
Analysis of Validating and Verifying OpenACC
Compilers 3.0 and Above

1st Aaron Jarmusch
University of Delaware

jarmusch@udel.edu

2nd Aaron Liu
University of Delaware

olympus@udel.edu

3rd Christian Munley
University of Delaware

chrismun@udel.edu

4th Daniel Horta
University of Delaware

dchorta@udel.edu

5th Vaidhyanathan Ravichandran
University of Delaware

vaidhy@udel.edu

6th Joel Denny
Oak Ridge National Laboratory

dennyje@ornl.gov

7th Kyle Friedline
University of Delaware

utimatu@udel.edu

8th Sunita Chandrasekaran
University of Delaware

schandra@udel.edu

Abstract—OpenACC is a high-level directive-based parallel
programming model that can manage the sophistication of
heterogeneity in architectures and abstract it from the users. The
portability of the model across CPUs and accelerators has gained
the model a wide variety of users. This means it is also crucial
to analyze the reliability of the compilers’ implementations. To
address this challenge, the OpenACC Validation and Verification
team has proposed a validation testsuite to verify the OpenACC
implementations across various compilers with an infrastructure
for a more streamlined execution. This paper will cover the
following aspects: (a) the new developments since the last publi-
cation on the testsuite, (b) outline the use of the infrastructure,
(c) discuss tests that highlight our workflow process, (d) analyze
the results from executing the testsuite on various systems, and
(e) outline future developments.

Index Terms—Performance, Programming Model, Testsuite,
Validation, Conformance

I. INTRODUCTION

Heterogeneous systems equipped with CPUs and accelera-
tors are becoming increasingly prevalent. To add to the hetero-
geneity, application developers also have to face the challenges
of migrating code from one type of heterogeneous system to
another. Code migration is not only tedious but also prone to
introducing bugs. While there are a variety of language and
models available for the application developers to choose from,
such as OpenACC [1], OpenMP [2], CUDA [3], OpenCL [4],
NVIDIA Thrust [5], and Kokkos [6] among there, it depends
on what the developers are the most comfortable with and
what would fetch them performance without losing portability,
accuracy among other metrics of their applications’ interest.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This paper is
authored by an employee(s) of the United States Government and is in the public domain.
Non-exclusive copying or redistribution is allowed, provided that the article citation is
given and the authors and agency are clearly identified as its source.

In this paper, we focus on OpenACC, a directive-based
programming model that targets traditional X86 architectures
and accelerators such as GPUs and FPGAs [7], validity of the
OpenACC compiler implementations and their conformance
to the standard specification; these will include features such
as atomic or parallel constructs, clauses such as if
or copy_out, or combinations of occurrences of clauses
on constructs. Support from Commercial compilers include
NVIDIA and Hewlett Packard Enterprise (HPE Cray). Cur-
rently, NVIDIA supports up to version 2.7. HPE Cray focuses
on Fortran and fully supports OpenACC 2.0 with partial
support up to 2.6. These implementations are being developed
for not only NVIDIA GPUs but also AMD GPUs as we
are beginning to see a number of systems supporting the
AMD GPUs including Frontier, the first exascale system. Open
Source compilers include GNU Compiler Collection (GCC)
[8] with support for OpenACC 2.6 and Clacc (OpenACC
support for Clang and LLVM) [9].

Academic compilers1 include Omni Compiler from
Riken/University of Tsukuba [10], OpenARC from ORNL [11]
and OpenUH from SBU and UH (that are now outdated) [12].

OpenACC has been adopted for large-scale scientific ap-
plications on large-scale computing systems such as Summit
at the Oak Ridge Leadership Facility and JUWELS at the
Jülich Supercomputing Centre, among several others. Some
of these applications include ANSYS1 [13], GAUSSIAN [14],
ICON [15], COSMO 3 [16], MPAS microphysics WSM6 [17]
and many more. Please refer to this tracker where OpenACC
has been collecting published OpenACC papers 2.

To ensure application developers can successfully use the
model for their large scale applications, it is critical that the
implementations are validated and verified. The suite will not
only check for conformance of the implementations to the
specification but also push for consistency in functionality
across implementations, which is key for the developers’
success stories. It is a real challenge to debug if different

1More information on existing compilers can be found on the OpenACC
webpage https://www.openacc.org/tools

2shorturl.at/mquv0

1

2022 Workshop on Accelerator Programming Using Directives (WACCPD)

978-1-6654-9019-1/22/$31.00 ©2022 IEEE
DOI 10.1109/WACCPD56842.2022.00006

20
22

 W
or

ks
ho

p
on

 A
cc

el
er

at
or

 P
ro

gr
am

m
in

g
U

si
ng

 D
ire

ct
iv

es
 (W

A
C

C
PD

) |
 9

78
-1

-6
65

4-
90

19
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

W
A

C
C

PD
56

84
2.

20
22

.0
00

06

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

implementations lead to different interpretations of the speci-
fication. This can only lead to more ambiguities among both
the developers and the users. By creating functionality tests
and amassing the results from multiple compilers/versions to
compare implementations’ adherence to the OpenACC speci-
fications, this testsuite will enable the compiler developers to
improve the quality of their tools and ensure compliance of
their implementations with the specifications of the language.
Our previous publication on this effort [18] captured these
discrepancies up to specification 2.5 (although at the time
implementations did not fully cover 2.5 just yet).

The specifications have since advanced to 3.x with signif-
icant developments including features such as reduction on
arrays/composites, C++ lambda support, updated base lan-
guages, acc_memcpy_d2d(multi-device report), support for
Fortran Do Concurrent and Block constructs, async_wait
on data regions, acc_wait_any and also providing support
for both shared and discrete memory machines. So most, if
not all, tests that this paper discusses have been written to
adhere to the current specification. The paper also presents
the infrastructure of the testsuite and validates most up-to-date
versions of all available compilers including Clacc and HPE
Cray’s newer OpenACC implementations (supporting Fortran
language).

