 1 and t > 1 satisfies

(®ig,y) >0, Vie[N], Vk>0. av.4)

Combining Lemma 3, Lemma 4 and Theorem 3, we have
the following result. On the sphere, if the initial point xg
satisfies (z;0,y) > 0, Vi € [N] for some y € M, the
sequence {xj} generated by Algorithm 1 with ¢ > 1 and
0 < a< min{l,m}, where M, G are defined in
Lemma 3, will converge to a point in X'*, i.e., the sequence
reaches a consensus state.

V. LocAL LINEAR CONVERGENCE

In this section, we study the local linear convergence rate
of Algorithm 1 for general d,r. Typically, a local linear rate
can be obtained if the Riemannian Hessian is non-singular
at global optimal points. However, the Riemannian Hessian
of ¢?(x) is a linear operator. For any tangent vector ' =
[0 ,...,nx], we have [38]

N N
Y= lE =D Wi (miomy)

i=1 j=1

(n, Hessp" (x)[n]
(V.1)

V%( )" zi+ 2] Voi(x)))).

- Z 77%771

Following [3], if we let z; = ... = xy and 7; = PTmiMf for
any & € R4¥", (V.1) becomes 0 = Zf\il (n;, Hessp! (x)[n:])-
Therefore, similar to the Euclidean case, the Riemannian
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Hessian at any consensus point has a zero eigenvalue. This
motivates us to consider an alternative to the strong convex-
ity. Luckily, there are more relaxed conditions (than strong
convexity) for Euclidean problems.

We firstly present our main result, which is the local Q-
linear convergence rate of Algorithm 1. Before proceeding,
we define two local regions N R, and ./\/l,t, where the local
linear rate holds. N'r; is given by

Ny =N N Nay, (V.2)

where
Nigo={x:]x- x||Z < N(Sit} V.3)
Noyp:={x:]x = X||Fc0 <24}, (V4)

and 0y ¢+, 02 ; satisfy
01, < L(Szt and 024 < 1 (V.5)
' 5y 7 ’ 6

Define

pe =1 — Ao (WH), (V.6)

where Ao (W) is the second largest eigenvalue of W*'. The
region NV, is given by

Nig = {x: 9'(0) < By n s = %[ < NoZ 3, (V)
where d3 ; satisfies

031 < min{ (V.8)

1 1
NaiEwas
The upper bounds for constants d; +,d2 + may not be optimal
since we use second-order approximation in the development
of RSI and we need to guarantee that the DRCS iterates stay
in the local region Ny .. However, Theorem 3 implies that
the radius of J\/g,t cannot be larger than /2, the radius of L,
which is the manifold property, while A ; is decided by the
connectivity of the network. If the connectivity is stronger,
then the region is larger. More discussions on the constants
will be given in Remark 1.

Our main result of this section is presented in Theorem 4.
The proof is given in Appendix. To prove it, two main steps
will be established in the next two subsections: Section V-A
and Section V-B. We use the following two constants in the
presentation of the theorem

82,

i 1= TRt = (1- 47"5%,0(1 - %)Hta Xe NR,t (V.9)
: A ] .
Yoo = (1 — 47"53,t) —-¢'(x), x¢€ -/\/l,tv
Pr=2—|x—x|2,, x€Ng,
= o 7 V.10

{ B =2— |x—x|2 xeN, V1O

Theorem 4. Let Assumption I hold. (1). Let v € (0, 1) and the
stepsize « satisfy 0 < a < min{%, 1, ﬁ}, where ® is given
in (V.10) and t > floggz(ﬁ)], and M is given in (P1). The
sequence {xi} in Algorithm 1 achieves consensus linearly if
the initialization satisfies xg € N/ R, defined by (V.2). That is,
we have xi, € Ny for all k > 0 and

I — %hll2 < (1= 20(1 — v)3) o — o2, (V.11

where v, is defined in (V.9). Moreover, if a <
also converges to a single point.

(2). If xo € Niy and o < min{ﬁ, L%} one has (V.11)
and xj € M,t for all k > 0,t > 1, where ® is defined in
(V.10).

2 —
SMGIL, =Xk

Theorem 4 has significant implications for various appli-
cations, such as synchronization in planetary-scale sensor
networks [5], modeling of collective motion in flocks in
the Earth’s atmosphere [6], synchronization of quantum bits
[7], and the Kuramoto models [3], [8], certifying their rapid
convergence. Furthermore, this result sheds light on designing
decentralized algorithms for Stiefel manifold optimization
[39], as elaborated later in our experiments.

