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AbstractÐOnline optimization has recently opened avenues to
study optimal control for time-varying cost functions that are
unknown in advance. Inspired by this line of research, we study
the distributed online linear quadratic regulator (LQR) problem
for linear time-invariant (LTI) systems with unknown dynamics.
Consider a multi-agent network where each agent is modeled as a
LTI system. The network has a global time-varying quadratic cost,
which may evolve adversarially and is only partially observed by
each agent sequentially. The goal of the network is to collectively
(i) estimate the unknown dynamics and (ii) compute local control
sequences competitive to the best centralized policy in hindsight,
which minimizes the sum of network costs over time. This
problem is formulated as a regret minimization. We propose a
distributed variant of the online LQR algorithm, where agents
compute their system estimates during an exploration stage. Each
agent then applies distributed online gradient descent on a semi-
definite programming (SDP) whose feasible set is based on the
agent system estimate. We prove that with high probability the

regret bound of our proposed algorithm scales as O(T 2/3 log T ),
implying the consensus of all agents over time. We also provide
simulation results verifying our theoretical guarantee.

I. INTRODUCTION

In recent years, there has been a significant interest on prob-

lems arising at the interface of control and machine learning.

Among classical control problems, LQR control [1]±[3] is

a prominent point in case. LQR control centers around LTI

systems, where the control-state pairs introduce a quadratic

cost with time-invariant parameters. When the dynamics of

the LTI system is known, for finite-horizon and infinite-horizon

problems, the optimal controllers have closed-form solutions,

which can be derived by solving the corresponding Riccati

equations.

Despite the excellent insights on the LQR problem provided

by the classical control theory, in practical problems we might

encounter two challenges. (I) The environment could change

in an unpredictable way, which makes the cost parameters

time-varying and unknown in advance (e.g., in variable-supply

electricity production and building climate control with time-

varying energy costs [4]). (II) Furthermore, the dynamics

of the LTI system may be unknown. The former challenge

has motivated research at the interface of online optimization

and control, where online LQR problem is cast as a regret

minimization and the performance of an online algorithm is

compared to that of the best fixed control policy in hindsight.

The regret metric is particularly meaningful in the online

setting, where the cost parameters are unknown in advance.

The focus of online LQR is on the finite-time performance
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from a learning-theory perspective (see details of this literature

in item 4 of Subsection I-A). The latter challenge is addressed

via adaptive control in general. In this case, the learner must

strike a balance between exploration (estimating the system

dynamics) and exploitation (using the estimates to compete

with the performance of the optimal controller) [5]±[8].

In this work, we consider the distributed online LQR prob-

lem for a network of LTI systems with unknown dynamics.

Each system is represented by an agent in the network that has

a global time-varying quadratic cost. The cost sequence may

evolve adversarially and is only partially observed by each

agent sequentially, i.e., the agents do not have the knowledge

of local costs in advance. The term adversarial implies that

there is no statistical/probabilistic assumption imposed on the

cost sequence. The goal of each agent is to generate a control

sequence (in an online fashion) that is competitive to that of the

best centralized policy in hindsight, and the sub-optimality is

formulated by the notion of regret. Specifically, for an online

control problem with a finite time horizon T , a successful

algorithm must attain a regret that is sub-linear in T , which

implies that its time-averaged performance tends to that of

the best policy in hindsight asymptotically. In practice, this

setting can be applied for modeling the energy consumption

in mobile sensor networks as described in Example 1. Our

main contributions in addressing this problem are as follows:

1) We propose a decentralized algorithm with two phases.

In the exploration phase, each agent first spends T0 iter-

ations to collect data for the system identification. Then,

in the following T1 iterations, all agents jointly compute

system estimates by applying the EXTRA algorithm [9],

which is an iterative decentralized optimization method.

In the exploitation phase (of length T − T0 − T1),

agents perform distributed online gradient descent on a

SDP (whose feasible set is constructed by local system

estimates) and extract the control policies accordingly.

2) The exploration and exploitation phases play conflicting

roles in regret minimization. In particular, if (T0 + T1)

is larger, the SDP is built on finer system estimates

and the incurred regret during the exploitation phase is

lower. However, that also means that the regret during

the exploration is larger. Therefore, we must strike a bal-

ance between exploration and exploitation. In the main

theorem, we quantify the dependence of the regret bound

on T0 and T1, and we show that with an optimal choice

of T0 and T1, the regret is bounded by O(T 2/3 log T ),
where T is the total number of iterations. This implies

that the agents reach consensus and collectively compete

with the best fixed controller in hindsight.

