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Abstract

Motivation: RNA design is the search for a sequence or set of sequences that will fold to desired structure, also known as the inverse problem
of RNA folding. However, the sequences designed by existing algorithms often suffer from low ensemble stability, which worsens for long se-
quence design. Additionally, for many methods only a small number of sequences satisfying the MFE criterion can be found by each run of de-
sign. These drawbacks limit their use cases.

Results: \We propose an innovative optimization paradigm, SAMFEO, which optimizes ensemble objectives (equilibrium probability or ensemble de-
fect) by iterative search and yields a very large number of successfully designed RNA sequences as byproducts. We develop a search method
which leverages structure level and ensembile level information at different stages of the optimization: initialization, sampling, mutation, and updat-
ing. Our work, while being less complicated than others, is the first algorithm that is able to design thousands of RNA sequences for the puzzles
from the Eterna100 benchmark. In addition, our algorithm solves the most Eterna100 puzzles among all the general optimization based methods in
our study. The only baseline solving more puzzles than our work is dependent on handcrafted heuristics designed for a specific folding model.
Surprisingly, our approach shows superiority on designing long sequences for structures adapted from the database of 16S Ribosomal RNAs.

Availability and implementation: Our source code and data used in this article is available at https://github.com/shanry/SAMFEOQ.

1 Introduction

Ribonucleic acid (RNA) plays essential roles in the core activi-
ties within living cells such as transcription and translation, cat-
alyzing reactions, and controlling gene expression. Designing
RNA molecules with specific functions or structures is an indis-
pensable part of synthetic biology. One important and growing
topic on synthetic RNA is noncoding RNA design (Hofacker
et al. 1994; Taneda 2011; Churkin et al. 2018; Portela 2018;
Shi et al. 2018), which also has profound applications in RNA-
based therapeutics and diagnostics, including siRNA, antisense
oligos, PCR primers, and CRISPR guide RNAs.

Given a target structure, RNA design aims to find sequences
that can fold into that structure, in order to create artificial
RNA molecules that have a desired function, such as artificial
ribozymes (Bauer and Suess 2006), artificial miRNAs (Schwab
et al. 2006), artificial RNA aptamers (Hamada 2018), and arti-
ficial riboswitches (Findeif§ et al. 2017). This problem, how-
ever, has been proved NP-hard (Bonnet et al. 2020).

The simplest RNA design method is adaptive walk (Hofacker
et al. 1994), which starts from a random sequence, uniformly
chooses one or two positions to mutate at each step, and accepts
it if and only if the objective becomes better than before. A variety
of methods have been proposed to improve this process. To re-
duce the time cost from many evaluations for the whole sequence,
RNAinverse (Hofacker et al. 1994; Lorenz et al. 2011) optimizes
small substructures first and then proceeds to larger ones.
Similarly, RNA-SSD (Andronescu et al. 2004) and NUPACK

(Zadeh et al. 2011) adopt a hierarchical decomposition strategy.
Recently, many methods apply genetic or evolutionary algorithm
to RNA design, such as MODENA (Taneda 2011), Frnakenstein
(Lyngse et al. 2012), m2dRNAs (Rubio-Largo et al. 2019), and
ERD (Esmaili-Taheri and Ganjtabesh 2015). Among them,
MODENA and m2dRNAs use multi-objective function while
Frnakenstein focuses on the multitarget inverse folding problem.
MCTS-RNA (Yang et al. 2017) and NEMO (Portela 2018) use
Monte Carlo search to reach a more extensive search space. DSS-
Opt (Matthies et al. 2012), RNAiFold (Garcia-Martin et al.
2013), and antaRNA Kleinkauf et al. (2015) use various
approaches to allow more constraints. Note that there are also
some learning-based methods for RNA design (Eastman et al.
2018; Runge et al. 2018), which, however, are characterized by
large amounts of training data and time, but have not shown su-
perior effectiveness compared to optimization-based methods.
Despite various techniques that have been developed, there still
exist some limitations in the current methods mentioned above.
First, mainstream methods focus on the MFE criterion, i.e. find-
ing sequences whose MFE structure is the same as the target
structure. However, the sequence found by MFE criterion can of-
ten allow alternative structures with only slightly higher energies
(Hofacker et al. 1994), causing a very low equilibrium probabil-
ity for the sequence to fold into the target structure. Another re-
lated issue is that all the current methods ignore the case when a
designed sequence has multiple MFE structures (Ward et al.
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2022). In addition, most methods can only find one sequence or
a small population of sequences within one run of design.
However, it is more engaging to design as many as possible
sequences in one time. Here we state that the benefits of finding a
large amount of MFE solutions are 2-fold: (i) It is helpful to solve
RNA design problem with more constraints, e.g. sequence com-
positions and GC content (Garcia-Martin et al. 2013; Esmaili-
Taheri and Ganjtabesh 2015; Kleinkauf et al. 2015). (i) It is
crucial for further developing learning-based RNA design meth-
ods, for which one bottleneck is the lack of supervised training
data especially the scarcity of MFE solutions.

To address the above drawbacks, we propose a new design
paradigm Structure-Aware Multifrontier Ensemble Optimization
(SAMFEQ), which optimizes ensemble objectives to perform
RNA Design. To handle the incompatibility between objective
and MFE criterion, we generate the MFE solutions as byproducts
of the iterative optimization process. In addition, we have
invented a search method integrated with several components to
utilize structure level and ensemble level information at different
optimization stages to make the design more effective.

