
EDITORS: Jeffrey C. Carver, carver@cs.ua.edu
Karla Morris, knmorri@sandia.gov

SPECIAL TRACK: SOFTWARE ENGINEERING

OpenACC Acceleration of an Agent-Based
Biological Simulation Framework
Matt Stack, NVIDIA Corporation, Santa Clara, CA, 95051, USA

Paul Macklin , Indiana University, Bloomington, IN, 47408, USA

Robert Searles , NVIDIA Corporation, Santa Clara, CA, 95051, USA

Sunita Chandrasekaran , University of Delaware, Newark, DE, 19716, USA

Computational biology has increasingly turned to agent-based modeling to explore
complex biological systems. Biological diffusion (diffusion, decay, secretion, and uptake)
is a key driver of biological tissues. GPU computing can vastly accelerate the diffusion
and decay operators in the partial differential equations used to represent biological
transport in an agent-based biological modeling system. In this article, we utilize
OpenACC to accelerate the diffusion portion of PhysiCell, a cross-platform agent-based
biosimulation framework. We demonstrate an almost 403 speedup on the state-of-
the-art NVIDIA Ampere 100 GPU compared to a serial run on AMD’s EPYC 7742. We also
demonstrate 93 speedup on the 64-core AMD EPYC 7742 multicore platform. By using
OpenACC for both the CPUs and the GPUs, we maintain a single source code base, thus
creating a portable yet performant solution. With the simulator’s most significant
computational bottleneck significantly reduced, we can continue cancer simulations
over much longer times.

Computational biology has increasingly turned
to agent-based modeling—which represents
individual biological cells as discrete soft-

ware agents—to explore complex biological systems
where many cells interact through the exchange of
mechanical forces, exchange of diffusing chemical fac-
tors, and other biomechanical feedback. Biological
diffusion (diffusion, decay, secretion, and uptake) is a
key driver of biological tissues. Blood vessels release
nutrients (oxygen, glucose, and other key metabolites)
that diffuse through tissues to be consumed by cells
and then absorb diffusible waste products, while cells
secrete and absorb diffusible chemical factors to com-
municate and coordinate their behaviors.1 See Figure 1
for a typical 3-D simulation model.

Therefore, most modern agent-based biological
modeling systems are hybrid: they combine discrete
cell agents with partial differential equations (PDEs)
to represent biological transport, such as
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where q is a vector of diffusible substrates, and each cell
agent i has position xi and volume Vi, a vector of secre-
tion rates Si and uptake ratesUi, and a “target” extracel-
lular substrate vector q�i. (Vector–vector products are
taken elementwise, and d is the Dirac delta function.)
Numerical stability and accuracy require that these PDEs
be solved with relatively small step sizes Dt, making the
solution of biological diffusion PDEs a rate-limiting step
in hybrid agent-based biological models that can limit
the maximum size and duration of simulations. This, in
turn, can hinder high-throughput simulationmodel explo-
ration (e.g., newer model calibration techniques like
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approximate Bayesian computation), which require run-
ning thousands or millions of simulations quickly.

GPU computing can vastly accelerate the diffu-
sion and decay operators in (1), but the tight coupling
with cell-based sources—which dynamically move and
change their sizes and rate constants—makes the
overall solution more challenging. Moreover, the num-
ber of discrete cell agents can change by orders of
magnitude over the course of a cancer simulation.
Recent examples2 have confirmed the potential for
GPU-accelerated agent-based models but, to date,
have generally been limited to simplified systems that
do not include complex intracellular-level dynamics or
complex cell–cell interactions and other rules.

In this article, we utilize OpenACC, a directive-
based programming model, to accelerate the diffusion
portion in (1) in PhysiCell,3 a cross-platform agent-
based biosimulation framework that has been adopted
in cancer,4 infectious diseases,5 and other complex bio-
logical problems. Prior to this work, PhysiCell had been
optimized for multicore simulations with OpenMP.
With default settings, PhysiCell advances the numeri-
cal solution of (1) with 10 diffusion steps (Dtdiff ) before
advancing the cell–cell mechanical interactions by
one mechanics step (Dtmech); cell biological processes
(e.g., cell cycle progression, death, and “decision

making”) are advanced on a much slower cell time-
scale of Dtcell � 60Dtmech. This separation of timescales
allowed us to prioritize GPU optimization to the biolog-
ical diffusion solver.