3) Besides the exploration-exploitation trade-off, the main
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technical challenge is that the decentralized system iden-

tification step results in different SDPs across agents.

This implies that the feasible set of SDP varies from one

agent to another, and we cannot directly use distributed

online optimization results on a common feasible set.

We draw upon techniques from alternating projections

to tackle this problem.

4) We provide simulations verifying the sublinearity of re-

gret and the consensus of all agents. We further illustrate

the impact of network connectivity on the regret.

Our technical proofs are provided in the Appendix (Section

VI of [10]).

A. Related Literature

(1) Distributed LQR Control: Distributed LQR has been

widely studied in the control literature. A number of works

focus on multi-agent systems with known, identical decoupled

dynamics. In [11], a distributed control design is proposed

by solving a single LQR problem whose size scales with

the maximum degree of the graph capturing the network.

The authors of [12] derive the necessary condition for an

optimal distributed controller design, resulting in a non-convex

optimization problem. The work of [13] addresses a multi-

agent network, where the dynamics of each agent is a single

integrator. The authors of [13] show that the computation of

the optimal controller requires the knowledge of the graph

and the initial information of all agents. Given the difficulty

of precisely solving the optimal distributed controller, Jiao

et al. [14] provide the sufficient conditions to obtain sub-

optimal controllers. All of the aforementioned works need

global information such as network topology to compute the

controllers. On the other hand, Jiao et al. [15] propose a

decentralized method to compute the controllers and show that

the system will reach consensus. For the case of unknown

dynamics, Alemzadeh et al. [16] propose a distributed Q-

learning algorithm for dynamically decoupled systems. There

are other works focusing on distributed control without assum-

ing identical decoupled sub-systems. Fattahi et al. [17] study

distributed controllers for unknown and sparse LTI systems.

Furieri et al. [18] address model-free methods for distributed

LQR problems and provide sample-complexity bounds for

problems with the local gradient dominance property (e.g.,

quadratically-invariant problems). The work of [19] investi-

gates the convergence of distributed controllers to a global

minimum for quadratically invariant problems with first-order

methods.

(2) System Identification of LTI Systems: For solving LQR

problems with unknown dynamics, we first need to learn

the underlying system. To provide performance guarantees

for the controller, it is important to explicitly quantify the

uncertainty of the model estimate. The classical theory of

system identification for LTI systems (e.g., [20]±[23]) char-

acterizes the asymptotic properties of the estimators. On the

contrary, recent results in statistical learning focus on finite-

time guarantees. In [24], it is shown that for fully observable

systems, a least-squares estimator can learn the underlying

dynamics from multiple trajectories. These results are later

extended to the estimation using a single trajectory [25], [26].

For partially observable systems, estimators with polynomial

sample complexities are provided in the literature (e.g., [27]±

[30]), and the work of [31] improves the sample complexity

to poly-logarithmic.

(3) Online LQR with Unknown Dynamics and Time-

Invariant Costs: There is a recent line of research dealing

with LQR control problems with unknown dynamics. Several

techniques are proposed using (i) gradient estimation (e.g.,

[32]±[35]), (ii) the estimation of dynamics matrices and deriva-

tion of the controller by considering the estimation uncertainty

(e.g., [7], [8], [24], [36]±[38]), and (iii) wave-filtering [39],

[40].

(4) Online Control with Time-Varying Costs: Recently,

there has been a significant interest in studying linear dynam-

ical systems with time-varying cost functions, where online

learning techniques are applied. This literature investigates two

scenarios: I) Known Systems: Cohen et al. [4] study the SDP

relaxation for online LQR control and establish a regret bound

of O(
√
T ) for known LTI systems with time-varying quadratic

costs. Agarwal et al. [41] propose the disturbance-action policy

parameterization and reduce the online control problem to

online convex optimization with memory. They show that

for adversarial disturbances and arbitrary time-varying convex

functions, the regret is O(
√
T ). Agarwal et al. [42] consider

the case of time-varying strongly-convex functions and im-

prove the regret bound to O(poly(logT )). Simchowitz et al.

