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Abstract—The OpenMP language continues to evolve with
every new specification release, as does the need to validate
and verify the new features that have been implemented by
the different vendors. With the release of OpenMP 5.0 and
OpenMP 5.1, new target offload and host-based features have
been introduced to the programming model. While OpenMP
continues to grow in maturity, there is an observable growth
in the number of compiler and hardware vendors that support
OpenMP. In this manuscript, the main focus is on evaluating
the conformity and OpenMP implementation progress of various
compiler vendors such as Cray, IBM, GNU, Clang/LLVM,
NVIDIA, and Intel. More specifically, the 4.5, 5.0, and 5.1 versions
of the OpenMP specification are analyzed. For our experimental
setup, the Crusher and Summit computing systems hosted by Oak
Ridge National Lab’s Computing Facilities are utilized. The effort
of vendor agnostic analysis of these implementations is especially
valuable for application developers who are using new OpenMP
features to accelerate their scientific codes. Insights are presented
into the current implementation status of various vendors, the
progression of specific compiler’s support for OpenMP over-
time, the subset of OpenMP 4.5, 5.0, and 5.1 that is supported
by all compilers, and examples of how our test suite has
influenced discussion regarding the correct interpretation of the
OpenMP specification. By evaluating OpenMP conformity of pre-
Exascale computing systems, the aim is to detail progress and
status of AMD + Cray ecosystem before the system and their
OpenMP implementation is used for mission critical applications
when the first Exascale Computer Frontier is made available to
applications.

Index Terms—OpenMP, GPU, Offloading, LLVM
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I. INTRODUCTION

Seven out of the ten fastest supercomputers in the world are

heterogeneous systems [23]. Heterogeneous systems may be

comprised of a CPU and an accelerator such as GPUs, FPGAs,

APUs, etc., however, the top performing supercomputers tend

to opt towards a configuration of CPU and GPU. For two

years in a row (June 2020 - June 2022), the Fugaku A64FX

supercomputer produced by Fujitsu and ARM and hosted

by RIKEN Center for Computational Science held the title

for the fastest supercomputer [24] and proved that a CPU

only configuration was able to transcend the performance of

heterogeneous systems like Oak Ridge National Laboratory

(ORNL)’s Summit (IBM Power9 CPU + NVIDIA V100 GPU).

Following the release of ORNL’s Frontier, the world’s first

Exascale supercomputer (HPL score of 1.102 Exaflop/s using

8,730,112 cores) [4], again the top supercomputer in the world

is composed of a heterogeneous mix of compute power (3rd

Gen AMD EPYC 64C CPUs and AMD Instinct MI250X

GPU accelerators). As hardware vendors with heterogeneous

systems in the TOP500, HPE Cray, IBM, Intel, NVIDIA, and

AMD provide software support for various parallel program-

ming models that allow users to port their parallel applications

to accelerators.

Considering the various changes in hardware architecture

offerings over the years, programming models and base lan-

guages are incorporating parallelism that can effectively use

the CPU as well as the GPUs. For a long time CUDA [17]

has been the first choice for GPU programming. Developed

by NVIDIA, CUDA provides an API to program GPUs that

can be used in applications written in C/C++ or Fortran.

HIP [2]is AMD’s proprietary GPU programming environment.

Although CUDA and HIP offer great performance for parallel

applications, they often require programmers to rewrite their

programs entirely and are platform specific.
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As more vendors are entering the GPU market, portable

parallel programming methods are required so that application

programmers can run codes on diverse heterogeneous systems,

such as Summit and Frontier, without massive re-engineering.

Directive-based parallel programming models OpenMP [20]

and OpenACC offer an approach that allows users to annotate

their serial code in a more straightforward manner and produce

parallel versions of their applications that will run on many

different architectures.

In preparation for the release of ORNL’s Frontier and

other US Department of Energy (DOE) funded systems, the

DOE Exascale Computing Project (ECP) sought to prepare

an Exascale software stack to ensure that mission-critical

applications are able to embrace the potential performance

boosts offered by newer generations of hardware. OpenMP,

a parallel programming library, is one component of this

software stack. More features that are valuable to develop-

ers continue to be added to the OpenMP specification. The

objective of ECP’s Scaling OpenMP via LLVM for Exascale

Performance and Portability (SOLLVE) team is to ensure

OpenMP is compatible with the unique software and hardware

requirements of exascale computing and to enable seamless

migration of applications to the novel computing system.

As of May 2022, the compilers that offer support for

OpenMP offloading features (specification versions 4.0 and

later) are AMD, Flang, GNU, HPE, IBM, Intel, LLVM,

NVIDIA, and Siemens. While this list of compilers that

support offloading with OpenMP is significant, there are far

less compilers that have continued to expand their OpenMP

implementations for versions 4.5, 5.0, and 5.1. According to

the OpenMP website [19], the only compilers that have any

coverage of OpenMP 5.0 offloading features are AMD, GNU,

HPE, Intel, LLVM, Siemens, and NVIDIA.

The need to validate and verify the compiler implemen-

tations of OpenMP features becomes increasingly important

now than ever as the Frontier exascale systems are being

made available for use to the application and software devel-

opers. This paper elaborates on the SOLLVE validation and

verification testsuite creation strategy, its workflow, statistics

on OpenMP features’ coverage and challenges faced while

writing tests for corner cases. Results and discussions entail

evaluation of compilers’ current status of stability and maturity

of implementations, types of errors, and discussions that have

led to the language committee revisiting the verbiage used in

the specification.

II. BACKGROUND AND MOTIVATION

A. OpenMP

OpenMP Specification provides an Application Program In-

terface (API) to allow programmers to develop threaded paral-

lel codes on shared memory systems. The OpenMP directives

or pragmas are understood by OpenMP aware compilers

while other compilers lacking OpenMP support are free to

ignore them. Usually a flag such as -fopenmp is required at

compile time to activate OpenMP recognition and processing

by the compiler. Along with compiler directives, OpenMP also

provides library routines and environment variables for explicit

control. The OpenMP parallel directive generates parallel

threaded code where the original thread becomes thread “0”.

