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Abstract. In this work, we design and simulate a synthetic nervous
system which is capable of computing optic flow throughout a visual
field, inspired by recent advances in the neural anatomy of Drosophila
melanogaster found through connectomics. We present methods for tun-
ing the network for desired stimuli, and benchmark its temporal prop-
erties and capability for directional selectivity. This network acts as a
stepping point towards visual locomotion control in a hexapod robot
inspired by the anatomy of Drosophila.
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1 Introduction

A continuing goal in the robotics community is to develop robots with the
dynamic capabilities and resilience of animals. A particular focus is on adding
the influence of visual information to improve the adaptability of robotic sys-
tems [4,37]. A promising approach is to design robotic controllers using neuro-
morphic networks of neurons with biologically inspired dynamics [3], also known
as synthetic nervous systems (SNS) [13,18,31].

Much is known about the circuitry within the Drosophila melanogaster optic
lobe, making it a convenient inspiration for robotic vision systems. For visual
motion processing in particular, the Drosophila nervous system contains many
of the same logical elements as that of mammals and vertebrates [8], but does
so with three orders of magnitude fewer neurons in the visual system [6,22]. An
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additional advantage of Drosophila over other model organisms is that extensive
work has been done in recent years to create a full connectome of their brains [26,
36], and the visual system in particular has been extensively studied [28,29,33].

The motion vision pathway is extremely important for adaptive behavior in
Drosophila, aiding in estimation of body motion and enabling rapid response
to oncoming threats [1,9,12]. The structure is well documented, see Fig. 1 for
a visual representation and refer to [6] for a more thorough review. Within the
Drosophila optic lobe, retinal and lamina cells convert changes in light intensity
into information used in the rest of the network. Of particular relevance to the
motion vision system are cells L1-L3, which perform spatiotemporal filtering of
input stimuli and separate information flow into two pathways: an On pathway
for encoding increases in brightness, and an Off pathway for encoding decreases
in brightness [28,33]. From there, the transformed visual information is further
filtered in the medulla into a bank of unique filters (Mi1, Tm3, Mi4, Mi9 for the
On pathway; Tm1, Tm2, Tm4, Tm9 for the Off pathway), each with slightly
different spatiotemporal characteristics [2,11]. These are then combined nonlin-
early (along with the wide amacrine cell CT1 [24]) onto the elementary motion
detector (EMD) cells T4 and T5, and the resulting combination generates direc-
tional selectivity for each point in the visual field [29] which can then be spatially
integrated for more complex behavior [6].

Previous work has adapted this circuitry to robotics [4] and SNS net-
works [27], but these studies were performed before the wide breadth and depth
of connectivity information from connectomic analysis for Drosophila became
available. In this work, we design an SNS network which measures optic flow
for both rising and falling brightness levels, using inspiration from the current
body of knowledge about connectivity and activity within the Drosophila optic
lobe [6,29]. As there is less known about the exact operation of the Off EMD,
we make some design-based decisions in its construction. Using the capabilities
of this network, we plan future visual control of motion onboard the bio-inspired
robot Drosophibot [13].

2 Network Components

2.1 Neural and Synaptic Models

As this work is primarily focused on designing general network behavior instead
of exactly reproducing neural recordings, all neurons in the network are simu-
lated as non-spiking leaky integrators following [31], where the neural state U is
updated as

τ · U̇ = −U + S + B + I, (1)

where τ is the neural time constant, I is any external input, and B is a constant
bias term. S is the synaptic input from any presynaptic neurons in the network,

S =
N∑

n

Gsyn,n (Un) · (Esyn,n − U) , (2)
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Fig. 1. A: A circuit diagram of a single column within the Drosophila motion vision
pathway, adapted from [6,29]. B: Reduced diagram used in this work. Node colors in
both diagrams are chosen to highlight their common functional roles. Single circles
designate neurons which behave as a low-pass filter, double circles indicate a band-
pass filter. Dark closed circles indicate inhibitory synapses, open triangles indicate
excitatory synapses. In panel B, D and S neurons approximate band-pass behavior by
filtering the responses of the B neurons, for reduced computational complexity.