[43] further extend the O(poly(logT )) regret bound to partially

observable systems with semi-adversarial disturbances. Yu

et al. [44] incorporate the idea of model predictive control

into online LQR control with a time-invariant cost function

and correct noise predictions. Zhang et al. [45] extend this

idea to the setup where costs are time-varying and accurate

disturbance predictions are not accessible. Both works provide

dynamic regret bounds with a term shrinking exponentially

with the prediction window. Our previous work [46] studies

the distributed online LQR control with known dynamics and

provides the regret bound of O(
√
T ). II) Unknown Systems:

For fully observable systems, Hazan et al. [47] derive the regret

of O(T 2/3) for time-varying convex functions with adversarial

noises. For partially observable systems, the work of [43]

addresses the cases of (i) convex functions with adversarial

noises and (ii) strongly-convex functions with semi-adversarial

noises, and it provides regret bounds of O(T 2/3) and O(
√
T ),

respectively. Lale et al. [48] establish an O(poly(logT )) regret

bound for the case of stochastic perturbations, time-varying

strongly-convex functions, and partially observable states.

Our work lies precisely at the interface of distributed LQR,

online LQR and adaptive control, addressing distributed online

LQR with unknown dynamics.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation
[n] The set {1, 2, . . . , n} for any integer n

Tr(·) The trace operator
∥·∥ Euclidean (spectral) norm of a vector (matrix)
∥·∥F Frobenius norm of a matrix
E[·] The expectation operator
ΠS [·] The operator for the projection to set S
[A]ij The entry in the i-th row and j-th column of A
[A]:,j The j-th column of A

A •B Tr(A⊤
B)

A ⪰ B (A−B) is positive semi-definite
1 The vector of all ones
ei The i-th basis vector

vec(A) Vectorized version of the matrix A

B. Distributed Online LQR Control with Unknown Dynamics

We consider a multi-agent network of m LTI systems, where

the dynamics of agent i is given as,

xi,t+1 = Axi,t +Bui,t +wi,t, i ∈ [m]

and xi,t ∈ Rd and ui,t ∈ Rk represent agent i state and control

(or action) at time t, respectively. Furthermore, A ∈ Rd×d,

B ∈ Rd×k, and wi,t is a Gaussian noise with zero mean

and covariance W ⪰ σ2I. The system parameters (A,B) are

unknown to all agents and need to be estimated. The noise

sequence {wi,t} is independent over time and agents. We

also assume that ∥[A B]∥F ≤ ϑ and let n := d + k for the

presentation simplicity.

Departing from the classical LQR control, we consider the

online distributed LQR problem, where the cost functions are

unknown in advance. At round t, agent i receives the state

xi,t and applies the action ui,t. Then, positive semi-definite

cost matrices Qi,t and Ri,t are revealed, and the agent incurs

the cost x⊤
i,tQi,txi,t + u⊤

i,tRi,tui,t. Throughout this paper,

we assume that Tr(Qi,t),Tr(Ri,t) ≤ C for all i, t and some

C > 0. Agent i follows a policy that selects the control

ui,t based on the observed cost matrices Qi,1, . . . ,Qi,t−1 and

Ri,1, . . . ,Ri,t−1, as well as the information received from

its local neighborhood. This policy is not driven based on

individual costs. On the contrary, agents follow a team goal

through minimizing a cost collectively as we describe next.

Centralized Benchmark: In order to gauge the performance

of a distributed online LQR algorithm, we require a centralized

benchmark. In this paper, we focus on the finite-horizon

problem, where for a centralized policy π, the cost after T
steps is given as

JT (π) = E

[
T∑

t=1

xπ
t
⊤
Qtx

π
t + uπ

t
⊤
Rtu

π
t

]
, (1)

where Qt =
∑m

i=1
Qi,t and Rt =

∑m
i=1

Ri,t, and the

expectation is over the possible randomness of the policy as

well as the noise. The superscript π in uπ
t and xπ

t alludes that

the state-control pairs are chosen by the policy π, given full

access to cost matrices of all agents. Notice that in the infinite-

horizon version of the problem with time-invariant cost matri-

ces (Q,R), where the goal is to minimize limT→∞ JT (π)/T ,

it is well-known that for a controllable LTI system (A,B), the

optimal policy is given by the constant linear feedback, i.e.,

uπ
t = Kxπ

t for a matrix K ∈ Rk×d.

Regret Definition: The goal of a distributed online LQR

algorithm A is to mimic the performance of an ideal cen-

tralized algorithm that solves (1). The main two challenges

are (i) the online nature of the problem, where cost matrices

become available sequentially, and (ii) the distributed setup,

where agent i only receives information about the sequence

{Qi,t,Ri,t} while the network cost is based on {Qt,Rt}.