Our main contributions are as follows:

* We formulate RNA design as a general ensemble objective op-
timization problem, and propose to get MFE solutions from
byproducts of optimization. As a result, not only more target
structures can be designed successfully, but also for each target
structure, a wide variety of MFE solutions can be found.

* We invent a structure-aware optimization process to make

use of structure level and ensemble level information at

different stages of optimization: initialization, sampling,
mutation, and updating.

Instead of performing greedy search to find suitable sequen-

ces, we adopt a multifrontier search framework to keep the

running best & sequences in optimization process. This lead
to even more satisfactory MFE solutions being found.

* Our work SAMFEO solves the most Eternal00 puzzles
compared to other optimization based RNA design meth-
ods. The only RNA design method that can solve more
puzzles than SAMFEO is dependent on heuristic rules
coded by human experts. More importantly, the quality of
MEFE solutions designed by SAMFEO is higher than other
methods. Experiments with 16S RNA structures demon-
strate that SAMFEO exhibits an absolute advantage over
baselines on long sequence design.

2 The RNA design problem

An RNA sequence x of length 7 is specified as a string of
base nucleotides xix3...x,, where x; € {A,C G, U} for
i=1,2,...,n. A secondary structure P for x is a set of paired in-
dices where each pair (7,7) € P indicates two distinct bases x;x; €
{CG, GC, AU, UA, GU,UG} and each index from 1 to # can
only be paired once. A secondary structure is pseudoknot-free if
there don’t exist two pairs (i,j) € P, (k,[) € P such that
i < k < j < I Inshort, a pseudoknot-free secondary structure is
a properly nested set of pairings in an RNA sequence.
Alternatively, P can be represented as a string y = y1y2...Vu,
where a pair of indices (7,7) € P corresponds to y; = “(”, y; =
“)” and any unpaired index k corresponds to y, = “)”. The un-
paired indices in y is denoted as unpaired(y) and the set of paired
indices in y is denoted as pairs(y), which is equal to P. In nature,
some RNA structures contain crossing pairings called pseudoknots.
Since the computational model we use does not allow these, we do
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not consider them. Henceforth we elide pseudoknot-free secondary
structure to just secondary structure or structure for brevity.

2.1 MFE and structure distance

The ensemble of an RNA sequence x is the set of all secondary
structures that x can possibly fold into, denoted as Y(x). The free
energy AG(x,v) is used to characterize the stability of y € Y(x).
The lower the free energy AG(x,y), the more stable the second-
ary structure y for x. The structure with the minimum free energy
is the most stable structure in the ensemble, i.e. MFE structure,

MFE(x) = argmin AG(x, y). (1)
yeY(x)

Notice that ties for the argmin are broken arbitrarily, thus there
could be multiple MFE structures for given x. (Technically,
MFE(x) should be a set.) The partition function sums the contri-
bution of all structures defined as

Q(x): Z e—AG(x.,y)/RT’ (2)
)

yeV(x

where R is the molar gas constant and T is the absolute
temperature.

RNA design problem is actually the inverse problem of RNA
folding. Given a target structure y*, RNA design aims to find suit-
able RNA sequence x such that MFE(x) = y*. However, the issue
with multiple MFE structures is often overlooked in the literature.
Almost all the published methods (Hofacker et al. 1994; Lorenz
et al. 2011; Taneda 2011; Garcia-Martin et al. 2013; Rubio-Largo
et al. 2019) take whatever arbitrary structure when there are multi-
ple MFE structures. Here we follow a more strict definition of
MEFE criterion adopted in some previous studies (Haless et al.
2015; Yao et al. 2019; Bonnet et al. 2020; Ward et al. 2022) on
the designability of RNA to address this issue, i.e. x is a correct de-
sign if and only if y is the only MFE structure of x, which we call
unique MFE(uMFE) criterion to differentiate it from the traditional
MEFE criterion. Formally, uMFE(x) = y* if and only if

AG(x,y") < AG(x,y), Vy € Y(x) and y #y*.  (3)

From the perspective of optimization, the satisfaction of MFE
criterion requires that the structure distance between target
structure y* and MFE structure of x is minimized to O.
Therefore, many methods focus on optimizing d(y*, MFE(x)).
The function d(y',y") represents the distance between two
secondary structures y" and y”, which is defined as

d(y',y") = |x| = 2 - |pairs(y') N pairs(y")|

4
— |unpaired(y’) N unpaired(y”)|. )

2.2 Equilibrium probability

However, the objective of structure distance is not able to capture
the equilibrium probability of a designed sequence folding into
target structure, which is defined based on partition function,

e*AG(x,y)/RT

p(ylx) = o (5)

In other words, the MFE structure of x is also the structure
with the highest equilibrium probability in the ensemble.
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Nevertheless, the equilibrium probability p(y*|x) could be ar-
bitrarily small even if y* is a MFE structure of x. Built upon
the concept of equilibrium probability, the base-pairing prob-
ability of two positions 7 and j can be defined as the probabil-
ity that positions 4, j are paired in the ensemble,

pi= >, pOx). (6)

yeY(x),(i,j)pairs(y)

