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Abstract—Online optimization has recently opened avenues to
study optimal control for time-varying cost functions that are
unknown in advance. Inspired by this line of research, we study
the distributed online linear quadratic regulator (LQR) problem
for linear time-invariant (LTI) systems with unknown dynamics.
Consider a multi-agent network where each agent is modeled as a
LTI system. The network has a global time-varying quadratic cost,
which may evolve adversarially and is only partially observed by
each agent sequentially. The goal of the network is to collectively
(i) estimate the unknown dynamics and (ii) compute local control
sequences competitive to the best centralized policy in hindsight,
which minimizes the sum of network costs over time. This
problem is formulated as a regrer minimization. We propose a
distributed variant of the online LQR algorithm, where agents
compute their system estimates during an exploration stage. Each
agent then applies distributed online gradient descent on a semi-
definite programming (SDP) whose feasible set is based on the
agent system estimate. We prove that with high probability the
regret bound of our proposed algorithm scales as O(TQ/ 3log T,
implying the consensus of all agents over time. We also provide
simulation results verifying our theoretical guarantee.

I. INTRODUCTION

In recent years, there has been a significant interest on prob-
lems arising at the interface of control and machine learning.
Among classical control problems, LQR control [1]-[3] is
a prominent point in case. LQR control centers around LTI
systems, where the control-state pairs introduce a quadratic
cost with time-invariant parameters. When the dynamics of
the LTI system is known, for finite-horizon and infinite-horizon
problems, the optimal controllers have closed-form solutions,
which can be derived by solving the corresponding Riccati
equations.

Despite the excellent insights on the LQR problem provided
by the classical control theory, in practical problems we might
encounter two challenges. (I) The environment could change
in an unpredictable way, which makes the cost parameters
time-varying and unknown in advance (e.g., in variable-supply
electricity production and building climate control with time-
varying energy costs [4]). (II) Furthermore, the dynamics
of the LTI system may be unknown. The former challenge
has motivated research at the interface of online optimization
and control, where online LQR problem is cast as a regret
minimization and the performance of an online algorithm is
compared to that of the best fixed control policy in hindsight.
The regret metric is particularly meaningful in the online
setting, where the cost parameters are unknown in advance.
The focus of online LQR is on the finite-time performance
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from a learning-theory perspective (see details of this literature
in item 4 of Subsection I-A). The latter challenge is addressed
via adaptive control in general. In this case, the learner must
strike a balance between exploration (estimating the system
dynamics) and exploitation (using the estimates to compete
with the performance of the optimal controller) [5]-[8].

In this work, we consider the distributed online LQR prob-
lem for a network of LTI systems with unknown dynamics.
Each system is represented by an agent in the network that has
a global time-varying quadratic cost. The cost sequence may
evolve adversarially and is only partially observed by each
agent sequentially, i.e., the agents do not have the knowledge
of local costs in advance. The term adversarial implies that
there is no statistical/probabilistic assumption imposed on the
cost sequence. The goal of each agent is to generate a control
sequence (in an online fashion) that is competitive to that of the
best centralized policy in hindsight, and the sub-optimality is
formulated by the notion of regret. Specifically, for an online
control problem with a finite time horizon 7', a successful
algorithm must attain a regret that is sub-linear in 7', which
implies that its time-averaged performance tends to that of
the best policy in hindsight asymptotically. In practice, this
setting can be applied for modeling the energy consumption
in mobile sensor networks as described in Example 1. Our
main contributions in addressing this problem are as follows:

1) We propose a decentralized algorithm with two phases.
In the exploration phase, each agent first spends 7§ iter-
ations to collect data for the system identification. Then,
in the following T iterations, all agents jointly compute
system estimates by applying the EXTRA algorithm [9],
which is an iterative decentralized optimization method.
In the exploitation phase (of length T' — Ty — 1Y),
agents perform distributed online gradient descent on a
SDP (whose feasible set is constructed by local system
estimates) and extract the control policies accordingly.
The exploration and exploitation phases play conflicting
roles in regret minimization. In particular, if (T + 71)
is larger, the SDP is built on finer system estimates
and the incurred regret during the exploitation phase is
lower. However, that also means that the regret during
the exploration is larger. Therefore, we must strike a bal-
ance between exploration and exploitation. In the main
theorem, we quantify the dependence of the regret bound
on Ty and 77, and we show that with an optimal choice
of Ty and T}, the regret is bounded by O(7%/31ogT),
where T is the total number of iterations. This implies
that the agents reach consensus and collectively compete
with the best fixed controller in hindsight.