The license associated with our testsuite is a dual license
scheme. We are open to contributions from the community.
The dual license scheme is designed in way to preserve the
license used by the contributor, while the other license will
be from OpenACC to ensure consistency in code versions,
running code, and reporting of results. For more information
on the project, how to contribute and our license please consult
our website 3. The paper makes the following contributions:

• Provide a novel testing infrastructure for C/C++ and
Fortran tests

• Identify and report results on compiler bugs and runtime
errors on all available and in use OpenACC compilers

• Evaluate different compilers’ implementations for its con-
formance to the OpenACC specifications

Please refer to the project GitHub 4 for all the codes in our
testsuite.

II. OVERVIEW OF THE PROGRAMMING MODEL

OpenACC is a programming model that can express high-
level parallelization in three levels: gang, worker, and vector.
The gang level is the broadest and comprises one or more
workers, can be conceptualized as a thread block, and multiple
gangs can work independently of one another. A worker is
the middle level of parallelism or a block of vectors within a
gang; the purpose of a worker is to compute a vector. Vector
is the lowest level of parallelism, executing at the thread level,
working in lockstep with one another. OpenACC is designed
to be a portable incremental optimization language, meaning
the same code works on various architectures, parallelization

3https://crpl.cis.udel.edu/oaccvv/
4https://github.com/OpenACCUserGroup/OpenACCV-V

can be added incrementally without changing the source code,
and it is focused on providing comparable performance to
lower-level paradigms. This is accomplished by abstracting the
underlying hardware architecture away from the user, allowing
for portability across several systems, which requires minimal
to no changes in the implementation. Focusing on the use of
general-purpose graphics card units (GPUs), the model has,
especially in recent years, broadened the number of systems
that can utilize this programming model.

To begin parallelizing, the user must tailor directive imple-
mentation based on the source code language. For C and C++,
directives are prefixed by #pragma acc. For Fortran, they
are prefixed with the sentinel !$acc. After the prefix, the user
declares the implementation through various data and compute
constructs using directives and clauses.

With proper implementation of OpenACC within a source
code, the compiler handles parallelization and memory man-
agement. At compile time, the hardware architecture can be
specified or detected by the compiler, and an architecture-
specific optimized translation of the code is generated. At
runtime, data is transferred to the device from the host as
specified or implied by directives created in the source code,
and the address is stored along with the host address to prevent
a page error from the operating system.

Code 1: Simple Serial Addition of Arrays
int main(){

int N = 1<<20;
Variable Declaration
for (int x = 0; x < N; ++x){a[x]=10;b[x]=15}
for (int x = 0; x < 1 << 14; ++x){

for (int y = 0; y < N; ++y){
c[y] = a[y] + b[y];}}

return 0;}

Abstracting the hardware implementation simplifies the cre-
ation and maintenance of optimized codes by reducing the
possibility of user error. As an example of the simplicity of
translation of a serial source code into an OpenACC directive-
based optimized code, we translate the serial code in Code 1
to both CUDA and OpenACC.

Code 2: Simple CUDA Addition of Arrays
__global__
void add_arrays(int n, double *a, double *b, double *c){

int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < n){c[x] = a[x] + b[x];}

}
int main(){

int N = 1<<20;
Variable Declaration
double *device_a, *device_b, *device_c;
for (int x = 0; x < N; ++x){a[x] = 10;b[x] = 15;}
cudaMalloc(&device_a, N * sizeof(double));
cudaMalloc(&device_b, N * sizeof(double));
cudaMalloc(&device_c, N * sizeof(double));
cudaMemcpy(device_a, a, N * sizeof(double),

cudaMemcpyHostToDevice);
cudaMemcpy(device_b, b, N * sizeof(double),

cudaMemcpyHostToDevice);
for (int x = 0; x < 1 << 14; ++x){

add_arrays<<<65565, 256>>>(N, device_a, device_b,
device_c);

}
cudaMemcpy(c, device_c, N * sizeof(double),

cudaMemcpyDeviceToHost);
cudaFree(device_a);
cudaFree(device_b);
cudaFree(device_c);

}

In order to translate this to CUDA, first, CUDA requires
that we initialize pointers for the device data pointers. Each

2

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

of these needs to be assigned its value by passing the reference
to cudaMalloc which allocates the data on the device. After
this, we also need to copy the data to the device referenced by
the device pointers. To create the kernel, we define the function
that accepts references and an end bound that checks against
the blockIdx.x, blockDim.x, and threadIdx.x. The
resulting code is in Code 2. Comparing the C code and the
CUDA code, the two versions of the code require totally
different function calls, formatting, and syntax.

Code 3: Simple OpenACC Addition of Arrays
int main(){

int N = 1<<20;
Variable Declaration
for (int x = 0; x < N; ++x){a[x] = 10;b[x] = 15;}
#pragma acc data copyin(a[0:N], b[0:N]) copyout(c[0:N])

for (int x = 0; x < 1 << 14; ++x){
#pragma acc parallel loop independent
for (int y = 0; y < N; ++y)

c[y] = a[y] + b[y];
} }

The OpenACC version in Code 3 requires few changes to
the serial code. We add a #pragma acc data construct,
which manages the device data environment for that region,
and a #pragma acc parallel loop independent
construct. The parallel loop construct specifies that the
following region should execute on the device and run in
parallel, and the independent clause specifies that the loop
does not have any inter-iteration dependencies.

III. CHALLENGING TESTS

In order to validate and verify the conformance of compilers
to the latest OpenACC specification, the testsuite must change
over time. The OpenACC V&V testsuite team is constantly
updating the suite to test the most recent specification. In
this section, we highlight some challenging tests within this
update, specifically directives and clauses, that evoked varying
interpretations.