2.3 Ensemble defect

Another approach to optimizing the probability of components of
the designed structure is to minimize the normalized ensemble de-
fect, the mean probability that a nucleotide is incorrectly structured
in the folding ensemble (Dirks et al. 2004; Zadeh et al. 2011). The
value of normalized ensemble defect is between 0 and 1 given by

NED(x,y") = = Eyp(yx) d(¥",y)

(7)
> d(y.y) pOlx),
yeY(x)

RN~ I~

For brevity, ensemble defect is used as NED in the following
sections. The naive calculation of Equation (7) requires enu-
merating all possible structures in the ensemble, but by plug-
ging Equation 4 we have

NED(x,y) =[x -2 > pi— Y. g, (8)

(i,7)epairs(y*) j€unpaired(y*)

where g; is the probability of j being unpaired, i.e.
qi=1-73%,pi. As a result, we can now use base-pairing
probabilities to compute the ensemble defect. This also means
that NED can be decomposed as the sum of each positional
defect, denoted as €;(x,y*) for position i,

1—gq;, ifi € unpaired(y*);
1—py, if(4,]) € pairs(y*) forsome; 9)
L —pji, if(j,i) € pairs(y*)

€i (x7 y*) =
forsomej.

3 Structure-aware multifrontier ensemble
optimization

First we formulate RNA design as a constrained optimization
problem and introduce our basic optimization framework. Then
we present four main stages by chronological order at each iterative
step. Finally, we briefly discuss the complexity of our algorithm.

3.1 Optimization formulation

Given a target structure y*, the following standard constrained
optimization is adopted to find suitable RNA sequence x,

minimize [ (x,y")
* (10)
subject to  y* € Y(x)

where f can be equilibrium probability or ensemble defect,
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fery) =1-pll), or ”
f(x,y) =NED(x,y").

Note that our work is a general approach, therefore either of
two ensemble objectives can work. Although we will see in the
experiments that choosing equilibrium probability as objective
is able to solve more puzzles and get more MFE solutions, we
believe the actual choice between the two really depends on the
application scenario and the biological perspective of experts.

3.2 Multifrontier search framework

Inspired by beam search, a popular heuristic to prune the
search space in computational linguistics, which keeps top k
highest-scoring results when parsing a natural language sen-
tences (Huang and Chiang 2005), we develop a multifrontier
search framework for RNA design. The optimization for
Equation (10) starts with an initialization stage, i.e. a number
(k) of sequences are initialized using our targeted initialization
rules. Then an iterative process was repeated until the end.
During the iterative search process, a priority queue is used to
store the top k& RNA sequences with the lowest objectives in
the history of all iterations. At each of the iterative step, there
are three stages:

1) Sampling: First one sequence is selected from the sequen-
ces in the priority queue, then a position is sampled from
the selected sequences for mutation.

2) Mutation: The sequence selected in sampling stage is mu-
tated by structured mutation based on targeted structure
and the sampled position.

3) Updating: The mutated sequence is evaluated with objec-
tive function and the MFE/uMFE criterion, then the pri-
ority queue and MFE/uMFE solutions are updated.

Compared to random walk based approaches (Hofacker
et al. 1994; Zadeh et al. 2011; Yang et al. 2017; Portela
2018), our work keeps best-k results rather than just best-1
result at each step. The reason comes from that there is an in-
compatibility between our ensemble objective and MFE crite-
rion, i.e. the successfully designed sequence by MFE criterion
may not be the one with lowest objective value and vice versa.
Therefore, it is necessary to keep multiple suboptimal sequen-
ces rather than only one at each iteration.

Compared to genetic algorithm-based approaches (Taneda
2011; Lyngse et al. 2012; Kleinkauf et al. 2015; Rubio-Largo
et al. 2019), our work does not utilize the crossover operator
to generate new sequences. The reason is that the actual RNA
folding engines are nonlinear and very complicated, therefore
there is no guarantee that the crossover operator can generate
a sequence with enough affinity to their parents. In contrast,
we adopt the mutation operator because it only changes a few
nucleotides at a time, therefore the resulted new sequence is
ensured to be very close to the old one.

3.3 Targeted initialization

Given a target structure y*, the choice of the initial sequence
x(9 is very important. Previous work has used random initial-
ization according to databases (Bellaousov et al. 2018), en-
ergy (Busch and Backofen 2006), weighted sampling
(Reinharz et al. 2013) or completely random choice of start-
ing sequence. However, we choose an extremely simple
scheme: for each unpaired position 7 in the target structure,
we set it to be xfo = A, and for each base pair (i, j) in the
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target structure, we set the two nucleotides (x (0), ( ) to be ei-

ther (G, C) or (C, G) at random. This scheme makes sure the
unpaired positions will not pair with paired positions, and the
paired positions are matched, but it does not rule out
unwanted base pairs, i.e. we want (i, j) to pair and in the MFE
structure (or ensemble), 7 pairs (or tends to pair) with some
other paired position ;. However, the random choice between
GC and CG pairs for paired positions is actually quite effec-
tive when there are relatively long stacking helices due to
complementarity, one example is shown below.