with Un denoting a presynaptic neuron, and Esyn,n denoting the synaptic rever-
sal potential. In this work, all excitatory synapses have Eex = 5R, Ein = −2R
for inhibitory synapses, and specific modulatory synapses have a reversal poten-
tial of Emod = −0.1R, where R is the primary range of neural activity in the
network. For numerical simplicity, R = 1 in this work so that most neurons com-
municate when their state is between 0 and 1, with the exception of the synapse
between neurons BF and DF . Eex has an effect roughly analogous to cholinergic
synapses in Drosophila, Ein to GABAergic synapses, and Emod to glutamater-
gic synapses. Gsyn,n (Un) is a monotonic function which describes the incoming
synaptic conductance such that Gsyn,n (Un) ∈ [0, gmax,n] where gmax,n is the
upper bound. In this work, we define Gsyn as

Gsyn,n = gmax,n · max

(
0,min

(
Un − θlo

θhi − θlo
, 1

))
, (3)

where θlo and θhi are the lower and upper threshold states of synaptic activity.
For most synapses in the network, we set θlo = 0, and θhi = R. For the synapse
between neurons BF and DF , we set θlo = R, and θhi = 2R.

Steady State Formulation. For some design sections, we required solving for
the steady state of the neuron given steady inputs. As in [31], the steady-state
response U∗ is
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U∗ =
∑N

n gmax,n
U∗

n

R · Esyn,n + B + I

1 +
∑N

n gmax,n
U∗

n

R

. (4)

Synaptic Pathway Designs. When connecting components of our network,
different pathways are tuned analytically based on their functional role. One
common example is signal transmission, where the desired steady-state value
(see Eq. 4) of the postsynaptic neuron U∗ is the steady-state voltage of the
presynaptic neuron multiplied by a transmission gain K. From [31], this can be
solved as

gmax =
K · R

Esyn − K · R
, (5)

where Esyn is Eex for excitatory synapses, and Ein for inhibitory synapses.
Another formulation which is used throughout this work comes from setting

a target state T of the postsynaptic neuron, given a presynaptic steady-state and
the presence of other external or synaptic currents to the postsynaptic neuron.
This is derived from Eq. 4 and written as

gmax =
R · (B − T )

U∗
pre · (T − Esyn)

. (6)

Finally, in some instances it is desirable for a presynaptic neuron to modulate
the sensitivity of a postsynaptic neuron to external and synaptic inputs. For this
we follow the derivation in [31], and use the modulatory reversal potential Emod

and set the synaptic conductance as

gmax = δ − 1, (7)

where the desired behavior is such that U∗ is divided by δ when U∗
pre = R. This

form of synapse is used within the On pathway between EO and On.

2.2 Neural Filters

Most neurons within the Drosophila motion vision pathway behave temporally
as either low or band-pass filters [6], and here we describe our methodology in
designing our network to behave accordingly. The process to tune our neurons
as low-pass filters is straightforward, as the leaky integrator is itself a low-pass
filter with a cutoff frequency (where the gain is -3dB) defined as fc = 1

2πτ .
Common methods for implementing a neuron with band-pass temporal

behavior typically involve adding a second dynamic variable to the neuron
model [19], such as a voltage-gated ion channel [30] or adaptive spiking thresh-
old [32,34]. Inspired by the differentiation network in [31], we implement band-
pass filters in our network using a subnetwork of four non-spiking leaky integra-
tors instead of adding a new, more complex neural model. While this adds more
neurons to the network, we do this to reduce the computational complexity of
our system in anticipation of running it on embedded hardware. For a visual
representation, please see Fig. 2.
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Fig. 2. A: Circuit diagram of a band-pass subnetwork. Two neurons are tuned as low-
pass filters with different cutoff frequencies, and are subtracted to produce a band-pass
response. B: Response of each neuron within the subnetwork when subjected to a
time-varying input.