A. Routine Directive Bind Clause and Lambda Function

The integration of additional C++ options with the
routine directive and bind clause proved to be particularly
tricky. These tests required several stages of development
to guarantee tests exist for every combination of both C++
class objects with arrays and normal functions in tandem
with lambda functions. The first obstacle is interpreting the
specification. Reading over the relevant section, the routine
directive was relatively straightforward. But for the bind
clause, it is vague on both the implication and the use
case. Thankfully, an imperfect test that utilizes these features
exists but also creates a race condition. Utilizing the test to
understand the directive application and implementation, the
race condition was removed. This serves as a foundation for
all of the other tests. Based on the specification, the routine
directive allows the user to specify a function to be compiled
and executed on both the host and on the device when the
function is called on the host. The bind clause allows for
further choice of which functions will be executed on the host
versus the device. The next challenge was learning how to
correctly implement a C++ lambda function. So, the best next

step that will provide practice without the extra complexity is
testing its implicit behavior within a pragma. Interpreting it
as an alternative way to declare functions that can exist within
any scope, the integration was relatively straightforward. With
the implementation of the routine and the lambda function
understood, this stage of testing reveals several features that
are not fully implemented. The current implementation of the
lambda function requires the host function to not be a lambda
function, the device lambda function to be placed at least one
function declaration below where the prototyped pragma is
declared, and the accelerator routine that is a lambda function
must be defined after the pragma is declared.

Code 4: Nonprototype Routine Declaration
#pragma acc routine vector bind("device_array_array")
real_t host_array_array(real_t * a, long long n){

#pragma acc loop reduction(+:returned)
real_t returned = 0.0;
for (int x = 0; x < n; ++x)

returned += a[x];
return returned;

}
auto device_array_array = [](real_t * a, long long n){

real_t returned = 0.0;
#pragma acc loop reduction(-:returned)
for (int x = 0; x < n; ++x)

returned -= a[x];
return returned;

};

Code 5: Prototype Routine Declaration
real_t host_array_array(real_t *a, long long n);
#pragma acc routine(host_array_array) vector bind(

device_array_array)

real_t host_array_array(real_t * a, long long n){
#pragma acc loop reduction(+:returned)
real_t returned = 0.0;
for (int x = 0; x < n; ++x)

returned += a[x];
return returned;

}
auto device_array_array = [](real_t * a, long long n){

real_t returned = 0.0;
#pragma acc loop reduction(-:returned)
for (int x = 0; x < n; ++x)

returned -= a[x];
return returned;

};

Taking the four possible permutations, seen in Code 4
and 5, of lambda functions and a normal function, these
evaluate to a total of sixteen different declarations to integrate
C++ class objects. Already having experience in using class
objects, the last stage of development was less challenging.
The implementation revealed another error, namely, utilizing
a copy and copyout clause on a class object resulted in a
segmentation fault when trying to access the data. But, this
was worked around by utilizing the update directive with
the host clause for the purpose of this test.

B. If Clause

The if clause in OpenACC acts similarly to how if state-
ments in the C language work. When the condition in the if
clause evaluates to true, the region will execute, accelerated,
on the device. When the condition evaluates to false, the region
will run unaccelerated on the local host thread. Starting in the
OpenACC 3.0 Specification, the if clause was applicable to
the following directives: init, set, shutdown, and wait.
The usage for the four directives is similar; the following test
is for the init directive. When the init directive is called,

3

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

the runtime environment for a given device is initialized. When
we created the test for the init directive with an if clause,
we originally believed the simplest way to test this was to
create a compute region and see if it ran. We created two
arrays and filled the first array, A, with random values, and
the other array, B, with all zeros. We looped through array A
and checked if the value in A matched the same value in A,
which would of course give us a true evaluation. Since the
values would always match, we set the value in array B to the
value in array A within an init if pragma that evaluated
to true. We would then check if the values from both arrays
always matched, and returned an error if they didn’t.

Shortly after this code was created, through discussion, an
issue with our test was found; the init directive doesn’t deal
with compute regions. One doesn’t use init to compute any
type of values, it is rather used to initialize the runtime for
some device. Therefore, our original interpretation completely
misused the directive. Connecting the if clause to an init
directive only determines if runtime is initialized on either the
current device or the local thread. Once we understood this,
the test became much more clear, reference Code 6.

Code 6: Correct Usage of Init If
int device_num = acc_get_device_num(

acc_get_device_type());
#pragma acc init if(device_num == device_num)

So, instead of computing values, we had to call a
device type and, using the if clause, check if the
device type we are calling matches the device type
we are currently using. This is why there are two
tests in this file: we had to check for a situatio-
https://www.overleaf.com/project/62e30e8628736e39713d22c4n
where the device types match and one where the device
types do not match. The if clause follows a similar protocol
for set, shutdown, and wait; a device will perform the
action for the respective directive only if the current device
type called matches the device type currently being used.
The if clause is currently only implemented on the wait
directive, but will be officially implemented on init, set,
and shutdown in the near future.

C. Reference Counter Zero Behavior

Code 7: Reference Counter Zero
#pragma acc data copyin(a[0:n], b[0:n]) copy(c[0:n])

#pragma acc parallel loop
for (int x = 0; x < n; ++x)

c[x] = a[x] + b[x];
#pragma acc exit data copyout(c[0:n])
for (int x = 0; x < n; ++x){

if (fabs(c[x] - (a[x] + b[x])) > PRECISION)
err += 1;

}

The goal of this test, Code 7, is to verify that an exit
data clause or copyout clause does not cause a runtime
error when executed on a variable whose reference count is
zero. In OpenACC 3.0 and earlier versions, this action should
cause a runtime error; however, in OpenACC 3.1 and later
versions, the error should not occur and no action should
be taken. To test this feature, a data region is created. A
variable, the c array, is copied in and then out of the region. On

entrance to the data region, the reference count of the variable
is incremented to one, and on exit it is decremented to zero.
After the data region, an exit data copyout directive
is executed on the aforementioned variable whose reference
count is now zero. This should cause no action, according
to the update to the specification in OpenACC 3.1, whereas it
would cause a runtime error in OpenACC 3.0 and before. This
test was difficult because the reference counter is not directly
accessible to the user of OpenACC; the programmer must trust
the implementation of the compiler. After multiple revisions of
this test, we decided the best way to test it was to use an exit
data directive with a copyout clause after a data region,
seen in Code 7. The redundant copyout clauses on the data
region would not cause the reference count to go below zero.
Moreover, clauses on a data region are not read by the compiler
in the order that they are listed, so putting a copyout on a
data region where the data to be copied is not already present
can cause issues. The exit data directive moves data from
device memory to host memory and deallocates the memory
on the device. The data has already been copied out after
the end of the data region, so the reference counter is zero.
Attempting an exit data directive for a variable who was
copied out at the end data region means that this directive
is called on a variable whose reference counter is zero. This
tests the specification statement that no action is taken when
an exit data directive is performed on a variable whose
reference counter is zero. In older versions of OpenACC, this
action would cause an error, but should not in this update.

