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On Centralized and Distributed Mirror Descent: Convergence
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Abstract—Mirror descent (MD) is a powerful first-order optimiza-
tion technique that subsumes several optimization algorithms in-
cluding gradient descent (GD). In this work, we leverage quadratic
constraints and Lyapunov functions to analyze the stability and
characterize the convergence rate of the MD algorithm as well
as its distributed variant using semidefinite programming (SDP).
For both algorithms, we consider both strongly convex and non-
strongly convex assumptions. For centralized MD and strongly
convex problems, we construct an SDP that certifies exponential
convergence rates and derive a closed-form feasible solution to
the SDP that recovers the optimal rate of GD as a special case. We
complement our analysis by providing an explicit O(1/k) conver-
gence rate for convex problems. Next, we analyze the convergence
of distributed MD and characterize the rate numerically using an
SDP whose dimensions are independent of the network size. To
the best of our knowledge, the numerical rate of distributed MD has
not been previously reported in the literature. We further prove an
O(1/k) convergence rate for distributed MD in the convex setting.
Our numerical experiments on strongly convex problems indicate
that our framework certifies superior convergence rates compared
to the existing rates for distributed GD.

Index Terms—Convex optimization , decentralized optimization,
mirror descent, optimization algorithms, quadratic constraints,
semidefinite programming.

I. INTRODUCTION

Over the last two decades, distributed optimization over multiagent

networks has received a lot of attention in control, optimization, ma-

chine learning, and signal processing. In distributed optimization, a

group ofn agents is connected via a graph and can communicate locally

with their neighbors. Each agent is assigned a local objective function

fi : R
d → R, and the agents aim to collectively minimize the global

objective function

min
x∈Rd

{

f(x) �
1

n

n
∑

i=1

fi(x)

}

. (1)

The most intuitive gradient-based algorithm to tackle the problem above

is distributed gradient descent (GD) [1], where at each iteration k, each
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agent i updates its decision variables by a (private) local GD combined

with an averaging of its neighbors’ variables. In the unconstrained case,

this update is given by

x
(k+1)
i = x

(k)
i − η(k)∇fi(x

(k)
i ) + β

∑

j∈Ni

(x
(k)
j − x

(k)
i )

where η(k) > 0 is the step size and β > 0 is the consensus parameter.

In the form given above, this update is able to achieve optimal rates for

convex problems using a diminishing step-size sequence. Optimality

here refers to matching the centralized convergence rate (iteration

complexity) up to some errors related to the network structure. However,

when the local functions are smooth, the centralized GD algorithm

employs a constant step-size sequence for which the above-distributed

counterpart fails to converge.

The mirror descent (MD) algorithm [2] is a primal–dual method

that has been actively studied in recent years. MD can be seen as

a generalization of GD, in which the squared Euclidean distance is

replaced by Bregman divergence as the regularizer. The freedom in the

choice of Bregman divergence makes MD suitable for various problem

geometries. MD has been proven to have the same iteration complexity

as GD for nonstrongly convex problems [3], and it may even scale

better with respect to the dimension of the decision variables [4]. In the

strongly convex scenario, MD is less studied, and very recently, its ex-

ponential convergence was established under the Polyak–Łojasiewicz

(PL) condition [5]. Inspired by the success of MD in centralized

optimization, MD has also been studied in the distributed setting. To

the best of authors’ knowledge, the convergence rate of distributed MD

is not established for strongly convex and smooth problems, and only

recently, Sun and Shahrampour [6] provided a continuous-time analysis

suggesting local exponential rate (without explicitly characterizing

the rate).

In this article, we leverage the framework of quadratic constraints

(QCs) to certify numerical exponential convergence rates for cen-

tralized as well as distributed MD for strongly convex and smooth

problems using SDP. For merely convex and smooth problems, we

also establish an ergodic O(1/k) convergence rate. We first analyze

centralized MD, for which we derive linear matrix inequalities (LMIs)

as sufficient conditions for convergence of the algorithm at a specified

rate (see Theorem 2, Theorem 6, and Proposition 3). For the strongly

convex case, we prove that these LMIs always have a feasible solution

that matches the optimal convergence rate of GD when the Bregman

divergence is chosen as the squared Euclidean distance (Proposition

4 and Corollary 5). Next, we analyze the convergence of distributed

MD and characterize the rate using LMIs (see Theorems 8 and 9).