A. Restricted Secant Inequality

To prove Theorem 4, we need to establish a new RSI in the
Riemannian form. Notice that Stiefel manifold is embedded
in Euclidean space; we start with generalizing (III.7) to its
Riemannian version as follows

(x — Promv X, grade’ (x))

b (V.12)
> callx — X[ + ¢4llgrade’ (%) 17,

where ¢4 > 0,¢4 > 0 and x is in some neighborhood of X'*.
This is natural as for the Riemannian problem (C-St), we need
to substitute the Euclidean gradient with Riemannian gradient.
Moreover, the IAM x should be mapped into the tangent space
T, M. However, the map Expy ' (x) is difficult to compute.
Note that Exp, is a local diffeomorphism. By the inverse
function theorem, we have Expy (%) = X —x+O(||x —X||2).
Using the property in (P3), we know that Pp_an~ (X — X)
is a second-order approximation to Exp,'(X). As such, we
directly project X onto the tangent space of x without recourse
to the inverse of any retraction. Then, since

<x — Pr, myX, grade’ (x)>
= (Prom~ (x = X), Prun V' (x))
= <X — x, grade’ (X)> ,
we will get the following definition of RSI from (V.12)

(x — %, grady’(x)) > cql|x—%|[f+cy||grade’ (x)||f. (RSI)

To establish the (RSI), we first show the quadratic growth
(QG) property of ¢!(x) (Lemma 5). In the Euclidean space,
especially for convex problems, QG condition is equivalent to
the RSI as well as the Lojasiewicz inequality with 6 = 1/2
[40]. To the best of our knowledge, QG cannot be used directly
to establish the linear rate of GD, and it is usually required
to show the equivalence to Luo-Tseng [41] error bound
inequality (ERB) [42]. However, for nonconvex problems, RSI
is strictly stronger than QG. Detailed discussions are provided
in Appendix VIII-C.

Lemma 5 (Quadratic growth). For any t > 1 and x € MY,
we have that

t bl H : K _
Px) — o' (%) = Bk - %l = Bk - %2 @QQ)
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Moreover, if ||x — x|z < &, we have

(1= 7l = xlIE) I — %7 (QG)

t tis Mt ar
W(X)_W@()Z?

Proof. We rewrite the objective ¢!(x) as follows

N
2000 =3 Il - >0 W

1=1,7=1

N
(Tis @i — Z Whaj) = (Ve'(x),x).

CEZ,CCJ

I
=1

Il
—

K2

Note that as (V!(x),X) = 0, we get

20" (x) = (V' (x),x — %)
7 iy Ly 2 t 2
> ——|lx—x||f + V' (x
el Nl

> pullx — x|,

where the last inequality follows from ||[V!(x)|lp > pue||x —
%||r. Combining above with Lemma 2 and observing ¢f(x) =
0 completes the proof for both (QG) and (QG). O]

The second inequality (QG’) is a local quadratic growth
property, which is tighter than (QG).

Next, we discuss how to establish (RSI) based on Lemma 5.
We will derive (RSI) in the separate forms

(x —x,gradp’(x)) > cj||lx —x||f, ¢;>0 (RSI-1)

and

(x — %, grade' (x)) > ¢, ||lgrade’ (x)[|F ¢, > 0. (RSI-2)

Then, (RSI) can be obtained by any convex combination of
(RSI-1) and (RSI-2). To proceed with the analysis, we define
for i € [N]

1
pi =5 (@ — )" (2; — ), (V.13)
and
1 N
= §ZWitj(xi—$j)T(wi — ;). (V.14)
Jj=1

Let y = x in (VIIL.8)(see Appendix). We get

N
(grady’(x),x — x) = (Vo' (x),x — X) Z (pis qi)
i=1

N
Z Di, % ,
=1
(V.15)

where in the last equation we used the following two identities
20'(x) = (Ve'(x),x) and (Vp'(x),x) = 0. The term
ZZN:1 (pi,qi) is non-negative, so if we substitute (V.15) into
(RSI), we observe that RSI is stronger than QG. Moreover, by
Cauchy-Schwarz inequality, we have

N
> (piras) < max lpile - 264(0) < 0'(30) - [ = Xl
i=1

(V.16)

Hence, we see that if ||x — X[po < /2, we have
(grade’(x),x —X) > 0, which implies that the direction
—gradip®(x) is positively correlated with the direction X — x.
However, it is difficult to guarantee ||x; — Xg||F,c0 < V2 for
every k, since Xy, is not fixed. We will see in Lemma 7 that a
large enough value for ¢ can help us circumvent this problem
in the region Ng}t. Moreover, note that

N
Z (pirqi) < #'(x) - [Ix — ||, (V.17)
i=1

so we can also establish (RSI-1) when ¢!(x) =
will see in Lemma 6.

To conclude, the two inequalities (V.16) and (V.17) corre-
spond to two neighborhoods of X*: N r,t and N; 4, which are
defined in (V.2) and (V.7). The (RSI-1) is formally established
in the following lemma.

O(pt), as we

Lemma 6. Let u; be the constant given in (V.6) and t > 1.

1) Suppose x € Ny 1, where Ny is defined by (V.2). There
exists a constant Y > 0 defined in (V.9):

62
Tra = (1= 4rdf )1 = 20 = £,

such that the following holds:
(x — %, gradp’(x)) > vr¢||%X — x/[|7- (V.18)
2) Forx € Ny, where N is defined by (V.7), we also have

(RSI-1), in which ¢y = vy 4 = pe(1 — 4163 ;) — ' (x) >
.
Proof. (1). Combining (V.15) with (V.16), we get
N
(x — %, gradg’ (x)) "= 20 (%) = Y (i a2)
(V.16) - B
Z ¢'(x) - 2= [x = %[F o). (V19)

Since x € Ng, invoking (QG’) in Lemma 5, we get
33,4
) ullx — %I,

(x — %, gradp’(x)) > (1 — 4r5f7t)(1

where using the conditions (V.5) completes the proof.
(2). For x € N, combining (V.15), (V.17) and (QG’) yields

