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Abstract— We consider the open federated learning (FL)
systems, where clients may join and/or leave the system during
the FL process. Given the variability of the number of present
clients, convergence to a fixed model cannot be guaranteed in
open systems. Instead, we resort to a new performance metric
that we term the stability of open FL systems, which quantifies
the magnitude of the learned model in open systems. Under
the assumption that local clients’ functions are strongly convex
and smooth, we theoretically quantify the radius of stability
for two FL algorithms, namely local SGD and local Adam.
We observe that this radius relies on several key parameters,
including the function condition number as well as the variance
of the stochastic gradient. Our theoretical results are further
verified by numerical simulations on synthetic data.

I. INTRODUCTION

Federated learning (FL) [1] is a machine learning setup

where a group of clients work cooperatively to learn a

statistical model. The learning process is coordinated by

a central server which facilitates the exchange of model

updates. FL algorithms enjoy the benefits of model sharing

among clients while preserving data privacy, and they also

reduce the number of communications without making too

much sacrifice on the performance [2]. In a canonical FL

algorithm, the central server broadcasts the initial model to

all clients, and then, each client performs several steps of

local updates before sending the model to the server. Once

receiving models from a subset of clients, the server performs

a global aggregation, typically in the form of average. The

aggregated model will then be broadcasted again to all

clients, and the algorithm continues.

FL emerges as a new paradigm to address the following

four challenges in distributed machine learning [1], [3].

The first concern is communication efficiency, where FL

algorithms often reduce the communication frequency in

distributed architectures [4]. The second problem is that

the local objective functions are different across clients,

which is a consequence of having different data-sets (and

optimal solutions) in respective clients. This challenge is

termed as statistical heterogeneity [5]. The third challenge is

systems heterogeneity, which accounts for the devices (rather

than data) varying from one client to another, including
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differences in processing speeds, communication bandwidth,

and reliability [6]. Lastly, privacy is another concern in FL

[7], which can be partially mitigated by preventing from

directly transmitting local data to the central server.

In this work, we consider a new FL setting that we term

the open FL system, where clients may join and/or leave

the system during the learning process. More generally, the

local clients’ functions may change over time. Open FL

systems are common in real-life scenarios. For example, a

node failure in a large distributed system is almost inevitable,

which translates to clients leaving the open FL system. In

social platforms, users constantly join and leave. Also, it is

possible that a present user might not be willing to share its

model at a certain time. Therefore, addressing open systems

is critical for FL architectures. There are recent works such

as [8], [9], [10] that consider the client drop-out. However,

these works mostly emphasize the partial cooperation of the

clients, and the clients are still considered to be within the

system. We view an open FL system through a different lens,

where at certain times (when the system is still operating),

new clients may join and old clients may leave the system;

see an illustration in Fig. 1.

In open FL systems, due to the possible change in local

objective functions for various clients, the global objective

function also varies over time. As a result, analyzing the

convergence to an exact statistical model (i.e., fixed opti-

mization solution) is not possible for this type of systems.

Additionally, when a client joins or leaves the system, the

network size (i.e., number of clients) increases or decreases,

respectively, which poses another challenge. In order to

address this issue, we focus on the stability rather than the

convergence of the open FL system. The concept of stability

is precisely defined in Section II-D, which quantifies the

magnitude of the learned model in open systems.

Our contributions are as follows

• [Stability as a new FL metric] We provide a formal

definition of stability for open FL systems. Then, we

provide analysis on the global stability of the open FL

system under the assumption that the local optimization

methods are stable.

• [Stability of two FL algorithms] We focus on two

most common optimization methods used for FL (local

SGD and local Adam) and provide theoretical guarantee

on their stability, respectively.

• [Empirical verification of stability] Experiments on

both synthetic data as well as real world datasets are

conducted, and our empirical results further verify our

theoretical findings.
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every round, our setup reduces to the open system distributed

gradient descent formulation, which is addressed in [26].

In order to adapt FL algorithms to the open system setting,

we need to make some adjustments to the FedAvg algorithm.

If a client joins the system in between two communications,

it will not be initialized since the server might not be

available for broadcasting. When the next communication

happens, the FedAvg algorithm does not consider the newly

joined client as an eligible client, and this new client will

only start its local update after receiving broadcasting from

the server in the coming communication round. For the ease

of analysis, we assume that the availability of agents (i.e.,

joining/leaving the system) is modeled with i.i.d. random

variables, and there is at least one eligible client available

for every communication. However, this i.i.d. assumption is

not necessary.