To the best of our knowledge, the exponential rate of distributed MD

has not been previously established in the literature. Our numerical

experiments on strongly convex problems indicate that our framework

certifies superior convergence rates compared to the existing rates for

distributed GD.
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A. Related Literature

1) Distributed Optimization: To ensure that distributed GD (or

sub-GD) reach consensus, many methods [1], [7], [8] use diminishing

step-size (commonly 1/k). For distributed MD, similar studies have

been conducted for stochastic optimization [9], [10] and online opti-

mization [11], [12]. Doan et al. [13] provide convergence results for

both centralized and decentralized MD algorithms. However, conver-

gence rates obtained using diminishing step-size are subexponential and

suboptimal under assumptions of strong convexity and smoothness.

To address this issue, a number of recent works introduce an

additional variable in the state vectors to track past gradients (see,

e.g., [14], [15], [16], [17]). One of the earlier works in this direction

is the EXTRA algorithm proposed by Shi et al. [14], which uses the

information from the past two iterations to perform each update. For

smooth problems, EXTRA provably achievesO(1/k) convergence rate

under the convexity assumption and exponential convergence rate under

the strong convexity assumption, respectively.

A closely relevant literature is the continuous-time distributed GD,

where the algorithms are constructed by a set of ordinary differential

equations (ODEs). These works are mostly based on the idea of integral

feedback, which can be thought as the continuous-time analog of gradi-

ent tracking. In this case, each agent uses an integration term as a part of

the ODE (see, e.g., [18], [19], [20], [21]). In these works, the analysis

is carried out by proving the Lyapunov stability for the corresponding

continuous-time dynamics, and exponential stability can be obtained

in certain cases [20]. For MD, the continuous-time algorithm in [6]

and [22] and the discrete-time algorithm in [23] both adapt the integral

feedback (or gradient tracking) method and propose algorithms that

do not suffer from suboptimal convergence rates. Specifically, Sun

et al. [6] propose a continuous-time distributed MD that achieves a

“local” exponential rate for strongly convex problems, and Yu et al. [23]

provide an O(1/k) convergence rate under the convexity assumption

in discrete time. Nevertheless, the exponential rate of (discrete-time)

distributed MD for strongly convex and smooth problems remains an

open problem, which we target in the current work.

2) Integral QCs: Deriving convergence rates for iterative opti-

mization algorithms in the worst case is an integral part of algorithm de-

sign. However, this procedure is not principled, requires a case-by-case

analysis, and might lead to conservative rates. To automate convergence

analysis and derive sharp convergence rates, several past works have

used integral QCs (IQCs) and semidefinite programming in various

settings [24], [25], [26], [27], [28], [29], [30], pioneered by the work

in [24]. IQCs are a tool from robust control to analyze dynamical sys-

tems that contain components that are nonlinear, uncertain, or difficult to

model [31]. The basic idea is to abstract these troublesome components

by constraints on their input and output signals. This approach to

algorithm analysis can also guide the search for parameter selection in

algorithm design. The works in [32] and [33] are of particular relevance

to our work. They both provide the IQC-based analysis of distributed

gradient-based algorithms in strongly convex settings. Compared to

these works, our framework focuses on distributed MD in both strongly

convex and convex settings.

II. PRELIMINARIES

A. Notations

The identity matrix of dimension n is denoted by In and the n-

dimensional vector with all entries 1 is represented by1n. We denote the

set ofn-dimensional symmetric matrices by S
n. The positive (negative)

semidefiniteness of matrix M is denoted as M � 0 (M � 0). We

use ⊗ and ‖ · ‖ to denote the Kronecker product and spectral norm,

respectively. We define the norm of vector v with respect to a positive

semidefinite matrixM as‖v‖M . The indicator function of a setX ⊆ R
d

is defined as IX (x) = 0 if x ∈ X and IX (x) = +∞ otherwise.

Definition 1 (Strong convexity): A differentiable function f : R
d →

R is µf -strongly convex on R
d if the following inequality is true for

all x, y ∈ R
d:

f(x) +∇f(x)�(y − x) +
µf

2
‖y − x‖2 ≤ f(y).

Definition 2 (Lipschitz smoothness): A differentiable function f :

R
d → R is Lf -smooth on R

d if
Lf

2
‖x‖2 − f(x) is convex, which

implies that for all x, y ∈ R
d

f(y) ≤ f(x) +∇f(x)�(y − x) +
Lf

2
‖y − x‖2 .