The new league of threads share resources of the original

thread and the specific data-sharing attributes of variables can

be specified based on usage patterns of the application. A basic

usage example of the parallel directive is provided in the

code-snippet below.

1 int A[N][N], B[N][N], C[N][N];
2 // initialize arrays
3 #pragma omp parallel for
4 for (int i = 0; i < N; ++i) {
5 for (int j = 0; j < N; ++j) {
6 C[i][j] = A[i][j] + B[i][j];
7 }
8 }

Listing 1: Simple C program using OpenMP for matrix-matrix

addition

B. Offloading to Devices
OpenMP device directives such as target provide mech-

anisms for an OpenMP program to offload parallel code and

data to target devices.

NVIDIA AMD CCE Fortran CCE C/C++ LLVM (Clang)
OpenMP OpenMP OpenMP

Threadblock Work group omp teams omp teams omp teams
Warp Wavefront omp simd omp parallel omp parallel

Thread Work item omp simd omp parallel omp parallel

TABLE I: OpenMP Construct Mapping to GPU.
[1]

OpenMP offers three levels of parallelism (teams, threads,

and SIMD lanes), but existing devices may provide different

levels of parallelism (typically two or three levels), and differ-

ent OpenMP implementations can choose different parallelism

mapping for the same target device. Table I lists the equiva-

lence in terminology across different vendors and OpenMP.

For example, many of the existing OpenMP compilers largely

ignore SIMD clauses when targeting GPUs (mapping OpenMP

teams to GPU thread blocks and OpenMP threads to GPU

threads), but typical GPUs also expose thread-scheduling units,

such as warps in NVIDIA GPUs and wavefronts in AMD

GPUs, and thus other OpenMP compilers may choose to

provide fine-grained three level parallelisms (e.g., OpenMP

teams to GPU thread blocks, OpenMP threads to GPU warps,

and OpenMP SIMD lanes to GPU threads). When targeting

CPUs, however, the SIMD clause may play an important role,

and most existing OpenMP compilers exploit the SIMD-level

parallelism by mapping OpenMP threads to CPU threads and

OpenMP SIMD lanes to CPU SIMD lanes. But the applicabil-

ity of the SIMD parallelism largely depends on the compiler’s

vectorization capability, and it is still implementation-defined

how to map the three level OpenMP parallelisms to CPU

parallelisms. Therefore, this work will primarily focus on the

functional portability of the existing OpenMP implementa-

tions.
OpenMP provides a relaxed-consistency, shared-memory

model for a given device, which allows all OpenMP threads to
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access the device memory to store and retrieve variables. In the

OpenMP device data environments, each device has its own

device data environment, which may or may not share storage

with other devices. OpenMP device directives offer various

data-mapping options (via map) to specify how an original

variable is mapped from the current task’s data environment to

a corresponding variable in the target device data environment.

C. New 5.X Features

As newer architectures continue to evolve, so does the

feature requirements of parallel applications. To accommodate

these needs, the OpenMP ARB continues to add new features

to the specification. One of the more intriguing features that

was added to the 5.0 specification is metadirective,

which allows a program to run different variants of an

OpenMP directive as determined by a conditional state-

ment. The metadirective provides the when clause, which

receives arguments like arch (architecture) and isa (in-

struction set architecture). A common use case for this

directive would be when the architecture is NVIDIA or

when(arch==nvidia) we can call an OpenMP direc-

tive, say #pragma omp target. When this condition is

not met, we can instead define a default behavior such as

#pragma omp parallel. In 5.1, the error directive and

nothing directive were added specifically for usage with the

metadirective clause, and enable run time errors or non-action

behaviors to occur when a condition in the when clause is not

met.

OpenMP 5.0 was released in November 2018 and it in-

troduced a wide variety of improvements for heterogeneous

target offload and host based features. A new addition, the

requires directive, allows the programmer to request fea-

tures from the implementation that must be supported to enable

proper execution of kernels in a given computation unit. Of

these features available for enforcement, reverse offload and

unified shared memory prove to the most valuable as they

enable on-host execution initiated from the offload device and

utilization of a shared memory space between devices, respec-

tively. Another important feature released in OpenMP 5.0 is

the declare mapper directive. The declare mapper
directive now allows the creation of user-defined mappers to

avoid ambiguities that can arise between explicit and implicit

mapping of variables as well as the ability to map members

of a struct or class.

The declare target directive, which was initially in-

troduced in 4.0, allows the user to explicitly ensure that

procedures and global variables can be accessed on a device.

The 5.0 specification extends this directive with additional

functionalities and clauses. For example, the new clause,

device_type allows a user to create only device version,

only host version, or both versions of a function that they wish

to be included in the device memory. Functionality induced by

this clause is somewhat similar to metadirective in that a

user can make a host only or device only version of a function

or global variable accessible. However, metadirective

offers the added bonus of triggering different behavior based

on a conditional statement.

Many of the features introduced in 5.0, such as

metadirective and requires, are implementation-

dependent, meaning compiler vendors have some variability

in the manner by which they choose to implement these

features. The requires directive inherently requests that

an implementation must be able to provide a certain be-

havior in order to compile and run a program correctly.

The certain behaviors that can be requested or ‘required’

by the programmer are reverse offloading, unified address,

unified shared memory, atomic default memory ordering, and

dynamic allocators. A user can request reverse offloading

using #pragma omp requires reverse_offload at

the top of their program. If the implementation does not have

support for this feature, the program will either ignore the

requires statement and issue a compiler warning or rather

issue a compile error.

The declare variant directive, again, can be utilized

to achieve a similar functionality as the metadirective
and declare target directive. Utilizing the same

context-selector-specification field as the metadirective,

declare variant can call a different version of a pro-

vided base function, based on the context or conditional

statement with which the directive is associated.