(x = %, gradp’ (x)) > [pe(1 — 4rd3,) —

1
S 2 22
= Q,UtHX XHF?

o' (3)]|x — %I}

(V.20)
where we used the conditions in (V.8).
O

Remark 1. In the proof, we derive g, and vy, + by combining
(QG’) with (V.16) and (V.17), respecQtively. For (V.18), any
01,02, satisfying (1 — 4rd7 ,)(1 — 527‘) > 1/2 might seem
sufficient. However, we impose the condition on 01 4,02, in
(V.5) in order to guarantee x;, € J\fz,t for all k > 0. Moreover,
we find that by combining (QG) with (V.16), one can also get
(RSI-1) without the constraint let. But the coefficient will be
smaller. For simplicity, we only show the results in N ;N\ N> ;.
Similarly, for /\[l,t, 034 < 417 is enough to ensure RSI. We
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impose 03, <1/ V'N to get Proposition 2, which is useful to
ensure {xy}r € Ny In fact, 03+ < 1/\/N does not shrink the
region since ¢t(x) < /4 implies a small region by Lemma 5.
Also, since 63 < 1/\/]V it is clear that j\/l,t is smaller than
Ng, when N is large enough.

Next, we are ready to present the (RSI) inequality.
Proposition 2 (Restricted secant inequality). The following
two inequalities hold for x € N, and x € N,

_ 0]
(x =%, grad¢’ (x)) > o= llgrade’ (o)l (V:2D)

and

<x - X, gradcpt(x»
i) _ (RSI-T)
> v o—lgradg’ (x)I[7 + (1 — v)yellx — x|,
2L,
for any v € [0, 1], where v and ® > 1 are constants related
to x, which are given by (V.9) and (V.10).

B. Staying in the Local Region

Since the RSI condition holds in the local region N, R.t, the
main difficulty now is to show that x; € ./\fg,t. We can show
that x;, always stays in Ng; = N7 N Na, if the stepsize «
satisfies 0 < o < min{ 2, 1, 47} and t > ﬂOgaz(zfﬂ The
upper bounds ﬁ and 1 are due to x;. € Nz,t~

Lemma 7 (Stay in Ngy). Let x, € Ngy, 0 < a <
min{%7 1,47} and t > rog@(ﬁ)], where the radius of
NRﬂg is given by (V.5) and M is given in (P1). We then have
that Xp4+1 € NR,t-

The lower bound [log,,, (;=)] may not be a small number.
For example, when W is the lazy Metropolis matrix of a
regular connected graph, oo usually scales as 1 — (’)(%)
[43, Remark 2] and log@(?\/») O(N?log N). However,
for example, for a star graph this can be O(log N). It will
be interesting to investigate (as a future work) under what
conditions Lemma 7 holds for ¢ = 1. Here, we require
this condition to ensure the algorithm is in a proper local
neighborhood. From the above result we see that the stepsize
is upper bounded by and 7, and they show the role
of the network and the mamfold The condition o« < ®/L;
guarantees that x;, € N7 ; and @ < min{1,1/M} ensures that
Xy € /\/27,5. For the simplicity, we discuss the constant M in
Section VIII-A in Appendix.

Combining Theorem 4 with Lemma 3 and Theorem 2, we
conclude the following result.

Theorem 5. When oo < min{Cny o, %, 1} and r < 2d -1,
with random initialization, {x;} firstly converges sub-linearly
and then linearly for any t > 1, almost surely.

The condition on the stepsize o depends on the function,
network, and manifold properties, which is expected based
on distributed optimization techniques in the Euclidean space.
For the global convergence purpose, one could use the method
in [44] to estimate L;,u; in a distributed fashion, but the
estimate of Cjy,,+ is difficult to obtain. Therefore, similar

to the Euclidean distributed optimization methods in practice,
setting o = 1 is a good starting point to apply the algorithm to
real-world datasets, as demonstrated in Section VI. Otherwise,
if & =1 does not converge, a non-exhaustive grid search can
find a smaller stepsize ensuring convergence.

C. Asymptotic Rate

t _ _pely
To get the rate of o5, we need to ensure ¢y = gl an nd

Cq in (RSI). We show this asymptotically for any
X € M Flrstly, by (V.15) we have

N
(grade’ (x),x —x) = (Vo' (x),x = %) = > (pi, ai)
i=1

(V.22)
where p; and ¢; are given in (V.13)-(V.14). Using (II1.7) and
(II1.10) yields

(Vo' (x),x — %)

pe Lt o112 1 t 2
> —||x — x||f + V' (x
> B s+ 96 GO
pe Ly r 2 2 (V.23)
> 1—-—|x—x X —X
> (1= Tl = ) I - %R
+ rado’ (x 2,
Ht+LtHg @ (x)]IF

where we also used ||grade’ (x)||r < || V¢! (x)]|r by the non-
expansiveness of Pr_,~. Substituting (V.23) into (V.22) and
noting (V.17), we get

<gradcpt(x), X — 5(>
pe Ly
T e+ Ly

+

4r _ ,LLt+Lt _
1— —|lx —x|? - t(x))|x — x|
(1= 3l =l = FE o o) — xR

radp? (x)[|3.
Mt"‘LtHg ¢ (%)[|f

When ||x — X[ — 0, we have ¢’(x) — 0 by Theorem 1.
Thus, we get

L 4 L
cqg = Hilt (1_T 12 pule
e + Ly N pe + Ly

By the same arguments as of Theorem 4, we get the asymptotic
rate being 7 L ﬁ: with a = 75— -Hu an §i+f‘: < ai. Also,
using srmrlar arguments as (VIII 3) in Appendix, we can
get the rate of of with a = 1 as the Euclidean case by
noting that the error bound inequality (ERB) in Appendix

is asymptotically u||x — X||r < [|grade’ (x)]|E.