Using the NVIDIA high-performance computing
(HPC) software developer’s kit (SDK) OpenACC 21.3, we
demonstrate an almost 40� speedup using managed
memory (where data movement between the host and
the device is handled automatically by the underlying
CUDA runtime) on the state-of-the-art NVIDIA Ampere
100 (A100) GPU compared to a serial AMD EPYC core
7742 for a 360-simulated-minute input dataset. We also
demonstrate 9� speedup on the 64-core AMD EPYC
7742 multicore platform using NVIDIA HPC SDK Open-
ACC 21.3. By using OpenACC for both the CPUs and the
GPUs, we maintain a single source code base, thus cre-
ating a portable yet performant solution.

This is a critical step toward a portable GPU accel-
eration of a detailed agent-based simulation platform
for complex biological systems. With the simulator’s
most significant computational bottleneck significantly
reduced, we can look toward continuing cancer simula-
tions over much longer times. It also represents a key
step toward converting this code from purely CPU
based toward an MPIþX paradigm. In doing so, large
3-D simulation domains are decomposed into smaller

FIGURE 1. Typical PhysiCell model. The “cancer_immune_sample” is a typical example of a complex biological systemmodeled

with the PhysiCell framework. (a) Tumor cells (colored from blue to yellow by aggressiveness) grow, divide, and die based upon

the local availability of oxygen that diffuses from the computational boundary. (b) The tumor cell consumption of oxygen leads to

the formation of oxygen gradients and eventual necrosis (death) in the center (brown cells). (c) Tumor cells also release a diffus-

ible immunostimulatory factor that attracts immune cells (red), which (d) move by biased random migration toward tumor cells,

attach, and preferentially kill highly immunogenic tumor cells (yellow). Readers can interactively run a 2-D version of this model in

a web browser at https://nanohub.org/tools/pc4cancerimmune.
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subdomains residing on individual HPC nodes with
message passing interface (MPI) data exchange. In
each compute node’s subdomain, cell “logic” continues
to be parallelized for multicore SMP with OpenMP,
and critical low-level mechanics like biological diffu-
sion and cell–cell mechanical interactions are paral-
lelized on the GPU (or other specialized accelerators)
via OpenACC. This will help grow the code to allow
3-D multiscale simulations of cancer and diseases in
unprecedented detail on emerging leadership-class
HPC resources: a critical step toward advancing can-
cer patient digital twins that can simulate clinically
significant tumors fast enough to be clinically action-
able for patient care decisions.

DESIGN AND IMPLEMENTATION
This section describes the design and implementation
choices we employed while parallelizing and accelerat-
ing PhysiCell on a heterogeneous system.

Directive-Based Programming
With OpenACC
OpenACC is a performance-portable, directive-based
parallel programming model that targets modern hetero-
geneous HPC hardware. Several real-world applications
and top HPC applications use OpenACC and for the
same reasons we felt confident in using OpenACC for
PhysiCell. These OpenACC applications include ANSYS,a

Gaussian,b COSMO,c andmanymore. Please refer to this
trackerd where OpenACC has been collecting published
OpenACCpapers. Given the number of successful Open-
ACC ports of applications, we chose to go with Open-
ACC, given its easier adaptability, stability, and maturity,
instead of the OpenMP offloading model. Based on our
experience, the latter still has room for improvement
before it could bemore easily adopted for complex appli-
cations like PhysiCell. Having said that, as part of our
continued efforts on PhysiCell in the near future, we plan
to explore theOpenMPoffloadingmodel aswell.

Using the OpenACC Programming
Model for PhysiCell
PhysiCell-GPU is designed to run the diffusion portion
of PhysiCell in an accelerated mode. More details are
available in an article by Ghaffarizadeh et al.6 BioFVM
simulates the diffusive transport of substrates, while
PhysiCell simulates the cells.3 BioFVM has been paral-
lelized on multicore systems using a directive-based

programming model, OpenMP. While parallelization on
several cores can be beneficial, we hypothesized that
the move to the GPU would see even greater perfor-
mance in key sections of the code that would benefit
from being accelerated on GPUs.

To test this, we explored the usage of OpenACC to
achieve performance while maintaining cross-platform
portability in BioFVM. Irrespective of using OpenACC or
OpenMP, the fundamental idea of a directive-based pro-
gramming model for GPUs includes taking an approach
similar to the low-level programming framework for
GPUs, such as CUDA, where data needed for compute
is passed to the GPU; the parallel functions are com-
puted on the GPU; and then, finally, the updated data
are pulled back to the host for further processing.