C. Local Optimization Methods

Recent works have studied many forms of FL; one vari-

ation of the original FedAvg algorithm is to change the

local optimizer from gradient descent to other optimization

methods. Our main focus is to study open FL systems, and

to that end, we consider two standard local optimization

methods, namely stochastic gradient descent (SGD) and

Adam. SGD is the workhorse of training for many machine

learning models, commonly embedded into FL architecture

for large-scale data [1]. In SGD, the local clients perform

the following update

x
(k+1)
i = x

(k)
i � ⌘rfi(x

(k)
i , ⇠

(k)
i ), (2)

where k is the iteration index, and i 2 [N ] is the client index,

respectively. On the other hand, Adam can exhibit a superior

performance due to its adaptive nature without significantly

increasing time/space costs [36]. In particular, for the Adam

algorithm, at the k-th local iteration all local clients perform

the following update
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where v
(k)
i 2 R

d is a vector that estimates the second

moment of the stochastic gradient, and V̂
(k)
i 2 R

d×d is

a diagonal matrix, such that V̂
(k+1)
i := diag{v̂

(k+1)
i } and

v̂
(k+1)
i := max{v

(k+1)
i , v̂

(k)
i }.

D. Stability in Open FL Systems

Given that in open FL architectures, clients may join and

leave the system, exact convergence analysis is not possible.

Here, we present the notion of stability in open FL systems

with respect to the second-moment of optimization iterates.

Definition 1. For an iterative stochastic optimization algo-

rithm A, which produces a sequence of iterates {x(k)}, we

say that A is stable with respect to the second-moment if

there exist a finite constant R and an iteration index k0,

such that

Algorithm 1 Federated Learning in Open Systems

1: client initialize: Local optimizer with respective hyper-

parameters, e.g. learning rate ⌘.

2: global initialize: Initial model x(0), broadcast model to

available clients, and mark all clients eligible.

3: for k = 1, 2, . . . ,K, do:

4: if the iteration is local update iteration:

5: Eligible clients perform a local update.

6: else:

7: Server randomly selects a subset of clients from

eligible clients and averages local parameters.

8: Broadcast parameters to all clients.

9: Mark all clients eligible.

10: end if

11: Current clients randomly leave the system and become

ineligible.

12: New clients randomly enter the system; initialize local

optimizer and set client state to ineligible; wait for

broadcasted model parameters.

13: end for

when kx(k)k2  R2,

then E
⇥

kx(k+1)k2
�

�x(k)
⇤

 R2 for all k � k0.

E. Technical Assumptions

In this paper, we impose the following assumptions on the

local objective function.

Assumption 1. For any client i 2 [N ] in the network, we

assume that the local objective function fi : R
d ! R is

µ-strongly convex and L-Lipschitz smooth.

The smoothness assumption is standard in FL systems.

The strong convexity assumption is not typical, but we

require that to analyze the dynamics of optimization it-

erates x(k). Without strong convexity, one cannot analyze

the distance between x(k) and x? given that the optimal

solution might not be unique. Additionally, having both

strong convexity and Lipschitz smoothness allows us to

define the condition number  = L
µ � 1, which is crucial

in the analysis of similar works [26]. Note that the strongly

convex part of Assumption 1 implies that the global objective

function F (x) is also strongly convex, and hence, there exists

a unique finite minimizer x?.

Assumption 2. For any client i 2 [N ] in the system, we

denote the optimal solution of the local function fi(x) by

x?
i , and we assume that x?

i 2 B(0, r) with fi(x
?
i ) = 0.

Since all local functions satisfy Assumption 1, Assumption

2 holds without loss of generality by simply re-centering the

functions. This assumption only simplifies our analysis.

III. MAIN RESULTS

A. System-wide Stability

FL systems generally consist of two components. First

is the local update (e.g., SGD or Adam), and second is the

federated averaging, wherein the central server aggregates the
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information from a selection of local clients to construct an

improved global model. In regards to the stability of open FL

systems, our first result is to show that when the local update

satisfies stability in the sense of Definition 1, the stability

over the entire open FL system can be claimed consequently.

Proposition 1. Given Assumptions 1-2, for a local optimizer

Aloc defined in a Federated Learning system AFed, if Aloc

satisfies the stability in the sense of Definition 1, then the

entire system AFed is also stable in the sense that

when kx
(k)
i k2  R2 for all i 2 [N ],

then E[kx
(k+1)
i k2|x

(k)
i ]  R2 for all i 2 [N ], k � k0.

Proof. (i) If the current iteration k is a local update itera-

tion, each of the clients performs a local update; therefore,

stability follows from Definition 1.