D. Init Directive Device Type and Num Clauses

Initially looking into the device type clause, the feature
was relatively straightforward to utilize with the function
acc_get_device_type. Making the assumption that the
return value for the function could be used for the clause,
we looked into the specification for further guidance and
found that it accepts device-type-list. Looking throughout the
specification, this value was never explicitly defined.

Code 8: device type for GCC
int test1(){

int err = 0;
srand(SEED);
int device_num = acc_get_device_num(acc_get_device_type

());
#pragma acc init device_num(device_num)
return err;}

But when using this implementation, Code 8, for an
NVIDIA GPU, the compiler threw an error about device
type requiring the keywords: host, multicore, default, or
NVIDIA. To test this further, this code was also compiled
for AMD GPUs using GCC resulting in no compilation or
runtime errors. Rewriting the tests to incorporate the outlined
changes from the compiler from NVIDIA, the new test, Code
9, was compiled using nvc and GCC.

Asking the OpenACC community for further guidance led
to the appendix section. This section outlines the different
keywords to use for the different GPU vendors. While very
useful, with no mention of the multicore option for NVIDIA
or the acc_get_device_type option for GCC, it does

4

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

Code 9: device type for nvc
int test1(){

int err = 0;
srand(SEED);
#pragma acc init device_type(host)
#pragma acc init device_type(multicore)
#pragma acc init device_type(default)
#pragma acc init device_type(nvidia)
return err;}

not fully encapsulate all of the possible keyword options for
the GPUs. This also resulted in the encapsulation of each of
the options into their own tests and the NVIDIA option being
isolated into a separate test file.

IV. INFRASTRUCTURE

Alongside the validation suite for OpenACC, an infras-
tructure has been created to provide tools to maximize cus-
tomizability and readability. Formatting the output and results,
it was designed to handle errors at compilation and/or at
runtime, simplify running the testsuite, and set up the runtime
environment. Written in python using packages supported
by both python 2 and python 3, it has been developed for
compatibility across a majority of systems. Figure 1 gives an
overview of the infrastructure.

To customize the infrastructure, the users may edit the
configuration file. Within the file, documentation is provided
for each feature. Some of the features are left intentionally
empty to allow for the full capability of the infrastructure.
The most important feature is the interchangeable compiler
that is being used. For C, C++, and Fortran tests, the compiler
must be specified individually. Compilation flags must also be
specified as well, such as -acc, which is required for OpenACC
libraries. The users also have the option to choose among
the flags to use on the command line. These include but
are not limited to: OpenACC-specific flags like -Minfo=all,
displaying error messages during runtime or compilation, and
output of results for each test file. It is also possible to specify
commands to be run pre- or post compilation or execution if
the user would like to further customize the environment or
output format.

Next, the users can partition the testsuite to only execute a
certain subsection of tests. This could be accomplished in one
of two ways: running only a specified directory, or using the
tag-based system for conditional compilation. The directory
method utilizes the organization of the testsuite to isolate a
specific version of OpenACC tests to execute. For the tag-
based system, each test is tagged at the beginning of the code
based on what feature of OpenACC it is testing. It can also
be used to isolate a version of OpenACC that the tests are
valid in. If tests are tagged with a later version, they will be
omitted. For both methods, the directory where the tests are
built can be specified. When no specified directory or tag is
provided, the infrastructure compiles and executes all of the
tests within the validation suite.

Another important feature of the configuration file is the
ability to customize how the output is formatted by utilizing
one of the current options: json, txt, or html. With the json
option, the data is exported in json format with nothing

Fig. 1: Overview of the infrastructure

omitted. With the txt option, a list of commands and results
are output within a text log. The html option will produce an
altered json format for the purpose of being used in an html
page. This altered json format can be read with the use of the
results template.

Lastly, the testsuite could take several hours to fully execute
all of the tests provided. To cut down on the execution time,
a timeout parameter feature is provided to prevent the suite
from hanging in execution when a test hangs. Each test should
complete within 5 seconds, so a timeout of 10 seconds is
recommended. However, the largest time complexity is n3 for
any test currently, so the timeout can be scaled proportionally
if the problem size is changed by the user.

Table 1: Compilation Flags

Compilation Flags description
-c specify one or more configuration files

-env environmental output
-o naming the output file

-verbose interactive intuitive all
-system label system being used

Table 1 describes some of the flags available to users.
A comprehensive list of all the commands and how to run
the testsuite can be found on the OpenACC V&V Testsuite
GitHub 5.

V. LLVM INTEGRATION

The primary goal of the integration is to facilitate the use of
the OpenACC V&V Suite for testing the behavior of Clacc’s
current and future OpenACC support [19].

We anticipate this testsuite project will immediately benefit
the development of Clacc (OpenACC support for C/C++ in
Clang) and Flacc (OpenACC support for Fortran in Flang).