VI.

A. Consensus Simulation

NUMERICAL EXPERIMENTS

We now provide the numerical experiments by evaluating
our method on a ring graph with N = 30 nodes. The matrix
W is given as follows: W;; = 1/3 for all i € {1,...,30};
Wi =1/3 if i and j are neighbors and W;; = 0 otherwise.

We compare the polar retraction and the exponential map
using different stepsizes and ¢ > 1. For ¢ = 1, we run
Algorithm 1 with four choices of stepsize: 1/L;,2/(L;, +
tt),2/ Ly, 1. For t = 10, we only use o = 1 for simplicity. The
algorithms are stopped when we reach the target accuracy of
llxk — %p|[# < 2 x 10716, The dimension of the variable is
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Fig. 1: Numerical results for N = 30,d = 5,7 = 2. All three
sub-figures use the same legends as that in Figure (c).

d = 5,7 = 2. The initial points are sampled independently
from an identical uniform distribution. In Fig. 1, we have
Li =1 Apin(W?) = % when ¢t = 1.

Fig. 1 (a) presents the convergence of log-scale distance
4 ||xk—% |3, and Fig 1 (b) shows the log-scale ||grade’ (x)||Z
versus the iteration number. We see that Algorithm 1 with
a = 2/L; does not converge to a critical point for the polar
retraction and the exponential map, which is consistent with
the stepsize range in Lemma 3. We also observe that o =
2/(u¢ + L¢) produces the fastest convergence for the polar
retraction (when ¢ = 1), but the exponential map does not
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Fig. 2: DRGTA algorithm for PCA problem: consensus error
v.s. algorithm epoch number.

converge for this value of stepsize. This is because they have
different constants M, which changes the permissible stepsize
range, and for the exponential maps, this range is smaller.
When the chosen stepsize can guarantee the convergence, the
polar retraction and the exponential map perform similarly
in terms of the iteration numbers required to reach a certain
accuracy level. Moreover, the convergence rate of o = 1,¢ =
10 (red lines) is about 10 times of that of « = 1,7 = 1 (pink
lines). In the Fig. 1 (c), we demonstrate the convergence versus
the CPU time. We see that the polar retraction is always faster
than the exponential map. Finally, we remark that although
Algorithm 1 with o = MJQF 7, converges fast, it takes additional
effort to obtain L, u;. Therefore, we recommend using o = 1
as a default starting point in practice.

B. Application to Decentralized Optimization

We next illustrate the importance of linear rate for solving
decentralized optimization problems on the Stiefel manifold.
In a follow-up work [39], we proposed two decentralized
Riemannian gradient algorithms, where consensus plays a key
role in their convergence. We focus on one of them here,
namely decentralized Riemannian gradient tracking algorithm
(DRGTA), and we apply that to solve the decentralized princi-
ple component analysis (PCA) problem. Specifically, we solve
the following PCA problem using DRGTA:

LY -
xrenj\l/rllN 5N ; <a:“Ai AZJI:Z>7 st. x1=...=zpn,

a (VL)
where for agent i € [N], A; € R™*? denotes the local
data matrix and m; is the sample size. Denote the global data
matrix by A :=[A] AJ ... A]". The data matrix A is given
by the MNIST dataset [45], with Zi\le m; = 60000 samples
and d = 784. The experiment is conducted in Python with
mpi4py, on a single Intel 19 13900KF CPU with 24 cores.

DRGTA is a manifold optimization algorithm in which
agents alternate between performing Riemannian gradient up-
dates (outer loop) and DRCS algorithm (inner loop). For a
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ring graph with N = 20 nodes, in Fig. 2, we show the
consensus error \/iﬁﬂxk — Xp||lr with respect to the epoch
number (iteration of the outer loop) of DRGTA for the case
of » = 5,t = 1. The results represent the average of
error for 20 random initializations. In each run, we randomly
initialize all agents variables z,x9,...,zN, such that they
satisfy the condition of linear convergence in Theorem 4.
Note that z1 = x9 = ... = xny = xo also satisfies
the condition. Fig. 2 depicts the geometric mean and the
geometric standard deviation of the consensus errors. Given
this empirical linear rate observed in Fig. 2, if the convergence
of DRCS was slower than linear, it would have exacerbated
the overall performance of DRGTA, making the rate sublinear.
Therefore, the linear rate achieved by DRCS could play a key
role in the design of consensus-based decentralized manifold
optimization techniques. Theorem 4 facilitates the convergence
rate analysis of the two decentralized Riemannian gradient
methods in [39]. We also present the computation time cost
of each part of DRGTA for 5000 epochs in Table I, including
the computation of consensus gradient V!(xy) in the inner
loop, the gradient of PCA in the outer loop, the retraction
operation in the outer loop, and the projection onto tangent
space for both loops. These results are the arithmetic mean
and standard deviation of 20 experiment runs. The time cost
of the consensus gradient V¢! (xy) is negligible in DRGTA,
certifying the low computational overhead of DRCS.