(ii) If the current iteration k is a communication iteration,

consider the averaging setup discussed in Section II-A. The

system takes an average over a random subset of clients.

Since the selection of clients is independent of client number,

we can write the averaged result as x̄(k) =
P

N

i=1 �ix
(k)
iP

N

i=1 �i
, where

�1, ..., �N are non-negative i.i.d. random variables. We note

that for the vanilla FedAvg algorithm, �i follows a Bernoulli

distribution though �i can also follow other distributions,

which corresponds to the central server taking a weighted

average over clients. Then, after averaging and broadcasting

to all agents, we have

E

h

kx
(k+1)
i k2

i

= E

2

4

�

�

�

�

�

PN
i=1 �ix

(k)
i

PN
i=1 �i

�

�

�

�

�

2
3

5  R2. (4)

Therefore, the system has stability on both local update

iterations and communication iterations.

Although the analysis of stability in Proposition 1 was

for system variable xi (i.e., client i), we note that this

also provides us with insights about objective error. From

Assumption 2 we know that since the optimal solution x?
i 2

B(0, r), when x
(k)
i 2 B(0, R), the distance kx

(k)
i � x?

i k is

upper bounded. Therefore, the optimization error is also up-

per bounded due to Lipschitz smoothness from Assumption

1.

B. Open FL System Stability - SGD

We now consider the stability of FL systems under the

SGD algorithm, which is the most common algorithm used

in FL. We impose the following assumption on the stochastic

gradient of the objective function.

Assumption 3. The stochastic gradient is unbiased with

bounded variance, i.e.

E

h

rfi(x
(k)
i , ⇠

(k)
i )

i

= rfi(x
(k)
i )

E

h

krfi(x
(k)
i , ⇠

(k)
i )�rfi(x

(k)
i )k2

i

 �2.

The assumption above is quite standard and essential for

the analysis in many previous works on SGD under various

settings, including [1], [9], [37] and more. In the following

theorem, we quantify the radius of stability for open FL

systems using SGD as the local optimizer. We remark that

since our analysis holds for any available client, we present

the result with a generic function f(x), instead of a client-

specific function fi(x).

Theorem 2. For any function f(x) that satisfies the As-

sumption 1 with the optimal solution x? 2 B(0, r), if the

SGD algorithm runs with a learning rate ⌘ 2 (0, 1
L ], under

Assumption 3 there exists a radius

R = r +
p

max(3,)

r

2r2 +
�2

L2
,

for the FL system to have stability with respect to the second

moment defined in Definition 1.

The complete proof of this theorem is given in [38].

We can see that the radius depends on  and �: if the

stochastic gradient variance and/or the condition number

increase, the radius also increases, which intuitively makes

sense. For a special case where � = 0, the FL algorithm will

perform GD instead of SGD, and the stability results can be

considered as a special case from [26], in a federated setup

(i.e., centralized).

C. Open FL System Stability - Adam

We now quantify the radius of stability for open FL

systems using Adam as the local optimizer. Similar to SGD,

we first impose an assumption on the stochastic gradient used

in the Adam algorithm, which is also commonly used in

previous related works such as [18].

Assumption 4. The stochastic gradient is unbiased and

bounded, i.e.

E

h

rfi(x
(k)
i , ⇠

(k)
i )

i

= rfi(x
(k)
i )

krfi(x
(k)
i , ⇠

(k)
i )k  �.

Again, since our analysis holds for any available client,

we present the result with a generic function f(x), instead

of a client-specific function fi(x).

Theorem 3. For any function f(x) that satisfies Assumption

1 with the optimal solution x? 2 B(0, r), if the Adam algo-

rithm runs with learning rate ⌘ 2 (0, 1
L ], under Assumption

4 there exists a finite radius

R = C5r +

s

1 + 3C1

(1� C1)2
r2 +

2(C2 + C3 + C1C4)

µ� LC1
, (5)

with constants C1 � C5 for the FL system to have stability

with respect to the second moment defined in Definition 1.

We refer to [38] for explicit forms of constants C1 � C5

and the proof of this theorem. We remark that � should be

small enough for the radius to exist. More discussion can be

found in [38] (Section VI-B).
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with the relationship between stability radius and function

parameters given in Section III.

V. CONCLUSIONS

We introduced a novel formulation for FL, named open

FL systems, where clients are able to join and/or leave the

system during execution. We provided a formal definition for

stability in open FL systems. We then provided theoretical

analysis for stability for two commonly used optimization

methods. The analytical results of this paper was further

validated by numerical experiments on synthetic data.
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