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On the Local Linear Rate of Consensus on the Stiefel Manifold

Shixiang Chen1, Alfredo Garcia2, Mingyi Hong3 and Shahin Shahrampour4

Abstract—Coordinated group behavior arising from purely
local interactions has been successfully modeled with distributed
consensus-seeking dynamics, where the local behavior is aimed at
minimizing the disagreement with neighboring peers. However,
it has been recently shown that when constrained by a manifold
geometry, distributed consensus-seeking dynamics may ultimately
fail to converge to a global consensus state. In this paper, we study
discrete-time consensus-seeking dynamics on the Stiefel manifold
and identify conditions on the network topology to ensure
convergence to a global consensus state. We further prove a (local)
linear convergence rate to the consensus state that is on par with
the well-known rate in the Euclidean space. These results have
implications for consensus applications constrained by manifold
geometry, such as synchronization and collective motion, and they
can be used for convergence analysis of decentralized Riemannian
optimization on the Stiefel Manifold.

I. INTRODUCTION

A common question related to the study of biological,

socio-economic or engineering multi-agent systems pertains

to the ways in which coordinated group behavior can be ex-

plained from purely local interactions (e.g., flocking of birds,

schooling of fish and other forms of synchronized behavior).

Consensus is a generic approach that has been successfully

used to this end. The main premise is that local behavior is

expected to reduce disagreement with “neighbors”, i.e., peers

whose state can be observed or readily exchanged according

to a communication network. A measure of local disagreement

can be formally expressed as ϕi(x) :=
1
2

∑N
j=1 Wij‖xi−xj‖2F

where xi ∈ R
d×r denotes the state of agent i ∈ {1, . . . , N},

x> := (x>
1 x>

2 . . . x>
N ) and Wij ≥ 0 is a weight such that

Wij = Wji ∈ (0, 1] if and only if agents i and j are neighbors

and Wij = 0 otherwise. Gradient descent dynamics of the

form:

xi,k+1 = xi,k − α∇ϕi(xk),

where α > 0 is the step-size are often referred to as consensus

dynamics. Assuming the network is connected, all agents

asymptotically agree on a state, say x∗, i.e. limk→∞ xi,k = x∗

for all i ∈ {1, . . . , N}, and the asymptotic agreement state

minimizes the consensus potential ϕ(x) := 1
2

∑N
i=1 ϕi(x), a

global measure of disagreement.
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Consensus on manifolds has recently attracted significant

attention [1]–[4] due to its applications to synchronization in

planetary scale sensor networks [5], modeling of collective

motion in flocks in the Earth’s atmosphere [6], synchronization

of quantum bits [7], and the Kuramoto models [3], [8].

However, in a manifold geometry, the individual dynamics of

consensus gradient descent flows (in continuous-time) do not

necessarily converge to an agreement state [1], i.e., ϕ(x) 6= 0
and individual agents may converge to different states. There-

fore, it is crucial to identify conditions under which consensus

can be achieved when the dynamics are constrained to a

manifold geometry.

In our recent work [9], we have shown consensus dynamics

play a key role in decentralized multi-agent optimization

constrained by the Stiefel manifold geometry, which in turn

has applications in dictionary learning [10] and training deep

neural networks with orthogonal constraints [11], [12].

Let ϕt
i(x) :=

1
2

∑N
j=1 W

t
ij‖xi−xj‖2F be the local consensus

potential. In this paper, we study consensus dynamics on the

Stiefel manifold described as follows:

xi,k+1 = Retrxi,k
(−α · gradϕt

i(xk)), (I.1)

where an update along a negative Riemannian gradient di-

rection −gradϕt
i(xk) on the tangent space is followed by a

retraction operation Retrxi,k
(·) in order to ensure feasibility.

We show that the consensus dynamics (I.1) converges (locally)

Q-linearly1 to the solutions of the following non-convex opti-

mization problem

min
x

{

ϕt(x) :=
1

2

N
∑

i=1

ϕt
i(x)

}

s.t. xi ∈ St(d, r), i = 1, . . . , N.

(C-St)

where St(d, r) = {x ∈ R
d×r : x>x = Ir} is the Stiefel

manifold and Ir is the r× r identity matrix. Furthermore, we

prove that the linear rate depends on the connectivity of the

graph and more specifically on the magnitude of the second

largest singular value of W .

The paper is organized as follows. In Section I-A we discuss

the relevant literature of consensus dynamics on Riemannian

manifolds, and in Section I-B we briefly summarize our tech-

nical contributions that enable the Q-linear characterization of

convergence. In Section II we lay out the mathematical setting

and provide a brief overview of Riemannian optimization.

In Section III we formally state the decentralized consensus

dynamics and describe in a series of remarks the technical

challenges associated with establishing the convergence. In

Section IV we present the global convergence of the dynamics,

1A sequence {ak} is said to converge Q-linearly to a if there exists ρ ∈

(0, 1), such that limk→∞
|ak+1−a|

|ak−a|
= ρ.
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and in Section V we develop the Riemannian restricted secant

inequality (RSI) and formally establish a local linear rate

of convergence. Finally, in Section VI we illustrate the

convergence characterization with numerical experiments, in-

cluding an application to decentralized manifold optimization

by means of a nested-loop algorithm, where agents alternate

between performing Riemannian gradient updates (outer loop)

and consensus updates (inner loop). Section VII concludes,

and Section VIII includes proofs of all technical results.

A. Literature Review

The literature on optimization on Riemannian manifolds

can be broadly classified into intrinsic and extrinsic meth-

ods. Intrinsic optimization algorithms are defined in terms of

the inherent manifold geometry, such as geodesic distances,

Riemannian gradient, and exponential and logarithm maps.

In contrast, the extrinsic algorithms are based on a specific

embedding of the manifolds in Euclidean space.

Intrinsic methods for optimization on manifolds with

bounded curvature include the discrete-time Riemannian gradi-

ent method (RGM) [13]. This work shows that when applied to

minimizing the consensus potential on Grassmannian manifold

and special orthogonal group SO(d) , the RGM method has

a sub-linear rate of convergence. The dynamics (I.1) differ

from the Riemannian consensus algorithm in [13] in that

the retraction map is used instead of the exponential map to

guarantee feasibility.

The authors of [14] consider stochastic RGM and examine

its application for minimizing the consensus potential on the

manifold of symmetric positive definite matrices. In [15],

RGM is also studied for minimizing the consensus potential

on the Grassmannian manifold and special orthogonal groups.

However, it is only shown that RGM converges to a critical

point. To achieve the global consensus, a synchronization

algorithm on the tangent space, requiring communicating

an extra variable, is presented in [15, Section 7]. Other

results showing global consensus are graph dependent. For

example, the authors of [15] show that global consensus is

achievable on equally weighted complete graphs for SO(d)
and Grassmannian. For general connected undirected graphs,

the survey paper [16] summarizes three solutions to achieve

almost global consensus on the circle (i.e., d = 2 and r = 1):

potential reshaping [8], the gossip algorithm [17] and dynamic

consensus [15]. However, such procedures could suffer from

slow convergence.

Previous work analyzing consensus dynamics on the Stiefel

manifold mostly focused on local convergence. Recently, the

authors of [2], [3] have shown almost global consensus for

problem (C-St) whenever r ≤ 2
3d − 1. More specifically, all

second-order critical points are global optima, and thus, the

measure of stable manifold of saddle points is zero. This

can be proved by showing that the Riemannian Hessian at

all saddle points has negative curvature, i.e., the strict saddle

property in [18] holds true. Therefore, if we randomly initialize

RGM, it will almost always converge to the global optimal

point [3], [18]. Additionally, [3] also conjectures that the

strict saddle property holds for d ≥ 3 and r ≤ d − 2. The

scenarios r = d − 1 and r = d correspond to the multiply

connected (St(d, d − 1) ∼= SO(d)) and not connected case

(St(d, d) ∼= O(d), where O(d) is the orthogonal group.),

respectively, which yields multi-stable systems [1].

However, none of the aforementioned works discusses the

local linear rate of RGM on St(d, r) with r > 1. We

could prove the linear rate if the Riemannian Hessian were

positive definite [19] near a consensus point, but the Rie-

mannian Hessian is degenerate at all consensus points (see

Section V). The linear rate of consensus can be established

by reparameterization on the circle [8] or computing the

generalized Lyapunov-type numbers on the sphere [20], but

it is not known how to generalize them to r > 1. In this paper

we study the convergence of consensus dynamics (I.1) using

the recent advances in non-convex optimization [18] as well

as optimization over Stiefel manifold [19], [21], [22].

B. Summary of Technical Contributions

The characterization of convergence for consensus dynamics

on the Stiefel manifold is enabled by a number of technical

contributions, which we summarize as follows:

1) We identify a sufficient condition on the stepsize α > 0 in

order to guarantee global convergence for the consensus

dynamics (I.1) in Theorem 2 for the case that r ≤ 2
3d−1.

This result is based on Theorem 1 in the form of a new

descent lemma, which enables us to obtain a better bound

on the algorithm step size compared to the existing work.

2) In Theorem 3, we establish a sufficient and necessary

condition for a first-order critical point to be global opti-

mum. We also show via an example that the box region

characterized in Theorem 3 has a tight upper bound.

This helps with identifying suitable local neighborhoods

wherein the convergence of dynamics (I.1) is linear.

3) We identify a surrogate for local strong convexity for

problem (C-St). It is called the Restricted Secant In-

equality (RSI) and is derived in Proposition 2. This

inequality facilitates the proof by allowing us to disregard

the second-order information in the analysis.

4) We prove the local Q-linear rate of convergence of

dist(xk,X ∗), i.e. the Euclidean distance between xk and

X ∗, which is the optimal solution set for the problem

(C-St) in the following form:

X ∗ := {x ∈ St(d, r)N : x1 = x2 = . . . = xN}. (I.2)

We show that the convergence rate asymptotically scales

with the second largest singular value of W , thereby

tending to its counterpart in the Euclidean space. We

characterize two local regions for such convergence in

Theorem 4.

II. PRELIMINARIES

A. Multi-agent Systems

To represent the network, we use a graph G in which

connected nodes can communicate with each other. We assume

that G satisfies the following assumption.
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Assumption 1. We assume that the undirected graph G is

connected and the corresponding weight matrix W is doubly

stochastic and symmetric, i.e.,

• W = W>.