In this setting, each agent j locally generates the control

sequence {uj,t}Tt=1, that is competitive to the best policy

among a benchmark policy class Π. This can be formulated as

minimizing the individual regret, which is defined as follows

Regret
j
T (A) := Jj

T (A)−min
π∈Π

JT (π), (2)

for agent j ∈ [m], where

Jj
T (A) = E

[
T∑

t=1

xA
j,t

⊤
Qtx

A
j,t + uA

j,t

⊤
Rtu

A
j,t

]
. (3)

A successful distributed algorithm is one that keeps the regret

sublinear with respect to T . Of course, this also depends on

the choice of the benchmark policy class Π, which is assumed

to be the set of strongly stable policies (to be defined precisely

in Section II-C). Since the underlying dynamics is unknown,

agents have to find a good trade-off between exploration

(estimating the system parameters) and exploitation (keeping

the regret sublinear).

Network Structure: The underlying network topology is

captured by an undirected graph G = (V, E), where V = [m]
denotes the set of nodes (i.e., agents) and E represents the set

of edges. If there is an edge between nodes i and j, agent

i assigns a positive weight [P]ji to the information received

from agent j. If there is no edge between nodes i and j, [P]ji
is equal to zero. The weighted adjacency matrix P is assumed

to be symmetric and doubly stochastic, i.e., all elements of

P are non-negative and
∑m

i=1
[P]ji =

∑m
j=1

[P]ji = 1. The

network is further assumed to be connected, i.e., for any

two agents i, j ∈ [m], there is a (potentially multi-hop) path

from i to j. We also assume P has a positive diagonal.

Then, there exists a geometric mixing bound for P [49],

such that
∑m

j=1

∣∣[Pk]ji − 1/m
∣∣ ≤ √

mβk, i ∈ [m], where

β is the second largest singular value of P. Agents do not

directly share their observed cost functions with each other,

but they exchange local parameters used for constructing the

controllers, which effectively captures the information of local

costs in their neighborhood. The communication is consistent

with the structure of P. We elaborate on this in the algorithm

description.

Example 1. Our framework can be used for minimizing the

energy consumption in mobile sensor networks (MSNs) [50]

in time-varying settings. Consider a MSN where at time t
the total mobility cost (or budget) of sensors is modeled

by matrices (Qt,Rt). Each agent i has a local budget of

(Qi,t,Ri,t), but the team goal is to design actions that

minimize the global network cost over time. Then, actions of
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this MSN should be guided to minimize the global cost in (1),

though each sensor only has local information.

C. Strong Stability and Sequential Strong Stability

We consider the set of strongly stable linear (i.e., u = Kx)

controllers as the benchmark policy class. Following [4], we

define the notion of strong stability as follows.

Definition 1. (Strong Stability) A linear policy K is (κ, γ)-
strongly stable (for κ > 0 and 0 < γ ≤ 1) for the LTI

system (A,B), if ∥K∥ ≤ κ, and there exist matrices L and

H such that A + BK = HLH−1, with ∥L∥ ≤ 1 − γ and

∥H∥∥H−1∥ ≤ κ.

Strong stability is a quantitative version of stability, in the

sense that any stable policy is strongly stable for some κ and γ,

and vice versa [4]. A strongly stable policy ensures fast mixing

and exponential convergence to a steady-state distribution. In

particular, for the LTI system xt+1 = Axt +But +wt, if a

(κ, γ)-strongly stable policy K is applied (ut = Kxt), X̂t (the

state covariance matrix of xt) converges to X (the steady-state

covariance matrix) with the following exponential rate

∥X̂t −X∥ ≤ κ2e−2γt∥X̂0 −X∥.

See Lemma 3.2 in [4] for details. The sequential nature of

online LQR control requires another notion of strong stability,

called sequential strong stability [4], defined as follows.

Definition 2. (Sequential Strong Stability) A sequence of lin-

ear policies {Kt}Tt=1 is (κ, γ)-strongly stable if there exist ma-

trices {Ht}Tt=1 and {Lt}Tt=1 such that A+BKt = HtLtH
−1
t

for all t with the following properties,

1) ∥Lt∥ ≤ 1− γ and ∥Kt∥ ≤ κ.