3) Besides the exploration-exploitation trade-off, the main
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technical challenge is that the decentralized system iden-
tification step results in different SDPs across agents.
This implies that the feasible set of SDP varies from one
agent to another, and we cannot directly use distributed
online optimization results on a common feasible set.
We draw upon techniques from alternating projections
to tackle this problem.

4) We provide simulations verifying the sublinearity of re-
gret and the consensus of all agents. We further illustrate
the impact of network connectivity on the regret.

Our technical proofs are provided in the Appendix (Section
VI of [10]).

A. Related Literature

(1) Distributed LQR Control: Distributed LQR has been
widely studied in the control literature. A number of works
focus on multi-agent systems with known, identical decoupled
dynamics. In [11], a distributed control design is proposed
by solving a single LQR problem whose size scales with
the maximum degree of the graph capturing the network.
The authors of [12] derive the necessary condition for an
optimal distributed controller design, resulting in a non-convex
optimization problem. The work of [13] addresses a multi-
agent network, where the dynamics of each agent is a single
integrator. The authors of [13] show that the computation of
the optimal controller requires the knowledge of the graph
and the initial information of all agents. Given the difficulty
of precisely solving the optimal distributed controller, Jiao
et al. [14] provide the sufficient conditions to obtain sub-
optimal controllers. All of the aforementioned works need
global information such as network topology to compute the
controllers. On the other hand, Jiao et al. [15] propose a
decentralized method to compute the controllers and show that
the system will reach consensus. For the case of unknown
dynamics, Alemzadeh et al. [16] propose a distributed Q-
learning algorithm for dynamically decoupled systems. There
are other works focusing on distributed control without assum-
ing identical decoupled sub-systems. Fattahi et al. [17] study
distributed controllers for unknown and sparse LTI systems.
Furieri et al. [18] address model-free methods for distributed
LQR problems and provide sample-complexity bounds for
problems with the local gradient dominance property (e.g.,
quadratically-invariant problems). The work of [19] investi-
gates the convergence of distributed controllers to a global
minimum for quadratically invariant problems with first-order
methods.

(2) System Identification of LTI Systems: For solving LQR
problems with unknown dynamics, we first need to learn
the underlying system. To provide performance guarantees
for the controller, it is important to explicitly quantify the
uncertainty of the model estimate. The classical theory of
system identification for LTI systems (e.g., [20]-[23]) char-
acterizes the asymptotic properties of the estimators. On the
contrary, recent results in statistical learning focus on finite-
time guarantees. In [24], it is shown that for fully observable
systems, a least-squares estimator can learn the underlying
dynamics from multiple trajectories. These results are later

extended to the estimation using a single trajectory [25], [26].
For partially observable systems, estimators with polynomial
sample complexities are provided in the literature (e.g., [27]-
[30]), and the work of [31] improves the sample complexity
to poly-logarithmic.

(3) Online LQR with Unknown Dynamics and Time-
Invariant Costs: There is a recent line of research dealing
with LQR control problems with unknown dynamics. Several
techniques are proposed using (i) gradient estimation (e.g.,
[32]-[35]), (ii) the estimation of dynamics matrices and deriva-
tion of the controller by considering the estimation uncertainty
(e.g., [71, [8], [24], [36]-[38]), and (iii) wave-filtering [39],
[40].