• 1 > Wij ≥ 0; 1 > Wii > 0;
N
∑

i=1

Wij =
N
∑

i=1

Wji = 1.

Note that a doubly stochastic matrix on an undirected con-

nected network can be constructed easily following Laplacian-

based constant edge weight matrix [23], the Metropolis rule

and the Maximum-Degree rule [24], to name a few. Under As-

sumption 1, any power of the matrix W , i.e., W t := W t−1W
(t an integer greater than one) is also doubly stochastic and

symmetric. Moreover, the second largest singular value of W t,

denoted by σt
2, lies in [0, 1). The consensus potential with

weight matrix W t is defined as ϕt(x) := 1
2

∑N
i=1 ϕ

t
i(x) where

ϕt
i(x) :=

1
2

∑N
j=1 W

t
ij‖xi − xj‖2F .

In what follows, to simplify the notation, we denote the

Stiefel manifold St(d, r) by M. We have the following

notations:

• G = (V, E): the undirected graph with |V| = N nodes.

• x: the collection of all local variables xi by stacking

them, i.e., x> = (x>
1 x>

2 . . . x>
N ).

• MN = M× . . .×M: the N−fold Cartesian product.

• [N ] := {1, 2, . . . , N}. For any x ∈ (Rd×r)N , the i-th
block is captured by [x]i = xi.

• ∇ϕ(x): Euclidean gradient; ∇ϕi(x) := [∇ϕ(x)]i: the

i-th block of ∇ϕ(x).
• TxM: the tangent space of M at point x.

• NxM: the normal space of M at point x.

• Tr(·): trace operator; 〈x, y〉 = Tr(x>y) : inner product

on TxM is induced from the Euclidean inner product.

• gradϕ(x): Riemannian gradient; gradϕi(x) :=
[gradϕ(x)]i: the i-th block of gradϕ(x). Hessf(x)
denotes the Riemannian Hessian operator.

• D captures the differential of f and Df(x)[ξ] denotes

the directional derivative along ξ.

• ‖ · ‖F: the Frobenius norm; ‖ · ‖2: the Euclidean operator

norm.

• PC : the orthogonal projection onto a closed set C.

• 1N ∈ R
N : the vector of all ones; J := 1

N 1N1>N .

Definition 1 (Consensus). Consensus is the configuration

where xi = xj ∈ M for all i, j ∈ [N ].

B. Optimality Condition

We introduce some preliminaries about optimization on a

Riemannian manifold. Let us consider the following optimiza-

tion problem over a product matrix manifold MN

min f(x) s.t. x ∈ MN . (II.1)

Under the Euclidean metric, the Riemannian gradient

gradf(x) on MN is given by gradf(x) = PTxMN (∇f(x)),
where PTxMN is the orthogonal projection onto TxMN .

More specifically, the projection onto the i−th block of tangent

space, Txi
M, is given by

PTxi
M(y) = y − 1

2
xi(x

>
i y + y>xi),

for any y ∈ R
d×r (see [21]), and

PNxi
M(y) =

1

2
xi(x

>
i y + y>xi).

According to our notation in Section II.A, we have

gradϕt
i(x) = ∇ϕt

i(x)−
1

2
xi(x

>
i ∇ϕt

i(x) +∇ϕt
i(x)

>xi).

The Riemannian Hessian Hessf(x) is given by Hessf(x)[ξ] =
PTxMN (D(x 7→ PTxMN∇f(x))[ξ]) for any ξ ∈ TxMN ,

i.e., the projection of differential of the Riemannian gradient

[19], [22]. A point x is a first-order critical point (or critical

point) if gradf(x) = 0. x is called a second-order critical

point if gradf(x) = 0 and Hessf(x) < 0.

Proposition 1. ( [22]) Let x ∈ MN be a local optimum for

(II.1). If f is differentiable at x, then gradf(x) = 0. Moreover,

if f is twice differentiable at x, then Hessf(x) < 0.

C. The Retraction Operator

The second-order retraction [19, Definition 4.1.1] is the

approximation of the exponential mapping, more suitable for

the computation purpose. In this paper, we only use the polar-

decomposition based retraction to present a simple proof. The

polar retraction is given by

Retrx(ξ) = (x+ ξ)(Ir + ξ>ξ)−1/2, (II.2)

which is also the orthogonal projection of x+ ξ onto M. The

first important property of the retraction (see [22], [25]) is:

‖Retrx(ξ)− (x+ ξ)‖F ≤ M‖ξ‖2F,
∀x ∈ M, ∀ξ ∈ TxM,

(P1)

where M > 0 is a constant given in [22], [25]. More details

on M can be found in Appendix. This property implies that

Retrx(ξ) is locally a good approximation to x+ ξ. Secondly,

for all x ∈ M and ξ ∈ TxM, the following inequality holds

for any y ∈ M [26, Lemma 1]:

‖Retrx(ξ)− y‖F ≤ ‖x+ ξ − y‖F. (II.3)

III. DISTRIBUTED RIEMANNIAN CONSENSUS

The discrete-time RGM applied to solve problem (C-St)

is described in Algorithm 1. Since it can be implemented

in a distributed fashion, we name it Distributed Riemannian

Consensus algorithm on Stiefel manifold (DRCS). For large

values of t, W t ≈ 1
N 1N1>

N and thus the corresponding graph

is approximately completely connected. Hence, in the analysis

below, we identify sufficient conditions on how large t must

be (which can be interpreted as a requirement on the graph

connectivity) to ensure convergence to a global consensus

state.

For the convergence analysis below, it will also be conve-

nient to link the algorithm with an equivalent formulation of

the optimization problem (C-St). Namely, given that ‖x‖2F = r
holds true for any x ∈ M, (C-St) is equivalent to

max
x

{

ht(x) :=
1

2

N
∑

i=1

N
∑

j=1

W t
ij 〈xi, xj〉

}

s.t. xi ∈ M, ∀i ∈ [N ].

(III.2)
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Algorithm 1 Distributed Riemannian Consensus on Stiefel

manifold (DRCS)

1: Input: random initial point x0 ∈ MN , stepsize 0 < α <
2/Lt and an integer t ≥ 1, where Lt := 1 − λN (W t)
and λN (W t) is the smallest eigenvalue of W t.

2: for k = 0, 1, . . . do . For each node i ∈ [N ], in parallel

3: Compute ∇ϕt
i(xk)

4: Update

xi,k+1 = Retrxi,k

(

−αPTxi,k
M

(

∇ϕt
i(xk)

)

)

(III.1)

5: end for

Hence, DRCS can be seen as applying Riemannian gradient

ascent to solve (III.2). That is, (III.1) is equivalent to

xi,k+1 = Retrxi,k

(

αPTxi,k
M
(

N
∑

j=1

W t
ijxj,k

)

)

. (III.3)

A. Consensus in Euclidean Space: A Revisit

Let us briefly review the consensus with convex constraints

in the Euclidean space (C-E) [27], which will give us some

insights to study the convergence rate of DRCS. Euclidean

consensus can be achieved by solving the optimization prob-

lem below

minϕ(x) s.t. xi ∈ C, i = 1, . . . , N, (C-E)

where C is a closed convex set in the Euclidean space. Then,

the iteration is given by [28]

xi,k+1 = PC





N
∑

j=1

Wijxj,k



 ∀i ∈ [N ]. (EuC)

Let us denote the Euclidean mean via

x̂ :=
1

N

N
∑

i=1

xi and x̂ := 1N ⊗ x̂. (III.4)

One can easily verify that

‖xk − x̂k‖F ≤ σ2‖xk−1 − x̂k−1‖F. (III.5)

Therefore, the Q-linear rate of (EuC) is equal to σ2. On

the other hand, the iteration (EuC) is the same as applying

projected gradient descent (PGD) method to solve the problem

(C-E). That is, we have

xk+1 = PCN ((W ⊗ Id)xk) = PCN (xk − αe∇ϕ(xk)) ,
(III.6)

with stepsize αe = 1. Following the proof of linear rate for

strongly convex functions [29, Theorem 2.1.15], one needs the

inequality in [29, Theorem 2.1.12], specialized to our problem

as follows

〈x− x̂,∇ϕ(x)〉 ≥ µL

µ+ L
‖x− x̂‖2F +

1

µ+ L
‖∇ϕ(x)‖2F.

(III.7)

The constants are given by

µ := 1− λ2(W ) and L := 1− λN (W ),

where λ2(W ) is the second largest eigenvalue of W , and

λN (W ) is the smallest eigenvalue of W , respectively. This

inequality can be obtained using the eigenvalue decomposition

of IN−W . We provide the proof in the Appendix, and we call

(III.7) “restricted secant inequality”. With this, if αe = 2
µ+L ,

we get

‖xk − x̂k‖F ≤ (
L− µ

L+ µ
)k‖x0 − x̂0‖F.

It can be shown by simple calculations that L−µ
L+µ ≤ σ2. This

suggests that the PGD can achieve faster convergence rate with

αe = 2
µ+L . When αe = 1, the rate of σ2 can be shown via

combining (III.7) with L‖x− x̂‖F ≥ ‖∇ϕ(x)‖F ≥ µ‖x− x̂‖F.

The proof is provided in the Appendix.

B. Consensus on Stiefel Manifold: Challenges and Insights

The DRCS iteration (III.1) is an extension of Euclidean

consensus with convex constraint [28], where the projection

onto convex set is replaced with a retraction operator, and the

Euclidean gradient is substituted by the Riemannian gradient.

The standard results [19], [22] on RGM already show global

sub-linear rate of DRCS. However, to obtain the local Q-linear

rate, we need to exploit the specific problem structure. To

analyze DRCS, there are two main challenges.

First, due to the non-linearity of M, the Euclidean mean

x̂ := 1
N

∑N
i=1 xi is infeasible. We need to use the average

point defined on the manifold. The second challenge comes

from the non-convexity of M. Previous work (e.g., [28])

usually discusses the convex constraint in the Euclidean space,

which depends on the non-expansive property of the projection

operator onto convex constraint. We cannot use this property

due to non-convexity of the Stiefel manifold.