2) ∥Ht∥ ≤ β′ and ∥H−1
t ∥ ≤ 1/α′ with κ = β′/α′.

3) ∥H−1
t+1Ht∥ ≤ 1 + γ/2.

Sequential strong stability generalizes strong stability to the

time-varying scenario, where a sequence of policies {Kt}Tt=1

is used. The convergence of steady-state covariance matrices

induced by {Kt}Tt=1 is characterized as follows.

Lemma 1. (Lemma 3.5 in [4]) Suppose a time-varying policy

(ut = Ktxt) is applied. Denote the steady-state covariance

matrix of Kt as Xt. If {Kt} are (κ, γ)-sequentially strongly

stable and ∥Xt−Xt−1∥ ≤ η, X̂t (the state covariance matrix

of xt) converges to Xt as follows

∥X̂t+1 −Xt+1∥ ≤ κ2e−γt∥X̂1 −X1∥+
2ηκ2

γ
.

D. SDP Relaxation for LQR Control

For the following dynamical system

xt+1 = Axt +But +wt, wt ∼ N (0,W),

the infinite-horizon version of (1), i.e.,

minimize limT→∞ JT (π)/T, with fixed cost matrices Q

and R can be relaxed via a SDP when the steady-state

distribution exists. For ν > 0, the SDP relaxation is

formulated as [4]

minimize J(Σ) =

(
Q 0
0 R

)
• Σ

subject to Σxx = [AB]Σ[AB]⊤ +W,

Σ ⪰ 0, Tr(Σ) ≤ ν,

(4)

where

Σ =

(
Σxx Σxu

Σux Σuu

)
.

Recall that in the online LQR problem, we deal with time-

varying cost matrices (Qt,Rt), and for any t ∈ [T ], the above

SDP yields different solutions. In fact, for any feasible solution

Σ of the above SDP, a strongly stable controller K = Σ⊤
xu

Σ−1
xx

can be extracted. The steady-state covariance matrix induced

by this controller is also feasible for the SDP and its cost is

at most that of Σ (see Theorem 4.2 in [4]). Moreover, for any

(slowly-varying) sequence of feasible solutions to the SDP, the

induced controller sequence is sequentially strongly-stable.

E. Challenges of Distributed Online LQR for Unknown Dy-

namical Systems

The works of [4] and [46] tackle the centralized and decen-

tralized online LQR, respectively. To keep the regret sublinear,

the key idea in online LQR is to construct sequentially strongly

stable controllers using online gradient descent (projected to

the feasible set of SDP in (4)). However, in our work, given

that system parameters (A,B) are unknown, the agents must

perform a system identification first. The system identification

step results in two challenges: (i) an exploration-exploitation

trade-off to keep the regret sublinear, and (ii) different SDPs

across agents as a result of decentralized estimation. The latter

is particularly challenging, because as we can see in (4),

each agent will only have a local estimate of (A,B), so the

SDPs will have different feasible sets across agents, and we

cannot directly apply distributed online optimization results

on a common feasible set (e.g., [51], [52]). In this work, we

propose an algorithm (in the next section) for which we prove

that an extracted controller based on precise enough system

estimates (Â, B̂) is strongly stable w.r.t. the system (A,B).

III. ALGORITHM AND THEORETICAL RESULTS

We now develop the distributed online LQR algorithm for

unknown systems and study its theoretical regret bound.

A. Algorithm

Our proposed method is outlined in Algorithm 1. In the

first T0 + 1 iterations, we need to collect data for the system

identification. Suppose that each agent has access to a con-

troller K0, which is (κ0, γ0)-strongly stable w.r.t. the system

(A,B). This controller can be different across agents, but

for the presentation simplicity, we assume that agents use

the same controller K0. The knowledge of such controller

is a common assumption in centralized LQR (see e.g., [7],

[8]). In this period, agent i at time t applies the control

ui,t ∼ N (K0xi,t, 2σ
2κ2

0 · I), which prevents the state xi,t

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3299551

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on December 05,2023 at 02:54:42 UTC from IEEE Xplore.  Restrictions apply. 



from going unbounded (lines 2-7). For the next T1 iterations,

all agents perform the system identification step by solving

a distributed least-squares (LS) problem. In this step, the

global LS problem is formed using the data collected by all

agents, where the local cost of each agent is only based on its

own collected data. Here, we can use any iterative distributed

optimization algorithm to get precise enough system estimates.