5https://github.com/OpenACCUserGroup/OpenACCV-V

5

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

These efforts would also be beneficial to establish feedback
from Clacc and Flacc to the OpenACC V&V testsuite team to
advance testing for the latest OpenACC specification versions
implemented in LLVM. Clacc and Flacc are developing their
own test suites that are to be contributed to upstream LLVM.
While the OpenACC V&V Suite can be used for validating all
OpenACC implementations, the Clacc and Flacc testsuites are
not meant to be that general. For example, Clacc’s test suites
exercise Clacc-specific command-line options and source-to-
source capabilities, which are beyond the scope of the Ope-
nACC specification. The major value of the OpenACC V&V
Suite would be an objective, third-party assessment of LLVM’s
(Clacc) conformance to the OpenACC specification that can
be compared with other OpenACC implementations. LLVM
has a testing infrastructure that contains regression tests and
a collection of whole programs [20], all of which are driven
by the LLVM Integrated Tester (LIT) tool. Clacc’s and Flacc’s
own test suites are being developed as extensions of LLVM’s
regression tests, which are small tests that are expected to
always pass and should be run before every commit. The
OpenACC V&V suite would be integrated into the collection
of whole programs.

A. Implementation

To set up an environment for the OpenACC validation and
verification suite entails a set of requirements that justify the
different features that we have implemented so far. These
requirements are as follows:

1) As mentioned in [21] the Clacc compiler translates
OpenACC to OpenMP in order to build upon the
OpenMP support being developed for Clang and LLVM.
To maximize reuse of the OpenMP implementation,
Clacc performs this translation early, on the abstract
syntax tree, which is the compiler front end’s internal
representation of the source code. This translation is
effectively a lowering of the representation and thus
follows the traditional ordering of compiler phases.

2) A CMakeList file has been created and included in this
project. It is a generator of build systems and used as
an entry point to our testsuite. It generates the Makefile
which allows users to compile, run, and report test
results. A set of make rules has been created for each
purpose, together with a set of options that modify each
rule’s behavior.

3) Those who would like to use this testsuite must be able
to obtain and export compilation and results. Hence,
the designed infrastructure should allow them to obtain
results in either a json format, or format for exporting
to other analysis tools and scripts.

Clacc is a project to develop OpenACC compiler and
runtime support for C and C++ in Clang and LLVM. Clacc’s
source code is available publicly on GitHub as part of the
LLVM DOE Fork maintained by ORNL. Clacc should be
built in the same manner as upstream LLVM when Clang and
OpenMP support are desired [21]. This integration includes a
CMakeLists for the OpenACC V&V suite so it can be built as

part of the LLVM test-suite. The CMakeLists will search for
all C and C++ source files of the OpenACC V&V suite, and
compile and run them. Running llvm-lit (or ”make check”)
will require a compatible accelerator on the running machine.
LLVM OpenACC V&V Integration can be found 6. With these
requirements defined, we present our infrastructure in the rest
of this section.

VI. SETUP AND COMPILATION FLAGS

Table 2: Compiler Versions and Platforms

System Hardware Compiler Flags
DARWIN NVIDIA T4 nvc 21.9 -acc=gpu
DARWIN NVIDIA T4 nvc 22.5 -acc=gpu
DARWIN NVIDIA Tesla

T4
GCC 10.1.0 -fopenacc

DARWIN NVIDIA Tesla
T4

GCC 11.3.0 -fopenacc

DARWIN NVIDIA Tesla
T4

GCC 12.1.0 -fopenacc

Summit NVIDIA Tesla
V100

nvc 20.9 -acc=gpu

Summit NVIDIA Tesla
V100

nvc 22.5 -acc=gpu

Summit NVIDIA Tesla
V100

GCC 10.2.0 -fopenacc

Summit NVIDIA Tesla
V100

GCC 12.1.0 -fopenacc

Perlmutter NVIDIA A100
Tensor Core

nvc 21.11 -acc=gpu

Perlmutter NVIDIA A100
Tensor Core

nvc 22.5 -acc=gpu

Perlmutter NVIDIA A100
Tensor Core

GCC 10.3.0 -fopenacc

Perlmutter NVIDIA A100
Tensor Core

GCC 11.2.0 -fopenacc

Perlmutter NVIDIA A100
Tensor Core

Clacc Git #
”4879e9”

-fopenacc

Spock AMD MI100 GCC 10.3.0 -fopenacc
Spock AMD MI100 GCC 11.2.0 -fopenacc
Spock AMD MI100 HPE 12.0.0 -hacc,noomp
Spock AMD MI100 HPE 13.0.0 -hacc,noomp

Table 2 displays the various systems and compilers we
used, as well as the hardware associated with each system
and what flags were used to specify OpenACC. You can find
more information on the system on our website. For more
information on command-line options for running OpenACC
applications and installation of Clacc, please go to the Clacc
Github repository of the llvm-project.7

6https://github.com/llvm/llvm-test-suite/tree/main/External
7https://github.com/llvm-doe-org/llvm-project/tree/clacc/main

6

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Verification and Validation Testsuite Results in C

Fig. 3: Verification and Validation Testsuite Results in Fortran

VII. RESULTS

(Note: The compiler and their versions, the number of
tests, and the OpenACC specification version used to generate
results for this paper are as current as Sept 2022 (at the time
of submitting this paper).)

While hundreds of tests have been added to or modified in
the testsuite, nothing has changed with the portability and ease
of use. After adjusting to each system the suite has run with
multiple compilers on multiple systems, when compatible, as
described in the previous section: Setup and Compilation Flags
in Section VI. Over the past couple of years, the testsuite has
grown to a suite comprised of more than 800 tests. Running
these tests across multiple systems gave varying results. Out
of the 831 tests, approximately 80% passed with the NVIDIA
and GNU compilers. These results are displayed in Figures 2
and 3. Due to the renewed HPE Cray OpenACC compiler now
focusing on the Fortran language, the success rate is higher at
roughly 84%.

The success rate of each compiler will continue to evolve as
more features are implemented per compiler and more bugs are
fixed. We hope that the testsuite not only provides a metric
for compiler teams to measure their current implementation
against, but also will be a tool in the future for compilers to
verify that features continue to work as changes continue to
be implemented.

A. NVIDIA Compiler’s Conformance to the OpenACC Speci-
fications

The NVIDIA compiler was tested on three different systems
intentionally to identify variations in results. Utilizing the
latest available compiler version on each system, namely 22.5,
and an older version to demonstrate validity over time, no
significant variation between versions tested was seen. On
average in these results, the NVIDIA compiler supports 80.7%
of features currently implemented into the testsuite which
includes most features up to OpenACC 3.2.