This network is designed as follows. Inputs to the subnetwork enter as a
synaptic input for neuron I, which then inhibits neurons Fast and Slow using
inhibitory transmission synapses (Eq. 5) with reversal potential Ein and a gain
K = −1, to arrive at a maximum synaptic conductance of

gmax,i,fast = gmax,i,slow = − R

Ein
. (8)

Neurons I, Slow, and output neuron Out all have the same time constant, which
approximately acts as the upper bound of the filter’s passband. Neuron Fast
has a larger time constant and lower cutoff frequency than the other neurons,
and the corresponding cutoff frequency results in setting the lower bound of the
passband. Neuron Fast inhibits neuron Out with a gain-controlled inhibitory
synapse (Eq. 5), and neuron Slow excites Out with a synapse designed to mirror
gmax,fast,out, where

gmax,slow,out =
gmax,fast,out · (Ein − R)

R − Eex
. (9)

This results in the state of neuron Out being the difference between the original
signal in I being processed via two different low-pass filters, resulting in a band-
pass effect. In practice, the value of the transmission gain K from Fast to Out
is found using the Brent method for scalar minimization [7] in SciPy [35] such
that the change in magnitude during a step input is −1. All neurons in this
subnetwork additionally have a constant bias input of R, since the bandpass
filters in our network need to hyperpolarize during rising luminance levels, but
omitting these bias terms and swapping the inhibitory and excitatory synapses
would result in a more traditional band-pass filter [31].
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3 Network Design

For a circuit diagram of the network described in this section, as well as the
comparative structure present in the Drosophila optic lobe, please refer to Fig. 1.
All synaptic parameter values can be found in Table 1, and all neural parameter
values can be found in Table 2.

3.1 Input Processing

When presented with a visual stimulus, each input node (denoted In in Fig. 1B)
acts as a temporal low-pass filter, performing an analogous operation to a
Drosophila photoreceptor cell [8]. As this initial stage sets an upper bound on
the frequency response for the rest of the circuit, we set the time constant for this
filter τfast such that no frequencies in our desired input range are filtered out and
our network dynamics remain stable. In this work, we set this as τfast = 10 · Δt
based on our simulation timestep Δt.

3.2 Initial Filter Stage

Similar to the cells present in the Drosophila lamina, we apply temporal filters to
the output of the initial input filtering stage. While the primary lamina cells in
the Drosophila motion pathway have slight differences in temporal behavior [11],
for analytic simplicity both BO and BF have the same properties in this work.
For reduced analytic complexity, all spatial receptive fields are condensed into
single columns.

We apply a band-pass filter which hyperpolarizes to stimuli of increasing
brightness within each pathway to the output of the input stage, analogous to
the behavior of the L1 and L2 cells [6], and we refer to them as BO and BF . These
are constructed in the manner described in Sect. 2.2, and the time constant of
the fast side is set to τfast. For the slow side, we choose τslow so that for the
fastest input stimulus, the response has time to settle to baseline over the course
of a single input period. Approximating the settling period for a leaky integrator
as 5τ , we write the time constraint as

5τslow =
λ

2
· 1
Vfast

, (10)

where λ is the spatial wavelength and Vfast is the fastest spatial velocity of the
input stimulus.

Similar to the L3 neuron in Drosophila [6], we include an additional low-
pass filter (denoted as L in Fig. 1B) which is shared across both the On and Off
pathways. In order to preserve the range of temporal information available for
later processing, we set the time constant of L to τfast, causing this node to act
as a delayed and inverted copy of the input stimulus.
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Fig. 3. A: Diagram of a three-arm Haag-Borst HR/BL EMD circuit [15]. B: Schematic
of the three-arm motion detectors in this work, for both On and Off stimuli. PD denotes
the preferred direction, ND denotes the not preferred (null) direction. Nodes without
color do not contribute to behavior in this direction of motion.