We further denote the condition number of function f byκf �
Lf

µf
≥

1. When µf = 0, the function is only convex.

Proposition 1: Suppose f is µf -strongly convex and Lf -smooth

on R
d. Then, the following inequality holds for all x, y ∈ R

d, and

u = ∇f(x), v = ∇f(y) :

[

x− y

u− v

]� [ −µfLf

µf+Lf
Id

1
2
Id

1
2
Id

−1
µf+Lf

Id

][

x− y

u− v

]

≥ 0. (2)

The above QC follows from the combination of strong convexity and

Lipschitz smoothness [24], [34].

B. Centralized MD Algorithm

We start by providing some background on the centralized MD

algorithm. For simplicity in the exposition, we study the unconstrained

case, but our analysis can also be extended to the constrained case.

Let us start with the GD algorithm, whose update is equivalent to the

following minimization:

x(k+1) = argmin
x

{

f(x(k)) +∇f(x(k))�(x−x(k))

+
1

2η
‖x−x(k)‖2

}

where η > 0 is the step size. In each iteration, the algorithm seeks to

minimize a first-order approximation of the function with a Euclidean

regularizer. As a generalization of GD, MD replaces the squared

Euclidean distance with Bregman divergence, which is defined with

respect to a distance generating function (DGF)φ : R
d → R as follows:

Dφ(x, x
′) � φ(x)− φ(x′)− 〈∇φ(x′), x− x′〉. (3)

Assumption 1: The DGF φ : R
d → R is µφ-strongly convex and

Lφ-smooth.

The centralized (unconstrained) MD algorithm with step-size η is

written as

x(k+1) = argmin
x

{

f(x(k)) +∇f(x(k))�(x− x(k))

+
1

η
Dφ(x, x

(k))

}

(4)

where if we choose the Bregman divergence to be the squared Euclidean

distance, the update above reduces to GD.

We can also view the MD update through a different lens using

the convex conjugate of function φ. The convex conjugate of function

φ, denoted by φ�, is defined as φ�(z) � supx∈Rd{〈x, z〉 − φ(x)}. As-

sumption 1 guarantees thatφ� isL−1
φ -strongly convex andµ−1

φ -smooth.
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We refer the reader to [35] for further details. Correspondingly, the

following equivalence can be established:

z′ = ∇φ(x′) ⇐⇒ x′ = ∇φ�(z′).

Then, the centralized MD update can be rewritten in the following form:

z(k+1) = z(k) − η∇f(x(k))

x(k+1) = ∇φ�(z(k+1)) (5)

or, equivalently, z(k+1) = z(k) − η(∇f ◦ ∇φ�)(z(k)), which is remi-

niscent of GD. We can see that MD is more general than GD in that we

can exploit the geometry of the problem using an appropriate choice

of φ, which makes MD more suitable for problems such as convex

clustering, matrix optimization with regularization, etc. [36], [37].

Denoting x� and z� as the fixed points of (5), we have

z� = z� − η∇f(x�) x� = ∇φ�(z�)

which implies that x� is a minimizer of f .

III. CONVERGENCE ANALYSIS OF CENTRALIZED MD

In this section, we provide a convergence analysis of the central-

ized MD using semidefinite programming. Our starting point is to

describe all the nonlinear functions in the algorithm, namely ∇f and

∇φ� by QCs on their input–output pairs, resulting in a quadratically-

constrained linear system. We then find a suitable “rate-generating”

Lyapunov function for this constrained system using semidefinite

programming. We derive exponential (respectively, subexponential)

convergence rates for strongly convex (respectively, convex) functions.

A. Exponential Convergence for Strongly Convex f

In the following theorem, we characterize an LMI that depends on

parameters of f (µf and Lf ), parameters of φ (µφ and Lφ), and several

decision variables (including the step-size η and the convergence rate

ρ ∈ (0, 1)). We prove that if the LMI is satisfied, the iterates converge

exponentially fast to the unique fixed point (x�, z�) with the rate ρ.