Some of the failures are due to issues in the implementations
of OpenACC; issues have been reported to NVIDIA who have
logged bugs. These include but are not limited to: the init di-
rective with the device_type clause, a combined construct
for serial loop with the vector, worker, and gang
clauses. Other failures are because some features past Ope-
nACC 2.7 are not yet implemented. The if clause on
the init, set, and shutdown directives to name a few.
NVIDIA is aware of all failures and are continually working
to improve the compiler.

B. The GNU Compiler’s Conformance to the OpenACC Spec-
ifications

The GNU compilers support anywhere between 78.3%
and 80.3% of the features currently implemented. The only
outlier was on Summit, which supported between 72.6% and
73.5% of features currently implemented with GNU compilers.
These features in the testsuite include most of the features
implemented up to OpenACC 3.2 and were written in C and
Fortran. While the number of tests written in C that passed
varied per machine, the results were consistent with each
other. The Fortran tests had almost the exact same pass rate,
with again Summit being the only exception for files in both
languages. Most of these failures were due to either bugs in the
compiler or the compiler not fully implementing all features
up to OpenACC 3.2.

C. The HPE Cray Fortran Compiler’s Conformance to the
OpenACC Specifications

One of the recent additions to the suite is HPE Cray’s
OpenACC support for Fortran. To note, this compiler focuses
on the Fortran language, thus limiting the tests we were
able to run. Our infrastructure will exclude the other two
languages when running, the option is within the config file.
Once excluded, the testsuite is left with a total number of 329
tests in Fortran with a success rate of approximately 84%.
To achieve this success rate we used the pre-exascale system
called Spock [22] at Oak Ridge National Laboratory. This
system has nodes with AMD GPUs MI60 and MI100. Our
tests ran on the MI100.

The HPE Cray compiler uses PTX (Parallel Thread Ex-
ecution) instructions which are translated into assembly, it
does not translate into CUDA. However, as clarified in
previous sections, the Cray compiler fully supports Ope-
nACC 2.0, with partial support for OpenACC 2.6. This
includes many behaviors like copy data clauses and the

7

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

default clause. Our testsuite has confirmed support for
the atomic construct, the reduction clause with the
kernels and parallel constructs. Notably, since partial
support is up to 2.6 some test cases will fail. Some of these
cases include: acc_on_device, acc_set_device_num,
and acc_set_device_type. We cannot guarantee that
these tests will succeed in the next compiler update. We can
guarantee that our team will continue to look in detail and
communicate with the developer about these results.

D. The LLVM/Clacc Compiler’s Conformance to the Ope-
nACC Specifications

The Clacc compiler focuses on the C and C++ languages,
resulting in a limited number of tests able to run. Our
infrastructure will exclude the Fortran language when running;
the option is within the config file. Clacc was tested on
NERSC’s Perlmutter using the LLVM GitHub commit hash
“4879e96”, which passed approximately 50% of OpenACC
V&V suite’s tests. However, 99.52% tests passed out of all
features implemented by Clacc. These features in the testsuite
include most of the features implemented up to OpenACC 3.2
and were written in C. Only one test failure was due to a bug in
Clacc. All remaining failures were due to OpenACC features
yet to be implemented by the compiler, including kernels,
serial, and async/wait. The Clacc compiler has greatly
increased their support for OpenACC lately, but this is a work
in progress.

VIII. DISCUSSION

This project has demonstrated the conformance of different
versions of OpenACC compilers and their current performance
targeting different systems including OLCF’s Summit and
Spock, NERSC’s Perlmutter, and the University of Delaware’s
Darwin. The previously published version of this effort [23]
had deemed the HPE Cray and Clacc compilers were not ready
for validation. However, the two compilers are now showing
increased support for OpenACC.

We were able to target multiple systems due to the infras-
tructure that we have built since our last publication. Because
the number of tests within our suite has increased and many
users may want to run the full suite, the infrastructure will
be the easiest way to validate any compiler on any system.
One thing to note, we want to update our implementation
of the infrastructure to better run C++ tests as currently, the
infrastructure leaves these tests out of the results.

Recently, features newly added in versions beyond 3.0 may
not have compiler implementations as of yet. However, we
have written the tests awaiting implementation. For example,
the if clause was recently added to the init, shutdown,
set, and wait directives in OpenACC 3.0. At the moment
of this publication, only the wait directive with the if clause
has been implemented by the NVIDIA (nvc) compiler. Init,
shutdown, and set have yet to be implemented but the
testsuite contains a test for each of these three combinations.
This is the major reason why new tests are failing; however,
as compilers will develop they will start to implement these

newer features. Thus, our test will validate the compiler im-
plementation of those newly compiler-implemented features.

IX. RELATED WORK

In our past publications on this topic, we have written
about the testsuite covering OpenACC 1.0 [18] and OpenACC
2.5 [23]. These two publications are the most related to our
ongoing work. There is testsuite similar to ours, at the Uni-
versity of Delaware, which targets the OpenMP programming
model. Their validation and verification testsuite [24] also aims
to check for conformance of features in compiler implemen-
tations. Since 2003, the OpenMP testsuite team has developed
tests according to OpenMP 2.0 [25], version 2.5 [26], version
3.1 [27] and version 4.5 [28], [29]. The team works on the
next publication as we speak.

Other efforts towards creation of a validation and verifi-
cation testsuite include Csmith [30] and the Parallel Loops
testsuite [31], modeled after the Livermore Fortran kernels [32]
as also mentioned in our previous publication. Csmith uses
differential testing to perform a randomized test-case gener-
ator exposing compiler bugs and the Parallel Loops testsuite
chooses a set of routines to test the strength of a computer
system (compiler, run-time system, and hardware) in a variety
of disciplines. OvO [33] is another suite that is a collection
of OpenMP offloading tests for C++ and FORTRAN. OvO
is focused on testing extensively hierarchical parallelism and
mathematical functions.