(4) Online Control with Time-Varying Costs: Recently,
there has been a significant interest in studying linear dynam-
ical systems with time-varying cost functions, where online
learning techniques are applied. This literature investigates two
scenarios: I) Known Systems: Cohen et al. [4] study the SDP
relaxation for online LQR control and establish a regret bound
of O(\/T) for known LTT systems with time-varying quadratic
costs. Agarwal et al. [41] propose the disturbance-action policy
parameterization and reduce the online control problem to
online convex optimization with memory. They show that
for adversarial disturbances and arbitrary time-varying convex
functions, the regret is O(\/T) Agarwal et al. [42] consider
the case of time-varying strongly-convex functions and im-
prove the regret bound to O(poly(logT’)). Simchowitz et al.
[43] further extend the O(poly(logT")) regret bound to partially
observable systems with semi-adversarial disturbances. Yu
et al. [44] incorporate the idea of model predictive control
into online LQR control with a time-invariant cost function
and correct noise predictions. Zhang et al. [45] extend this
idea to the setup where costs are time-varying and accurate
disturbance predictions are not accessible. Both works provide
dynamic regret bounds with a term shrinking exponentially
with the prediction window. Our previous work [46] studies
the distributed online LQR control with known dynamics and
provides the regret bound of O(v/T). II) Unknown Systems:
For fully observable systems, Hazan et al. [47] derive the regret
of O(T?/?) for time-varying convex functions with adversarial
noises. For partially observable systems, the work of [43]
addresses the cases of (i) convex functions with adversarial
noises and (ii) strongly-convex functions with semi-adversarial
noises, and it provides regret bounds of O(72/?) and O(V/T),
respectively. Lale et al. [48] establish an O(poly(logT')) regret
bound for the case of stochastic perturbations, time-varying
strongly-convex functions, and partially observable states.

Our work lies precisely at the interface of distributed LQR,
online LQR and adaptive control, addressing distributed online
LQR with unknown dynamics.

Authorized licensed use limited to: Northeastern University. Downloaded on December 05,2023 at 02:54:42 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3299551

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation
[n] The set {1,2,...,n} for any integer n
Tr(-) The trace operator
-1l Euclidean (spectral) norm of a vector (matrix)
Il = Frobenius norm of a matrix
E[] The expectation operator
IIs[] The operator for the projection to set S
[A];; The entry in the ¢-th row and j-th column of A
[A].; The j-th column of A
AeB || Tr(A"B)
A > B || (A — B) is positive semi-definite
1 The vector of all ones
€; The i-th basis vector
vec(A) || Vectorized version of the matrix A

B. Distributed Online LOR Control with Unknown Dynamics

We consider a multi-agent network of m LTI systems, where
the dynamics of agent ¢ is given as,

Xit41 = AX; ¢ +Bui s +wi e, 1€ [m]

and x; ; € R% and u;; € RF represent agent 4 state and control
(or action) at time ¢, respectively. Furthermore, A € R%*¢,
B € R%*, and w;; is a Gaussian noise with zero mean
and covariance W = o°1. The system parameters (A, B) are
unknown to all agents and need to be estimated. The noise
sequence {w;.} is independent over time and agents. We
also assume that ||[A B]||r < ¢ and let n := d + k for the
presentation simplicity.

Departing from the classical LQR control, we consider the
online distributed LQR problem, where the cost functions are
unknown in advance. At round ¢, agent ¢ receives the state
x;,+ and applies the action u; ;. Then, positive semi-definite
cost matrices Q;; and R, ; are revealed, and the agent incurs
the cost X;-l,—th',tXi,t + u;':tRiytuivt. Throughout this paper,
we assume that Tr(Q; ), Tr(R;,;) < C for all 4,¢ and some
C > 0. Agent ¢ follows a policy that selects the control
u; + based on the observed cost matrices Q; 1,...,Q;+—1 and
R;1,...,Ri¢—1, as well as the information received from
its local neighborhood. This policy is not driven based on
individual costs. On the contrary, agents follow a feam goal
through minimizing a cost collectively as we describe next.