3.3 Motion Detectors

For the design of the elementary motion detectors (EMD) in the On and Off
pathways, we take inspiration from the Haag-Borst HR/BL three-arm EMD [15]
(Fig. 3A). This structure has been shown to be capable of reproducing recordings
from T4 [15] and T5 [16] cells, and connectomic analysis has found candidate
cells for each input arm of the model [29]. In this model, the output neuron
of each EMD (On for the On pathway, Off for the off pathway) receives input
from three separate elements: a direct input from the cell in the same column, an
enhancement input which enhances stimuli coming from the preferred direction,
and a suppressor input which suppresses stimuli coming from the null direction.
In this work we choose to model the EMD as a three-arm circuit instead of
older models which used two arms to achieve either preferred-direction enhance-
ment [17] or null-direction suppression [5], as the three-arm model generates
finer directional selectivity and is less susceptible to noise [15].

In Drosophila the inputs in each arm can come from multiple neurons, which
combine to create varied spatio-temporal properties [2,6,11]. For simplified anal-
ysis and reduced computational complexity, each arm is represented as a single
neuron in this work. Additionally, while the cells in the medulla act as band-pass
and low-pass filters with a variety of time constants, for simplicity we represent
all of them as low-pass filters and reshape the activity from the higher-level fil-
ters (BO, BF , and L). In this work, neurons which perform enhancement are
named E, direct stimulation D, and suppression S. Unless otherwise specified,
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all neurons can be assumed to have a time constant of τfast. This is only changed
as needed for behavioral reasons, which will be explained below.

On Pathway. Recent studies have focused on the behavior of T4 cells and found
potential mechanisms which generate motion-detection and direction selectivity
using the cells which contribute to the On pathway [29], particularly in the
work of Groschner et al. [14]. In their work, they modeled the T4 pathway and
found that multiplicative behavior can occur during a period of low inhibition
that creates a “window of opportunity” [10]. We adapt a similar mechanism
here based on our previous work [31], with a circuit diagram in Fig. 3B and
behavior shown in Fig. 4. Neuron DO mimics the behavior of Mi1 and Tm3, SO

the response of CT1, and EO is analogous to Mi9.

Direct: Neuron DO receives input from BO via an inhibitory transmission
synapse (Eq. 5), and the gain is tuned via Brent’s method [7] such that the
peak during a step input is 1. It excites On with an excitatory transmission
synapse, with the gain tuned again via Brent’s method for an isolated peak
response of 1.

Suppression: Unlike the other arms of the On EMD, SO receives input from
DO instead of the filtering stage. This is similar to CT1 receiving indirect input
from Mi1 [24,29]. This creates a slight delay in the response, which improves the
ability of SO to suppress stimuli in the null direction. The connection between
SO and On is tuned as an inhibitory target synapse (Eq. 6) which aims to bring
the state of On to zero when DO is signaling with peak strength.

Enhancement: In our model, EO is responsible for the majority of the stimulus-
dependent behavior of the On EMD. Starting with the temporal response, we set
the neural time constant so that the state of EO settles during the time it takes
the signal to travel from one column to the next at the slowest desired velocity
Vslow, assuming that the neuron settles after a time period of 5τ (Eq. 10). This
is found with

τE =
∠

5 · Vslow
, (11)

where ∠ is the spatial resolution of the model (5◦ in this work). EO stimulates
On using a modulatory synapse with a division factor δ of 10 (Eq. 7), and is
stimulated by L using an excitatory transmission synapse (Eq. 5) with unity
gain.