X. CONCLUSION AND FUTURE WORK

The purpose of this project is to develop test cases in
order to validate and verify compilers’ implementations of
OpenACC features. Compilers and the testsuite must advance
alongside the evolving OpenACC specification. The evolution
of the testsuite gives the opportunity to create test cases and
corner cases resulting in the finding of bugs, thus, improving
the compilers’ implementation of each feature.

In the future, one goal is to create an example guide for the
OpenACC community. Taking inspiration from OpenMP 4.5
Examples, our hope is that the guide will display relatively
simple examples of features in OpenACC. We will kick off
this process by first surveying the OpenACC user community
and seeking their input on features they would like us to create
examples for. The goal of this document would be to explain
each directive and clause with a short statement outlining what
the code is accomplishing. Automating the process gives the
opportunity to develop the guide at a faster pace; however, our
main focus, first, is to present a guide of the utmost quality
to the community. Our main hope for the example guide is
to provide sample code for OpenACC users to get a basic
understanding of applying OpenACC to their codes.

In order to ensure that compiler implementations are as bug-
free as possible and conform to the OpenACC specification,
we will add more rigorous testing to cover edge cases that
may not be possible with basic tests. To make the testsuite
easy to use, we will create a transposable connection between
the testsuite and the specification. The testsuite repository will

8

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

have tests that are related to the specification, and each test
will be tagged with the corresponding definition.

The results shown have been taken relatively close to the
submission date of this paper. We will continue to develop the
testsuite with valuable feedback and input from our mentors.
For more details on up-to-date results with new compilers,
compiler versions, up-to-date tests or to contribute to this
project please consult our website8.

A. Acknowledgments

We are grateful to OpenACC for their support on this
project, including technical support from Mathew Colgrove,
Jeff Larkin, Duncan Poole, Christophe Harle, Guray Ozen,
Wael Elwasif, Seyong Lee and Joel Denny for continued help
with this project.

This research was supported by the National Science Foun-
dation (NSF) under grant no. 1919839, in part through the use
of DARWIN computing system: DARWIN – A Resource for
Computational and Data-intensive Research at the University
of Delaware. This material is also based upon work supported
by NSF under grant no. 1814609.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. De-
partment of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under
Contract No. DE-AC02-05CH11231 using NERSC award.

REFERENCES

[1] OpenACC, “OpenACC, Directives for Accelerators,” http://www.open
acc.org/.

[2] OpenMP, “Openmp 4.5 specification.”
[3] NVIDIA, “CUDA SDK Code Samples,” http://developer.nvidia.com/c

uda-cc-sdk-code-samples, accessed: 2017-02-03.
[4] OpenCL, “OpenCL,” https://www.khronos.org/.
[5] “NVIDIA Thrust,” https://developer.nvidia.com/thrust, accessed: 2017-

02-03.
[6] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling

manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202–3216, 2014.

[7] S. Lee, J. Kim, and J. S. Vetter, “OpenACC to fpga: A framework for
directive-based high-performance reconfigurable computing,” in Paral-
lel and Distributed Processing Symposium, 2016 IEEE International.
IEEE, 2016, pp. 544–554.

[8] “Gcc supporting openacc model,” https://gcc.gnu.org/wiki/OpenACC.
[9] J. E. Denny, S. Lee, and J. S. Vetter, “Clacc: Translating openacc to

openmp in clang,” in 2018 IEEE/ACM 5th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC). IEEE, 2018, pp. 18–29.

[10] A. Tabuchi, M. Nakao, and M. Sato, “A source-to-source openacc
compiler for cuda,” in European Conference on Parallel Processing.
Springer, 2013, pp. 178–187.

[11] S. Lee and J. S. Vetter, “Openarc: Open accelerator research compiler
for directive-based, efficient heterogeneous computing,” in Proceedings
of the 23rd international symposium on High-performance parallel and
distributed computing, 2014, pp. 115–120.

8https://crpl.cis.udel.edu/oaccvv

[12] M. Wolfe, S. Lee, J. Kim, X. Tian, R. Xu, S. Chandrasekaran, and
B. Chapman, “Implementing the openacc data model,” in 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2017, pp. 662–672.

[13] S. Sathe, “Accelerating the ansys fluent r18. 0 radiation solver with
openacc,” 2016.

[14] Quantum Chemistry (QC) on GPUs, https://images.nvidia.com/content/
tesla/pdf/quantum-chemistry-may-2016-mb-slides.pdf.

[15] W. Sawyer, G. Zaengl, and L. Linardakis, “Towards a multi-node
openacc implementation of the icon model,” in EGU General Assembly
Conference Abstracts, 2014, p. 15276.

[16] X. Lapillonne and O. Fuhrer, “Using compiler directives to port large
scientific applications to gpus: An example from atmospheric science,”
Parallel Processing Letters, vol. 24, no. 01, p. 1450003, 2014.

[17] J. Y. Kim, J.-S. Kang, and M. Joh, “Gpu acceleration of mpas micro-
physics wsm6 using openacc directives: Performance and verification,”
Computers & Geosciences, vol. 146, p. 104627, 2021.

[18] C. Wang, R. Xu, S. Chandrasekaran, B. Chapman, and O. Hernandez,
“A validation testsuite for OpenACC 1.0,” in Parallel & Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International.
IEEE, 2014, pp. 1407–1416.

[19] “OpenACC VV suite for llvm,” https://docs.google.com/document/d/1
s2txylinBjCHYXLJcUdqM 0XvT7qk-ajJCfMQdqF9jo/edit#heading=h
.gg7fwklw6qfs.

[20] “LLVM testing infrastructure guide¶,” https://llvm.org/docs/TestingGui
de.html.

[21] C. Coti, J. E. Denny, K. Huck, S. Lee, A. D. Malony, S. Shende, and
J. S. Vetter, “Openacc profiling support for clang and llvm using clacc
and tau,” in 2020 IEEE/ACM International Workshop on HPC User
Support Tools (HUST) and Workshop on Programming and Performance
Visualization Tools (ProTools). IEEE, 2020, pp. 38–48.