TABLE I. COMPUTATION TIME OF DRGTA, IN

SECONDS.
Vpl(xg) | gradient of PCA | retraction Pr o~
mean(std) | 0.29(0.32) 43.56(4.02) 60.79(7.51) | 1.02(0.30)

VII. CONCLUSION

In this paper, we provided the global and local convergence
analysis of DRCS, a distributed method for consensus on the
Stiefel manifold. We showed that the convergence rate asymp-
totically matches the Euclidean counterpart, which scales with
the second largest singular value of the communication matrix.
The main technical contribution is to generalize the Euclidean
restricted secant inequality to the Riemannian version. In
the future work, we would like to study the preservation of
iteration in the region N5, (with ¢ = 1) and to estimate the
constant Cq, ¢+ for stepsize.

VIII. APPENDIX
A. More Discussions on Constants

— Lipschitz Constant ; in Theorem 1: We remark that
a closely related inequality is the restricted Lipschitz-type
gradient presented in [22, Lemma 4], which is defined by
the pull back function g(€) := ' (Retrx(€)), whose Lipschitz
constant L relies on the retraction and the Lipschitz constant of
Euclidean gradient. Also, the stepsize of RGM in [22] depends
on the norm of Euclidean gradient. Therefore, the range of our
stepsize is larger than that in [22, Theorem 5]. Our inequality
does not rely on the retraction, which could be of independent
interest.

— Constants 7 and B in Lemma 2: The two constants 7 and B
in Lemma 2 are directly obtained from the proof of [18, Prop.
9]. For the completeness, we introduce them here. Firstly,
since M is Stiefel manifold, the polar retraction is unique and
smooth in a neighborhood of radius 7 = 1 of the manifold [46].
Secondly, define hy(o) = det(DRetrx(—agradp(x))(lq —
aD(Pr, pn)(x))). Since MY is a compact smooth manifold,
letting o < maXxEMNfHVLP(X)HF’ Retryx (—agradp(x)) and its
derivatives exist. Then,

- dhx 7

— ()| < 00,8t < .
maxye pn [V (x) |l

— Constant M in (P1): We have M = 1 in (P1) for the
polar retraction if «f|grady’(z;x)|[r < 1 according to [25,
Append. E]. By our choice of & < 1 and x, € N R,t>» We indeed
have algrade’(z; )||r < 202+ < 1 according to Lemma 8.

However, we do not plan to remove the term ﬁ

B. Proofs

Proof of inequality (111.7). Without loss of generality, we as-
sume d = r = 1. Let Uy,Us,,..., Uy be the orthonormal
eigenvectors of Iy — W, corresponding to the eigenvalues 0 =
A1 < A2 <...< Ay. Then, we have that x —x = Zivzl c;U;.
Since x —x is orthogonal to span{U; }, we have ¢; = 0. Note
that Vo(x) = (Iy — W)x = (Iy — W)(x — Xx). We get

N N
Ix—%[F = "¢} and [[Vo(x)[F = ciA7. (VIILI)
i=2 i=2
Then, to prove (II1.7), we have that
(x =%, Vo(x)) = (x =%, (In — W)(x — %))
N N N 1 N
_ T — 2y > 2, 252
(S 3ot} =3 onz oSt )
B TSI S 2
= M+L”X x[F + lH_LHVtP(X)Hm (VIIL2)

where the inequality follows due to 4t = Ap and L = A\y. O

Proof of linear rate of PGD with o, = 1. Firstly, one can
easily verify L|x — X[[r > ||Vp(x)|lr > plx — X||r using
(VIIIL.1). We then have

[%k+1 — Kig1llf < [%ps1 — il
< lxk — %illE + 1V (xk)[|F — 2 (Veo(xr), X — %)

(I1L7) 2ulL - ) 9
< — —)Ixr —x + (1 — ——)||Ve(x .
< M+L)II k= Xellg + ( MVeo(xi) g

[+ L

(VIIL3)

If HJ%L > 1, ie., \o(W) + An(W) > 0, this implies oo =

A2(W). Combining ||Ve(x)|lr > pllx — %[|r with (VIIL3)
yields

k11 — Xk lf

(1— 2pl 2 20
w+L L+p

= (1 — p)?|Ixk — %kl = 03 %k — X l7-

2 2
MIxx — Xk l|5

IN
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If 227 < 1, then Ao(W) + An(W) < 0, this implies o2 =
—An (). Combining |Ve(x)|lr < L||x — x|/ with (VIIL.3)
implies
2uL 2 212
pw+ L L+p
= (1= L)?|lxx, — %l = o3 llxx — %l

O

Proof of Lemma 1. Let usv' Z be the singular value
decomposition and 61 > ... > &, > 0 be the singular values

[%pt1 — %3 < (1 — +L Ik — X l|Z

of 2. Since Z = Pp (%) = uv', we get
N
e = %[IF =D (2r — 2 (2, 2)) = 2N (r — (£,7)) = 2N (r — ||2]}.),
= (VIIL4)
where || - ||« is the trace norm. Hence, by assumption

dist?(x, X*) =

|2« >r—1.
Noticing that &; € [0, 1] for all ¢ € [r], we get the smallest

singular value &, > 0. Therefore, & has full rank and Pa4(Z)

is unique.