To solve these issues, we use the so-called induced arith-

metic mean (IAM) [15] of x1, . . . , xN over M, defined by

x̄ ∈ argmin
y∈M

N
∑

i=1

‖y − xi‖2F

= argmax
y∈M

〈y,
N
∑

i=1

xi〉 = PM(x̂), (IAM)

where PM(·) is the orthogonal projection onto M. Note that

when x̂ does not have full column rank, then PM(x̂) has

multiple solutions. In this scenario, we can let x̄ be any

element of PM(x̂). We define

x̄k ∈ PM(x̂k) and x̄k = 1N ⊗ x̄k, (III.8)

to denote IAM of x1,k, . . . , xN,k. The IAM x̄ is also the

projection of x onto the consensus set. The distance between

x and X ∗ is given by

dist2(x,X ∗) = min
y∈M

1

N

N
∑

i=1

‖y − xi‖2F =
1

N
‖x− x̄‖2F.

The terminology IAM is derived from [30], where the IAM

on SO(3) is called the projected arithmetic mean. The IAM is

different from the Fréchet mean [13], [31], [32] (or the Karcher

mean [33], [34]). We use IAM since it is computationally

convenient and easier to adapt to the Euclidean linear structure.
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The following lemma suggests that dist(x,X ∗) <
√
2 implies

that PM(x̂) = x̄ is unique.

Lemma 1. For x ∈ MN , if dist(x,X ∗) <
√
2, then PM(x̂)

is unique.

Therefore, when dist(x,X ∗) <
√
2, we can define the lF,∞

distance between x and X ∗ as

distF,∞(x,X ∗) = ‖x− x̄‖F,∞ := max
i∈[N ]

‖xi − x̄‖F. (lF,∞)

Throughout the remainder of this paper, whenever we use

the notation ‖x− x̄‖F,∞, we implicitly assume the condition

dist(x,X ∗) <
√
2, which ensures that the notation is well-

defined.

Then, we build the connection between the Euclidean mean

and IAM in the following lemma, which will be key to

convergence analysis of Algorithm 1.

Lemma 2. For any x ∈ MN , let x̂ = 1N ⊗ x̂ as in (III.4).

Similarly, let x̄ = 1N ⊗ x̄, where x̄ is defined in (IAM). We

have
1

2
‖x− x̄‖2F ≤ ‖x− x̂‖2F ≤ ‖x− x̄‖2F. (III.9)

Moreover, if ‖x− x̄‖2F ≤ N/2, one has

‖x̄− x̂‖F ≤ 2
√
r‖x− x̄‖2F

N
, (P2)

and

‖x− x̂‖2F ≥ ‖x− x̄‖2F − 4r‖x− x̄‖4F
N

. (III.10)

The inequality (III.9) is tight, since we have 1
2‖x− x̄‖2F =

‖x− x̂‖2F = Nr when
∑N

i=1 xi = 0 and ‖x− x̂‖2F = ‖x− x̄‖2F
when x1 = x2 = . . . = xN . The inequality (P2) suggests that

the Euclidean mean will converge to IAM quadratically if x

is close to x̄.

We now show the relation between ∇ϕt(x) and gradϕt(x).
Denoting PNxM as the orthogonal projection onto the normal

space NxM, a useful property of the projection PTxM(y −
x), ∀y ∈ M [26, Section 6] is that

PTxM(x− y) = x− y − PNxM(x− y)

= x− y − 1

2
x
(

(x− y)>x+ x>(x− y)
)

= x− y − 1

2
x(x− y)>(x− y),

(P3)

where we used x>x = y>y = Ir. This property implies that

PTxM(x− y) = x− y +O(‖y − x‖2F).
We will use (P3) to derive a descent lemma on the Stiefel

manifold similar to the Euclidean-type inequality [29], which

is helpful to identify the stepsize for global convergence. The

stepsize α will be determined by the constant Lt in Theorem 1

and the constant M in equation (P1).

Theorem 1 (Descent lemma). For the function ϕt(x) defined

in (C-St), we have

ϕt(y)−
[

ϕt(x) +
〈

gradϕt(x),y − x
〉]

≤ Lt

2
‖y − x‖2F, ∀x,y ∈ MN ,

(III.11)

where Lt = 1 − λN (W t) and λN (W t) is the smallest

eigenvalue of W t.

By now, we have obtained three second-order properties

(P1), (P2) and (P3). This will help us to solve the non-

linearity issue and get a similar Riemannian restricted secant

inequality. Before that, in the next section, we show the global

convergence of Algorithm 1 with a tight estimation of the

stepsize α; see discussions on Lt in Appendix.

IV. GLOBAL CONVERGENCE ANALYSIS

We study the global convergence of sequence {xk} gener-

ated by (III.1). We note that the almost sure convergence to

consensus when r ≤ 2
3d− 1 for the continuous-time gradient

flow was established in [3]. In contrast, we consider discrete-

time dynamics, which in turn requires the use of the retraction

operator to ensure feasibility. In this section, we characterize

bounds on the stepsize α to ensure convergence under the

constraint r ≤ 2
3d − 1 (Theorem 2). While we cannot prove

global convergence for general r, d, we can still build on the

results of [25], [35], [36] to provide a necessary and sufficient

condition for the optimality of critical points (Theorem 3),

which characterizes the landscape of the problem and implies

that the convergence to optimal set can only be established

in local regions. Our main results on the local linear rate are

presented in Section V, and they hold for any r, d.

Definition 2 (Łojasiewicz inequality). We say that x ∈ MN

satisfies the Łojasiewicz inequality for gradient gradf(x) if

there exist ∆̃ > 0, Λ > 0 and θ ∈ (0, 1/2] such that for all

y ∈ MN with ‖y − x‖F < ∆̃, it holds that

|f(y)− f(x)|1−θ ≤ Λ‖gradf(x)‖F. (Ł)

Since ϕt(x) is a real analytic function, and the Stiefel

manifold is a compact real-analytic submanifold, it is well

known that a Łojasiewicz inequality holds at each critical point

of problem (C-St) [36]. Therefore, we know that the sequence

{xk} converges to a single critical point with properly chosen

α, which is a stronger convergence result than the subsequence

convergence in [22]. The exponent θ decides the local conver-

gence rate.

Lemma 3. Let G := max
x∈MN ‖gradϕt(x)‖F. Given any

t ≥ 1 and α ∈ (0, 2
2MG+Lt

), where M is the constant in

(P1), the sequence {xk} generated by Algorithm 1 converges

to a critical point of problem (C-St) sub-linearly. Furthermore,

if some critical point is a limit point of {xk} and has exponent

θ = 1/2 in (Ł), {ϕt(xk)} converges to 0 Q-linearly and the

sequence {xk} converges to the critical point R-linearly2.

The proof can be found in [37], which follows [36, Section

2.3] and [22], but here we use the descent lemma (Theorem 1).

Lemma 3 shows the convergence to a critical point. However,

we are more interested in the convergence to consensus states

(see Definition 1), i.e., global optima. In Theorem 2 we prove

that DRCS almost always converges to the optimal point set

X ∗ [18], which is a discrete-time version of [3, Theorem 4].

2A sequence {ak} is said to converge R-linearly to a if there exists a
sequence {εk} such that |ak − a| ≤ εk and {εk} converges Q-linearly to 0.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3330735

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on December 04,2023 at 22:51:43 UTC from IEEE Xplore.  Restrictions apply. 



6

Theorem 2. When r ≤ 2
3d − 1, let α ∈ (0, CM,ϕt), where

CM,ϕt := min{ r̂
G , 1

B̂
, 2
2MG+Lt

}, r̂ and B̂ are two constants

related to the retraction (defined in [18, Prop. 9]3). Let x0 be

a random initial point of Algorithm 1. Then, the set {x0 ∈
MN : {xk} converges to a point of X ∗} has measure 1.

Proof. It is shown in [3] that all second-order critical points

of problem (C-St) are global optima whenever r ≤ 2
3d − 1.

Combining this and the Łojasiewicz inequality, we can use

[18, Theorem 2, Corollary 6] to complete the proof.

Theorem 2 needs the condition r ≤ 2
3d−1. For general d, r,

we cannot prove global convergence, but we can characterize

the landscape of the problem. The next theorem shows that

when the states of neighboring agents are close enough to

each other, any first-order critical point is global optimum.

Theorem 3. Suppose that x is a first-order critical point of

problem (C-St). Then, x is a global optimal point if and only

if there exists some y ∈ R
d×r (with ‖y‖2 ≤ 1) such that

〈xi, y〉 > r−1 for all i ∈ [N ]. Moreover, a first-order critical

point x is a global optimal point if and only if

x ∈ L := {x : ‖x− x̄‖F,∞ <
√
2}.

Proof. Let B := W t ⊗ Id. The necessity is trivial by letting

y = [Bx]i if x1 = x2 = . . . = xN . Now, if x is a first-order

critical point, then it follows from Proposition 1 that

gradϕt
i(x) = ∇ϕt

i(x)−
1

2
xi(x

>
i ∇ϕt

i(x) +∇ϕt
i(x)

>xi)

= (Id −
1

2
xix

>
i )(∇ϕt

i(x)− xi∇ϕt
i(x)

>xi) = 0, ∀i ∈ [N ].

By our definition, we have ∀i ∈ [N ]

∇ϕt
i(x)− xi∇ϕt

i(x)
>xi = −[Bx]i + xi([Bx]>i xi).

Note that since Id − 1
2xix

>
i is invertible, one has

[Bx]i − xi([Bx]>i xi) = 0, ∀i ∈ [N ]. (IV.1)

Multiplying both sides by x>
i yields

x>
i [Bx]i = [Bx]>i xi, ∀i ∈ [N ]. (IV.2)

For the sufficiency, let Γi :=
∑N

j=1 W
t
ij(x

>
j xi), i ∈ [N ]. From

(IV.1), we get

xiΓi =

N
∑

j=1

W t
ijxj , ∀i ∈ [N ]. (IV.3)

Summing above over i ∈ [N ] yields
∑N

i=1 xiΓi =
∑N

i=1 xi. Taking inner product with y on both sides gives
∑N

i=1 〈y, xi(Ir − Γi)〉 = 0. Note that Ir−Γi is symmetric for

all i due to (IV.2) and it is also positive semi-definite. Since

〈xi, y〉 > r− 1 for all i, we get that Ωi :=
1
2 (x

>
i y+ y>xi) is

positive definite. Then, it follows that

〈y, xi(Ir − Γi)〉 = Tr(Ω
1/2
i (Ir − Γi)Ω

1/2
i ) ≥ 0.