We employ the EXTRA algorithm [9] since it achieves a

geometric rate for strongly convex problems, and it can be

implemented in a decentralized fashion (lines 8-16), where at

each iteration, agents exchange their local system estimates

with their neighbors in consistent with the network topology

and then update their estimates accordingly. After T0+T1+1
iterations, each agent i at time t runs a distributed online

gradient descent on the SDP (4), where the local cost is

defined w.r.t. matrices Qi,t and Ri,t, and the feasible set is

defined w.r.t. system estimates (Âi,t, B̂i,t). This provides an

iterative update where agent i forms Σi,t+1 using its local cost

matrices as well as Σj,t for any j in the neighborhood of i.
A control matrix Ki,t is then extracted from the update of

Σi,t and is used to determine the action. In particular, ui,t

is sampled from a Gaussian distribution N (Ki,txi,t,Vi,t),
which entails E[ui,t|Ft] = Ki,txi,t, where Ft is the smallest

σ-field containing the information about all agents up to time t
(lines 17-26). The choice of Vi,t in line 23 is due to a technical

reason. It ensures the fast convergence of the covariance matrix

of xi,t to the steady-state covariance matrix, when applying

Ki,t to the underlying system (A,B).

B. Theoretical Result: Regret Bound

Before presenting our theoretical result, let us state all the

assumptions we use in our analysis as follows.

Assumption 1. The cost matrices satisfy Tr(Qi,t) ≤ C and

Tr(Ri,t) ≤ C, ∀i ∈ [m] and ∀t ∈ [T ], where C is a constant.

Assumption 2. The system matrices (A,B) have bounded

norms, i.e., ∥[AB]∥F ≤ ϑ.

Assumption 3. The covariance matrix of the noise (W)

satisfies W ⪰ σ2I and Tr(W) ≤ λ2.

Assumption 4. The network structure is captured by a con-

nected undirected graph. The communication matrix P is

symmetric and doubly stochastic with a positive diagonal.

Assumption 5. We assume the knowledge of one (κ0, γ0)-
strongly stable controller K0 w.r.t. system matrices (A,B)
before the learning process.

We now present our main theoretical result. By applying

Algorithm 1, we show that for a multi-agent network of un-

known LTI systems (with a connected communication graph),

the individual regret of an arbitrary agent is upper-bounded

by O(T 2/3 log T ), which implies that the agents collectively

perform as well as the best fixed controller in hindsight for

large enough T .

Theorem 2. Suppose Assumptions (1, 2, 3, 4, 5) hold. Given

κ ≥ 1 and 0 ≤ γ < 1, set ν = 2κ4λ2/γ and step size

η = T−1/3. If we run Algorithm 1 (denoted by A) with T0 =

Algorithm 1 Distributed Online LQR Control with Unknown

Dynamics

1: Require: number of agents m, doubly stochastic matrix

P ∈ Rm×m, parameter ν, step size η, a (κ0, γ0)-strongly

stable controller K0 w.r.t. system matrices (A,B), covari-

ance parameter of the noise σ, parameter ϑ.

Initialize: xi,1 = 0, ∀i ∈ [m].
2: for t = 1, 2, . . . , T0 + 1 do

3: for i = 1, 2, . . . ,m do

4: Receive xi,t

5: Perform action ui,t ∼ N (K0xi,t, 2σ
2κ2

0 · I)
6: end for

7: end for

8: After the first (T0 + 1) iterations, each agent i uses the

collected data to form the local function

fi(A,B) :=

T0∑

t=1

∥[AB]zi,t−xi,t+1∥2+
σ2ϑ−2

m
∥[AB]∥2F ,

where zi,t = [x⊤
i,t u

⊤
i,t]

⊤.

9: Choose the step size α following the result in [9] and set

P̃ := I+P

2
. Denote by D̂i the agent i vectorized system

estimate [Âi B̂i]. Apply EXTRA to solve the global LS

problem
∑m

i=1
fi(A,B) in a distributed fashion.

10: Randomly generate D̂0
i for all i ∈ [m].

11: ∀i, D̂1
i =

∑m
j=1

[P]jiD̂
0
j − α∇fi(D̂

0
i ).

12: for k = 0, 1, . . . , T1 − 1 do

13: for i = 1, 2, . . . ,m do

14: D̂k+2

i =
∑m

j=1
2[P̃]jiD̂

k+1

j − ∑m
j=1

[P̃]jiD̂
k
j −

α[∇fi(D̂
k+1

i )−∇fi(D̂
k
i )].