Profiling: Identifying Hot Spots
We initially profiled the “cancer_immune_sample”
sample project that is bundled with every PhysiCell
download.3 This 3-D sample is representative of (CPU-
based) PhysiCell models: the model includes multiple
diffusible substrates (oxygen and an inflammatory fac-
tor) as well as multiple cell types (red immune cells
attack tumor cells), heterogeneous cell properties (blue
tumor cells are less aggressive and less immunogenic;
yellow tumor cells are more aggressive but also more
immunogenic), and customized cell–cell mechanical
interaction rules (immune cells seek tumor cells, test
for contact, adhere with spring-like terms, test tumor
cell properties, and probabilistically induce death).
(See Figure 1.) This profiling was used to identify the
hot spots that would be candidates for acceleration.
The NVPROF command-line profiler confirmed the
insight that diffusion was the dominating portion
of the total runtime of the original CPU-only code.
Figure 2 shows that the diffusion function dominated
the total time and, hence, was our target of optimiza-
tion. For profiling, we used NVPROF and the NVIDIA
Nsight Systems profiler. Additionally, we used a tech-
nique called analysis-driven optimization (ADO) to
profile the code at the start and then after porting a
given section to the GPU. ADO allows for continuous
performance progress by re-evaluating hot spots at
each stage of the porting cycle with profiling.

ADOALLOWS FORCONTINUOUS
PERFORMANCEPROGRESS BY
RE-EVALUATINGHOT SPOTS AT EACH
STAGEOF THE PORTING CYCLEWITH
PROFILING.

ashorturl.at/lC128
bhttps://on-demand.gputechconf.com/gtc/2016/presentation/
s6524-roberto-gomperts-enabling-the-electronic.pdf
chttps://www.openacc.org/success-stories/cosmo
dshorturl.at/mquv0
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Elements of Parallelism
In PhysiCell, diffusion involves a number of computa-
tional steps and function calls. The data invoked by
these functions is handled with care to ensure a good
computation-versus-memory transfer balance. After
initialization of the GPU copy of p-density-vectors in
GPU memory, updates are only processed to the host
at the user’s request (user manually managed memory)
or when there is a page fault on the data initiated by
the host (OpenACC managed memory). Because the
data are ported to arrays, each part of the diffusion
section is carefully mapped from its original state of
operating on vectors to operating on arrays. The
full code corresponding to this article is available on
GitHub at https://github.com/matt-stack/PhysiCell_
GPU, branch PhysiCell_GPU_Stable.

The flow begins in file BioFVM/BioFVM_solvers.cpp,
which acts as the jumping point into memory

transfers and launching calculations. The functions
called in BioFVM/BioFVM_solvers.cpp are imple-
mented in BioFVM/BioFVM_microenvironment.cpp
and handle the OpenACC code. Please see Figure 3
for a visual representation.

Data p-density-vectors is the main array for the data
that would be updated from the diffusion functions and
transferred between device and host. Originally, this
data structure is a “vector of vectors” or a 2-D vector
(where each voxel in the simulation grid holds a vector
of diffusible substrate values). The p-density-vector on
the host is std::vectors, and the p-density-vector-GPU
on the device are arrays. The functions transfer-3-D()
and transfer-2-D() are called to initialize the memory
space on the GPU and to copy the data currently in
p-density-vectors. The functions translate-vector-to-
array() and translate-array-to-vector() translate the
data back and forth between the array and vector

FIGURE 2. Initial code profiling. An analysis with NVProf identified that approximately two thirds of execution time was spent on

biological diffusion (blue), with evaluation of the discrete cell agent mechanical and biological rules (red) also requiring

significant computation time.

FIGURE 3. Diagram of the code flow and files.
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types on the host. This is used after the host-side mir-
ror of the GPU array data is updated to the host. If
there is any work done in p-density-vectors on the
host, then these methods will convert the data to
array form and initiate the update to the device.

The rest of the data needed by the diffusion section
are initialized in the transfer-3-D() and transfer-2-D().
These data are essential to the computation and are
converted to array form like p-density-vectors, but the
data are not typically updated back and forth between
host and device. If the need arises, a function could
easily be made to create a host-side mirror and Open-
ACC directives to handle the memory updates.