Off Pathway. While studies have found the presynaptic neurons which generate
direction selectivity within the Off motion detector circuit [24,29], current stud-
ies which model the Off pathway either omit the role of CT1 in suppression [20]
or do not model chemical reversal potentials [21]. As such, we make some base
assumptions based on the connectivity in order to produce direction selectivity.
Neuron DF implements the role of Tm1, Tm2, and Tm4, SF is analogous to
CT1, and EF mimics Tm9.
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Direct: DF receives stimulation from BF via an excitatory transmission synapse
(Eq. 5) with a gain tuned such that the postsynaptic peak is 1 for a decreas-
ing step response in brightness, and θlo and θhi of R and 2R respectively. It
stimulates Off with an excitatory target synapse of target R (Eq. 6), with the
conductance multiplied by ρD, where ρD is the percentage of direct stimulation.
In this work, ρD = 0.5. We found that the peak of DF is a primary factor in the
magnitude of Off, so we select the time constant τDF so that the peak magnitude
starts decreasing at our slowest input velocity Vslow. We first find the frequency
of our slowest input as fslow = Vslow

λ , and scale that to get fDF = 10fslow. A
scaling factor of 10 is chosen because the gain of leaky integrators begins to
decrease approximately 1 decade below the cutoff frequency on a logarithmic
scale.

Suppression: SF is tuned in a similar manner to SO, receiving an excitatory
transmission (Eq. 5) input from DF that is optimized using Brent’s method [7]
for a peak magnitude of 1. SF inhibits Off via an inhibitory target synapse with
the same properties as the synapse between SO and On.

Enhancement: EF is tuned with the exact input and neural properties of EO for
simplicity. It stimulates Off with an excitatory target synapse (Eq. 6) with target
R, and the conductance scaled by ρE where ρE is the percentage of enhancement
stimulation and is constrained so ρE + ρD = 1.

4 Results

4.1 Simulation Setup

All simulations are done using SNS-Toolbox [25], a Python package for designing
and simulating synthetic nervous systems (https://github.com/wnourse05/SNS-
Toolbox). A Δt of 0.1 ms is used as the simulation step. In all simulations, the
network was tuned for sensitivity to images with a spatial wavelength λ of 30◦

and a velocity between 10◦/s and 180◦/s across the visual field. Code to simulate
the network and generate all of the figures presented here is available at https://
github.com/wnourse05/Motion-Vision-SNS.

4.2 Individual EMD Stimulation

To verify the basic behavior of the EMD circuits, we applied square wave grat-
ings with a spatial wavelength of 30◦ and a velocity of 30◦/s to 3 adjacent
columns. We focus on the behavior of the B channel neurons, which are tuned
for sensitivity in motion traveling from left to right.

Shown in Fig. 4, we examine the behavior of the On pathway. When stimuli
of increasing brightness move across in the preferred direction, EO receives the
stimulus change first and starts to hyperpolarize. In the time it takes for the
stimulus to continue to the central column, EO has decreased. This allows the

https://github.com/wnourse05/SNS-Toolbox
https://github.com/wnourse05/SNS-Toolbox
https://github.com/wnourse05/Motion-Vision-SNS.
https://github.com/wnourse05/Motion-Vision-SNS.
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Fig. 4. Simulation of elements within the On pathway during a stimulus moving in the
preferred (Left) or null (Right) directions. Dashed green traces correspond to Enhance-
ment (EO) signals, solid blue to Direct (DO) signals, dotted pink to Suppression (SO)
signals, and solid indigo for the On EMD (OnB). Top: Traces of visual stimuli to
the Enhancement, Direct, and Suppression columns of the motion detector; Middle:
Traces of the Enhancement, Direct, and Suppression neurons which are presynaptic to
the EMD neuron; Bottom: Trace of the final motion detector, which depolarizes for
stimuli traveling from left to right (OnB).

direct stimulus from DO to excite On with reduced inhibition. As the stimulus
continues to the right column, SO exhibits a bout of further inhibition. The
timing relationship between EO and SO creates the speed-dependent behavior;
as stimuli move more rapidly, the offset in time between these columns decreases
and more inhibition is applied to On, causing a decrease in the activity caused
by DO. When stimuli move in the opposite direction, SO and DO are both
activated while EO is strongly depolarized, resulting in a significant reduction
of peak magnitude in On.