The equation
∑N

i=1 〈y, xi(Ir − Γi)〉 = 0 suggests that Ir =
Γi, which also implies x1 = x2 = . . . = xN by (IV.3).

3Specifically, they are given in Appendix.

Furthermore, suppose y = x̄ which is the IAM of x. The

condition ‖x − x̄‖F,∞ <
√
2 means that ‖x̄ − xi‖2F < 2, or

equivalently, 〈y, xi〉 > r − 1 for all i ∈ [N ].

Theorem 3 establishes a sufficient and necessary condition

for a first-order critical point to be global optimum. In Exam-

ple 1 (see Appendix), we show that there exists a first-order

critical point x satisfying maxi∈[N ] ‖xi − x̄‖F =
√
2 which is

not global optimal. Therefore, the upper bound for the radius

of L is also tight in Theorem 3.

When r = 1, the region L is the same as that of S defined

in [13]. Specifically, on the sphere Sd−1, S corresponds to

the hemisphere, which is the largest convex set on Sd−1.

Geometrically, it means that xi cannot be the antipode of any

xj , which is known as the cut locus [31]. However, the region

S is unknown for general case r > 1. In [8], [13], [20], it was

shown that the continuous Riemannian gradient flow starting

in L converges to X ∗ on sphere Sd−1 and the convergence

rate is linear [8], [20]. However, it is still unclear whether

an algorithm could achieve global consensus initialized in L
when r > 1. The main challenge here is that the vanilla

gradient method cannot guarantee that the sequence stays in

‖x− x̄‖F,∞ <
√
2. In Lemma 4, we can also obtain the same

result on Sd−1 (r = 1) as that of [20], but we need a different

proof since we work with Euclidean distance. The proof is

provided in [37] due to the space limitation. The generalization

to r > 1 is challenging and interesting for future study.

Lemma 4. Let r = 1 and assume that there exists a y ∈
St(d, 1) such that the initial point x0 of Algorithm 1 satisfies

〈xi,0, y〉 ≥ δ, ∀i ∈ [N ] for some δ > 0. Then, the sequence

{xk} generated by Algorithm 1 with α ≤ 1 and t ≥ 1 satisfies

〈xi,k, y〉 ≥ δ, ∀i ∈ [N ], ∀k ≥ 0. (IV.4)

Combining Lemma 3, Lemma 4 and Theorem 3, we have

the following result. On the sphere, if the initial point x0

satisfies 〈xi,0, y〉 > 0, ∀i ∈ [N ] for some y ∈ M, the

sequence {xk} generated by Algorithm 1 with t ≥ 1 and

0 < α ≤ min{1, 1
MG+Lt/2

}, where M,G are defined in

Lemma 3, will converge to a point in X ∗, i.e., the sequence

reaches a consensus state.

V. LOCAL LINEAR CONVERGENCE

In this section, we study the local linear convergence rate

of Algorithm 1 for general d, r. Typically, a local linear rate

can be obtained if the Riemannian Hessian is non-singular

at global optimal points. However, the Riemannian Hessian

of ϕt(x) is a linear operator. For any tangent vector η> =
[η>1 , . . . , η

>
N ], we have [38]

〈

η,Hessϕt(x)[η]
〉

= ‖η‖2F −
N
∑

i=1

N
∑

j=1

W t
ij 〈ηi, ηj〉

−
N
∑

i=1

〈ηi, ηi(
1

2
[∇ϕt

i(x)
>xi + x>

i ∇ϕt
i(x)])〉.

(V.1)

Following [3], if we let x1 = . . . = xN and ηi = PTxi
Mξ for

any ξ ∈ R
d×r, (V.1) becomes 0 =

∑N
i=1 〈ηi,Hessϕt

i(x)[ηi]〉.
Therefore, similar to the Euclidean case, the Riemannian
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Hessian at any consensus point has a zero eigenvalue. This

motivates us to consider an alternative to the strong convex-

ity. Luckily, there are more relaxed conditions (than strong

convexity) for Euclidean problems.

We firstly present our main result, which is the local Q-

linear convergence rate of Algorithm 1. Before proceeding,

we define two local regions NR,t and Nl,t, where the local

linear rate holds. NR,t is given by

NR,t := N1,t ∩N2,t, (V.2)

where

N1,t : = {x : ‖x− x̄‖2F ≤ Nδ21,t} (V.3)

N2,t : = {x : ‖x− x̄‖F,∞ ≤ δ2,t}, (V.4)

and δ1,t, δ2,t satisfy

δ1,t ≤
1

5
√
r
δ2,t and δ2,t ≤

1

6
. (V.5)

Define

µt := 1− λ2(W
t), (V.6)

where λ2(W
t) is the second largest eigenvalue of W t. The

region Nl,t is given by

Nl,t := {x : ϕt(x) ≤ µt

4
} ∩ {x : ‖x− x̄‖2F ≤ Nδ23,t}, (V.7)

where δ3,t satisfies

δ3,t ≤ min
{ 1√

N
,

1

4
√
r

}

. (V.8)

The upper bounds for constants δ1,t, δ2,t may not be optimal

since we use second-order approximation in the development

of RSI and we need to guarantee that the DRCS iterates stay

in the local region NR,t. However, Theorem 3 implies that

the radius of N2,t cannot be larger than
√
2, the radius of L,

which is the manifold property, while Nl,t is decided by the

connectivity of the network. If the connectivity is stronger,

then the region is larger. More discussions on the constants

will be given in Remark 1.

Our main result of this section is presented in Theorem 4.

The proof is given in Appendix. To prove it, two main steps

will be established in the next two subsections: Section V-A

and Section V-B. We use the following two constants in the

presentation of the theorem

γt :=

{

γR,t = (1− 4rδ21,t)(1−
δ22,t
2 )µt, x ∈ NR,t

γl,t = µt(1− 4rδ23,t)− ϕt(x), x ∈ Nl,t,
(V.9)

Φ :=

{

ΦR := 2− ‖x− x̄‖2F,∞, x ∈ NR,t

Φl := 2− ‖x− x̄‖2F, x ∈ Nl,t.
(V.10)

Theorem 4. Let Assumption 1 hold. (1). Let ν ∈ (0, 1) and the

stepsize α satisfy 0 < α ≤ min{νΦ
Lt

, 1, 1
M }, where Φ is given

in (V.10) and t ≥ dlogσ2
( 1
2
√
N
)e, and M is given in (P1). The

sequence {xk} in Algorithm 1 achieves consensus linearly if

the initialization satisfies x0 ∈ NR,t defined by (V.2). That is,

we have xk ∈ NR,t for all k ≥ 0 and

‖xk − x̄k‖2F ≤ (1− 2α(1− ν)γt)
k‖x0 − x̄0‖2F, (V.11)

where γt is defined in (V.9). Moreover, if α ≤ 2
2MG+Lt

, x̄k

also converges to a single point.

(2). If x0 ∈ Nl,t and α ≤ min{ 2
Lt+2MG , Φ

Lt
}, one has (V.11)

and xk ∈ Nl,t for all k ≥ 0, t ≥ 1, where Φ is defined in

(V.10).

Theorem 4 has significant implications for various appli-

cations, such as synchronization in planetary-scale sensor

networks [5], modeling of collective motion in flocks in

the Earth’s atmosphere [6], synchronization of quantum bits

[7], and the Kuramoto models [3], [8], certifying their rapid

convergence. Furthermore, this result sheds light on designing

decentralized algorithms for Stiefel manifold optimization

[39], as elaborated later in our experiments.

A. Restricted Secant Inequality

To prove Theorem 4, we need to establish a new RSI in the

Riemannian form. Notice that Stiefel manifold is embedded

in Euclidean space; we start with generalizing (III.7) to its

Riemannian version as follows
〈

x− PTxMN x̄, gradϕt(x)
〉

≥ cd‖x− x̄‖2F + cg‖gradϕt(x)‖2F,
(V.12)

where cd > 0, cg > 0 and x is in some neighborhood of X ∗.

This is natural as for the Riemannian problem (C-St), we need

to substitute the Euclidean gradient with Riemannian gradient.

Moreover, the IAM x̄ should be mapped into the tangent space

TxMN . However, the map Exp−1
x

(x̄) is difficult to compute.

Note that Exp
x

is a local diffeomorphism. By the inverse

function theorem, we have Exp−1
x

(x̄) = x̄−x+O(‖x− x̄‖2F).
Using the property in (P3), we know that PTxMN (x̄ − x)
is a second-order approximation to Exp−1

x
(x̄). As such, we

directly project x̄ onto the tangent space of x without recourse

to the inverse of any retraction. Then, since

〈

x− PTxMN x̄, gradϕt(x)
〉

=
〈

PTxMN (x− x̄),PTxMN∇ϕt(x)
〉

=
〈

x− x̄, gradϕt(x)
〉

,

we will get the following definition of RSI from (V.12)

〈

x− x̄, gradϕt(x)
〉

≥ cd‖x−x̄‖2F+cg‖gradϕt(x)‖2F. (RSI)

To establish the (RSI), we first show the quadratic growth

(QG) property of ϕt(x) (Lemma 5). In the Euclidean space,

especially for convex problems, QG condition is equivalent to

the RSI as well as the Łojasiewicz inequality with θ = 1/2
[40]. To the best of our knowledge, QG cannot be used directly

to establish the linear rate of GD, and it is usually required

to show the equivalence to Luo-Tseng [41] error bound

inequality (ERB) [42]. However, for nonconvex problems, RSI

is strictly stronger than QG. Detailed discussions are provided

in Appendix VIII-C.