OpenMP 5.1, released in November 2020, introduces fea-

tures such as the assume, nothing, scope, interop di-

rectives, loop transformation constructs, new modifier clauses

that extend the taskloop construct, newer support for indi-

rect calls to the device version of a function in target regions,

amongst others.

OpenMP 5.2 was released in November 2021 and continues

to add onto the previous OpenMP developments. OpenMP 5.2

specifically made improvements in its memory allocators, use

of Fortran PURE procedures, and use of the scope construct.

OpenMP 5.2 also includes simplified unstructured data offload

use, extended support of user-defined mappers, more consis-

tent linear clause, and refined OpenMP directives syntax.

The main objectives of this paper can be listed as follows:

1) Describe the SOLLVE V&V Suite, it’s intent and scope

2) Provide statistics on OpenMP features’ coverage by

different vendors

3) Deiscuss the subset of OpenMP which is supported by

all compilers referenced in this study

4) Discuss challenges faced while writing feature tests for

OpenMP

5) Discuss impact of the SOLLVE V&V testsuite on the

user community, OpenMP language specification and

applications

III. SOLLVE VALIDATION AND VERIFICATION SUITE

The SOLLVE Validation and Verification testsuite was built

to provide open-source vendor agnostic feature tests for the

latest OpenMP Specifications with focus on features of interest

to applications. The process for collecting application input
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across ORNL and other DOE labs is outside the scope of this

paper. Like most software projects, SOLLVE V&V is aware

that with vendor implementations and application changes,

the importance of features may change over time and we

perform regular checks and add missing tests/corner cases to

the testsuite.

A. Test Creation Strategy

Within every new release of the OpenMP specification,

there is a section that details the differences between the most

current version and its predecessor, which outlines all of the

new features that are provided to users. Compiler developers

from LLVM, GNU, and more take this differences list, or a

similar list potentially provided by the OpenMP ARB, and

formulate a to-be-implemented list that is typically hosted

on their website. For LLVM, each of the features will have

a status associated with it that describes the progress made

thus far in implementing: either unclaimed, worked on, mostly

done, not upstream, or done. Our development of feature tests

is dictated first by the ECP application needs. Through our

interactions with the Application Development (AD) teams,

a priority list of the most desired new features was created.

When writing a new test for an already implemented feature,

the usability of the feature that is outlined by the specification

is analyzed. Then, the potential combinations of options that

may be presented are outlined. For example the default
clause which has options for shared, none, as well as

firstprivate & private which were introduced in

OpenMP 5.1. For this example, there would need to be two

tests to encapsulate the full functionality of this new feature.

Lastly, careful attention is paid to the ‘restrictions’ section of

each feature, to ensure that the test being written does not

violate boundaries that have been outlined by the OpenMP

Specification. In the case of OpenMP features that do not

have implementations, generating a brand new test that is both

syntactically correct and accurate can prove difficult.

In either case it is ensured that the test meets all condi-

tions and restrictions noted in the specification and provides

adequate error checking in case of failure. During this stage

of development it is common to receive feedback from other

collaborators on how to approach or improve the test, espe-

cially on new tests that do not have implementations. After the

test has been written it enters a review process. This process

includes having each test independently verified by two other

collaborators, internal or external to our team. Other interested

parties, including members form the OpenMP community or

ARB, are welcome to provide their input in the form of Github

issues or pull-requests.

B. OpenMP 5.x+ Feature Coverage

As of this writing the V&V testsuite includes 258 5.0

tests, 53 5.1 tests & 6 5.2 tests. Since the primary focus of

the SOLLVE project is development of OpenMP support in

Clang, the testsuite has more coverage in C/C++. The 5.0

coverage includes a mix of Fortran & C versions while the

majority of our 5.1 tests are coded in C. Tests have been

written for a vast majority of 5.1 features. Test priority related

to 5.1 features are based primarily based on the needs of

SOLLVE application developers, starting with high-priority,

implemented features, and working our way to low-priority

non-implemented features. For the new features introduced

in OpenMP Specification a) 5.0 SOLLVE V&V testsuite

has 100% coverage for C/C++, 70% coverage for Fortran,

b) 5.1 Specification 85% coverage for C/C++, 5% coverage

for Fortran, and c) 5.2 Specification we have 20% overall

coverage. As mentioned before, the objective is not to have

feature tests for all the new features but to have tests that

cover, in sufficient detail, the important features as indicated

by the ECPDOE applications.

C. Challenges

1) Testing Unimplemented Features
Often times tests cases must be written for new OpenMP

features that are not yet implemented by any of the major

compiler vendors. This makes the OpenMP specification one

of the only resources available to understand how the feature

would work once implemented. This can lead to some issues

when attempting to develop strong tests for new features. A

prime example of this is the test case for the nothing clause

extension of the metadirective construct.

Here is an example of a simple implementation:

1 #pragma omp metadirective \
2 when( device={arch("nvptx")}: nothing) \
3 default( parallel for )
4 {
5 for (int i = 0; i < N; i++) {
6 A[i] += 2;
7 }
8 }

Listing 2: Simple usage of the nothing clause with the

metadirective

At a high level, the metadirective provides a way to dynam-

ically change what OpenMP constructs are rendered. In the

example above, if the code is offloaded to an NVIDIA device

then the nothing clause would be rendered. If not, it would

default to a parallel for loop. At first glance this seems

pretty intuitive. Our initial interpretation of the specification

was that the nothing clause would simply negate the code.

In other words, it would not run the for loop if the code was

running on an NVIDIA device. Based off the specification

itself and various examples this seemed to be correct. This then

lead to the bigger question of how to properly test nothing.