12345678901234567890

(CCoo)) (o))
CGGAAACCGAAGCGAAACGC

We speculate that the effectiveness may have to do with GC
stacks being the most stable one in the Turner model (Turner
and Mathews 2010a). In our initialization scheme, the two
sides of each hehx are (%uaranteed to be co (plementary to
each other (x[1 3 with X(7.0)> and x[12 14] with x[18 201> but the
x| (1.3 substring is chosen randomly over {C, GY?, so it is highly
unhl(ely that it can be complementary with another helix, in
this case with either x[i)z;14] or x ;)8:20]. In fact, for a helix of
stacked pairs, the likelihood of finding a fully complementary
sequence is 1/2”. Given that stacking energy (especially the
stacking of (G, C) or (C,G)) is the most important feature in
the standard RNA folding energy model, long complementary
spans tend to pair with each other, so it is likely that the target
structure is favored in the ensemble. To kick off the search
with multifrontier, we repeat such targeted initialization until
k different sequences {x(*), x(02) . x(k)1 are found.

3.4 Boltzmann sampling

The sampling stage can be split into two. The first sampling is to
select the most promising sequence from the priority queue.
Suppose the top k sequences at step ¢ are {1 x(t2)  x(ER)Y ]
we set the probability of sequence x*/) being selected for muta-
tion as the following Boltzmann dzstrzbutzon

exp (1= f(x0,5))/T)
. |
> exp (1= flx7,y%))/T)
m=1

p(t:l) _

where T is the parameter to control the flatness of the distri-
bution. As T — 0, the distribution will approach Dirac
(“one-hot”) distribution; as T — oo, the distribution will ap-
proach uniform distribution.

The second sampling is position sampling, which intends to
select the most critical position to mutate. To give more chan-
ces to the improperly paired position in the ensemble, the
positions are sampled based on positional ensemble defect.
Suppose the selected sequence at step ¢ is x(*), the probability
of position i being chosen for mutation is set from another
Boltzmann distribution

ei(x® y)/T

p! =

o

N

)
j=1

where N is the length of target structure y* and T’ is the pa-

rameter to control the flatness of the distribution.

Zhou et al.

While it is flexible to have two temperatures T’ and T for
two distributions separately, we found that the performance
of SAMFEO is not sensitive to T. To simplify our model, we
set T/ =2T.

3.5 Structured mutation

The widely used mutation method exchanges either one base
at the selected position or one base pair containing the se-
lected position. Such change is the minimal mutation which
can guarantee the target structure is still in the ensemble of
mutated sequence. However, in this way, the physical model
of RNA’s secondary structure is totally ignored. In fact, nei-
ther a single nucleotide nor a base pair can form an atomic
unit contributing to the global free energy in popular RNA
fold engines such as Vienna (Lorenz et al. 2011), LinearFold
(Huang et al. 2019) CONTRAfold (Do et al. 2006), and
RNAstructure (Reuter and Mathews 2010). For paired posi-
tions, they are often evaluated with adjacent paired positions
or unpaired positions, which forms the basic unit of stacking
or mismatch. Similarly, unpaired positions are often evaluated
with adjacent paired positions, which constitutes the
sequence-dependent terms that stabilize or destabilize loop se-
quence in the Turner energy model (Turner and Mathews
2010Db). Based on such observations, we propose to mutate
the sequence in a way such that the sampled position would
be mutated together with other positions within the same lo-
cal structures such as stacking and mismatch. The visualiza-
tion of structured mutation is illustrated in Fig. 1. We
describe the mutation operator for paired and unpaired posi-
tions separately. For paired positions, our proposed mutation
operator involves three scenarios: stack, double mismatches,
and stack plus double mismatches.

(@) position: @ i+1 (®) position: @ i+1
Position: J  j—1 Position: J  j—1
(a) Stack (b) Double Mismatches

(d) Pposition: i i+1

(c) Position: [ {+1 i+2

5-...+& G—O— - 5 .

R
Position: J Jo—ik j—2 Position: J J=id

(¢) Stack+Double Mismatches (d) Single Mismatch 5’

(e) Position: [ i+1 )

5 ... S

Position: 1 i+1

Position: J  j—1 Position: J  j—1

i

(e) Single Mismatch 3’ (f) Double Mismatches
Figure 1. Diagrams of structured mutation. Paired positions are
connected by blue dashed lines and each of the rounded rectangles or
triangles represents a specific local structure. Diagrams a, b, ¢ show
structured mutation with paired positions (shaded nucleotides pair).
Diagrams d, e, f show structured mutation with unpaired positions
(shaded nucleotides). When a shaded position is selected for mutation, all
the positions within the same local structure would be mutated
simutaneously.
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1) Stack (diagram 1a). When either i or j of the stacking
pair positions (4,7), (i + 1,7 — 1) in the target structure is
sampled, the two pairs are mutated as a whole. This ap-
proach offers 6 x 6 — 1 = 35 possibilities in total for one
mutation, given that each pair has six choices in
{CG, GC, AU, UA, GU, UG}.

2) Double mismatches (diagram 1b). When the paired posi-
tions (7, j) are next to two mismatched positions i + 1
and j — 1, and i or j of the pair positions (4, j) in the target
structure is sampled, the paired positions (4, j) and un-
paired positions(i + 1,7 — 1) are mutated simulta-
neously, which results in 6 x 4 x4 —1 =95 possible
mutations, given that each pair has six choices and each
unpaired position has four choices from {A, C, G, U}.