15: end for

16: end for

17: For all i ∈ [m], transform the vectorized D̂T1+1

i back to

matrix form [Âi,t B̂i,t] for all t ≥ (T0 + 1) + T1.

18: Let Ts := (T0 + T1 + 2).
19: Initialize Σi,Ts

= ΣTs
for any i ∈ [m].

20: for t = Ts, . . . , T do

21: for i = 1, 2, . . . ,m do

22: Receive xi,t

23: Compute Ki,t = (Σi,t)ux(Σi,t)
−1
xx

and Vi,t =
(Σi,t)uu −Ki,t(Σi,t)xxK

⊤
i,t

24: Perform ui,t ∼ N (Ki,txi,t,Vi,t) and observe

Qi,t,Ri,t

25: Σi,t+1 = ΠSi

t+1

[
m∑
j=1

[P]jiΣj,t − η

(
Qi,t 0
0 Ri,t

)]
,

where

Si
t+1 :=

{
Σ ∈ Rn×n

∣∣∣∣
Σ ⪰ 0, Tr(Σ) ≤ ν,

Σxx = Ĉi,t+1ΣĈ
⊤
i,t+1 +W

}
,

and Ĉi,t+1 = [Âi,t+1 B̂i,t+1].
26: end for

27: end for

T 2/3 log(T/δ) and T1 = Θ(log(T )), then with probability

(1 − δ), the individual regret of agent j with respect to any
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(κ, γ)-strongly stable controller Ks is bounded as follows

Regret
j
T (A) = Jj

T (A)− JT (K
s)

= O
(√

m
(nκ24

γ6
+

mκ12

(1− β)γ3

)
T 2/3 log(T/δ)

)
,

for large enough T .

From Theorem 2, we can see that the regret bound depends

on the stability properties of the benchmark controller Ks.

In particular, a smaller κ or a larger γ entail a tighter

regret bound. In fact, we prove that the local controller Ki,t

(generated by Algorithm 1) is ( 1√
2γ̄
, γ̄
2
)-strongly stable w.r.t.

(A,B), where γ̄ = O(γ/κ4) (see Section VI-D in [10]). This

implies that a smaller κ or a larger γ will also make the

decentralized controller ªmoreº strongly stable w.r.t. (A,B).
As for the effect of the network topology, the dependence of

(1 − β)−1 implies that when the network is well-connected

(i.e., β is smaller), the resulting bound is tighter. A smaller

β allows the Markov chain P to mix faster, which intuitively

results in faster information propagation over the network of

agents, and later in Section IV we verify this dependency by

trying networks of different topologies. The exact expressions

of the regret upper bound and the lower bound of T are

provided in the Appendix of [10], and we highlight the key

technical challenges in Section III-C.

Remark 1. For online LQR control with known dynamics, [4]

and [46] prove regret bounds of O(
√
T ) for centralized and

distributed cases, respectively. However, in this work, since the

system is unknown, agents need to compute system estimates

first. This brings forward an exploration cost that increases

the order of regret. In other words, agents objective is still to

minimize the regret, but if they do not collect enough data,

the estimation error propagates into the exploitation phase,

yielding a larger regret (in terms of order).

Remark 2. For online control with unknown dynamics, both

[47] and [43] consider the setup where costs are time-varying

convex functions with adversarial noises, and they derive

the regret bounds of O(T 2/3) for fully observable systems

and partially observable systems, respectively. In this work,

we consider the distributed variant of online LQR control

with stochastic noises and unknown dynamics. Our regret

bound of O(T 2/3 log T ) is consistent with previous results on

centralized problems in the convex setting (disregarding the

log factor).

C. Key Technical Challenges in the Proof

The regret can be decomposed into three terms, where each

term must be small enough to bound the regret. In [4], two of

these terms are bounded using the properties of strong stability

and sequential strong stability, and one term is bounded using

the standard regret bound for online gradient descent. In our

setup, since (A,B) is unknown, the agents cannot work with

the ideal feasible set in (4), and as evident from line 25

of the algorithm, Si
t+1 is constructed only based on agent i

system estimate. This brings forward two challenges. (i) Agent

i constructs the controllers based on iterates {Σi,t} that are not

necessarily in the feasible set of (4), so we need to establish

the stability properties of these controllers. (ii) The feasible

sets are different across agents (i.e., Si
t+1 ̸= Sj

t+1 for i ̸= j),

so we cannot directly apply distributed online optimization

results on a common feasible set.