Centralized Benchmark: In order to gauge the performance
of a distributed online LQR algorithm, we require a centralized
benchmark. In this paper, we focus on the finite-horizon
problem, where for a centralized policy 7, the cost after T’
steps is given as

T
Jr(n) =B | _x7 Qi +uf 'Ruuj |, (1)

t=1
where Q; = >, Qi and Ry = > " R;;, and the
expectation is over the possible randomness of the policy as
well as the noise. The superscript 7 in uj and x7 alludes that
the state-control pairs are chosen by the policy 7, given full
access to cost matrices of all agents. Notice that in the infinite-
horizon version of the problem with time-invariant cost matri-
ces (Q,R), where the goal is to minimize limy_, o Jr(7)/T,
it is well-known that for a controllable LTI system (A, B), the

optimal policy is given by the constant linear feedback, i.e.,
uf = Kx7 for a matrix K € R¥*9,

Regret Definition: The goal of a distributed online LQR
algorithm A is to mimic the performance of an ideal cen-
tralized algorithm that solves (1). The main two challenges
are (i) the online nature of the problem, where cost matrices
become available sequentially, and (ii) the distributed setup,
where agent ¢ only receives information about the sequence
{Qi,R; .} while the network cost is based on {Q¢, R;}.
In this setting, each agent j locally generates the control
sequence {u;;}7_,, that is competitive to the best policy
among a benchmark policy class II. This can be formulated as
minimizing the individual regret, which is defined as follows

Regreth(.A) = J%(A) — min Jr (), (2)

mell

for agent j € [m], where

T
BA)=E Y x, Qxdy +uf Ryl ©)
t=1
A successful distributed algorithm is one that keeps the regret
sublinear with respect to T'. Of course, this also depends on
the choice of the benchmark policy class II, which is assumed
to be the set of strongly stable policies (to be defined precisely
in Section II-C). Since the underlying dynamics is unknown,
agents have to find a good trade-off between exploration
(estimating the system parameters) and exploitation (keeping
the regret sublinear).

Network Structure: The underlying network topology is
captured by an undirected graph G = (V, ), where V = [m]
denotes the set of nodes (i.e., agents) and & represents the set
of edges. If there is an edge between nodes ¢ and j, agent
i assigns a positive weight [P];; to the information received
from agent j. If there is no edge between nodes ¢ and j, [P];;
is equal to zero. The weighted adjacency matrix P is assumed
to be symmetric and doubly stochastic, i.e., all elements of
P are non-negative and ;" [P];; = >0, [P];; = 1. The
network is further assumed to be connected, i.e., for any
two agents i,j € [m], there is a (potentially multi-hop) path
from ¢ to j. We also assume P has a positive diagonal.
Then, there exists a geometric mixing bound for P [49],
such that Y7 |[P*];; — 1/m| < v/mp*, i € [m], where
[ is the second largest singular value of P. Agents do not
directly share their observed cost functions with each other,
but they exchange local parameters used for constructing the
controllers, which effectively captures the information of local
costs in their neighborhood. The communication is consistent
with the structure of P. We elaborate on this in the algorithm
description.

Example 1. Our framework can be used for minimizing the
energy consumption in mobile sensor networks (MSNs) [50]
in time-varying settings. Consider a MSN where at time t
the total mobility cost (or budget) of sensors is modeled
by matrices (Q:,R¢). Each agent i has a local budget of
(Qit,Rit), but the team goal is to design actions that
minimize the global network cost over time. Then, actions of
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this MSN should be guided to minimize the global cost in (1),
though each sensor only has local information.

C. Strong Stability and Sequential Strong Stability

We consider the set of strongly stable linear (i.e., u = Kx)
controllers as the benchmark policy class. Following [4], we
define the notion of strong stability as follows.

Definition 1. (Strong Stability) A linear policy K is (k,7)-
strongly stable (for k > 0 and 0 < v < 1) for the LTI
system (A,B), if |K|| < &, and there exist matrices L and
H such that A + BK = HLH™!, with ||L|| < 1 — v and
[HL[|E )] < &

Strong stability is a quantitative version of stability, in the
sense that any stable policy is strongly stable for some « and ~,
and vice versa [4]. A strongly stable policy ensures fast mixing
and exponential convergence to a steady-state distribution. In
particular, for the LTI system x;41 = Ax; + Bu; + Wi, if a
(k,y)-strongly stable policy K is applied (u; = Kx;), X; (the
state covariance matrix of x;) converges to X (the steady-state
covariance matrix) with the following exponential rate

X = X]| < w7 X0 - X||.