3) Stack plus double mismatches (diagram 1c).The situation
with both (1) and (2) are also handled. If either i or j of
the stacking pair positions (4,7), (i + 1,7 — 1) in the target
structure is sampled, and the positions i + 2, j — 2 are
mismatched, the pair positions (i,7),(i + 1,7 — 1), and
two mismatched positions 7 + 2, j — 2 are mutated at the
same time. This approach offers 6 x 6 x4 x4 —1=
575 possibilities in total, given that each pair has six
choices, and each unpaired position has four choices.

Similarly, for unpaired positions, our proposed mutation
operator involves three scenarios: single mismatch on the side
of the 5’ end, single mismatch on the side of the 3’ end, and
double mismatches.

1) Single mismatch on the side of 5’ end (diagram 1d). For
the paired positions (i, j), if position i + 1 is unpaired
and position j — 1 is paired, when position i + 1 is sam-
pled for mutation, position i + 1 and paired positions (i,
j) are mutated together, offering 4 x 6 — 1 = 23 possible
mutations.

2) Single mismatch on the side of 3’ end (diagram 1e). For
the paired positions (7, j), if position 7 + 1 is paired and
position ; — 1 is unpaired, when the position j—1 is
sampled for mutation, position j — 1 and paired posi-
tions (7, j) are mutated together, resulting in 4 x 6 — 1 =
23 possible mutations.

3) Double mismatches (diagram 1f). For the paired posi-
tions (i, j), if both position i + 1 and position j — 1 are
unpaired, when i + 1 or j — 1 is sampled for mutation,
the unpaired positions i + 1, j — 1 and paired positions
(4, /) are mutated together, offering 4 x4 x 6 —1 =95
possible mutations.

To handle the cases where the selected position is in a long
unpaired region, we apply a trivial mutation, which simply
changes the nucleotide at the selected position to a random
nucleotide. Although this type of mutation does not take into
account the local structures of RNA, it still provides a certain
degree of diversity in the generated sequences. In summary,
the use of structured mutation expands the search space, as it
involves more changes in one step compared to traditional
mutation methods. This can be beneficial in avoiding local
minima during optimization. However, the increased search
space may require more iterations to fully explore. To balance
effectiveness and efficiency, we have selected the most critical
(Anderson-Lee et al. 2016) local structures to incorporate
structured mutation into the optimization process.
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3.6 Updating with byproducts

Each new sequence is evaluated with the objective function
and two categories of results are updated. First, the priority
queue, i.e. the multifrontier, will be updated based on the ob-
jective value of the new sequence. This operation is quite effi-
cient using the standard “enqueue” operation in the data
structures implemented in modern programming languages.
Second, because SAMFEQ optimizes either equilibrium prob-
ability or ensemble defect, the sequence with lowest objective
value does not have to be a MFE solution. Instead of optimiz-
ing multiple objectives, we propose to treat MFE solutions as
the byproducts of optimizing our single ensemble objective.
Specifically, we check the MFE/uMFE criterion for each new
sequence along the way of optimization. As long as the new
sequence generated by structured mutation at each step satis-
fies the MFE/uMFE criterion, it will be saved as one of the
designed sequences at the end.

3.7 Pseudocode and complexity analysis

Algorithm 1: SAMFEO

*

Input ty
Output  : XyrE, Xpest
Parameter: k, T

XMmrE + Empty Set;

Xbest < Targeted Initilization ; /* size k */
repeat

r < Sampling from Xpest ; /* Eq 12 */
1 < Sampling from z ; /* Eq 13 */
Inew ¢ Structured Mutation on x,7;
Evaluate f(Znew,y™) ; /* Eq 11 */
Enqueue(Xpest, Tnew);

if y* = MFE(2pew) then

| add Znew to Xnupm;

© 0 N O o~ W N

=
(=]

end

[
[

[y
N

until converge or reach mazximum iteration;

The pseudocode of SAMFEO is presented in Algorithm 1.
The input is a target structure y* of length # and output con-
sists of a set of MFE solutions Xyrg and a set of sequences
Xpese which have the lowest objectives in optimization pro-
cess. Target initialization (line 2) is used to generate the initial
k sequences. Inside the iterations, two samplings (line 4 and
5) are performed first, which are followed by Structured
Mutation (line 6). Then the mutated sequence Xy, is evalu-
ated by the objective function (line 7). The objective value of
Xnew Will decide whether it will get into the priority queue
(line 8). Finally, the MFE criterion will be checked, which
once is satisfied xpeyy Will be kept as a MFE solution (lines 9—
11). During this process, the most time consuming steps are
the evaluation of objective function and check of MFE crite-
rion, either of which takes O(7?) times. The time cost of other
steps such as initialization and the maintenance of priority
queue is negligible in contrast. Therefore, when the maximum
number of iterations (denoted as M) is fixed, the complexity
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of SAMFEQ is O(#%). When M is also regarded as a part of
the input, the complexity will be O(M#?).

4 Experiment

First, we compare the performance of SAMFEO against other
approaches on the well-known benchmark Eterna100. Then,
we show the superiority of SAMFEO over the baselines on
long sequences design. Finally, an ablation study is conducted
to demonstrate the effectiveness of the ingredients of
SAMFEO.

4.1 Evaluation setting
We selected the following RNA design methods as baselines.

1) RNAinverse, the default RNA design algorithm in
ViennaRNA package 2.0 (Lorenz et al. 2011).

2) RNAinverse-pf, which is another version of RNAinverse
optimizing equilibrium probability.