Lemma 5 (Quadratic growth). For any t ≥ 1 and x ∈ MN ,

we have that

ϕt(x)− ϕt(x̄) ≥ µt

2
‖x− x̂‖2F ≥ µt

4
‖x− x̄‖2F. (QG)
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Moreover, if ‖x− x̄‖2F ≤ N
8r , we have

ϕt(x)− ϕt(x̄) ≥ µt

2
(1− 4r

N
‖x− x̄‖2F)‖x− x̄‖2F. (QG’)

Proof. We rewrite the objective ϕt(x) as follows

2ϕt(x) =

N
∑

i=1

‖xi‖2F −
N
∑

i=1,j=1

W t
ij 〈xi, xj〉

=

N
∑

i=1

〈xi, xi −
N
∑

j=1

W t
ijxj〉 =

〈

∇ϕt(x),x
〉

.

Note that as 〈∇ϕt(x), x̂〉 = 0, we get

2ϕt(x) =
〈

∇ϕt(x),x− x̂
〉

(III.7)

≥ µtLt

µt + Lt
‖x− x̂‖2F +

1

µt + Lt
‖∇ϕt(x)‖2F

≥ µt‖x− x̂‖2F,
where the last inequality follows from ‖∇ϕt(x)‖F ≥ µt‖x−
x̂‖F. Combining above with Lemma 2 and observing ϕt(x̄) =
0 completes the proof for both (QG) and (QG’).

The second inequality (QG’) is a local quadratic growth

property, which is tighter than (QG).

Next, we discuss how to establish (RSI) based on Lemma 5.

We will derive (RSI) in the separate forms
〈

x− x̄, gradϕt(x)
〉

≥ c′d‖x− x̄‖2F, c′d > 0 (RSI-1)

and

〈x− x̄, gradϕt(x)〉 ≥ c′g‖gradϕt(x)‖2F c′g > 0. (RSI-2)

Then, (RSI) can be obtained by any convex combination of

(RSI-1) and (RSI-2). To proceed with the analysis, we define

for i ∈ [N ]

pi :=
1

2
(xi − x̄)>(xi − x̄), (V.13)

and

qi :=
1

2

N
∑

j=1

W t
ij(xi − xj)

>(xi − xj). (V.14)

Let y = x̄ in (VIII.8)(see Appendix). We get

〈

gradϕt(x),x− x̄
〉

=
〈

∇ϕt(x),x− x̄
〉

−
N
∑

i=1

〈pi, qi〉

= 2ϕt(x)−
N
∑

i=1

〈pi, qi〉 ,

(V.15)

where in the last equation we used the following two identities

2ϕt(x) = 〈∇ϕt(x),x〉 and 〈∇ϕt(x), x̄〉 = 0. The term
∑N

i=1 〈pi, qi〉 is non-negative, so if we substitute (V.15) into

(RSI), we observe that RSI is stronger than QG. Moreover, by

Cauchy-Schwarz inequality, we have

N
∑

i=1

〈pi, qi〉 ≤ max
i∈[N ]

‖pi‖F · 2ϕt(x) ≤ ϕt(x) · ‖x− x̄‖2F,∞.

(V.16)

Hence, we see that if ‖x − x̄‖F,∞ <
√
2, we have

〈gradϕt(x),x− x̄〉 > 0, which implies that the direction

−gradϕt(x) is positively correlated with the direction x̄− x.

However, it is difficult to guarantee ‖xk − x̄k‖F,∞ <
√
2 for

every k, since x̄k is not fixed. We will see in Lemma 7 that a

large enough value for t can help us circumvent this problem

in the region N2,t. Moreover, note that

N
∑

i=1

〈pi, qi〉 ≤ ϕt(x) · ‖x− x̄‖2F, (V.17)

so we can also establish (RSI-1) when ϕt(x) = O(µt), as we

will see in Lemma 6.

To conclude, the two inequalities (V.16) and (V.17) corre-

spond to two neighborhoods of X ∗: NR,t and Nl,t, which are

defined in (V.2) and (V.7). The (RSI-1) is formally established

in the following lemma.

Lemma 6. Let µt be the constant given in (V.6) and t ≥ 1.

1) Suppose x ∈ NR,t, where NR,t is defined by (V.2). There

exists a constant γR,t > 0 defined in (V.9):

γR,t := (1− 4rδ21,t)(1−
δ22,t
2

)µt ≥
µt

2
,

such that the following holds:
〈

x− x̄, gradϕt(x)
〉

≥ γR,t‖x̄− x‖2F. (V.18)

2) For x ∈ Nl,t, where Nl,t is defined by (V.7), we also have

(RSI-1), in which c′d = γl,t = µt(1 − 4rδ23,t) − ϕt(x) ≥
µt

2 .

Proof. (1). Combining (V.15) with (V.16), we get

〈

x− x̄, gradϕt(x)
〉 (V.15)

= 2ϕt(x)−
N
∑

i=1

〈pi, qi〉

(V.16)

≥ ϕt(x) · (2− ‖x− x̄‖2F,∞). (V.19)

Since x ∈ NR,t, invoking (QG’) in Lemma 5, we get

〈

x− x̄, gradϕt(x)
〉

≥ (1− 4rδ21,t)(1−
δ22,t
2

)µt‖x− x̄‖2F,

where using the conditions (V.5) completes the proof.

(2). For x ∈ Nl,t, combining (V.15), (V.17) and (QG’) yields
〈

x− x̄, gradϕt(x)
〉

≥ [µt(1− 4rδ23,t)− ϕt(x)]‖x− x̄‖2F
≥ 1

2
µt‖x− x̄‖2F,

(V.20)

where we used the conditions in (V.8).

Remark 1. In the proof, we derive γR,t and γl,t by combining

(QG’) with (V.16) and (V.17), respectively. For (V.18), any

δ1,t, δ2,t satisfying (1 − 4rδ21,t)(1 − δ22,t
2 ) ≥ 1/2 might seem

sufficient. However, we impose the condition on δ1,t, δ2,t in

(V.5) in order to guarantee xk ∈ N2,t for all k ≥ 0. Moreover,

we find that by combining (QG) with (V.16), one can also get

(RSI-1) without the constraint N1,t. But the coefficient will be

smaller. For simplicity, we only show the results in N1,t∩N2,t.
Similarly, for Nl,t, δ3,t ≤ 1

4
√
r

is enough to ensure RSI. We
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impose δ3,t ≤ 1/
√
N to get Proposition 2, which is useful to

ensure {xk}k ∈ Nl,t. In fact, δ3,t ≤ 1/
√
N does not shrink the

region since ϕt(x) ≤ µt/4 implies a small region by Lemma 5.

Also, since δ3,t ≤ 1/
√
N , it is clear that Nl,t is smaller than

NR,t when N is large enough.

Next, we are ready to present the (RSI) inequality.

Proposition 2 (Restricted secant inequality). The following

two inequalities hold for x ∈ NR,t and x ∈ Nl,t

〈

x− x̄, gradϕt(x)
〉

≥ Φ

2Lt
‖gradϕt(x)‖2F, (V.21)

and
〈

x− x̄, gradϕt(x)
〉

≥ ν · Φ

2Lt
‖gradϕt(x)‖2F + (1− ν)γt‖x− x̄‖2F,

(RSI-I)

for any ν ∈ [0, 1], where γt and Φ > 1 are constants related

to x, which are given by (V.9) and (V.10).

B. Staying in the Local Region

Since the RSI condition holds in the local region NR,t, the

main difficulty now is to show that xk ∈ N2,t. We can show

that xk always stays in NR,t = N1,t ∩ N2,t if the stepsize α
satisfies 0 ≤ α ≤ min{ Φ

Lt
, 1, 1

M } and t ≥ dlogσ2
( 1
2
√
N
)e. The

upper bounds 1
M and 1 are due to xk ∈ N2,t.

Lemma 7 (Stay in NR,t). Let xk ∈ NR,t, 0 ≤ α ≤
min{ Φ

Lt
, 1, 1

M } and t ≥ dlogσ2
( 1
2
√
N
)e, where the radius of

NR,t is given by (V.5) and M is given in (P1). We then have

that xk+1 ∈ NR,t.

The lower bound dlogσ2
( 1
2
√
N
)e may not be a small number.

For example, when W is the lazy Metropolis matrix of a

regular connected graph, σ2 usually scales as 1 − O( 1
N2 )

[43, Remark 2] and logσ2
( 1
2
√
N
) = O(N2 logN). However,

for example, for a star graph this can be O(logN). It will

be interesting to investigate (as a future work) under what

conditions Lemma 7 holds for t = 1. Here, we require

this condition to ensure the algorithm is in a proper local

neighborhood. From the above result, we see that the stepsize

is upper bounded by Φ
Lt

and 1
M , and they show the role

of the network and the manifold. The condition α ≤ Φ/Lt

guarantees that xk ∈ N1,t and α ≤ min{1, 1/M} ensures that

xk ∈ N2,t. For the simplicity, we discuss the constant M in

Section VIII-A in Appendix.

Combining Theorem 4 with Lemma 3 and Theorem 2, we

conclude the following result.

Theorem 5. When α < min{CM,ϕt , νΦ
Lt

, 1} and r ≤ 2
3d− 1,

with random initialization, {xk} firstly converges sub-linearly

and then linearly for any t ≥ 1, almost surely.

The condition on the stepsize α depends on the function,

network, and manifold properties, which is expected based

on distributed optimization techniques in the Euclidean space.

For the global convergence purpose, one could use the method

in [44] to estimate Lt, µt in a distributed fashion, but the

estimate of CM,ϕt is difficult to obtain. Therefore, similar

to the Euclidean distributed optimization methods in practice,

setting α = 1 is a good starting point to apply the algorithm to

real-world datasets, as demonstrated in Section VI. Otherwise,

if α = 1 does not converge, a non-exhaustive grid search can

find a smaller stepsize ensuring convergence.