See Lemma 3.2 in [4] for details. The sequential nature of
online LQR control requires another notion of strong stability,
called sequential strong stability [4], defined as follows.

Definition 2. (Sequential Strong Stability) A sequence of lin-
ear policies {K;}I_, is (k,)-strongly stable if there exist ma-
trices {H,}_, and {L;}_, such that A+BK, = H,L,H; "
for all t with the following properties,

D Ll €1 =y and K¢ < k.

2) |Hy|| < B and |H Y| < 1/ with k = /.

3) [H  H < 147/2

Sequential strong stability generalizes strong stability to the
time-varying scenario, where a sequence of policies {K;}7 ;
is used. The convergence of steady-state covariance matrices
induced by {K;}7_, is characterized as follows.

Lemma 1. (Lemma 3.5 in [4]) Suppose a time-varying policy
(uy = Kyxy) is applied. Denote the steady-state covariance
matrix of K; as Xy. If {K;} are (k,~)-sequentially strongly
stable and | X; —Xi—1|| <, Xt (the state covariance matrix
of x;) converges to X as follows

~ EPPN K>
1K1 = Xegal] € w2677y = Xal| + =
D. SDP Relaxation for LOR Control
For the following dynamical system
Xt+1 = AXt +But+wt7 W NN(07W),
the infinite-horizon version of (D), ie.,

minimize limy_, o Jr(7)/T, with fixed cost matrices Q
and R can be relaxed via a SDP when the steady-state

distribution exists. For v > 0, the SDP relaxation is
formulated as [4]
. _(Q O
minimize J(X) = <O R X
subject to Yy = [AB|X[AB]T + W,
=0, Tr(X) <v,

ZXX Exu
>= (Eux Euu> :

Recall that in the online LQR problem, we deal with time-
varying cost matrices (Qq, R;), and for any ¢ € [T, the above
SDP yields different solutions. In fact, for any feasible solution
¥ of the above SDP, a strongly stable controller K = X[ -1
can be extracted. The steady-state covariance matrix induced
by this controller is also feasible for the SDP and its cost is
at most that of ¥ (see Theorem 4.2 in [4]). Moreover, for any
(slowly-varying) sequence of feasible solutions to the SDP, the
induced controller sequence is sequentially strongly-stable.

“4)

where

E. Challenges of Distributed Online LOR for Unknown Dy-
namical Systems

The works of [4] and [46] tackle the centralized and decen-
tralized online LQR, respectively. To keep the regret sublinear,
the key idea in online LQR is to construct sequentially strongly
stable controllers using online gradient descent (projected to
the feasible set of SDP in (4)). However, in our work, given
that system parameters (A, B) are unknown, the agents must
perform a system identification first. The system identification
step results in two challenges: (i) an exploration-exploitation
trade-off to keep the regret sublinear, and (ii) different SDPs
across agents as a result of decentralized estimation. The latter
is particularly challenging, because as we can see in (4),
each agent will only have a local estimate of (A, B), so the
SDPs will have different feasible sets across agents, and we
cannot directly apply distributed online optimization results
on a common feasible set (e.g., [51], [52]). In this work, we
propose an algorithm (in the next section) for which we prove
that an extracted controller based on precise enough system
estimates (A, B) is strongly stable w.r.t. the system (A, B).

III. ALGORITHM AND THEORETICAL RESULTS

We now develop the distributed online LQR algorithm for
unknown systems and study its theoretical regret bound.