3) NUPACK 4.0 (Zadeh et al. 2011), which utilizes hierar-
chical decomposition to optimize ensemble defect.

4) MODENA (Taneda 2011), which uses genetic algorithm
to optimize structure distance and minimum free energy.

5) NEMO (Portela 2018), which combines Nested Monte
Carlo Search with domain-specific knowledge for RNA
design.

6) m2dRNAs (Rubio-Largo et al. 2019), which applies ge-
netic algorithm to optimize three objectives at the same
time.

Those baselines are widely used in the literature (Garcia-
Martin et al. 2013; Anderson-Lee et al. 2016; Portela 2018;
Rubio-Largo et al. 2019). Note that the primary goal of this
work is to design a specific secondary structure, therefore
RNA design methods focusing on other constraints are not
considered here. The options of baselines are mostly set as de-
fault. The specific options can be seen in Supplementary
Section 3.

By default, our method SAMFEO and all the baselines ex-
cept NUPACK use the folding engine from ViennaRNA pack-
age 2.0. To make a more sensible comparison, we particularly
implemented a version of SAMFEOQ using the folding algo-
rithm from NUPACK and compare it with the design method
in NUPACK package, which is presented in Supplementary
Section 1.1. We run all programs on Linux, with 3.40 GHz

Zhou et al.

Intel Xeon E3-1231 CPU and 32G memory. We set the de-
fault parameters of SAMFEO as k=10, T=1.0, and
M =5000. The convergence condition in Algorithm 1 is set as
when the objective value of f(x,y*) is smaller than 0.01 or
can’t get better for 2000 consecutive iterations.

4.2 Design Eterna100
4.2.1 Overall metric

We evaluate the performance of SAMFEOQ and baselines with
the widely used benchmark Eternal00 (Anderson-Lee et al.
2016), which contains a total of 100 secondary structure de-
sign challenges that span a large range in design difficulty,
from short hairpins to complex 400-nucleotide designs.
Following the settings in the literature (Anderson-Lee et al.
2016; Rubio-Largo et al. 2019), each method is run five times
to design a puzzle, we report either union or average metrics
accordingly. Except for extra explanation, the following met-
rics are used for evaluation:

1) Number of solved puzzles by MFE solutions. We report
both union and average value over 5 runs.

2) Number of solved puzzles by Unique MFE (uMFE) solu-
tions. (We use the command “RNAsubopt -e 0” in
ViennaRNA package to get all MFE structures.) We re-
port both union and average value over 5 runs.

3) Number of MFE solutions per solved puzzles with MFE
solutions. We report the union value over 5 runs.

4) Number of uMFE solutions per solved puzzles with
uMFE solutions. We report the union value over 5 runs.

5) Average equilibrium probability over all puzzles, i.e.
p(v*|x), where x is the designed sequence and y* is the
target structure. We report the average value over 5
runs.

6) Average ensemble defect over all puzzles, i.e.
NED(x, y*), where x is the designed sequence and y* is
the target structure. We report the average value over 5
runs.

7) Positional entropy (Garcia-Martin and Clote 2015),
which measures the entropy of all the possible pairs in
the ensemble. We report the average value over 5 runs.

The comparable metrics on Eternal00 are shown in
Table 1. We implemented SAMFEQ with two different objec-
tives Prob (equilibrium probability) and NED (ensemble de-
fect) separately. SAMFEO solves 77 and 74 puzzles by MFE

Table 1. Metrics of different RNA design methods on solving the 100 puzzles of Eterna100.?

Method Objective Union (5 runs) Average (5 runs) Union (5 runs) Average (5 runs)
Solved puzzles| Solved puzzles| Solutions/solved.puzzle! Prob7 NED| PosEntropy|
MFE uMFE MFE uMFE MFE uMFE
RNAinverse BPD 30 27 18.0 13.0 3.0 2.4 0.039 0.402 0.878
RNAinverse-pf Prob 70 70 62.8 62.8 4.5 4.5 0.503 0.069 0.163
NUPACK NED 34 34 27.8 27.6 41 41 0.170 0.098 0.074
MODENA Multi-2 64 64 60.6 60.2 165.9 144.6 0.198 0.147 0.320
NEMO Comp 79 77 76.8 66.8 4.8 4.3 0.178 0.146 0.339
m2dRNAs Multi-3 72 70 70.4 66.2 48.1 47.9 0.302 0.138 0.316
SAMFEO NED 72 66 66.2 62.8 9865.7 10334.6 0.493 0.042 0.054
Prob 77 74 73.4 70.4 13498.7 13408.7 0.559 0.061 0.117

* Note on abbreviations: BPD: base pair distance is the number of base pairs that occur in exactly one of the two compared structures (Ward et al. 2022),
i.e. BPD(y,y*) = |pairs(y) U pairs(y*)| — |pairs(y) N pairs(y*)|. Multi-2/3: multiple objectives (Taneda 2011; Rubio-Largo et al. 2019); Comp: a composite

function of base pair distance and free energy difference(AAG), i.e. 1 — S2209) ang Portela 2018); PosEntropy: positional entropy. Note on fonts:

1
2fpairs(y)] jEwvYel

bold: the best value in its column. Underline: the second best value in its column.
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Figure 2. Ensemble metrics of 64 solved puzzles in Eterna100.

and uMFE criterions respectively, outperforming all the other
methods except NEMO. However, it turns out such slight ad-
vantage of NEMO does not come from its Nested Monte
Carlo Search but from the coded heuristic rules (specialized to
the ViennaRNA energy model) acquired by personal experi-
ence without performing computational optimizations. We
tested the vanilla version of NEMO, from which the heuristic
rules are ablated, and its design results are presented in
Supplementary Section 1.2, showing that the vanilla version
of NEMO solves 76 puzzles, less than SAMFEO.