The pseudocode in Listing 1 shows an OpenACC
code that handles data flow between the device and
host. This example shows an array of arrays, physicell_
array, which undergoes a deep copy; each inner array
gets allocated on the device while keeping the pointers
intact so that the outer array can be referenced. The
this keyword is crucial to the process, as that lets the
compiler know to keep the newly created data on the
device interlocked with the surrounding data.

Compute x-diffusion-GPU-2-D() exists for the direct
computation step for diffusion. In 2-D, this is performed
in the X and Y and, in 3-D, in the X, Y, and Z vectors. The
algorithm from the original PhysiCell stayed the same,
while the syntax was changed to account for the new
array format of the crucial data. Slight modifications
are made to the original design, including creating a
separate axpy-acc function, wrapped in an OpenACC
routine directive to enable GPU execution. Storing the
specific size of the p-density-vectors in GPU memory
is important for many loop bounds in the x-diffusion-
GPU-2-D() section. The apply-dirichlet-conditions-GPU()
function is an important auxiliary function that was ini-
tially not set to need to run on the GPU. We learned
that the Dirichlet condition on the GPU eliminated the
need for high-rate data updates between the Dirichlet
and diffusion computation steps. The original version
utilized OpenMP parallel for the top-level loop, and our

version kept to a similar organization to adhere to
correctness.

The axpy-acc() function helps manage the more
complex diffusion section by replacing the inline axpy
and naxpy (basic linear algebra subroutines) in each
x, y, and z diffusion function with a single function.
Abstracting AXPY away from the multiple inline
improves readability and promotes a modular design.

Methods of Verification for Data
Integrity
We used three methods of verification to ensure the
OpenACC implementationmaintains themathematical
integrity of the formulas.

Method 1: Convergence Test
Our first validation test method uses a 1-D conver-
gence test from the original BioFVM method article6

to ensure that the expected numerical accuracy is
maintained. Briefly, this tests the ‘1 norm of the
numerical solution against a known analytical solu-
tion at multiple times for a 1-D problem with diffu-
sion, zero flux (Neumann) boundary conditions, and
a nontrivial initial condition. See Ghaffarizadeh et al.6

for further details.
For the more complex 3-D simulation where there

is no analytical solution, we computed the solution at
multiple times (t ¼ 60, 180, and 360 s) using both the
accelerated code and the original CPU-based code.
The results were bitwise identical, showing that the
accelerated code can be fully validated against the
original code that has been extensively convergence
tested and peer reviewed.3,7

Method 2: p-density-vectors cross check
In method 2, we compared the data from PhysiCell-
GPU against the original CPU-based PhysiCell in each
voxel. As noted previously, PhysiCell-GPU uses an array
version of the data structure p-density-vector to repre-
sent the microenvironment data on the GPU. PhysiCell

LISTING 1. The OpenACC data flow between the host and device.

SOFTWARE ENGINEERING

September/October 2022 Computing in Science & Engineering 57Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 05,2023 at 02:15:40 UTC from IEEE Xplore.  Restrictions apply. 



originally used Cþþ std::vectors, which have an issue
porting easily to the GPU. In the past, there has been a
limited implementation of std::vector by the PG Group,
but this implementation would not work in this case
due to the complexity of PhysiCell’s p-density-vector
data structure and the microenvironment Cþþ class
structure. The p-density-vector is a pointer to a
std::vector<std::vector<double�, and this
extra layer prevents us from utilizing the feature.
PhysiCell-GPU has a number of differences we needed
to ensure we did not introduce any difference against
the reference. Testing for compiler, compile flag, and
architecture differences was important to assess
PhysiCell-GPU.

Method 3: Visual inspection of output
Methods 1 and 2 gave quantitative ways to validate
PhysiCell-GPU against simple examples with known
analytic solutions. We devised method 3 to give a test
against more realistic conditions in a higher dimen-
sional geometry that more closely replicates typical
modeling conditions but where analytic solutions are
not available. To verify the success of the port in terms
of keeping full integrity of the data after going through
diffusion on the GPU, visual inspection was used on
the output for a fast yet reliable method. We had cre-
ated a Python script to display the necessary data
from the microenvironment on a plot. By design, a
small change in functional performance would cause a
dramatic change in cell data and, therefore, the visuali-
zation, thus helping us to readily identify errors.

Figure 4 shows an example of vastly different out-
puts caused by a simple “off-by-one” error in the

Dirichlet function; Figure 5 shows the same visual
inspection test after the bug was fixed. While techni-
ques (noted earlier) were used that inspected every
element, the visual inspection method was often used
before any other as a glaring indicator of data
corruption.