A. Algorithm

Our proposed method is outlined in Algorithm 1. In the
first Ty + 1 iterations, we need to collect data for the system
identification. Suppose that each agent has access to a con-
troller K, which is (ko,yo)-strongly stable w.r.t. the system
(A,B). This controller can be different across agents, but
for the presentation simplicity, we assume that agents use
the same controller K. The knowledge of such controller
is a common assumption in centralized LQR (see e.g., [7],
[8]). In this period, agent ¢ at time ¢ applies the control
u; ~ N(Koxi,t,202n3 - I), which prevents the state x; ;
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from going unbounded (lines 2-7). For the next 77 iterations,
all agents perform the system identification step by solving
a distributed least-squares (LS) problem. In this step, the
global LS problem is formed using the data collected by all
agents, where the local cost of each agent is only based on its
own collected data. Here, we can use any iterative distributed
optimization algorithm to get precise enough system estimates.
We employ the EXTRA algorithm [9] since it achieves a
geometric rate for strongly convex problems, and it can be
implemented in a decentralized fashion (lines 8-16), where at
each iteration, agents exchange their local system estimates
with their neighbors in consistent with the network topology
and then update their estimates accordingly. After Ty 477 +1
iterations, each agent ¢ at time ¢ runs a distributed online
gradient descent on the SDP (4), where the local cost is
defined w.r.t. matrices Q;; and R, ;, and the feasible set is
defined w.r.t. system estimates (f&i,t, ]§,¢). This provides an
iterative update where agent ¢ forms 33; ;41 using its local cost
matrices as well as 3;; for any j in the neighborhood of .
A control matrix K, is then extracted from the update of
Y+ and is used to determine the action. In particular, u; ¢
is sampled from a Gaussian distribution N (K. txit, Vi),
which entails E[u, ;|F;] = K ;x; ;, where F; is the smallest
o-field containing the information about all agents up to time ¢
(lines 17-26). The choice of V; ; in line 23 is due to a technical
reason. It ensures the fast convergence of the covariance matrix
of x; . to the steady-state covariance matrix, when applying
K to the underlying system (A, B).

B. Theoretical Result: Regret Bound

Before presenting our theoretical result, let us state all the
assumptions we use in our analysis as follows.

Assumption 1. The cost matrices satisfy Tr(Q; ) < C and
Tr(R; ;) < C, Yi € [m] and ¥t € [T, where C' is a constant.

Assumption 2. The system matrices (A, B) have bounded
norms, ie., ||[AB]||r < 9.

Assumption 3. The covariance matrix of the noise (W)
satisfies W = 0?1 and Tr(W) < \2.

Assumption 4. The network structure is captured by a con-
nected undirected graph. The communication matrix P is
symmetric and doubly stochastic with a positive diagonal.

Assumption 5. We assume the knowledge of one (ko,Y0)-
strongly stable controller Ko w.rt. system matrices (A,B)
before the learning process.

We now present our main theoretical result. By applying
Algorithm 1, we show that for a multi-agent network of un-
known LTI systems (with a connected communication graph),
the individual regret of an arbitrary agent is upper-bounded
by O(T?/31ogT), which implies that the agents collectively
perform as well as the best fixed controller in hindsight for
large enough T'.

Theorem 2. Suppose Assumptions (1, 2, 3, 4, 5) hold. Given
k> 1and 0 < v < 1, set v = 2k*\2/ and step size
n = T~Y3. If we run Algorithm 1 (denoted by A) with Ty =

Algorithm 1 Distributed Online LQR Control with Unknown
Dynamics

1: Require: number of agents m, doubly stochastic matrix
P € R™*™, parameter v, step size 1, a (Ko, Yo)-strongly
stable controller Ky w.r.t. system matrices (A, B), covari-
ance parameter of the noise o, parameter ¥.

Initialize: x; ; = 0, Vi € [m].

2: fort=1,2,...,7p+ 1 do
33 fori=1,2,...,m do
4: Receive x; ;
5 Perform action u; ; ~ N (Kox; ¢, 20%K2 - I)
6: end for
7: end for
8: After the first (T + 1) iterations, each agent i uses the
collected data to form the local function
&l o292
fi(A,B) = [I[ABlzi; —xiea]* + I[A B[,
t=1

where z;; =[x, u/]T.

9: Choose the step size « following the result in [9] and set
P .= I+P . Denote by D the agent ¢ vectorized system
estlmate [A B, i]. Apply EXTRA to solve the global LS
problem > 1", f;(A, ,B) in a distributed fashion.

10: Randomly generate DJ? for all i € [m].

11: Vi, D} = Z;nzl[P]ﬂD? —aV f;(DY).