This test was initially written by looking for any spawned

threads, or signs that the array had been changed and the code

had run despite the nothing clause. This seemed promising,

but it was discovered the team’s interpretation was not the

same as the compiler implementation, as the specification

was vague. The nothing clause when used outside of the

metadirective implies that OpenMP would ignore the pragma
statement. However, the code would still run in serial. This

meant the initial version of the test was wrong and needed to

be amended.
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Ultimately the test was reworked to determine if the metadi-

rective had properly used the nothing directive by checking

if the code was running in parallel instead of just checking

for threads by leveraging the runtime omp_in_parallel
function. This function would only return 1 if the code is

running in parallel. In the example above, that would mean

it would only be 1 if the nothing directive was not rendered

properly. This ended up being a much more robust way to test

the nothing clause with metadirectives and was utilized in

the final version.

The nothing metadirective test demonstrates the chal-

lenge of the SOLLVE team’s interpretation of a test compared

to a compiler vendor’s interpretation, and illustrates the need

for heavy review and rewriting of code.

2) Unclear Specification
Another example of confusion relating to interpretation

of the specification arose when writing a test case for the

has_device_addr clause, added to the target construct

in OpenMP 5.1. The description of this clause states: ”The

has_device_addr clause indicates that its list items al-

ready have device addresses and therefore they may be directly

accessed from a target device.” [18] While this may seem

straight-forward, the purpose of this is relatively unclear. Ques-

tions arise, such as whether these list items be mapped first,

and then marked as on the device? If the list items are already

on the device, what is the benefit of listing them under the

clause? How is it ensured that the list items are not unmapped

at the end of a device region so that they remain when utilizing

the clause? The difference between use_device_addr and

has_device_addr is not clearly stated in the specification.

Furthermore, this clause was not listed on the OpenMP

examples document. [5] This document is often used by the

SOLLVE team to assist in creation of tests that have no

yet been implemented, as that document is the only official

resource supported by the OpenMP ARB which shows the

intended purpose and proper syntax of a new feature.

1 #pragma omp target enter data map(to: x, arr)
2 #pragma omp target data use_device_addr(x, arr)
3 #pragma omp target map(from:

second_scalar_device_addr,
second_arr_device_addr) has_device_addr(x,
arr)

4 {
5 second_scalar_device_addr = &x;
6 second_arr_device_addr = &arr[0];
7 }
8 #pragma omp target exit data map(release: x, arr)

Listing 3: Example of has device addr directive

The agreed-upon solution for this test arose only after

having community-driven detailed discussion on the directive’s

purpose and the implicit mapping of target directive. It was

decided that a target enter data map should be used

to ensure variables are properly mapped to the device. Then,

the use_device_addr and has_device_addr can be

used in tandem to ensure the variables maintain their device

addresses in the target region.

Fig. 1: OpenMP 4.5 tests with GCC on Summit.

IV. RESULTS AND DISCUSSION

A. Results from Summit

The following subsections shows results of GNU, LLVM

and NVHPC compilers and their maturity over time, on

Summit.

1) GNU Maturity Over Time
For the GNU results shown in Figures 1, 4 & 7, we only

utilize stable releases of the compiler that are made avail-

able on OLCF’s Summit supercomputer. Regarding the GNU

compilers, gcc and g++, there are seemingly a linear increase

in support for both 4.5 and 5.0 features in OpenMP across

major version releases. It is also important to note that GNU-

11.2.0 is the first version of the compiler that supports features

described in the OpenMP 5.1 specification. Version 12 Release

of GNU supports far more 5.1 features than version 11.2.0, so

any users attempting to utilize OpenMP 5.1 and 5.2 features

with the GNU compiler should aim to use GNU version 12.

Results in Table II show a list of tests that have passed

and failed over a set of GCC compiler versions they have

been tested on. For OMP 5.0 tests for loop reduction
and/or device passes on GCC version 9.3.0 but fails in

the next two versions i.e. 10.2.0 and 11.1.0.

2) LLVM Maturity Over Time
The results presented in Figures 2, 5 & 8, are for Clang

and Clang++ using the stable releases of LLVM-13, LLVM-

14 and the LLVM-15 developmental release available on the

OLCF’s Summit supercomputer. It is important to note that

LLVM provides an -fopenmp-version flag that allows

you to inform the compiler which specification version of

OpenMP you would like to compile for. This is vital for testing

various implementations of features, as many times features

will get redefined by new versions of the specification. For

example, the master construct in OpenMP 5.0 was renamed

to masked in OpenMP 5.1. The important thing to note here

is that LLVM continues to introduce more and more OpenMP

5.1 features. There are some rollbacks in 4.5 and 5.0 which
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Fig. 2: OpenMP 4.5 tests with LLVM on Summit.

Fig. 3: OpenMP 4.5 tests with NVHPC on Summit.

Fig. 4: OpenMP 5.0 tests with GCC on Summit.

Fig. 5: OpenMP 5.0 tests with LLVM on Summit.

Fig. 6: OpenMP 5.0 tests with NVHPC on Summit.

Fig. 7: OpenMP 5.1 tests with GCC on Summit.
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Fig. 8: OpenMP 5.1 tests with LLVM on Summit.

Fig. 9: OpenMP 5.1 tests with NVHPC on Summit.

Fig. 10: OpenMP tests with ROCm on Crusher.

Fig. 11: OpenMP tests with CCE on Crusher.

could be due to features being ’completed’ and then reopened

for further investigation, becoming ’partial’. Results in Table

III show a list of tests that have passed and failed over a set

of LLVM compiler versions they have been tested on. For

OMP 5.0 test written for master loop device passes on

LLVM version 13 but fails in the next two versions i.e. 14

and 15. Similar trends are seen for five other OMP 5.0 tests

while the OMP 5.0 test for reverse offload only fails

on LLVM version 15, which is the latest tested version.