Repeating the experiment for stimuli with decreasing brightness, as the off-
edge stimulus moves in the preferred direction EF in the Off pathway begins
to depolarize. This is accentuated by a later pulse from DF , followed by strong
inhibition from SF . As stimuli move in the opposite direction, EF is either at
rest or hyperpolarizing towards rest, depending on the timing of prior stimuli.
The off-edge first arrives at SF which strongly inhibits Off, followed by a pulse
in excitation from DF and then a separate increase in excitation from EF . While
the specifics of the mechanism are different between the On and Off pathways,
the net behavioral result is the same: stimuli traveling in the preferred direction
are enhanced to some degree, while stimuli in the opposite direction do not have
as strong a response (Fig. 5).
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Fig. 5. Simulation of elements within the Off pathway during a stimulus moving in the
preferred (Left) or null (Right) directions. Dashed green traces correspond to Enhance-
ment (EF ) signals, solid blue to Direct (DF ) signals, dotted pink to Suppression (SF )
signals, and solid olive for the Off EMD (Off B). For further description refer to Fig. 4.

4.3 Velocity Response

Square-wave stimuli with λ = 30◦ are applied to a network which consisted of 49
columns, arranged in a 7×7 grid. The velocity of stimuli is varied from 10◦/s to
360◦/s, and data is recorded from the central EMD. As shown in Fig. 6, the peak
magnitude of both the On and Off pathways decreases as the velocity approaches
the maximum tuning range (180◦/s). The On pathway has a high dynamic range,
varying smoothly from 1 to near zero, and with peaks in the preferred direction
always greater than the null direction. Changes in the magnitude of the Off
pathway are more gradual as it approaches the desired maximum velocity, with
a slow increase slightly before this point. The ratio between the preferred and
null directions is always greater than 1, but to a lesser degree in the Off than
the On pathway. Behavior in the Drosophila T4 and T5 cells are more similar
to the On results shown in Fig. 6 than the Off results, with a peak response
that decreases as the input velocity increases [23]. However, in Drosophila this
decrease occurs as input velocity is both increased and decreased from a peak
velocity.
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Fig. 6. Output behavior of the On (solid indigo) and Off (dashed olive) motion detec-
tors when subjected to a square wave, translating from 10◦ to 360◦ per second. Target
maximum velocity (180◦/s) shown with a vertical dashed line. Top: Peak magnitude
of the motion detector in the preferred direction; Bottom: Ratio between the motion
detector in the preferred direction and the null direction.

4.4 Directional Selectivity

Stimuli of a consistent wavelength and velocity are applied to the same network
described in Sect. 4.3 while the direction of travel is varied from 0◦ −360◦ in 45◦

increments, with results shown in Fig. 7. The EMD for each cardinal direction
exhibits enhanced sensitivity to stimuli in the preferred direction, and reduced
sensitivity to the other directions. The On pathway is able to generate a finer
level of directional sensitivity than the Off pathway, due to its multiplicative
window of reduced inhibition. Further work is necessary to find a similar multi-
plication mechanism for the Off pathway.

As the networks for each cardinal direction are mirrored versions of each
other, the resulting responses are identical except for their orientation. This
is different than the tuning found in Drosophila, where the sensitivity of each
cardinal direction is slightly different [23]. The general shape of our On and Off
responses most closely matches the behavior of the T4b and T5b neurons in the
animal, consisting of a sharp triangular point in the preferred direction and a
slight bump in the null direction, however T5b is much more similar to T4b than
our Off neurons are to the On neurons.
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Fig. 7. Peak response of each motion detector in the On (Left) and Off (Right) path-
ways to a square wave grating with λ = 30◦ and V = 30◦/s. Preferred direction of each
sub-type: A: right to left; B : left to right C : bottom to top; D : top to bottom.

5 Discussion and Future Work

In this work, we implement an SNS network which is a reduced model of the
Drosophila motion vision system. The network performs optic flow measurement
at each point in the visual field, and can be tuned for different ranges of input
stimuli in a parametric manner. While some parameters are found via numerical
optimization, most are chosen by hand via analytic rules. With further optimiza-
tion, we expect that the performance of the network could be tuned to detect
particular stimuli.