12: for k=0,1,...,71 — 1 do

13: forAi:1,2,...md0 o

4 DiT? o= 9 L Ditt — Y [P)DY -
o[V F(DE) (DR

15:  end for

16: end for

17: For all i € [m], transform the vectorized DI back to

matrix form [Al ¢ Bz ¢ forallt > (Tp + 1) + 1.

18: Let Ty := (Tp + 11 + 2).

19: Initialize ¥; 7, = X, for any ¢ € [m].

20: for t =T,,...,T do

21: fori=1,2,...,m do

22: Receive x; ;

23 Compute K;; = (Zit)ux(Zit)en and V,;; =
(Ei,t)uu - Ki,t(zi,t)xxKIt

24: Perform w;; ~ WN(K;;x;:, V;;) and observe
Qi,ta Rz t

25: Ei,t+1 = HS;:JA jgl[P]jizj’t - (Q(;’t R(17t>‘| s
where

Sipy = {z e R\ o

=0, Tr(X)<vw, }
xx - Cz t+IZC7, 1 + W

and C; 141 = [A; 141 Bi,t+1]-
26:  end for
27: end for

T2/310g(T/8) and Ty = ©(log(T)), then with probability
(1 —9), the individual regret of agent j with respect to any
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(k,y)-strongly stable controller K*® is bounded as follows

Regrety,(A) = Jh(A) — Jr(K*)

’I’LI<L24 m,‘<&12

B O(\/%( o * (1-08)?

for large enough T.

)T2/3 1og(T/5)) ,

From Theorem 2, we can see that the regret bound depends
on the stability properties of the benchmark controller K?.
In particular, a smaller x or a larger v entail a tighter
regret bound. In fact, we prove that the local controller K; ;
(generated by Algorithm 1) is (ﬁ, %)—Strongly stable w.r.t.
(A, B), where ¥ = O(7y/k%) (see Section VI-D in [10]). This
implies that a smaller x or a larger v will also make the
decentralized controller “more” strongly stable w.r.t. (A, B).
As for the effect of the network topology, the dependence of
(1 — B)~! implies that when the network is well-connected
(i.e., B is smaller), the resulting bound is tighter. A smaller
[ allows the Markov chain P to mix faster, which intuitively
results in faster information propagation over the network of
agents, and later in Section IV we verify this dependency by
trying networks of different topologies. The exact expressions
of the regret upper bound and the lower bound of T are
provided in the Appendix of [10], and we highlight the key
technical challenges in Section III-C.

Remark 1. For online LOR control with known dynamics, [4]
and [46] prove regret bounds of O(\/T ) for centralized and
distributed cases, respectively. However, in this work, since the
system is unknown, agents need to compute system estimates
first. This brings forward an exploration cost that increases
the order of regret. In other words, agents objective is still to
minimize the regret, but if they do not collect enough data,
the estimation error propagates into the exploitation phase,
vielding a larger regret (in terms of order).

Remark 2. For online control with unknown dynamics, both
[47] and [43] consider the setup where costs are time-varying
convex functions with adversarial noises, and they derive
the regret bounds of O(TQ/ 3) for fully observable systems
and partially observable systems, respectively. In this work,
we consider the distributed variant of online LOR control
with stochastic noises and unknown dynamics. Our regret
bound of O(T 2/3 log T) is consistent with previous results on
centralized problems in the convex setting (disregarding the
log factor).

C. Key Technical Challenges in the Proof

The regret can be decomposed into three terms, where each
term must be small enough to bound the regret. In [4], two of
these terms are bounded using the properties of strong stability
and sequential strong stability, and one term is bounded using
the standard regret bound for online gradient descent. In our
setup, since (A, B) is unknown, the agents cannot work with
the ideal feasible set in (4), and as evident from line 25
of the algorithm, S}, is constructed only based on agent i
system estimate. This brings forward two challenges. (i) Agent
i constructs the controllers based on iterates {3; ; } that are not

necessarily in the feasible set of (4), so we need to establish
the stability properties of these controllers. (ii) The feasible
sets are different across agents (i.e., Sf+1 #* ng for i #£ j),
so we cannot directly apply distributed online optimization
results on a common feasible set.