Test Name OMP Ver gcc 9.3.0 gcc 10.2.0 gcc.11.1.0
test loop reduction 5.0 Pass Fail Fail

and device.c
test loop reduction 5.0 Pass Fail Fail

or device.c

TABLE II: Inconsistencies of tests passing and failing across

different GCC versions

Test Name OMP Ver llvm 13 llvm 14 llvm 15
test master taskloop 5.0 Pass Fail Fail

device.c
test master taskloop 5.0 Pass Fail Fail

simd device.c
test parallel master 5.0 Pass Fail Fail

device.c
test parallel master 5.0 Pass Fail Fail

taskloop device.c
test parallel master 5.0 Pass Fail Fail

taskloop simd device.c
test requires reverse 5.0 Pass Pass Fail

offload.c
test target task depend 5.0 Pass Fail Fail

mutexinoutset.c

TABLE III: Inconsistencies of tests passing and failing across

different LLVM versions

3) NVHPC Maturity Over Time
The results collected in Figures 3, 6 & 9, regarding NVHPC

are on OLCF’s Summit supercomputer system. We targeted the

last three stable releases of the NVIDIA HPC compiler suite
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including the latest, 21.11. For these results, it is important to

note that while coverage for 4.5 is about complete, acceleration

of coverage for 5.0 has not increased quickly over the last

few releases. Additionally, only 13 of the 53 features that

we have written tests for OpenMP 5.1 for are supported.

Results in Table IV show a list of tests that have passed

and failed over a set of NVHPC compiler versions they

have been tested on. For OpenMP 4.5 version, tests written

for target teams distribute for if parallel
modifier passes using NVHPC version 21.7 but fails in

the next two versions i.e. 21.9 and 22.11. Similar trends can

be seen with tests in OpenMP version 5.0.

Test Name OMP Ver 21.7 21.9 21.11
test target teams 4.5 Pass Pass Fail

distribute for
parallel for if

parallel modifier.c
lsms triangular packing.cpp 5.0 Pass Pass Fail

test declare variant.F90 5.0 Pass Pass Fail
test target 5.0 Pass Pass Fail

teams distribute parallel
for collapse.c

TABLE IV: Inconsistencies of tests passing and failing across

different NVHPC versions

B. Results from Crusher - A Pre-Frontier System

Here we share the evaluation of compiler implementations

on Crusher. We evaluate AMD ROCm and Cray CCE compil-

ers.
1) ROCm Maturity Over Time
The results listed in Figure 10 are from the Pre-Frontier

Crusher system and show 4 versions of AMD’s developmental

HPC ROCm compiler. Results show a leap in OpenMP im-

plementation from version 4.5.0 to version 5.0.0, but minimal

changes there onward. It is interesting to note that one C

test now passed from version 5.1.0, but one Fortran test now

fails. This, again, could be due to features requiring more

investigation or the definition of features being changed in

the newer versions of OpenMP.
2) CCE Maturity Over Time
The results listed in Figure 11 also show the Cray Compil-

ing Environment (CCE) results on Crusher. The results only

include CCE 14.0.0 & CCE 14.0.1 versions, as the only other

versions available on Crusher, 13.0.0 & 13.0.2 do not work

properly with OpenMP. These versions require dependencies

from both ROCm 4 & ROCm 5, which cannot be loaded at the

same time. The results show decent performance, with around

80% of tests passing for version 14.0.0, increasing slightly

with 5 more Fortran tests passing in 14.0.1. It is interesting

to note that C implementation for CCE & ROCm compiler is

nearly identical, but Fortran implementation on CCE is slightly

better.

C. Subset of OpenMP Supported By All Compilers

The run-time and compile-time results for NVIDIA, LLVM,

GNU, CCE, and ROCm on the Summit and Crusher supercom-

puting systems reveal a subset of OpenMP features supported

by all of the aforementioned compilers. Also revealed, is a

subset of OpenMP features not supported by any of the afore-

mentioned compilers. In this section’s discussion, a pass is

only deemed a pass if it is such for each of the five compilers.

Thus, a fail is only deemed a fail if it is such for each of

the five compilers. Regarding discussion of Fortran in this

section, we will be analyzing results for NVIDIA, GNU, CCE,

and ROCm exclusively, as LLVM does not have support for

OpenMP offloading on the Summit supercomputer. This point

will be belabored in order to avoid any misrepresentation. For

our C/C++ OpenMP 4.5 tests, we report 85.93% tests pass

and 0% of tests fail across all five compilers. Moreover, for

the Fortran OpenMP 4.5 tests, 74.50% of these tests pass and

0% of tests fail across GNU, NVIDIA, CCE, and ROCm.

These results exemplify OpenMP 4.5’s maturity as almost all

of the OpenMP 4.5 features that tested portable across all of

the five compilers for C/C++ and four of the compilers for

Fortran. Equally as impressive is the fact 0% of tests fail

across the aforementioned compilers for C/C++ and Fortan,

meaning that every feature tested in OpenMP 4.5 is supported

by at least one compiler. Moving onward to OpenMP 5.0, we

report 18.34% of the C/C++ tests pass and 4.14% fail across all

five compilers. For the Fortran OpenMP 5.0 tests, we report a

16% pass rate and a 23% fail rate across NVIDIA and GNU.

While OpenMP 5.0 is certainly not as portable as OpenMP

4.5, the results expose the fact that almost every OpenMP 5.0

feature we test is supported by at least one compiler. For the

C/C++ OpenMP 5.1 tests, only 1.96% of tests pass and 43.13%

of tests fail for C/C++ tests pass across all three compilers.

Finally, the Fortran OpenMP 5.1 tests have a 0% pass rate and

a 50% fail rate across NVIDIA and GNU.

V. IMPACTING OPENMP COMMUNITY, VENDORS,

OPENMP SPECIFICATION, AND APPLICATIONS

This section draws inferences from the lessons learnt via

this project and highlights the impact of SOLLVE V&V on on

the different aspects related to OpenMP; mainly community,

vendors, specification, and applications.