Compared to the circuit found in Drosophila, the model presented here is
far reduced in complexity. In particular, the animal uses more neurons as inputs
to the EMD cells, which allows for better temporal response and additional
adaptation to factors such as changing input contrast [11]. Adding more neurons
into the motion detection area in our network may be promising for future
development. Another simplification in our model is that the initial filter stage
only receives visual input within its own column. This is not the case for the
lamina neurons in Drosophila, which perform spatial filtering over a 15◦ − 20◦

radius for each column [6]. Future work will extend our analysis to generate
directional selectivity in the presence of wider spatial receptive fields.

While our implementation of the On pathway is derived from detailed biologi-
cal models [14], less recordings and detail were available for the Off pathway. Our
model attempts to model direction selectivity using current information about
the structure of this system, but showcases some current gaps in understanding.
In particular, the neuron in our model which is intended to act analogously to
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Tm9 (EF ) does not provide a significant role in motion detection based on its
connectivity. This differs strongly from biological experiments, where the effect
of Tm9 in Off motion detection is greater than many of the other neurons com-
bined [28]. As such Tm9 may have additional functionality and roles, as discussed
in [29].

Much work has been done to study the effect of the visual system on walking
control in Drosophila [9,12]. We aim to continue development of the network
described in this work, so that it may be used to assist in the control of legged
motion onboard our Drosophila-inspired robot, Drosophibot [13].

Table 1. Synapse Parameter Values.

Synapse gmax Esyn θlo θhi

In→ BO,I 0.5 −2.0 0.0 1.0

In→ BF,I 0.5 −2.0 0.0 1.0

In→ L 0.5 −2.0 0.0 1.0

BO,I → BO,Fast 0.5 −2.0 0.0 1.0

BO,I → BO,Slow 0.5 −2.0 0.0 1.0

BO,Fast → BO,Out 1.329∗ −2.0 0.0 1.0

BO,Slow → BO,Out 0.997 5.0 0.0 1.0

BF,I → BF,Fast 0.5 −2.0 0.0 1.0

BF,I → BF,Slow 0.5 −2.0 0.0 1.0

BF,Fast → BF,Out 1.329∗ −2.0 0.0 1.0

BF,Slow → BF,Out 0.997 5.0 0.0 1.0

L → EO 0.25 5.0 0.0 1.0

L → EF 0.25 5.0 0.0 1.0

BO,Out → DO 0.546∗ −2.0 0.0 1.0

BF,Out → DF 1.173∗ 5.0 1.0 2.0

DO → SO 0.262∗ 5.0 0.0 1.0

DF → SF 0.250∗ 5.0 0.0 1.0

EO →On 9.0 −0.1 0.0 1.0

DO →On 0.262∗ 5.0 0.0 1.0

SO →On 0.5 −2.0 0.0 1.0

EF →Off 0.125 5.0 0.0 1.0

DF →Off 0.125 5.0 0.0 1.0

SF →Off 0.5 −2.0 0.0 1.0
*Found using optimization
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Table 2. Neuron Parameter Values.

Name τ (ms) B U0

In 1.0 0.0 0.0

BO,In 0.796 1.0 1.0

BO,Fast 1.0 1.0 0.0

BO,Slow 8.334 1.0 0.0

BO,Out 0.796 1.0 1.0

BF,In 0.796 1.0 1.0

BF,Fast 1.0 1.0 0.0

BF,Slow 8.334 1.0 0.0

BF,Out 0.796 1.0 1.0

L 1.0 1.0 1.0

EO 100.0 0.0 1.0

EF 100.0 0.0 1.0

DO 1.0 1.092∗ 0.0

DF 47.746 0.0 0.0

SO 1.0 0.0 0.0

SF 1.0 0.0 0.0

On 1.0 0.0 0.0

L 1.0 0.0 0.0
*Found using optimization
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