+llx — %[z < 2 and (VIIL4), we get

O
Proof of Lemma 2. Note that
N
Ix = %[IF = [lzi — &[|F = N(r — ||2[I})
i=1
= N(Vr+2lle)(Vr = [12]e) < 2N(r = Vr|l2]|r),
(VIILS)

where the inequality is due to ||Z||g < /7.

Let 61 > ... > &, > 0 be the singular values of . It is clear
that 67 < 1 since |22 < & Zi\; ||z:]|]2 < 1. The inequality
2]« = Yy 66 < VTP Doiey 62 = /7||Z]|F, together with
(VIIL5) and (VIIL4) imply that ||x — %[|2 < ||x — %||2. Next,
we have [|2|l, =>"1_, 6; > >/, 62 = ||Z||Z This yields

1 - . N .
3l =%l = N(r = [l2].) < N(r = [[2][7) = [Ix = %I,

which proves (I11.9).
By utilizing the fact ||x — X||r < ||x — X||p in (IIL9), we
have

B
=1
(VIIL6)

where we used || 2[F = ||+ Zfil zillp < Vr I x — %2 <
N/2 (by assumption), we can square both sides of above and
note 67 <1 for i € [r — 1] to get

b =xlp | Ix=xlt | lx—xI2

52 >1-—2
Ir = N N2r N

Then, we have
Ix — |3

R [|x — x|
o> 12X e 5 ,
Ir = N - N

where we used /1 —s>1—s forany 1 > s > 0. Recall
that # = Ppq(#) = uv . Hence, it follows that

(VIIL7)

T

2 —z(F = (1

i=1

Ar||x — ||

_ &i)2 S N2

Hence, we have proved (P2). Finally,

N
Ix = %I =D (2 — &,; — &)
=1
N N
=Y (wi—dm—2)+ (i — 3,2 — &)
=1 1=1

N
== xllf + Y (7 — &2 - 2)
i=1

= |lx - x| - Nz - 2l

(P2)

4 _ |4
2 g - e

N )
where we used vazl (x; — 2,2 — &y = 0 in the third line.
O

Proof of Theorem 1. We firstly show that for any x,y €

MY, we have
(grade’(x),y — x) = (V¢'(x),y —x) +
NN
1 <Z Wi (@ — 25) (s — a5), (yi — @) T (yi — @)
i=1 j=1
> <V<pt X),y — X> .
(VIIL.8)
It follows from the relationship (P3) that
(grade’ (x),y — x) = (V' (x), Pp mn (y — X))
N
= (V¢! (x),y —x) — Z <V<PE(X)»7)N%M(% — ;)
i=1

i=1
Since
1 1
§[V€0§(X)T%+$ZV¢§(X)] =3 > Whwi—a;) " (i —x)),
j=1

1 1 . .- . .
= Vrl&|e > |12 =7 - NH& —x|[f>r— NH;‘( — x||fis positive semi-definite, we get

N

>

1
<V<pf(x), ixl(yZ — xi)—r(yl - xz)> > 0. (VIIL.9)
i=1
Therefore, we get (VIIL.8). Note that the largest eigenvalue of
V2pl(x) = (In =W @1, is Ly = 1—An(W?) in Euclidean
space, where Ay (W?) denotes the smallest eigenvalue of W.
For any x,y € MY, it follows that [29]

Ly
P'(y) = [¢' () + (Vo' (x),y =x)] < Ty - x|
(VIIL.10)
Together with (VIIL.8), this implies that

L
@' (v) = [¢' (%) + (grady! (x),y — x)] < Tllx -yl
(VIIL11)

The proof is completed. O
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Example 1. For any number N > 1 and any 1 <r < d — 2,
consider the fully connected network with the weight matrix

1/N 1/N 1/N
| vy oyN 1/N
UN UN . 1N

Let the initial point x € MY satisfy the following conditions:
o The first r — 1 columns of x1,...,xN are identical and
can be represented as a matrix denoted by b € R*><(r=1),

e The last column of x1,...,xN is denoted by a1,...,an,
respectively. That is, we have
x;=[ba] i=1,...,N.
o Assume that Z —1a; = 0 and that ay,az,...,ay span

a two-dimensional subspace A.
Then, we have & = [b 0]. Note that A lies in R4~ ("= and
d — (r — 1) > 3. By definition of IAM, we know that the first
r — 1 columns of T form a matrix equal to b. Let z denote the
last column of &, where z is a unit vector that is orthogonal to
b and A. It follows that || — ;|| = V/2 for all i = 1, ..., N.
Note that

Z

1 .
_NPT%M Z:.%‘j = _PTwiMx =0.