EXPERIMENTAL SETUP AND
INPUT DATASETS

This section highlights the experimental setup details
for the results. We have primarily used two NVIDIA
DGX machines. The hardware and software details are
described in Table 1.

While the original PhysiCell code was compiled
using OpenMP-enabled gcc version 7.5.0, we used
the NVIDIA HPC SDK’s nvc 21.3 compiler for parallel-
izing and accelerating the code. This compiler sup-
ports both OpenMP parallelization and OpenACC
offloading.

Input Datasets
PhysiCell input is written in XML. In the original Physi-
Cell code, the parameters changed were x min, x max,
y min, y max, z min, z max, max time, and omp num
threads. The set of results came from x, y, and z min set
at�1000 along with x, y, and z max set at 1000 with the
max time units at 60 simulatedminutes. The parameter
omp num threads was set at 1 and 32, representing a
serial implementation and an optimal performance
CPU thread count, respectively. The second set of
results kept all parameters the same except increasing
the max time units to 180 simulated time, and a third

FIGURE 4. Method 3 validation shows a drastically different visual appearance in the presence of an “off-by-one” bug.
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for 360 simulated minutes. This input set represents a
cell with a size of 1 cm.

RESULTS
This section presents the results on the CPUs and the
GPUs. Table 2 presents results for a single-core CPU,
64-core CPU, NVIDIA’s V100 GPU, and NVIDIA’s A100
GPU using two implementations: namely, the manual
and the managed-memory implementations for the dif-
ferent input datasets.

The OpenMP CPU results use NVIDIA’s NVHPC 21.3
showing the time taken using 1 thread (open CPU with
one core) on AMD EPYC Rome to simulate a serial ver-
sion. Using one thread is close to running the code in
the native serial manner, but it is not exact, as the
code has been optimized from the native serial version.
We were forced to take this approach because a native
serial version of the code is not available. We then
show the runtime using 64 cores (OMP CPU with 64
cores) to demonstrate the speedup of approximately
7.9� when running the OpenMP version on a high-end
CPU compared to the one-core serial version. Figure 6
shows that a speedup of almost 40� using OpenACC
to target an NVIDIA A100 GPU using managed memory
was achieved over the serial CPU configuration for 360
simulated minutes as the dataset. Overall, the newer

and more powerful NVIDIA A100 GPU shows a better
speedup with the same code over the V100 GPU, which
is consistent with our expectations.

Table 2 shows the execution time of the manual
and the managed-memory implementations for the
GPUs. In our case, the managed-memory implementa-
tion has the benefit of less memory transfer time com-
pared to manual memory implementation in exchange
for less fine-grain control of the GPU resident data.
Figure 6 shows the results in the form of relative speed-
ups. (Manual GPU A100) and (Managed GPU A100)
have the same compute time, but (Managed GPU A100)
spends less time transferring memory. They show that,
while data transfer from the CPU to the GPU is rela-
tively expensive up front, the benefit is seen over more
time steps with more realistic simulation lengths. This
is due to the fact that data can remain on the GPU in
between time steps, which reduces the amortized
cost of the up-front data transfers and increases the
benefit of the accelerated diffusion as the number of
time steps is increased.

Figure 7 shows an Nsight Systems profile of the
code running on the GPU using managed memory. We
observe the large up-front data transfer cost in green,
followed by the computation that makes up each time
step in blue. Note that there are no large pieces of data
movement to or from the GPU in between the time

TABLE 1. Specifications of the nodes in the two systems.

Machine CPU NVIDIA GPU

NVIDIA DGX-2 Intel Xeon Platinum 8168 (24 cores) Volta V100 (32 GB HBM2)
NVIDIA DGX A100 AMD EPYC Rome 7742 (64 cores) Ampere A100 (40 GB HBM2)

FIGURE 5. Method 3 validation shows identical images when the implementation bugs have been fixed.
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steps shown. Overall, we see speedups that benefit the
domain application by allowing larger problem sizes
and longer simulation times in less wall time.

This is the first work to apply portable GPU
acceleration (via OpenACC) to biological diffusion
in PhysiCell—a critical bottleneck to larger and longer
simulations. Others have recently applied MPI accelera-
tions to BioFVM7 and PhysiCell to advance toward
billion-cell simulations.8 However, these require signifi-
cant code refactoring and HPC resources to attain their
full performance. They have not been optimized to
leverage workstation (or single-compute-node) GPU
resources. Ultimately, a hybrid OpenACC–MPI architec-
ture could attain still better performance by leveraging
our OpenACC-based GPU acceleration on individual
compute nodes, with MPI and domain decomposition
to attain billion-cell scalability.