When we use the average metric, SAMFEQ can solve the most
number (70.4) of puzzles for each run by uMFE criterion. Most
importantly, the average equilibrium probability of the target
structures can reach almost 0.56 by SAMFEO, which means
most of the structures in the ensemble of designed sequences
would be the same as target structures. This result of equilibrium
probability is better than RNAinverse-pf (a relative improvement
of over 10%), which demonstrates the superiority of SAMFEO
(Prob) since they are optimizing the same objective. Similarly,
SAMFEO with NED as objective can achieve the lowest ensem-
ble defect as well as the lowest positional entropy, which support
our claim that SAMFEO is a general optimization paradigm.
Another striking observation is that SAMFEO can generate a
large quantity of MFE solutions, which is much more than all
the other methods including the genetic algorithm MODENA
and m2dRNAs.

4.2.2 MFE study

We investigate the quality of the MFE solutions found by each
method. First, we plot the Venn diagram of methods solving
more than 60 puzzles in Fig. 3a. Nearly all the puzzles solved by
MODENA, RNAinverse-pf and m2dRNAs fall into the intersec-
tion of NEMO and SAMFEQ, which contains 64 puzzles. To get
more insight into the quality of MFE solutions by different meth-
ods, we show the average ensemble metrics of MFE solutions for
the 64 puzzles in particular, which is presented in Fig. 2. All the
values are average over 5 runs. As we can see from the bar plot,
either SAMFEO (Prob) or SAMFEQO (NED) has lower NED and
Positional entropy than other four strong baselines. In terms of
equilibrium probability, SAMFEOQ (Prob) is the best with an av-
erage probability close to 0.8 while SAMFEO (NED) is slightly
lower than RNAinverse but also reaches a probability over 0.7.
Therefore, we demonstrate that our proposal SAMFEO find the
MEFE solutions of higher quality than others. For a more detailed
plot, including standard deviations as error bars, please see
Supplementary Section 2.1. In addition, the diversity of MFE sol-
utions are shown in Supplementary Section 5.1.

4.2.3 Efficiency study

Figure 3b shows the average running time that different meth-
ods spend on solving each puzzle. We observe that SAMFEO

i569

(a) (b) RNAinverse

RNAinverse-pf

NUPACK

MODENA

2 m2dRNAs

SAMFEQ (Prob) _17"-‘

0 00 400 600 800 1000 1200
Running Time (seconds)

Venn diagram Running time

Figure 3. Results of MFE study and efficiency study. (a) shows the Venn
diagram of solved puzzles by different methods. (b) shows the running
time of different methods to design Eterna100 puzzles.
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Figure 4. MFE and equilibrium probability versus time for Eterna100
design. The red ellipse highlights our proposed methods.

is also very efficient and faster than most baselines. In con-
trast, the two strong baselines m2dRNAs and NEMO need
much more time than SAMFEO. For a more detailed plot, in-
cluding error bars indicating standard deviation, please see
Supplementary Section 2.2.

We also plot the scatter of number of solved puzzles versus
running time and the scatter of equilibrium probability vs.
running time in Fig. 4. The numerical values of running time
are taken from Fig. 3b and the number of solved puzzles and
the values of equilibrium probability are taken from Table 1.
We can see that SAMFEOQ appears at the top left corner with
respect to either metric, which illustrates that SAMFEO
achieves an excellent balance between efficacy and efficiency.

4.3 Long sequence design

Although the Eternal00 benchmark spans a large range in de-
sign features and difficulty to validate the ability of RNA de-
sign, the lengths of puzzles are all less than 400. To further
test the ability of various RNA design methods to design long
secondary structures, we select 10 sequences of length over 900
from 16S Ribosomal RNAs dataset and use the MFE structures
folded by ViennaRNA package 2.0 as puzzles. The specific
sequences and structures are included in Supplementary
Sections 6.2 and 6.3, respectively. For brevity, we detail the de-
sign result of five puzzles from one time design by each baseline
and SAMFEO (Prob), which is shown in Table 2. The corre-
sponding RNA sequences designed by SAMFEO are presented
in Supplementary Section 6.4. Specifically, for each of the five
puzzles, we report the metrics of one sequence designed by
each method. For the methods outputting multiple MFE solu-
tions, we select the most probable one. See Supplementary
Section 6.1 for the full result of running each method five times
to design the puzzles. See Supplementary Section 5.2 for the
similarity between the designed RNAs and the original 165
Ribosomal RNAs.
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Table 2. Long sequences design results. v//X represent whether the designed sequence satisfies MFE or uMFE criterion.

Zhou et al.