A. Impact on the OpenMP Community

With rapid development of the OpenMP Specification and

with OpenMP Examples [5] as the only OpenMP ARB

sanctioned resource, application programmers and other users

often refer to the SOLLVE V&V tests to see how to utilize a

new OpenMP features. One of reasons for this is that OpenMP

Examples [5], though an excellent resource, is not exhaustive

and is often released after a given specification version has

been around for sometime. The SOLLVE V&V also consists

of some tests adapted from OpenMP Examples document, but

recently, the examples document has been extended to in-

clude an declare target example based on the SOLLVE

V&V feature test for device_type(nohost) based on

the community discussion during the test creation. Listing 4

shows the skeleton testcase. Due to the fundamental OpenMP

requirement that fallback execution of device constructs must

be supported, using device_type(nohost) for procedure
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target fun on the declare target imposes an additional

requirement not clearly mentioned in the specification. Since

nohost implies that the procedure target fun is made avail-

able only on the device, it needs to be a device variant for the

procedure fun(). This is needed to ensure that a host symbol for

target fun is not required to be present in the host environment

in the case of host fallback. Without the variant function, the

use of nohost will result in a link time error due to the code

generated for host execution of the target region.

1 ...
2 #pragma omp declare variant(target_fun) match(

device={kind(nohost)})
3 void fun() {
4 /*some work*/
5 } }
6 void target_fun(){
7 /*some work*/
8 }
9 #pragma omp declare target enter(target_fun)

device_type(nohost)
10 int main() {
11 ...
12 #pragma omp target
13 {
14 foo(); // calls the target_fun() on device or

fun() in case of host fallback.
15 }
16 ...

Listing 4: Snippet from declare target directive test with

device type nohost

B. Impact on Vendor Implementation

The test cases we create can also help expose miss-

ing aspects of a specific compiler’s implementation. In one

instance https://github.com/SOLLVE/sollve vv/issues/409, we

were developing a test to evaluate the new metadirective
feature. The objective of the test was to check the use of

context-selectors to determine which vendor provided the

implementation, either AMD or NVIDIA in this case. Then,

depending on which vendor produced the current implementa-

tion, we would run with a different number of threads, 32 for

NVIDIA or 64 for AMD. After approving and merging this

test, a developer from NVIDIA noticed that we had incorrectly

used an omp_is_initial_device runtime call strictly

nested inside of a teams region as shown below.

Although this test was not for the teams directive, nor for

omp_is_initial_device, this mishap led GCC to add in

additional API call checks for constructs strictly nested inside

teams https://gcc. gnu. org/PR102972

1 #pragma omp metadirective \
2 when( implementation=vendor(nvidia): \
3 teams num_teams(512) thread_limit(32) ) \
4 when( implementation=vendor(amd): \
5 teams num_teams(512) thread_limit(64) ) \
6 default (teams)
7 which_device = omp_is_initial_device();
8 #pragma omp distribute parallel for
9 for (i = 0; i < N; i++) {

10 a[i] = i;
11 }

Listing 5: Incorrectly Strictly Nested OpenMP runtime call

C. Changes to the OpenMP 6.0 Specification

1) Discussion of Test Case Leads to Specification Issue
In another instance, a line of questioning regarding one

of our already peer reviewed and merged pull requests that

came in the form of a GitHub issue led to discussion with the

OpenMP Language Committee. The issue, also described here

https://github.com/SOLLVE/sollve vv/issues/426 and shown

in the code caption below, pointed out a unique case where

a local variable is mapped to the device using a target
enter data map, but is not explicitly mapped again on

the target region itself. The stack variable is then treated as

firstprivate in the target region and is not deallocated

properly causing the stack address to be reused by a different

stack variable. In this case, confusion arises due to discrepan-

cies in the present table and produces a runtime error. The fix

we agreed upon with the community member who discovered

this issue is to free memory on the device associated with the

stack variables before the lifetime of said variable ends on the

host. Even though we were able to resolve this runtime error

through deallocating the variable at the proper time, it became

clear that there is no wording in the OpenMP specification

that states that an OpenMP programmer must use a target
exit data or similar directive to ensure that the lifetime of

a variable does not end before it has been unmapped from a

device data environment. An issue was filed with the OpenMP

specification for inclusion in the 6.0 specification, but has not

been resolved or merged yet.

1 #pragma omp target enter data map(to: val) depend
(out: val)

2

3 #pragma omp target map(tofrom: isHost) map(alloc:
h_array[0:N]) depend(inout: h_array) depend(
in: val)

4 {
5 isHost = omp_is_initial_device();
6 for (int i = 0; i < N; ++i) {
7 h_array[i] = val; // val = DEVICE_TASK1_BIT
8 }
9 }

Listing 6: Confusion surrounding lifetime of stack variable var

2) Specification Clarification from Test Case Discussion
Further success resulted from our test case of the

recently added allocate directive https://github.com/

SOLLVE/sollve vv/pull/440. An in-depth discussion regard-

ing whether a certain variable could or could not be explicitly

mapped, led to the inclusion of the following language in the

restrictions of the threadprivate directive: “A variable that is

part of another variable (as an array element or a structure

element) may appear in a threadprivate directive only if it is

a static data member of a C++ class.”

D. Impact on Applications

Though the SOLLVE V&V tests primarily focus on feature

tests, it also covers certain pure OpenMP application kernels

extracted from applications. These tests focus on particular

requirement from applications or motivated by inconsistent,

regressions seen in vendor implementation, and varying sup-

port from vendors. For example, the QMCPACK application
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(an ECP application that is open-source, high-performance

electronic structure code that implements numerous Quantum

Monte Carlo (QMC) algorithms [12]) found out that certain

OpenMP implementations would error out when Math library

functions (in math.h) were invoked from within a target
region. In order to simplify testing over multiple implementa-

tions we created a distilled version of the same and included

in our application kernels directory. The developers can run

these tests on the platform of their choice or refer to the

SOLLVE V&V website [25] to see if recent results for the

same to verify support. The SOLLVE V&V is tested across a

variety of hardware platforms and OpenMP implementations

regularly to document the progress of the different implemen-

tations and record any regressions. Likewise we have looked

into a number of applications like GridMINI, GESTS, LSMS

etc. to collect representative application kernels which are of

interest for the application developers to track. These kernels

not only provide an quick and easy method for application

developers to check vendor implementations, but also provide

insights to vendors regarding the pain-points or critical features

required by HPC applications.