GPU-Accelerated Long-Time
Simulations
To assess the potential scientific impact of the GPU-
accelerated code, we performed tests on PhysiCell’s
built-in cancer_immune_sample sample project that
originated in the work by Ghaffarizadeh et al.3 (See the
brief description of this sample project in Figure 1.) To

maintain our focus on the GPU acceleration of the dif-
fusion code, we disabled cell mechanics and pheno-
type changes, thus leaving cell positions, sizes, and
behaviors fixed. To emulate a typical scientific work-
flow, we performed a full data save every seven simu-
lated days. In the original work3 and subsequent 3-D
parameter space investigations,9 simulations were lim-
ited to 21 days (three data checkpoints) due to CPU
limitations, each requiring approximately 48 h (wall
time) to complete. Based on our profiling, we estimate
that diffusion consumed approximately 65% (�30 h) of
the wall time for each simulation in prior studies.

After recompiling the CPU-based code with the
same nvc++ compiler, we simulated the 3-Dmodel (dif-
fusion only) with default parameter values on an AMD
EPYC 64-core CPU. The CPU-only code only reached
the first checkpoint (seven days) and was not able to
complete the full 21-day simulation within the maxi-
mum 4-h time limit on the DGX system (a typical con-
straint on large-scale model exploration on shared
systems); based on the simulation’s progress by this
time limit and prior benchmarking,6 we estimate that
the CPU-only code would require approximately 9.3 h
(wall time) to complete the full 21-day simulation on
the system. Only the first checkpoint (equal to a seven-
day simulation) finished at 3 h, 6 min, and 4 s of wall

FIGURE 6. Speedup normalized over serial.

TABLE 2. Results.

Simulation Dataset 60 Simulation Minutes (s) 180 Simulation Minutes (s) 360 Simulation Minutes (s)

OMP CPU 1 Core 524.6083 1,511.1268 3,107.043
OMP CPU 64 Cores 66.0669 201.9457 404.9028
ACC CPU 64 Cores 57.993 167.4116 330.3994
Manual GPU V100 94.2378 159.4965 257.9657
Manual GPU A100 92.0517 151.6884 241.1578
Managed GPU V100 23.903 57.4191 107.7914
Managed GPU A100 21.3251 45.9034 82.7607
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time. In comparison, the OpenACC GPU-accelerated
code (managed memory and A100) completed the
entire 21-day simulation (three checkpoints) in 1 h,
42 min, and 13.52 s.

We next asked how far an OpenACC GPU-
accelerated simulation (managed memory and A100
GPU) could be extended within a maximum 4-h time
limit by increasing the test’s maximum simulation time
and continuing to save data every seven simulated
days. Whereas the CPU-only code (64 cores and AMD
EPYC) only reached the first seven-day checkpoint,
the OpenACC code was able to reach and pass the
42-day checkpoint (six checkpoints), requiring 3 h and
24 min to simulate 42 days of wall time. By contrast,
we estimate that CPU-only code would have required
more than 18 h to complete the same computations.
This shows that using the GPU-accelerated diffusion
code should enable long-duration simulations (e.g., of
cancer and disease progression) that were previously
only feasible on systems that permit submitted jobs to
run for hours or days. However, many shared computa-
tional resources are not available for the length of
time that would be required. Without accelerated com-
puting, a timeout of resources would be reached long
before the desired results were computed.

This is particularly relevant for the emerging field of
cancer forecasting and cancer patient digital twins:
after calibration, clinical teams will use the patient’s
digital twin to simulate thousands of candidate treat-
ment plans (virtual control, standard of care, and mul-
tiple combinations of therapies under a variety of
dosing options) over weeks or months, each with tens
of replicates to estimate uncertainty. These multiweek
simulations must execute quickly to allow timely clini-
cal decision support; supporting clinical workflows at

scale will further increase the need for rapidly execut-
ing long-duration forecasting simulations.