Method Length =1200 Length = 1452 Length = 1474 Length = 1490 Length = 1492

Probf MFE uMFE Prob{ MFE uMFE Prob] MFE uMFE Prob{ MFE uMFE Prob] MFE uMFE
RNAinverse 1.6e-28 X X 4.2e-44 X X 7.0e-37 X X 5.3e-34 X X 7.7e-41 X X
RNAinverse-pf 3.7¢-05 X X 7.7e-18 X X 8.5e-16 X X 2.2e-12 X X 4.8¢-30 X X
NUPACK 5.2e-04 X X 7.9e-14 X X 9.4e-16 X X 22e-16 X X 4.1e-12 X X
MODENA 1.7e-04 X 34e-09 X X 8.8¢e-06 vV v 5.5¢-08 X X 2.4e-07 X X
NEMO 6.4e-07 X 9.7¢-12 v/ X 2.4e-09 X 2.5¢-10 v/ v 3.0e-10 v X
m2dRNAs 2.8¢-04 v X 1.5¢-05 v X 1.6e-03 v/ v 4.2e-04 vV v 2.3e-03 v v
SAMFEO 0.242 v v 0.031 v v 0.246 v v 0.185 v v 0.209 v v
Table 3. Ablation study on Eterna100.
Method Ablation Union (5 runs) Average (5 runs) Union (5 runs) Average (5 runs)

Solved puzzles? Solved puzzles Solutions/solved.puzzle Prob 1 NED| PosEntropy|
MFE uMFE MFE uMFE MFE uMFE

SAMFEO None 77 74 73.4 70.4 13 498.7 13408.7 0.559 0.061 0.117
SAMFEO-v1 TI 70 67 65.2 62.4 12 161.3 12087.6 0.510 0.133 0.184
SAMFEO-v2 BS 74 71 71.4 68.2 13734.2 13786.3 0.558 0.061 0.114
SAMFEO-v3 SM 74 72 70.4 68.0 152371 15152.0 0.550 0.059 0.109
SAMFEO-v4 MF 78 75 73.4 70.4 11207.2 11066.6 0.559 0.060 0.108
SAMFEO-v5 BP 75 73 70.6 68.0 3.9 4.3 0.559 0.061 0.117

As we can see in Table 2, the baselines perform much worse
than when designing Eterna100. RNAinverse and NUPACK do
not find any MFE solutions for those long puzzles while
MODENA can only solve two puzzles by MFE criterion. Even
though NEMO and m2dRNAs can solve all puzzles by MFE crite-
rion, not all their design satisfy uMFE criterion. By comparison,
SAMFEOQ solves all the five long puzzles by both MFE and uMFE
criterion. The most striking observation comes from the fact that
the equilibrium probabilities of other methods’ design are as low
as nearly zero, regardless of MFE criterion satisfaction. In contrast,
the designs of SAMFEQ exhibit a much higher equilibrium proba-
bility in the ensemble. Therefore, SAMFEQO shows great advan-
tages over other methods for designing long sequences.

4.4 Ablation study

To validate the effectiveness of different components of our
proposal, we performed ablation study for the performance
of SAMFEO (Prob) on Eterna100 design. Specifically, follow-
ing versions of SAMFEQ are experimented.

1) SAMFEO-v1, Targeted Initialization (TI) is ablated, and
random base pairs are used for initialization.

2) SAMFEO-v2, Boltzmann Sampling (BS) is ablated.
Instead Samplings are performed randomly.

3) SAMFEQO-v3, Structured Mutation (SM) is ablated and
traditional mutation is adopted.

4) SAMFEO-v4, Multi-Frontier (MF) is ablated. We set k
= 1 such that there only keeps one sequence in the prior-
ity queue.

5) SAMFEO-vS, The way of MFE solutions as byproducts (BP)
is ablated (only the sequence with lowest objective is used).

We run each version five times and the results are shown in
Table 3. We can see that any ablation of Targeted Initialization,
Boltzmann Sampling, Structured Mutation, or MFE solutions as
byproducts leads to less solved puzzles. Compared to SAMFEO,
SAMFEOQO-v4 even solves one more puzzle by union metrics.

However, the numbers of MFE and uMFE solutions per solved
puzzles reduce from over 13 400 to around 11 200 and 11 000,
respectively. Such a drop might be detrimental for RNA design
when we need diverse MFE solutions in two cases: (i) RNA de-
sign with more constraints, and (ii) obtaining MFE solutions for
learning-based RNA design. Finally, it is at the discretion of
users to determine the parameters of the RNA design algorithm
according to real world application.

5 Conclusion and future work

We propose a new RNA design paradigm, which optimizes sin-
gle ensemble objective and generate MFE and uMFE solutions as
byproducts. By utilizing both structure level and ensemble level
information during iterative multifrontier search process, our al-
gorithm SAMFEQ can perform effective and efficient design for
the benchmark FEternal00. In addition, SAMFEO presents a
huge advantage over other design methods in terms of long
sequences design. Our work has several potential extensions.

1) Constrained RNA design. In the literature (Garcia-
Martin et al. 2013; Esmaili-Taheri and Ganjtabesh
2015), there are RNA design scenarios where other con-
straints are imposed.

2) Learning to design. Since our work can find a large
amount of MFE and uMFE solutions, it is helpful to gen-
erate more training data to boost the effect of learning-
based RNA design.

3) Hierarchical decomposition. Our work evaluates the ob-
jective on the whole sequence, which might not be effi-
cient enough for very long sequences, it would save a lot
of time if useful structure or sequence decomposition can
be used.

Supplementary data

Supplementary data is available at Bioinformatics online.
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