[22] “Spock quick-start guide,” https://docs.olcf.ornl.gov/systems/spock qui
ck start guide.html.

[23] K. Friedline, S. Chandrasekaran, M. G. Lopez, and O. Hernandez,
“Openacc 2.5 validation testsuite targeting multiple architectures,” in
High Performance Computing, J. M. Kunkel, R. Yokota, M. Taufer, and
J. Shalf, Eds. Cham: Springer International Publishing, 2017, pp. 557–
575.

[24] OpenMP Validation and Verification Suite, “Openmp 3.1 Specification,”
https://github.com/sunitachandra/omp-validation.

[25] M. Müller and P. Neytchev, “An openmp validation suite,” in Fifth
European Workshop on OpenMP, Aachen University, Germany, 2003.

[26] M. Müller, C. Niethammer, B. Chapman, Y. Wen, and Z. Liu, “Validating
openmp 2.5 for fortran and c/c,” in in Sixth European Workshop on
OpenMP, KTH Royal Institute of Technology. Citeseer, 2004.

[27] C. Wang, S. Chandrasekaran, and B. Chapman, “An openmp 3.1
validation testsuite,” in International Workshop on OpenMP. Springer,
2012, pp. 237–249.

[28] J. M. Diaz, S. Pophale, O. Hernandez, D. E. Bernholdt, and S. Chan-
drasekaran, “Openmp 4.5 validation and verification suite for device
offload,” in International Workshop on OpenMP. Springer, 2018, pp.
82–95.

[29] J. M. Diaz, K. Friedline, S. Pophale, O. Hernandez, D. E. Bernholdt,
and S. Chandrasekaran, “Analysis of openmp 4.5 offloading in imple-
mentations: correctness and overhead,” Parallel Computing, vol. 89, p.
102546, 2019.

[30] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in ACM SIGPLAN Notices, vol. 46, no. 6. ACM,
2011, pp. 283–294.

[31] J. Dongarra, M. Furtney, S. Reinhardt, and J. Russell, “Parallel loops—a
test suite for parallelizing compilers: Description and example results,”
Parallel Computing, vol. 17, no. 10-11, pp. 1247–1255, 1991.

[32] F. H. McMahon, “The livermore fortran kernels: A computer test of the
numerical performance range,” Lawrence Livermore National Lab., CA
(USA), Tech. Rep., 1986.

[33] O. S. T. a Subset of OpenMP Offload, https://www.openmp.org/wp-co
ntent/uploads/Applencourt OvO slide.pdf.

9

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

A. Summarize the experiments reported in the paper and how
they were run.

We ran a suite of hundreds of tests to measure conformance
of compilers to OpenACC on a variety of hardware: Summit:
(2) 22 core IBM POWER9 processors CPUs, (6) NVIDIA
Tesla V100 GPUs Spock: (1) 64-core AMD EPYC 7662
“Rome” CPU, (4) AMD MI100 GPUs Perlmutter: (1) AMD
Milan CPU, (4) NVIDIA A100 Tensor Core GPUs Darwin: (2)
32-core AMD EpycTM 7502 processors, (1) NVIDIA T4 GPU
The testsuite was run using an infrastructure script to format
results and provide portability, reproducibility, and simplicity.
The testsuite and infrastructure used to run it and format results
are freely available (Github link below). The tests are based
off of the most recent version the OpenACC specification at
this time, version 3.2, which is available to the public (linked
below). For the various targets, we used: NVHPC 20.9, 21.9,
21.11, and 22.5; GCC 10.1, 10.2, 10.3, 11.2, 11.3, and 12.1;
and HPE Cray 12.0 and 13.0.

B. Software Artifact Availability:

All author-created software artifacts are maintained in a
public repository under an OSI-approved license.

C. Data Artifact Availability:

All author-created data artifacts are maintained in a public
repository under an OSI-approved license.

D. URL/DOI List (separate line per URL/DOI)

https://zenodo.org/record/7200141
https://crpl.cis.udel.edu/oaccvv/

E. Relevant hardware details:

Summit: (2) 22 core IBM POWER9 processors CPUs, (6)
NVIDIA Tesla V100 GPUs Spock: (1) 64-core AMD EPYC
7662 “Rome” CPU, (4) AMD MI100 GPUs Perlmutter: (1)
AMD Milan CPU, (4) NVIDIA A100 Tensor Core GPUs
Darwin: (2) 32-core AMD EpycTM 7502 processors, (1)
NVIDIA T4 GPU

F. Operating systems and versions:

Summit: Red Hat Fedora version 8.2 with kernel version
4.18.0. Spock: OpenSUSE version 15.2 with kernel version
5.3.18. Perlmutter: OpenSUSE version 15.3 with kernel ver-
sion 5.3.18. Darwin: CentOS 7 with kernel version 3.10.0.

G. Compilers and versions:

(GNU gcc 10.1, 10.2, 10.3, 11.2, 11.3, 12.1) (NVC 20.9,
21.9, 21.11, 22.5) (HPE Cray 12, 13) Clang clacc GitHub
#4879e96.

H. Libraries and versions:

(CUDA Versions: 11.0,11.3,11,7) Clacc’s version of
LLVM’s OpenMP runtime, OpenACC Runtime Library API

I. Performed verification and validation studies:

The testsuite was run using various compiler versions on
four architectures to validate compiler conformance to Ope-
nACC specification across multiple systems and versions.

J. Validated the accuracy and precision of timings:

Each test was run using various compiler versions on four
architectures to validate compiler conformance to OpenACC
specification across multiple systems and versions.

K. Quantified the sensitivity of your results to initial condi-
tions and/or parameters of the computational environment:

The testsuite was run using various compiler versions on
four architectures to validate compiler conformance to Ope-
nACC specification across multiple systems and versions.

10

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 00:13:08 UTC from IEEE Xplore. Restrictions apply.