C. Asymptotic Rate

To get the rate of σt
2, we need to ensure cd = µtLt

µt+Lt
and

cg = 1
µt+Lt

in (RSI). We show this asymptotically for any

x ∈ Nl,t. Firstly, by (V.15) we have

〈

gradϕt(x),x− x̄
〉

=
〈

∇ϕt(x),x− x̂
〉

−
N
∑

i=1

〈pi, qi〉 ,

(V.22)
where pi and qi are given in (V.13)-(V.14). Using (III.7) and
(III.10) yields

〈

∇ϕ
t(x),x− x̂

〉

≥ µtLt

µt + Lt

‖x− x̂‖2F +
1

µt + Lt

‖∇ϕ
t(x)‖2F

≥ µtLt

µt + Lt

(1− 4r

N
‖x− x̄‖2F)‖x− x̄‖2F

+
1

µt + Lt

‖gradϕt(x)‖2F ,

(V.23)

where we also used ‖gradϕt(x)‖F ≤ ‖∇ϕt(x)‖F by the non-

expansiveness of PTxMN . Substituting (V.23) into (V.22) and

noting (V.17), we get
〈

gradϕt(x),x− x̄
〉

≥ µtLt

µt + Lt
(1− 4r

N
‖x− x̄‖2F − µt + Lt

µtLt
ϕt(x))‖x− x̄‖2F

+
1

µt + Lt
‖gradϕt(x)‖2F.

When ‖x − x̄‖F → 0, we have ϕt(x) → 0 by Theorem 1.

Thus, we get

cd =
µtLt

µt + Lt
(1− 4r

N
‖x− x̄‖2F −

µt + Lt

µtLt
ϕt(x)) → µtLt

µt + Lt
.

By the same arguments as of Theorem 4, we get the asymptotic

rate being Lt−µt

Lt+µt
with α = 2

Lt+µt
, and Lt−µt

Lt+µt
≤ σt

2. Also,

using similar arguments as (VIII.3) in Appendix, we can

get the rate of σt
2 with α = 1 as the Euclidean case by

noting that the error bound inequality (ERB) in Appendix

is asymptotically µt‖x− x̄‖F ≤ ‖gradϕt(x)‖F.

VI. NUMERICAL EXPERIMENTS

A. Consensus Simulation

We now provide the numerical experiments by evaluating

our method on a ring graph with N = 30 nodes. The matrix

W is given as follows: Wii = 1/3 for all i ∈ {1, ..., 30};

Wij = 1/3 if i and j are neighbors and Wij = 0 otherwise.

We compare the polar retraction and the exponential map

using different stepsizes and t ≥ 1. For t = 1, we run

Algorithm 1 with four choices of stepsize: 1/Lt, 2/(Lt +
µt), 2/Lt, 1. For t = 10, we only use α = 1 for simplicity. The

algorithms are stopped when we reach the target accuracy of
1
N ‖xk − x̄k‖2F ≤ 2× 10−16. The dimension of the variable is
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ring graph with N = 20 nodes, in Fig. 2, we show the

consensus error 1√
N
‖xk − x̄k‖F with respect to the epoch

number (iteration of the outer loop) of DRGTA for the case

of r = 5, t = 1. The results represent the average of

error for 20 random initializations. In each run, we randomly

initialize all agents variables x1, x2, . . . , xN , such that they

satisfy the condition of linear convergence in Theorem 4.

Note that x1 = x2 = ... = xN = x0 also satisfies

the condition. Fig. 2 depicts the geometric mean and the

geometric standard deviation of the consensus errors. Given

this empirical linear rate observed in Fig. 2, if the convergence

of DRCS was slower than linear, it would have exacerbated

the overall performance of DRGTA, making the rate sublinear.

Therefore, the linear rate achieved by DRCS could play a key

role in the design of consensus-based decentralized manifold

optimization techniques. Theorem 4 facilitates the convergence

rate analysis of the two decentralized Riemannian gradient

methods in [39]. We also present the computation time cost

of each part of DRGTA for 5000 epochs in Table I, including

the computation of consensus gradient ∇ϕt(xk) in the inner

loop, the gradient of PCA in the outer loop, the retraction

operation in the outer loop, and the projection onto tangent

space for both loops. These results are the arithmetic mean

and standard deviation of 20 experiment runs. The time cost

of the consensus gradient ∇ϕt(xk) is negligible in DRGTA,

certifying the low computational overhead of DRCS.

TABLE I. COMPUTATION TIME OF DRGTA, IN

SECONDS.

∇ϕt(xk) gradient of PCA retraction PT
MN

mean(std) 0.29(0.32) 43.56(4.02) 60.79(7.51) 1.02(0.30)

VII. CONCLUSION

In this paper, we provided the global and local convergence

analysis of DRCS, a distributed method for consensus on the

Stiefel manifold. We showed that the convergence rate asymp-

totically matches the Euclidean counterpart, which scales with

the second largest singular value of the communication matrix.

The main technical contribution is to generalize the Euclidean

restricted secant inequality to the Riemannian version. In

the future work, we would like to study the preservation of

iteration in the region N2,t (with t = 1) and to estimate the

constant CM,ϕt for stepsize.

VIII. APPENDIX

A. More Discussions on Constants

– Lipschitz Constant Lt in Theorem 1: We remark that

a closely related inequality is the restricted Lipschitz-type

gradient presented in [22, Lemma 4], which is defined by

the pull back function g(ξ) := ϕt(Retrx(ξ)), whose Lipschitz

constant L̃ relies on the retraction and the Lipschitz constant of

Euclidean gradient. Also, the stepsize of RGM in [22] depends

on the norm of Euclidean gradient. Therefore, the range of our

stepsize is larger than that in [22, Theorem 5]. Our inequality

does not rely on the retraction, which could be of independent

interest.

– Constants r̂ and B̂ in Lemma 2: The two constants r̂ and B̂
in Lemma 2 are directly obtained from the proof of [18, Prop.

9]. For the completeness, we introduce them here. Firstly,

since M is Stiefel manifold, the polar retraction is unique and

smooth in a neighborhood of radius r̂ = 1 of the manifold [46].

Secondly, define hx(α) = det(DRetrx(−αgradϕ(x))(Id −
αD(PTxMN )(x))). Since MN is a compact smooth manifold,

letting α < r̂
max

x∈MN ‖∇ϕ(x)‖F
, Retrx(−αgradϕ(x)) and its

derivatives exist. Then,

B̂ := max
x∈MN ,α

|dhx

dα
(α)| < ∞, s.t. α <

r̂

max
x∈MN ‖∇ϕ(x)‖F

.

– Constant M in (P1): We have M = 1 in (P1) for the

polar retraction if α‖gradϕt(xi,k)‖F ≤ 1 according to [25,

Append. E]. By our choice of α ≤ 1 and xk ∈ NR,t, we indeed

have α‖gradϕt(xi,k)‖F ≤ 2δ2,t ≤ 1 according to Lemma 8.

However, we do not plan to remove the term 1
M .

B. Proofs

Proof of inequality (III.7). Without loss of generality, we as-

sume d = r = 1. Let U1, U2, . . . , UN be the orthonormal

eigenvectors of IN −W , corresponding to the eigenvalues 0 =
λ1 < λ2 ≤ . . . ≤ λN . Then, we have that x− x̂ =

∑N
i=1 ciUi.

Since x− x̂ is orthogonal to span{U1}, we have c1 = 0. Note

that ∇ϕ(x) = (IN −W )x = (IN −W )(x− x̂). We get

‖x− x̂‖2F =

N
∑

i=2

c2i and ‖∇ϕ(x)‖2F =

N
∑

i=2

c2iλ
2
i . (VIII.1)

Then, to prove (III.7), we have that

〈x− x̂,∇ϕ(x)〉 = 〈x− x̂, (IN −W )(x− x̂)〉

=

〈

N
∑

i=2

ciUi,

N
∑

i=2

ciλiUi

〉

=

N
∑

i=2

c
2
iλi ≥

1

L+ µ

N
∑

i=2

(µLc2i + c
2
iλ

2
i )

=
µL

µ+ L
‖x− x̂‖2F +

1

µ+ L
‖∇ϕ(x)‖2F , (VIII.2)

where the inequality follows due to µ = λ2 and L = λN .

Proof of linear rate of PGD with αe = 1. Firstly, one can

easily verify L‖x − x̂‖F ≥ ‖∇ϕ(x)‖F ≥ µ‖x − x̂‖F using

(VIII.1). We then have

‖xk+1 − x̂k+1‖2F ≤ ‖xk+1 − x̂k‖2F
≤ ‖xk − x̂k‖2F + ‖∇ϕ(xk)‖2F − 2 〈∇ϕ(xk),xk − x̂k〉
(III.7)

≤ (1− 2µL

µ+ L
)‖xk − x̂k‖2F + (1− 2

µ+ L
)‖∇ϕ(xk)‖2F.

(VIII.3)

If 2
µ+L ≥ 1, i.e., λ2(W ) + λN (W ) ≥ 0, this implies σ2 =

λ2(W ). Combining ‖∇ϕ(x)‖F ≥ µ‖x − x̂‖F with (VIII.3)

yields

‖xk+1 − x̂k‖2F
≤ (1− 2µL

µ+ L
+ µ2 − 2µ2

L+ µ
)‖xk − x̂k‖2F

= (1− µ)2‖xk − x̂k‖2F = σ2
2‖xk − x̂k‖2F.
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If 2
µ+L < 1, then λ2(W ) + λN (W ) < 0, this implies σ2 =

−λN (W ). Combining ‖∇ϕ(x)‖F ≤ L‖x− x̂‖F with (VIII.3)

implies

‖xk+1 − x̂k‖2F ≤ (1− 2µL

µ+ L
+ L2 − 2L2

L+ µ
)‖xk − x̂k‖2F

= (1− L)2‖xk − x̂k‖2F = σ2
2‖xk − x̂k‖2F.

Proof of Lemma 1. Let usv> = x̂ be the singular value
decomposition and σ̂1 ≥ . . . ≥ σ̂r ≥ 0 be the singular values
of x̂. Since x̄ = PM(x̂) = uv>, we get

‖x− x̄‖2F =

N
∑

i=1

(2r − 2 〈xi, x̄〉) = 2N(r − 〈x̂, x̄〉) = 2N(r − ‖x̂‖∗),

(VIII.4)

where ‖ · ‖∗ is the trace norm. Hence, by assumption

dist2(x,X ∗) = 1
N ‖x − x̄‖2F < 2 and (VIII.4), we get

‖x̂‖∗ > r − 1.
Noticing that σ̂i ∈ [0, 1] for all i ∈ [r], we get the smallest

singular value σ̂r > 0. Therefore, x̂ has full rank and PM(x̂)
is unique.