To tackle the first challenge, we first derive the bound on

the precision of each agent system estimate based on the

EXTRA algorithm (see Lemma 6 in our arXiv version [10])

and combine that with statistical properties of centralized LS

estimation using results of [8]. We then establish that if each

agent system estimate is close enough to the true system, a

strongly stable policy w.r.t. the system estimate is also strongly

stable w.r.t. the true system (see Lemma 3 and Lemma 4

in our arXiv version [10]). To address the second challenge,

we use alternating projections to prove that a point in the

feasible set of one agent is close enough to its projection to

the feasible set of another agent, when system estimates of

these two agents are close. Then, in Theorem 9 of [10], we

show the contribution of distributed online optimization to the

regret. We finally put together these results to prove our regret

bound.

IV. NUMERICAL EXPERIMENTS

We now provide numerical simulations verifying the theo-

retical guarantee of our algorithm.

Experiment Setup: We first consider a network of m = 20
agents, captured by a cyclic graph, where each agent has a

self-weight of 0.6 and assigns the weight 0.2 to each of its

two neighbors. The (hyper)-parameters are set as follows: d =
k = 3, κ = 1.5, γ = 0.4, C = 300. We let matrices A =
(1−2γ)I and B = (γ/κ)I to ensure the existence of a (κ, γ)-
strongly stable controller. For time-varying cost matrices, we

set Qi,t (respectively, Ri,t) as a diagonal matrix where each

diagonal term is sampled from the uniform distribution over

[0, C/d] (respectively, [0, C/k]), so that Tr(Qi,t),Tr(Ri,t) ≤
C. The disturbance wi,t is sampled from a standard Gaussian

distribution, and thus λ2 = d = 3 and σ2 = 1.

Simulation: We simulate Algorithm 1 for T =
1K, 2K, 3K, . . . , 60K. For the benchmark, we set Ks

as (−κ)10−2I which is (κ, γ)-strongly stable w.r.t. A,B,

and the resulting cumulative cost is small enough to be

the benchmark. For the projection on the feasible set, we

apply Dykstra’s projection algorithm. Due to floating-point

computations, Vi,t for action-sampling may not be positive

semi-definite (PSD). Therefore, we address it by adding to

Vi,t a small term ((1e − 15)I) to keep it PSD. The entire

process is repeated for 50 Monte-Carlo simulations, and in

the figures we present the averaged plots.

Iterations 20K 30K 40K 50K 60K

Averaged Regret 1.424 1.34 1.248 1.201 1.168

Standard Error 0.0087 0.0097 0.0052 0.0032 0.0037

TABLE I: The mean and standard error of the averaged regret over
time and agents (×10−4).

Performance: I) Sublinearity of Regret: To verify the result

of Theorem 2, in Fig. 1b, we present the averaged regret over
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time.
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(c) The averaged regrets over time for different net-
works: more connectivity results in smaller regret.

Fig. 1: The individual regrets of all agents are shown to be sublinear.

time (i.e., individual regret divided by T ), which is clearly

decreasing over time. In Table I, we tabulate the averaged

regrets (over time and agents) as well as their standard errors

computed from 50 trials for T = 20K, 30K, 40K, 50K, 60K.

We can see that 50 trials is enough to obtain a small standard

error. II) Impact of Network Topology: To study the impact of

network topology, we use three different networks: a cyclic

graph with 2 neighbors (Net A), a cyclic graph with 6

neighbors (Net B) and a complete graph (Net C) where every

entry of P is 1

20
. From Fig. 1c, we can see that the regret

increases when β is smaller (Net A > Net B > Net C). This

result is consistent with the impact of β shown in Theorem 2.

V. CONCLUSION

In this paper, we considered the distributed online

LQR problem with unknown LTI systems and time-varying

quadratic cost functions. We developed a fully decentralized

algorithm to estimate the unknown system and minimize the

finite-horizon cost, which can be cast as a regret minimization.

We proved that the individual regret, which is the performance

of the control sequence of any agent compared to the best

(linear and strongly stable) controller in hindsight, is upper

bounded by O(T 2/3 log T ). Future directions include analyz-

ing the dynamic regret defined w.r.t. the optimal (instanta-

neous) control policy in hindsight, investigating coupled time-

varying cost functions, and analyzing the adversarial noise

setup.
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