VI. RELATED WORK

Work on OpenMP offloading has evolved in the past several

years. Updated information on the various compiler tools

and their coverage of OpenMP implementations especially

offloading features can be found here [19].

Following are some of related works on the validation and

verification of OpenMP implementations that includes features

prior to offloading as well [8], [9], [15], [16], [26]. These

works have been highlighting ambiguities in the specifications

and reporting compiler/runtime bugs thus enabling application

developers to be aware of the status of the compilers. Another

effort to test OpenMP Offloading test functions for C++ and

Fortran is the OvO suite [3]. These tests focus on extensively

testing hierarchical parallelism and mathematical functions.

Other related work includes Csmith [27], a comprehensive,

well-cited work where the authors perform a randomized

test-case generator exposing compiler bugs using differential

testing. Csmith detects compiler bugs, however the strategy

entails automatically mapping a randomly generated failed

test to a bug that actually caused it. Such a strategy would

be effective on implementations that are stable and mature.

However in our case, there is frequent communication with

vendors with respect to discussing and reporting bugs, and

the suite also requires the use of combined and composite

directives that need to be tested prior to marking a bug as a

compiler or a runtime error. To that end the testsuite is not

quite ready to use an approach like that used in Csmith.

Other related work includes the parallel testsuite [10] that

chooses a set of routines to test the strength of a computer

system (compiler, runtime system, and hardware) in a variety

of disciplines with one of the goals being to compare the abil-

ity of different Fortran compilers to automatically parallelize

various loops. The Parallel Loops test suite is modeled after the

Livermore Fortran kernels [14]. Overheads due to synchroniza-

tion, loop scheduling and array operations are measured for

the language constructs used in OpenMP in [22]. Significant

differences between the implementations are observed, which

suggested possible means of improving future performance.

A microbenchmark [6] suite was developed to measure the

overhead of the task construct introduced in the OpenMP 3.0

standard, and associated task synchronization constructs.
These above mentioned work are some of the closely related

work that focuses on tests being built and measuring overheads

of implementations. There are several other related efforts

that evaluate implementations using proxy, mini- or real-world

applications. These work focus on mostly for performance

evaluation and not the validity of the implementations. Some

of these work include [7], [11], [13], [21].

VII. CONCLUSION

Application developer teams often use OpenMP to improve

the performance of their code. Newer versions of OpenMP

are released every other year which include GPU offloading

features, and it is vital that these features are implemented by

compiler vendors & system managers. Our testsuite ensures

developers know what systems & compilers perform the most

optimally for C, C++ & Fortran.
The test suite has been run on multiple systems, including

ORNL’s Summit system and the Pre-Frontier systems Crusher

with multiple compilers. Overall, it is obvious GCC, Clang

& NVHPC perform similarly for OpenMP 4.5 features, while

NVHPC falls behind in later versions. LLVM’s lack of a For-

tran compiler makes it difficult to compare these compilers as

a whole, though. On Crusher, which uses an AMD GPU, both

ROCm and CCE have better support but do not progress much

over version releases, especially regarding Fortran support.
Analysis of the suite’s results for NVIDIA, LLVM, GNU,

CCE, and ROCm on the Summit and Crusher supercomputing

has shown that OpenMP 4.5 is extremely portable across the

five compilers observed in this study. OpenMP 5.0 is not

very portable across these compilers and some features are

not supported by any of the five compilers. Developers that

are concerned about portability are recommended to utilize

OpenMP 4.5 features and only utilize OpenMP 5.0 features

that are in the sparse set of features supported by all compilers.
Despite challenges presented to test writing, compiler imple-

mentation continues to improve over time and newer versions

of OpenMP feature tests, presently supporting OpenMP 5.2,

are being included in our testsuite.
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APPENDIX

A. Abstract

This paper explores the conformity and implementation pro-

gress of various compilers for the OpenMP 4.5, 5.0 and 5.1

release specifications. Various scripts were built for testing the

implementation, and to gather results from various systems.

This repository includes information on the resources such as

scripts, hardware, software and other dependencies that can be

used to reproduce the results that are being used in the paper.

B. Artifact Availability

Software Artifact Availability: All software is maintained in

an repository under Open-Source License BSD-3.

Hardware Artifact Availability: There are no author-created

hardware artifacts.

Data Artifact Availability: All data, except Crusher results

are available on our website and is under Open-Source License

BDS-3. Crusher results are under the discretion of OLCF.

Proprietary Artifacts: There are no author-created propritary

artifacts.

List of URLs and/or DOIs where artifacts are available:

https://github.com/SOLLVE/sollve vv

https://crpl.cis.udel.edu/ompvvsollve

C. Baseline experimental setup, and modifications made for
the paper

1) Summit
Relevant hardware details: [2x] IBM’s 22 SIMD Multi-Core

POWER9 CPUs, 512 GB of DDR4, [6x] NVIDIA Tesla V100

Operating systems and versions: Red Hat Enterprise Linux

(RHEL) version 8.2

Compilers and versions: GCC 11.2.0 IBM XL 16.1.1-10

Applications and versions: CUDA 11.5.2

Libraries and versions: OpenMP 4.5, 5.0, & 5.1

Paper Modifications: No modifications were made

2) Crusher
Relevant hardware details: 64-core AMD EPYC 7A53 CPU,

512 GB of DDR4, [4x] AMD MI250X

Operating systems and versions: SUSE Linux Enterprise

Server 15.3 SP3

Compilers and versions: Cray CCE 14.0.0 & 14.0.01, AMD

ROCm 4.5.0, 5.0.0, 5.1.0 & 5.2.0

Applications and versions: No applications were used

Libraries and versions: OpenMP 4.5, 5.0 & 5.1

Paper Modifications: No modifications were made

D. Summit results generation script

1 #!/bin/bash
2

3 #Load GCC
4 module load gcc/11.2.0
5 module cuda
6 module python
7

8 #run testsuite for 4.5
9 make CC=gcc CXX=g++ FC=gfortran LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=4.5 all