To tackle the first challenge, we first derive the bound on
the precision of each agent system estimate based on the
EXTRA algorithm (see Lemma 6 in our arXiv version [10])
and combine that with statistical properties of centralized LS
estimation using results of [8]. We then establish that if each
agent system estimate is close enough to the true system, a
strongly stable policy w.r.t. the system estimate is also strongly
stable w.r.t. the true system (see Lemma 3 and Lemma 4
in our arXiv version [10]). To address the second challenge,
we use alternating projections to prove that a point in the
feasible set of one agent is close enough to its projection to
the feasible set of another agent, when system estimates of
these two agents are close. Then, in Theorem 9 of [10], we
show the contribution of distributed online optimization to the
regret. We finally put together these results to prove our regret
bound.

IV. NUMERICAL EXPERIMENTS

We now provide numerical simulations verifying the theo-
retical guarantee of our algorithm.

Experiment Setup: We first consider a network of m = 20
agents, captured by a cyclic graph, where each agent has a
self-weight of 0.6 and assigns the weight 0.2 to each of its
two neighbors. The (hyper)-parameters are set as follows: d =
k=3, k=15 ~v=04, C = 300. We let matrices A =
(1—2)I and B = (y/k)I to ensure the existence of a (k, )-
strongly stable controller. For time-varying cost matrices, we
set Q; ¢ (respectively, R; ;) as a diagonal matrix where each
diagonal term is sampled from the uniform distribution over
[0,C/d] (respectively, [0, C/E]), so that Tr(Q; ), Tr(R; ;) <
C'. The disturbance w; ; is sampled from a standard Gaussian
distribution, and thus A2 = d = 3 and ¢2 = 1.

Simulation: We simulate Algorithm 1 for T =
1K,2K,3K,...,60K. For the benchmark, we set K?*
as (—k)1072I which is (k,v)-strongly stable w.rt. A, B,
and the resulting cumulative cost is small enough to be
the benchmark. For the projection on the feasible set, we
apply Dykstra’s projection algorithm. Due to floating-point
computations, V;; for action-sampling may not be positive
semi-definite (PSD). Therefore, we address it by adding to
V,;+ a small term ((le — 15)I) to keep it PSD. The entire
process is repeated for 50 Monte-Carlo simulations, and in
the figures we present the averaged plots.

Iterations 20K 30K 40K 50K 60K
Averaged Regret 1.424 1.34 1.248 1.201 1.168
Standard Error 0.0087 | 0.0097 | 0.0052 | 0.0032 | 0.0037

TABLE I: The mean and standard error of the averaged regret over
time and agents (><10_4).

Performance: I) Sublinearity of Regret: To verify the result
of Theorem 2, in Fig. 1b, we present the averaged regret over
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(c) The averaged regrets over time for different net-
works: more connectivity results in smaller regret.

Fig. 1: The individual regrets of all agents are shown to be sublinear.

time (i.e., individual regret divided by 7'), which is clearly
decreasing over time. In Table I, we tabulate the averaged
regrets (over time and agents) as well as their standard errors
computed from 50 trials for 7' = 20K, 30K, 40K, 50K, 60K.
We can see that 50 trials is enough to obtain a small standard
error. II) Impact of Network Topology: To study the impact of
network topology, we use three different networks: a cyclic
graph with 2 neighbors (Net A), a cyclic graph with 6
neighbors (Net B) and a complete graph (Net C) where every
entry of P is 2—10. From Fig. 1c, we can see that the regret
increases when (3 is smaller (Net A > Net B > Net C). This
result is consistent with the impact of 8 shown in Theorem 2.

V. CONCLUSION

In this paper, we considered the distributed online
LQR problem with unknown LTI systems and time-varying
quadratic cost functions. We developed a fully decentralized
algorithm to estimate the unknown system and minimize the
finite-horizon cost, which can be cast as a regret minimization.
We proved that the individual regret, which is the performance
of the control sequence of any agent compared to the best
(linear and strongly stable) controller in hindsight, is upper
bounded by O(T?/31ogT). Future directions include analyz-
ing the dynamic regret defined w.r.t. the optimal (instanta-
neous) control policy in hindsight, investigating coupled time-
varying cost functions, and analyzing the adversarial noise
setup.
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