CONCLUSION
Code profiling of a complex, multiscale biological
agent-based code revealed that, for typical simula-
tion models, approximately 65% of the execution
time (wall time) is spent on biological diffusion, mak-
ing this a logical first target for GPU optimization.
Offloading numerical operations to solve the diffu-
sion along with careful management of memory
transfers between host and device memory resulted
in an approximately 40-fold reduction in the execu-
tion time for the biological diffusion solver. Multiple
testing methods were used to validate the GPU code
against the original CPU code.

In real-world testing against a complex 3-D cancer
immunology example, switching from a 64-core CPU
implementation to a managed-memory OpenACC GPU
implementation reduced the execution time (wall time)
for 21 days of biological diffusion and data saves from
9.3 h to 1.7 h—a reduction of more than 80%. Based on
earlier profiling that diffusion is responsible for more
than 65% of total execution time, we estimate that
full simulation code—once again, including the cell
mechanics and biological calculations responsible for
the remaining 35% of execution time—would require
approximately 50% less execution time once using
the GPU-accelerated diffusion algorithms developed in
this article. Furthermore, the GPU-accelerated code
was able to complete a diffusion-only simulation twice
as long as the CPU-based code in roughly one third of
the time, allowing us to simulate further in time than
was previously feasible while observing new biological
dynamics.

FIGURE 7. NVIDIA Nsight systems profile of Physicell_GPU with managed memory. The green bars indicate the up-front data

transfer cost. The blue blocks indicate the computation/time step. Although composed of individual kernel launches, the red

bracket shows a zoomed-out view of all of the GPU work for this test case.
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A full 21-day simulation might be expected to
take � 1

0:65� 9:3 h (14–15 h) to execute, so the GPU-
accelerated full model should see its total wall time
reduced to 7–8 h. This could potentially allow us to dou-
ble the duration of each simulation for the same
amount of execution time, thus exposing new biologi-
cal dynamics. This confirms the scientific benefit of
accelerating targeted portions of the code with careful
GPU optimization.

FUTURE WORK
The current implementation yielded a significant per-
formance increase that, in turn, “unlocked” new scien-
tific possibilities in the code, particularly longer-time
simulations. However, more could be done. First, the
OpenACC acceleration of the biological diffusion still
relies upon CPU operations for the cell-based secretion
and uptake of biological substrates. These may account
for the difference between the 40� speedup in simpler
performance benchmarking and the “real-world” 3-D
test (5–6� speedup) where cell secretion and uptake
play a greater role. Moving these operations on the
GPU could further reduce the need for costly memory
transfers, allowing all computations to “reside” on the
device for 10 computational diffusion steps (with size
Dtdiff � 0:01 min) without the need for memory trans-
fer. Second, cell mechanics operations are governed
by biased random migration and interaction poten-
tials, which are well suited to GPU computations.10

Furthermore, there are 60 mechanics steps (with
step size Dtmech� 0:1 min) for every cell step (with
size Dtcell � 6 min). Thus, moving cell mechanics solv-
ers would not only accelerate those computations
but drastically reduce the need for host–device mem-
ory transfers: computations could “reside” on the
device for 600 computational steps before transfer-
ring data to the host memory.

Future work will explore these refinements. Biologi-
cal diffusion—which presents work accelerated by a
factor of 40—accounts for approximately 65% of the
execution time in typical simulations. Cell updates—
dominated by 10 mechanics steps for every biological
step—accounts for another 25–30% of the execution
time. If the mechanics code (approximately 25% of
original execution time) could be similarly accelerated
by a factor of 40, then the overall simulation execution
time should be reduced on the order of 85–90%: a sub-
stantial speedup.

A 10–100� speedup would enable exciting new
scientific possibilities. If simulation sizes were left
unchanged, then the speedup would enable much
faster execution times for individual simulations; this is

critical for data assimilation and parameter estimation
techniques, like approximate Bayesian computing, that
must rapidly run many simulations sequentially. Simi-
larly, leaving the simulation size unchanged, we could
simulate to longer times, which will be of great use to
digital twin efforts in medicine. If execution time were
left unchanged, then larger domains with more agents
could be simulated, enabling studies of more complex
tissues and even small organisms. Finally, the increased
“computational budget” afforded by a more complete
GPU acceleration could allow us to introduce multi-
ple agents per biological cell, allowing sophisticated
simulations of not only cell morphology (e.g., as in
subcellular element models11), but even introducing
agents for subcellular components and biophysical
processes, such as the movement, fission, and fusion
of Golgi bodies during signaling.12 This could be
transformative in relating emerging high-resolution
microscopy to intracellular biophysics and functional
biology.
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