Proof of Lemma 2. Note that

‖x− x̂‖2F =

N
∑

i=1

‖xi − x̂‖2F = N(r − ‖x̂‖2F)

= N(
√
r + ‖x̂‖F)(

√
r − ‖x̂‖F) ≤ 2N(r −√

r‖x̂‖F),
(VIII.5)

where the inequality is due to ‖x̂‖F ≤ √
r.

Let σ̂1 ≥ . . . ≥ σ̂r ≥ 0 be the singular values of x̂. It is clear

that σ̂1 ≤ 1 since ‖x̂‖2 ≤ 1
N

∑N
i=1 ‖xi‖2 ≤ 1. The inequality

‖x̂‖∗ =
∑r

i=1 σ̂i ≤
√
r
√
∑r

i=1 σ̂
2
i =

√
r‖x̂‖F, together with

(VIII.5) and (VIII.4) imply that ‖x− x̂‖2F ≤ ‖x− x̄‖2F. Next,

we have ‖x̂‖∗ =
∑r

i=1 σ̂i ≥
∑r

i=1 σ̂
2
i = ‖x̂‖2F. This yields

1

2
‖x− x̄‖2F = N(r − ‖x̂‖∗) ≤ N(r − ‖x̂‖2F) = ‖x− x̂‖2F,

which proves (III.9).
By utilizing the fact ‖x − x̂‖F ≤ ‖x − x̄‖F in (III.9), we

have
√

√

√

√r

r
∑

i=1

σ̂2
i =

√
r‖x̂‖F ≥ ‖x̂‖2F = r − 1

N
‖x̂− x‖2F ≥ r − 1

N
‖x̄− x‖2F ,

(VIII.6)

where we used ‖x̂‖F = ‖ 1
N

∑N
i=1 xi‖F ≤ √

r. If ‖x− x̄‖2F ≤
N/2 (by assumption), we can square both sides of above and

note σ̂2
i ≤ 1 for i ∈ [r − 1] to get

σ̂2
r ≥ 1− 2

‖x− x̄‖2F
N

+
‖x− x̄‖4F

N2r
≥ 1− 2

‖x− x̄‖2F
N

.

Then, we have

σ̂r ≥
√

1− 2
‖x− x̄‖2F

N
≥ 1− 2

‖x− x̄‖2F
N

, (VIII.7)

where we used
√
1− s ≥ 1− s for any 1 ≥ s ≥ 0. Recall

that x̄ = PM(x̂) = uv>. Hence, it follows that

‖x̂− x̄‖2F =

r
∑

i=1

(1− σ̂i)
2 ≤ 4r‖x− x̄‖4F

N2
.

Hence, we have proved (P2). Finally,

‖x− x̂‖2F =

N
∑

i=1

〈xi − x̂, xi − x̂〉

=

N
∑

i=1

〈xi − x̂, xi − x̄〉+
N
∑

i=1

〈xi − x̂, x̄− x̂〉

= ‖x− x̄‖2F +

N
∑

i=1

〈x̄− x̂, xi − x̄〉

= ‖x− x̄‖2F −N‖x̄− x̂‖2F
(P2)

≥ ‖x− x̄‖2F − 4r‖x− x̄‖4F
N

,

where we used
∑N

i=1 〈xi − x̂, x̄− x̂〉 = 0 in the third line.

Proof of Theorem 1. We firstly show that for any x,y ∈
MN , we have

〈

gradϕt(x),y − x
〉

=
〈

∇ϕt(x),y − x
〉

+

1

4

N
∑

i=1

〈
N
∑

j=1

W t
ij(xi − xj)

>(xi − xj), (yi − xi)
>(yi − xi)〉

≥
〈

∇ϕt(x),y − x
〉

.
(VIII.8)

It follows from the relationship (P3) that
〈

gradϕt(x),y − x
〉

=
〈

∇ϕt(x),PTxMN (y − x)
〉

=
〈

∇ϕt(x),y − x
〉

−
N
∑

i=1

〈

∇ϕt
i(x),PNxi

M(yi − xi)
〉

=
〈

∇ϕt(x),y − x
〉

+
1

4

N
∑

i=1

〈

∇ϕt
i(x)

>xi + x>
i ∇ϕt

i(x), (yi − xi)
>(yi − xi)

〉

.

Since

1

2
[∇ϕt

i(x)
>xi+x>

i ∇ϕt
i(x)] =

1

2

N
∑

j=1

W t
ij(xi−xj)

>(xi−xj),

is positive semi-definite, we get

N
∑

i=1

〈

∇ϕt
i(x),

1

2
xi(yi − xi)

>(yi − xi)

〉

≥ 0. (VIII.9)

Therefore, we get (VIII.8). Note that the largest eigenvalue of

∇2ϕt(x) = (IN −W t)⊗Id is Lt = 1−λN (W t) in Euclidean

space, where λN (W t) denotes the smallest eigenvalue of W t.

For any x,y ∈ MN , it follows that [29]

ϕt(y)−
[

ϕt(x) +
〈

∇ϕt(x),y − x
〉]

≤ Lt

2
‖y − x‖2F.

(VIII.10)

Together with (VIII.8), this implies that

ϕt(y)−
[

ϕt(x) +
〈

gradϕt(x),y − x
〉]

≤ Lt

2
‖x− y‖2F.

(VIII.11)

The proof is completed.
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Example 1. For any number N > 1 and any 1 ≤ r ≤ d− 2,

consider the fully connected network with the weight matrix

W =











1/N 1/N . . . 1/N
1/N 1/N . . . 1/N

...
...

...
...

1/N 1/N . . . 1/N











.

Let the initial point x ∈ MN satisfy the following conditions:

• The first r − 1 columns of x1, . . . , xN are identical and

can be represented as a matrix denoted by b ∈ R
d×(r−1).

• The last column of x1, . . . , xN is denoted by a1, . . . , aN ,

respectively. That is, we have

xi = [b ai] i = 1, . . . , N.

• Assume that
∑N

i=1 ai = 0 and that a1, a2, . . . , aN span

a two-dimensional subspace A.

Then, we have x̂ = [b 0]. Note that A lies in R
d−(r−1) and

d− (r − 1) ≥ 3. By definition of IAM, we know that the first

r− 1 columns of x̄ form a matrix equal to b. Let z denote the

last column of x̄, where z is a unit vector that is orthogonal to

b and A. It follows that ‖x̄− xi‖F =
√
2 for all i = 1, ..., N.

Note that

gradϕt
i(x) = PTxi

M(xi −
N
∑

j=1

W t
ijxj) = −PTxi

M

N
∑

j=1

W t
ijxj

= − 1

N
PTxi

M

N
∑

j=1

xj = −PTxi
Mx̂ = 0.

Hence, x is a first-order critical point, maxi∈[N ] ‖xi −
x̄‖F =

√
2, but it is not global optimum since xi 6= xj for

all i, j.

Proofs for Section V. To prove Proposition 2, we need

the following bounds for gradϕt(x) by noting that ϕt(x)
is Lipschitz smooth as shown in Theorem 1. The following

lemma will be helpful to show (RSI-2).

Lemma 8. For any x ∈ MN , it follows that

‖
N
∑

i=1

gradϕt
i(x)‖F ≤ Lt‖x− x̄‖2F, (VIII.12)

and

‖gradϕt(x)‖2F ≤ 2Lt · ϕt(x), (VIII.13)

where Lt is the Lipschitz constant given in Theorem 1.

Moreover, suppose x ∈ N2,t, where N2,t is defined in (V.4).

We then have

max
i∈[N ]

‖gradϕt
i(x)‖F ≤ 2δ2,t. (VIII.14)

Proof of Lemma 8. First, using (P3) we have

gradϕt
i(x) = xi−

N
∑

j=1

W t
ijxj−

1

2
xi

N
∑

j=1

W t
ij(xi−xj)

>(xi−xj).

(VIII.15)

Since
∑N

i=1 ∇ϕt
i(x) =

∑N
i=1(xi −

∑N
j=1 W

t
ijxj) = 0, we

have

‖
N
∑

i=1

gradϕt
i(x)‖F =

1

2
‖

N
∑

i=1

xi

N
∑

j=1

W
t
ij(xi − xj)

>(xi − xj)‖F

≤ 1

2

N
∑

i=1

‖
N
∑

j=1

W
t
ij(xi − xj)

>(xi − xj)‖F

≤ 1

2

N
∑

i=1

N
∑

j=1

W
t
ij‖xi − xj‖2F = 2ϕt(x) ≤ Lt‖x− x̄‖2F ,

where the last inequality follows from (III.11). Moreover, it is

clear that we have

0 ≤ ϕt(x− 1

Lt
∇ϕt(x))

(VIII.10)

≤ ϕt(x) + 〈∇ϕt(x),− 1

Lt
∇ϕt(x)〉+ 1

2Lt
‖∇ϕt(x)‖2F

= ϕt(x)− 1

2Lt
‖∇ϕt(x)‖2F.

Since gradϕt
i(x) = PTxi

M(∇ϕt
i(x)), we get

‖gradϕt(x)‖2F ≤ ‖∇ϕt(x)‖2F ≤ 2Lt · ϕt(x).

Finally, it follows from x ∈ N2,t that

‖gradϕt
i(x)‖F ≤ ‖

N
∑

j=1

W t
ij(xj − xi)‖F ≤ 2δ2,t.

Proof of Proposition 2. First, we prove it for x ∈ NR,t. It

follows from (V.15) and (V.16) that
〈

x− x̄, gradϕt(x)
〉

≥ ΦR · ϕt(x).

Combining with (VIII.13), we get 〈x− x̄, gradϕt(x)〉 ≥
ΦR

2Lt
‖gradϕt(x)‖2F.

Secondly, for x ∈ Nl,t, we have the similar arguments by

combining (V.15) with (V.17). Furthermore, if x ∈ NR,t or

x ∈ Nl,t, we notice that (RSI-I) is the convex combination of

(V.21) and (V.18).

We have the following bound in (VIII.16) for the total

variation distance between any row of W t and the uniform

distribution.