__PT MZ €

gradyj(x) = Pr, m(z

Hence, x is a first-order critical point, max;e[nj ||T; —
T||r = V2, but it is not global optimum since z; # x; for
all 1, 3.

Proofs for Section V. To prove Proposition 2, we need
the following bounds for grady®(x) by noting that ¢f(x)
is Lipschitz smooth as shown in Theorem 1. The following
lemma will be helpful to show (RSI-2).

Lemma 8. For any x € MY, it follows that

[ Z grad} (x

x|l < Lellx - %|7, (VIL12)

and
lgrade’ (x)[|7 < 2L¢ - ¢ (%),

where L; is the Lipschitz constant given in Theorem 1.
Moreover, suppose x € ./\/'27t, where Ng,t is defined in (V.4).
We then have

(VIIL13)

max [|gradp}(x)||r < 2824 (VIIL14)
i€[N]

Proof of Lemma 8. First, using (P3) we have
1N
Z =g 2 Wil
i=

Since Zf\; Vei(x) = ZZ\;(% -

have

[ Z gradyp; (x

) (@ima)).

(VIIL15)
zj) = 0, we

gradp; (x

N
Zj:l Wt

N N

1
e = Sl > wy Whiw— )" (@ — z))|le

i=1  j=1

IN
| =

) (i — 2)le

IN
N =

|x1 - x]HF = 290 (x) < Lellx — ’_(”12:7

H.MZ H'Mz

D
5w

where the last inequality follows from (III.11). Moreover, it is
clear that we have

1
0< ¢! (x— 2-Ve'(x)

(VIIL.10) ¢
< ol(x) +

1
sz, IV

(V! (), —Litw%x» + o (x)|2
S |12

= Pr,, m(Vpk(x)), we get

1
sz, IV
=¢'(x) -
Since gradp!(x)

leradg! ()2 < V' ()12 < 2L1 - o (x).

Finally, it follows from x € N, that

||F<HZ

|grade} (x z;)||p < 202,

O

Proof of Proposition 2. First, we prove it for x € Np,. It
follows from (V.15) and (V.16) that

"(x)) = O - ¢'(x).

Combining with (VIIL13), we get (x — %, gradpt(x)) >
o grade’ (x) 3.

Secondly, for x € N, we have the similar arguments by
combining (V.15) with (V.17). Furthermore, if x € N R,t OF

X € ./\/l,t, we notice that (RSI-I) is the convex combination of
(V.21) and (V.18). O

We have the following bound in (VIII.16) for the total
variation distance between any row of W' and the uniform
distribution.

<x — X, gradep

Lemma 9. Given any x € Ng,t, where NQ)t is defined in
(V.4), if t > [logoz(#ﬂ, we have

max
1€[N] ” Z
Proof. Note that W is doubly stochastic with o, as the second

largest singular value. As x € N>, it follows that ||z; — Z||p <
o, for all ¢ € [N]. We then have

max I Z

02,1

—1/N)ajllr < 2. (VIIL16)

— 1/N)zj|

—1/N)(xz; — 2)le

—1/N|62; < VNoboa,,

where the last 1nequa11ty follows from the bound on the total
variation distance between any row of W! and %1; (47,
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Prop.3] [24, Sec 1.1.2]. The conclusion is obtained by setting
t > [log,, (0=)1- m

Following a perturbation lemma of the polar decomposition
[48, Theorem 2.4], we get the following technical lemma,
which will be useful to bound the Euclidean distance between
two consecutive points Zj and Tg1.

Lemma 10. Suppose x,y € N1+, we have

2~ gllr < ——p o ll2 gl
T — T— ,
YIF > 1 _26%t Yl\r
where T and iy are the IAM of x1,...,xNn and y1,...,YN,
respectively.
Proof. Let & = =5z and § = LN 4 be the

Euclidean average points of x and y. Then,  and y are the
(generalized) polar factor [48] of & and g, respectively. We
have

(VIIL7) —x|I2 ®
on(3) > 1-— zw >1-26%,>0,

where (¢) follows from x € N; ;. Similarly, we have o,.(y) >
1—26%, since y € Np,.
Then, it follows from [48, Theorem 2.4] that

|| | 72 || H < 71 HA - AH

T T T .
y—T|f < () T()y F_l 25%,1& YlIF
The proof is completed. O

We use Lemma 10 for the following lemma.

Lemma 11. If x; € Np¢, xky1 € Niy and 541 =
Retrmiyk(fagradcpg(xk)), where 014 and 2, are given by
(V.5), it follows that

Lt o+ 2MO[2Lt
1207, N

1Tk — Ty llr < l[xx — X7

Proof. We have that

N
o o A (¢4 o
% = Frgalle <l — 5 D gradei (xx) — Exsale
i=1

N
«
1> aradg! (x0) I
=1

(Pl)
~ Z lagrad; (xi) 7 + ol = Z gradp; (x)|r

= =1
L) 272 M a? + Lo =12
< T ek

Therefore, it follows from Lemma 10 that

1 .

1Zk — Tt < 1725t 12k — Zt1llr
Lt o+ 2MO[ Lt — 2
< — .
— 1 _ 25%}15 N ka XkHF

O

Using Lemma 9 and Lemma 11, we can prove Lemma 7.