10

11 #run testsuite for 5.0
12 make CC=gcc CXX=g++ FC=gfortran LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=5.0 all

13

14 #run testsuite for 5.1
15 make CC=gcc CXX=g++ FC=gfortran LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=5.1 all

16

17 #Load Clang
18 module use /sw/summit/modulefiles/ums/stf010/Core
19 module load llvm/15.0.0-20220420 #might need to

change this version :)
20 module load cuda
21

22 #run testsuite for 4.5
23 make CC=clang CXX=clang++ FC=flang LOG_ALL=1 LOG

=1 VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=
nvidia SYSTEM=summit OMP_VERSION=4.5 all

24

25 #run testsuite for 5.0
26 make CC=clang CXX=clang++ FC=flang LOG_ALL=1 LOG

=1 VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=
nvidia SYSTEM=summit OMP_VERSION=5.0 all

27

28 #run testsuite for 5.1
29 make CC=clang CXX=clang++ FC=flang LOG_ALL=1 LOG

=1 VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=
nvidia SYSTEM=summit OMP_VERSION=5.1 all

30

31 #Load ibm
32 module load xl/16.1.1-10
33 module load cuda
34

35 make CC=xlc CXX=xlc++ FC=xlf_r LOG_ALL=1 LOG=1
VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=4.5 all

36

37 #run testsuite for 5.0
38 make CC=xlc CXX=xlc++ FC=xlf_r LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=5.0 all

39

40 #run testsuite for 5.1
41 make CC=xlc CXX=xlc++ FC=xlf_r LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=5.1 all

42

43 make report_summary
44 make report_json
45 mv report_json summit_results.json

Listing 7: Summit script

E. Crusher result generation commands

1 #Load rocm
2 ml rocm
3 #Load cray
4 ml PrgEnv-cray
5

6 #run testsuite for cce/14.0.0
7 ml cce/14.0.0
8 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1

OMP_VERSION=4.5 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

9 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1
OMP_VERSION=5.0 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

10 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1
OMP_VERSION=5.1 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all
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11

12 #run testsuite for cce/14.0.1
13 ml cce/14.0.1
14 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1

OMP_VERSION=4.5 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

15 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1
OMP_VERSION=5.0 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

16 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1
OMP_VERSION=5.1 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

17

18 #run testsuite for rocm/4.5.0
19 module load PrgEnv-amd
20 module load rocm/4.5.0
21 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1

LOG_ALL=1 OMP_VERSION=4.5 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

22 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.0 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

23 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.1 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

24

25 #run testsuite for rocm/5.0.0
26 module load rocm/5.0.0
27 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1

LOG_ALL=1 OMP_VERSION=4.5 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

28 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.0 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

29 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.1 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

30

31 #run testsuite for rocm/5.1.0
32 module load rocm/5.1.0
33 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1

LOG_ALL=1 OMP_VERSION=4.5 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

34 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.0 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

35 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.1 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

36

37 #run testsuite for rocm/5.2.0
38 module load rocm/5.2.0
39 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1

LOG_ALL=1 OMP_VERSION=4.5 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

40 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.0 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

41 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.1 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

Listing 8: Crusher Commands

F. Sample Result Output

Shown below is a single test result sampled from the

results json file generated by the Crusher results generation

commands

1 {
2 "Binary path": "bin/alpaka_complex_template.cpp",
3 "Compiler command": "amdclang++ -I./ompvv -std=c

++11 -lm -O3 -fopenmp -fopenmp -fopenmp-
targets=amdgcn-amd-amdhsa -Xopenmp-target=
amdgcn-amd-amdhsa -march=gfx90a -
D__NO_MATH_INLINES -U__SSE2_MATH__ -
U__SSE_MATH__",

4 "Compiler ending date": "Thu 14 Jul 2022 04:30:15
PM EDT",

5 "Compiler name": "amdclang++ AMD clang version
13.0.0 (https://github.com/RadeonOpenCompute/
llvm-project roc-4.5.0 21422
e2489b0d7ede612d6586c61728db321047833ed8)",

6 "Compiler output": "",
7 "Compiler result": "PASS",
8 "Compiler starting date": "Thu 14 Jul 2022

04:30:03 PM EDT",
9 "OMP version": "4.5",

10 "Runtime ending date": "Thu 14 Jul 2022 04:30:15
PM EDT",

11 "Runtime only": false,
12 "Runtime output": "\u001b[0;32m \n\n running: bin

/alpaka_complex_template.cpp.run \u001b[0m\
nalpaka_complex_template.cpp.o: PASS. exit
code: 0\n\u001b[0;31malpaka_complex_template.
cpp.o:\n[OMPVV_INFO: alpaka_complex_template.
cpp:40] Test is running on device.\n[
OMPVV_INFO: alpaka_complex_template.cpp:58]
The value of errors is 0.\n[OMPVV_RESULT:
alpaka_complex_template.cpp] Test passed on
the device.\u001b[0m\n",

13 "Runtime result": "PASS",
14 "Runtime starting date": "Thu 14 Jul 2022

04:30:14 PM EDT",
15 "Test comments": "none",
16 "Test gitCommit": "98cae2b",
17 "Test name": "alpaka_complex_template.cpp",
18 "Test path": "tests/4.5/application_kernels/

alpaka_complex_template.cpp",
19 "Test system": "crusher"
20 }

Listing 9: Sample results json output
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