Lemma 9. Given any x ∈ N2,t, where N2,t is defined in

(V.4), if t ≥ dlogσ2
( 1
2
√
N
)e, we have

max
i∈[N ]

‖
N
∑

j=1

(W t
ij − 1/N)xj‖F ≤ δ2,t

2
. (VIII.16)

Proof. Note that W t is doubly stochastic with σt
2 as the second

largest singular value. As x ∈ N2, it follows that ‖xi− x̄‖F ≤
δ2,t for all i ∈ [N ]. We then have

max
i∈[N ]

‖
N
∑

j=1

(W t
ij − 1/N)xj‖F

= max
i∈[N ]

‖
N
∑

j=1

(W t
ij − 1/N)(xj − x̄)‖F

≤ max
i∈[N ]

N
∑

j=1

|W t
ij − 1/N |δ2,t ≤

√
Nσt

2δ2,t,

where the last inequality follows from the bound on the total

variation distance between any row of W t and 1
N 1>N [47,
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Prop.3] [24, Sec 1.1.2]. The conclusion is obtained by setting

t ≥ dlogσ2
( 1
2
√
N
)e.

Following a perturbation lemma of the polar decomposition

[48, Theorem 2.4], we get the following technical lemma,

which will be useful to bound the Euclidean distance between

two consecutive points x̄k and x̄k+1.

Lemma 10. Suppose x,y ∈ N1,t, we have

‖x̄− ȳ‖F ≤ 1

1− 2δ21,t
‖x̂− ŷ‖F,

where x̄ and ȳ are the IAM of x1, . . . , xN and y1, . . . , yN ,

respectively.

Proof. Let x̂ = 1
N

∑N
i=1 xi and ŷ = 1

N

∑N
i=1 yi be the

Euclidean average points of x and y. Then, x̄ and ȳ are the

(generalized) polar factor [48] of x̂ and ŷ, respectively. We

have

σr(x̂)
(VIII.7)

≥ 1− 2
‖x− x̄‖2F

N

(i)

≥ 1− 2δ21,t > 0,

where (i) follows from x ∈ N1,t. Similarly, we have σr(ŷ) ≥
1− 2δ21,t since y ∈ N1,t.
Then, it follows from [48, Theorem 2.4] that

‖ȳ − x̄‖F ≤ 2

σr(x̂) + σr(ŷ)
‖ŷ − x̂‖F ≤ 1

1− 2δ21,t
‖x̂− ŷ‖F.

The proof is completed.

We use Lemma 10 for the following lemma.

Lemma 11. If xk ∈ NR,t,xk+1 ∈ N1,t and xi,k+1 =
Retrxi,k

(−αgradϕt
i(xk)), where δ1,t and δ2,t are given by

(V.5), it follows that

‖x̄k − x̄k+1‖F ≤ Lt

1− 2δ21,t

α+ 2Mα2Lt

N
‖xk − x̄k‖2F.

Proof. We have that

‖x̂k − x̂k+1‖F ≤ ‖x̂k − α

N

N
∑

i=1

gradϕt
i(xk)− x̂k+1‖F

+ ‖ α

N

N
∑

i=1

gradϕt
i(xk)‖F

(P1)

≤ M

N

N
∑

i=1

‖αgradϕt
i(xk)‖2F + α‖ 1

N

N
∑

i=1

gradϕt
i(xk)‖F

(VIII.12)

≤ 2L2
tMα2 + Ltα

N
‖xk − x̄k‖2F .

Therefore, it follows from Lemma 10 that

‖x̄k − x̄k+1‖F ≤ 1

1− 2δ21,t
· ‖x̂k − x̂k+1‖F

≤ Lt

1− 2δ21,t

α+ 2Mα2Lt

N
‖xk − x̄k‖2F.

Using Lemma 9 and Lemma 11, we can prove Lemma 7.

Proof of Lemma 7. First, we verify that xk+1 ∈ N1,t. Since
xk ∈ NR,t, it follows from Lemma 6 that

‖xk+1 − x̄k+1‖2F ≤ ‖xk+1 − x̄k‖2F
(II.3)

≤
N
∑

i=1

‖xi,k − αgradϕt
i(xk)− x̄k‖2F

= ‖xk − x̄k‖2F − 2α
〈

gradϕt(xk),xk − x̄k

〉

+ ‖αgradϕt(xk)‖2F
(RSI-I)

≤ (1− 2α(1− ν)γR,t) ‖xk − x̄k‖2F

+

(

α
2 − ανΦR

Lt

)

‖gradϕt(xk)‖2F ,
(VIII.17)

for any ν ∈ [0, 1], where the last inequality holds by noting

ΦR ≥ 1 for x ∈ NR,t. By letting ν = 1 and α ≤ ΦR

Lt
, we get

‖xk+1 − x̄k+1‖2F ≤ ‖xk − x̄k‖2F. (VIII.18)

and thus xk+1 ∈ N1,t.
Next, let us verify xk+1 ∈ N2,t. For each i ∈ [N ], one has

‖xi,k+1 − x̄k‖F

(II.3)

≤ ‖xi,k − αgradϕt
i(xk)− x̄k‖F

(VIII.15)
= ‖(1− α)(xi,k − x̄k) + α(x̂k − x̄k) + α

N
∑

j=1

W
t
ij(xj,k − x̂k)

+
α

2
xi,k

N
∑

j=1

W
t
ij(xi,k − xj,k)

>(xi,k − xj,k)‖F

≤(1− α)δ2,t + α‖x̂k − x̄k‖F + α‖
N
∑

j=1

(W t
ij −

1

N
)xj,k‖F

+
1

2
‖α

N
∑

j=1

W
t
ij(xi,k − xj,k)

>(xi,k − xj,k)‖F

(P2)

≤ (1− α)δ2,t + 2αδ21,t
√
r + α‖

N
∑

j=1

(W t
ij −

1

N
)xj,k‖F

+ 2αδ22,t
(VIII.16)

≤ (1− α

2
)δ2,t + 2αδ21,t

√
r + 2αδ22,t.

Since α ≥ 0, by invoking Lemma 11 we get

‖x̄k − x̄k+1‖F ≤ Lt ·
2Mα2Lt + α

N(1− 2δ21,t)
‖xk − x̄k‖2F ≤ 10αδ21,t

1− 2δ21,t
,

where the last inequality follows from α ≤ 1
M and Lt ≤ 2.

Therefore, using the conditions on δ1,t and δ2,t in (V.5) gives

‖xi,k+1 − x̄k+1‖F ≤ ‖xi,k+1 − x̄k‖F + ‖x̄k − x̄k+1‖F

≤(1− α

2
)δ2,t + 2αδ21,t

√
r + 2αδ22,t +

10

1− 2δ21,t
αδ21,t ≤ δ2,t.

The proof is completed.

Proof of Theorem 4. Now, we are ready to prove Theorem 4.

(1). Since 0 < α ≤ min{1, Φ
Lt

, 1
M }. By Lemma 7, we have

xk ∈ NR,t for all k ≥ 0. By choosing any ν ∈ (0, 1) and

α ≤ νΦ
Lt

, we get from (VIII.17) that

‖xk+1−x̄k+1‖2F ≤ (1−2α(1−ν)γR,t)‖xk−x̄k‖2F. (VIII.19)

We know that xk converges to the optimal set X ∗ Q-linearly.

Furthermore, if α ≤ 2
2MG+Lt

, it follows from Lemma 3 that

the limit point of xk is unique. Hence, x̄k also converges to
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a single point.

(2). If xk ∈ Nl,t, we have the constant Φ = 2 − 1
2‖x −

x̄‖2F > 1 in Proposition 2. Since α ≤ min{ 2
Lt+2MG , Φ

Lt
}, we

have xk+1 ∈ Nl,t by using the sufficient decrease condition in

[37][Lemma 5 (A1)]. The remaining proof follows the same

argument of (1).

C. Discussion on RSI, Quadratic Growth, Error bound and

Łojasiewicz Inequality

Lemma 6 implies that the following error bound inequality

holds for x ∈ NR,t and x ∈ Nl,t

‖x− x̄‖F ≤ 2

µt
‖gradϕt(x)‖F. (ERB)

This inequality is a generalization of the Luo-Tseng error

bound [41] for problems in Euclidean space. In [40], the

following holds for smooth non-convex problems

RSI ⇒ ERB ⇔ Łojasiewicz inequality with θ = 1/2 ⇒ QG.

However, in Euclidean space and for convex problems, they

are all equivalent. RSI can be used to show the Q-linear

rate of dist(x,X ∗), and ERB can be used to establish the

Q-linear rate of the objective value and the R-linear rate of

dist(x,X ∗). Moreover, under mild assumptions QG and ERB

are shown to be equivalent for second-order critical points for

Euclidean nonconvex problems [49]. Some other error bound

inequalities are also obtained over the Stiefel manifold or

oblique manifold. For example, Liu et al. [25] established the

error bound inequality of any first-order critical point for the

eigenvector problem. Our proof of Lemma 6 relies mainly on

the doubly stochasticity of W t and the properties of IAM, and

it is fundamentally different from previous works. Another

similar form of RSI is the Riemannian regularity condition

proposed in [50] for minimizing the nonsmooth problems over

the Stiefel manifold.

Following the same argument as [25], the error bound

inequality (ERB) implies a growth inequality similar to the

Łojasiewicz inequality. However, the neighborhoods NR,t and

Nl,t are relative to the set X ∗, which is different from the

Definition 2. It can be used to show the Q-linear rate of

{ϕt(xk)} only if xk ∈ NR,t or xk ∈ Nl,t can be guaranteed.

Proposition 3. For any x ∈ NR,t or x ∈ Nl,t it holds that

ϕt(x) ≤ 3

2µt
‖gradϕt(x)‖2F. (VIII.20)

Proof. By (V.15), we get

2ϕt(x) =
〈

gradϕt(x),x− x̄
〉

+

N
∑

i=1

〈pi, qi〉

(ERB)

≤ 2

µt
‖gradϕt(x)‖2F +

N
∑

i=1

〈pi, qi〉 .
(VIII.21)

If x ∈ NR,t, we use (V.16) to get (2 − δ22,t)ϕ
t(x) ≤

2
µt
‖gradϕt(x)‖2F. If x ∈ Nl,t, we use (V.17) to get

2ϕt(x) ≤ 2

µt

‖gradϕt(x)‖2F +
µt

4
‖x− x̄‖2F

(ERB)

≤ 3

µt

‖gradϕt(x)‖2F .

We conclude the proof by noting δ2,t ≤ 1/6.
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