Proof of Lemma 7. First, we verify that x+1 € N . Since
xi € N, R,t» it follows from Lemma 6 that

||Xk+1 — i1 [f < [ — a7

(IIZ)
< Z |2ix — agrade) (xi) — Tx|7
i=1
= ||xx — )’cng — 2« <g]rad<,0t(xk),x;C - ik> + ‘|Qgrad@t(Xk)||1%
(RSL) _ 2
< (1 =2a(1 = v)yr,e) %k — k|5

avd
+ (af = U228 Jarad G0,

(VIIL17)
for any v € [0,1], where the last inequality holds by noting
dr > 1 for x ENR,t. By letting v =1 and o < %"', we get

— Xpp1l|2 < |Ixn — xi||2. (VIIL.18)

and thus xj41 € Nj 4.
Next, let us verify x;4+1 € N3 ;. For each ¢ € [N], one has

X511

lzik+1 — Zall
(I.3)
< @i — agrady;(xx) — Zn|r

N
CEN - @) (@an - 20) + alin - @) +a ) W@ - &)
j=1
71’1192 (@i = xj0) " (@in —@i0) |F
al 1
<1 —a)do s + a||Zr — Tkl + o Z(Wzty - N)xj,kHF
j=1
1 N
.
+ §||az Wii(@ie — 50) (@i — z50) I
(P2) 1
(1*a)52t+2a51 t\[+a”Z N )25,k [E
=+ 2&627t
(VIIL.16)
< (1- %)cm + 2062 /T + 2063,
Since a > 0, by invoking Lemma 11 we get
|z Frille < L 2Ma2Lt—|—aH %l 10045%
Tr— e || Xk — X —_—,
k k+1||F > Lot N(]._?(Sit) k k|lF > 1_26%7t

where the last inequality follows from o < ﬁ and L; < 2.
Therefore, using the conditions on d;; and d2; in (V.5) gives

Zik+1 = Trrille < |Tigs1 — Tellr + 1Tk — Zetalle

1
<1 - %)6” + 2067 /' + 2065, + 0

1267, oby < Bz

The proof is completed. O

Proof of Theorem 4. Now, We are ready to prove Theorem 4.

(1). Since 0 < a < min{1, 2 " .47 }. By Lemma 7, we have

x; € Ng, for all k& > 0. By choosing any v € (0,1) and
a< "‘b, we get from (VIIL.17) that

[%k+1 =g [F < (1=20(1=v)yR,e) |6 =X [F. (VIIL19)

We know that x;, converges to the optimal set X'* Q-linearly.
Furthermore, if a < 2]\/1637+L, it follows from Lemma 3 that
the limit point of x; is unique. Hence, X; also converges to
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a single point.

(2). If x; € N, we have the constant & = 2 — 7||x —
%||2 > 1 in Proposition 2. Since o < mln{m, }, we
have x; 11 € N .+ by using the sufficient decrease COIldlthIl in
[37][Lemma 5 (A1l)]. The remaining proof follows the same
argument of (1). O

C. Discussion on RSI, Quadratic Growth, Error bound and
Lojasiewicz Inequality

Lemma 6 implies that the following error bound inequality
holds for x € N, and x € N,
_ 2
[ = %lle < -~ flerade (x) |- (ERB)
t
This inequality is a generalization of the Luo-Tseng error

bound [41] for problems in Euclidean space. In [40], the
following holds for smooth non-convex problems

RSI = ERB < Lojasiewicz inequality with § = 1/2 = QG.

However, in Euclidean space and for convex problems, they
are all equivalent. RSI can be used to show the Q-linear
rate of dist(x, X*), and ERB can be used to establish the
Q-linear rate of the objective value and the R-linear rate of
dist(x, X*). Moreover, under mild assumptions QG and ERB
are shown to be equivalent for second-order critical points for
Euclidean nonconvex problems [49]. Some other error bound
inequalities are also obtained over the Stiefel manifold or
oblique manifold. For example, Liu et al. [25] established the
error bound inequality of any first-order critical point for the
eigenvector problem. Our proof of Lemma 6 relies mainly on
the doubly stochasticity of W* and the properties of [AM, and
it is fundamentally different from previous works. Another
similar form of RSI is the Riemannian regularity condition
proposed in [50] for minimizing the nonsmooth problems over
the Stiefel manifold.

Following the same argument as [25], the error bound
inequality (ERB) implies a growth inequality similar to the
Lojasiewicz inequality. However, the neighborhoods N ; and
M,t are relative to the set X'™*, which is different from the
Definition 2. It can be used to show the Q-linear rate of
{p'(xx)} only if x, € N+ or xj € N+ can be guaranteed.

Proposition 3. For any x € N or x € Ny it holds that

¢'(x) < %llgradwt (%) (VIIL.20)
Proof. By (V.15), we get
N
20" (x <grad<p + (pi> 4i)
=1 (VIIL.21)
(ERB

N
fngradso M+ 3 o)
=1

If x € Ny, we use (V.16) to get (2 — 03,)¢"
2 llgrade! (x) 7. If x € Ny, we use (V.17) to get

(x) <

2 , ) 3
20" (x) < Ellgradsot(X)Hg + %HX* x|F < ;IIgradsot(X)Hg-

We conclude the proof by noting d5; < 1/6. O
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