Theorem 2: Let Assumption 1 hold and assume that f isµf -strongly

convex and Lf -smooth. Define matrices Msc,Mf ,Mφ as follows:

Msc =

⎡

⎢

⎢

⎣

1−ρ

2µφ
Id 0 0

0 0 −η

2
Id

0 −η

2
Id

η2

2µφ
Id

⎤

⎥

⎥

⎦

Mf =

⎡

⎢

⎢

⎣

0 0 0

0
−µfLf

µf+Lf
Id

1
2
Id

0 1
2
Id

−1
µf+Lf

Id

⎤

⎥

⎥

⎦

Mφ =

⎡

⎢

⎢

⎣

−1
µφ+Lφ

Id
1
2
Id 0

1
2
Id

−µφLφ

µφ+Lφ
Id 0

0 0 0

⎤

⎥

⎥

⎦

. (6)

If there exist some ρ ∈ (0, 1), η > 0, σf ≥ 0, σφ ≥ 0, such that the

following matrix inequality holds:

Msc + σfMf + σφMφ � 0 (7)

then the MD algorithm in (5) converges exponentially fast with the rate

of ρ. In particular

‖x(k) − x�‖2 ≤ 2Dφ�(z(0), z�)

µφ

ρk.

Proof: Denote u(k) � ∇f(x(k)) and define the stacked vector

e(k)
�
=

[

(z(k) − z�)� (x(k) − x�)� (u(k) − u�)�
]

. (8)

Then, from Proposition 1, we obtain the following quadratic inequali-

ties:

e(k)�Mfe
(k) ≥ 0, e(k)�Mφe

(k) ≥ 0 ∀k
which are imposed by∇f and∇φ, respectively. Consider the Lyapunov

candidate V (k) = ρ−kDφ�(z(k), z�). Recall that φ� is L−1
φ -strongly

convex and µ−1
φ -smooth, so the Lyapunov function is, indeed, nonneg-

ative and continuously differentiable. Using Lemma 10 (provided in the

appendix of [38]), we can calculate the Lyapunov function difference

between two consecutive iterations as

V (k+1) − V (k) ≤ ρ−k−1e(k)�Msce
(k). (9)

Utilizing the two quadratic inequalities imposed by the nonlinearities,

we can write

V (k+1) − V (k) ≤ ρ−k−1e(k)�Msce
(k)

≤ ρ−k−1e(k)�(Msc + σfMf + σφMφ)e
(k).

Now if the LMI in (7) holds, the Lyapunov function is nonincreasing,

which yields

Dφ�(z(k), z�) = ρkV (k) ≤ ρkV (0) = ρkDφ�(z(0), z�). (10)

Observing Dφ�(z(k), z�) = Dφ(x
�, x(k)) and

µφ

2
‖x(k) − x�‖2 ≤ Dφ(x

�, x(k)).

Theorem 2 provides a matrix inequality feasibility problem that

establishes the exponential convergence rate of MD for a given ρ. This

matrix inequality is linear in (ρ, σf , σφ) (but not in η), allowing us to

find the smallest ρ by the semidefinite program

minimize
ρ,σφ,σf

ρ (11)

subject to 0 < ρ ≤ 1

η, σφ, σf ≥ 0

Msc + σfMf + σφMφ � 0.

If, in addition, we want to optimize ρ over the step-size η, we can use

Schur Complements to “convexify” the matrix inequality with respect

to η. We state this result formally in the next proposition.

Proposition 3: The optimization problem in (11) is equivalent to the

following SDP:

minimize
η,ρ,σφ,σf

ρ

subject to 0 < ρ ≤ 1

η, σφ, σf ≥ 0

(12)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

σφ

µφ+Lφ
+ ρ−1

2µφ

−σφ

2
0 0

−σφ

2

µφLφσφ

µφ+Lφ
+

µφ

2
+

µfLfσf

µf+Lf

−σf

2

−√
µφ√
2

0
−σf

2

σf

µf+Lf

η√
2µφ

0
−√

µφ√
2

η√
2µφ

1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

× � 0.
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We refer to the appendix of [38] for the proof of this proposition.

We now show that the SDP in (12) has a feasible solution for which we

can analytically calculate the convergence rate.

Proposition 4: The following selection

η = σf =
2µφ

µf + Lf

σφ =
4µfLf

(µf + Lf )2
(1 + κφ)

κφ(κφ − 1)

ρopt = 1− 4µfLf

(µf + Lf )2κ2
φ

(13)

is a feasible solution to the SDP in (12).

The proof of the proposition can be found in the appendix of [38].

Note that ρopt is an upper bound on the optimal value of (12).

The recent work in [5] also proposed an explicit rate of1− 1
5κ2

φ
κ2

f

for

MD under the PL condition. Although the PL condition is weaker than

strong convexity,ρopt is strictly smaller than the rate in [5]. Furthermore,

in our result, we do not make full use of strong convexity: We only

require the quadratic inequality (2) to hold for the pair (x, x�) (x
arbitrary and x� the fixed point of the algorithm), whereas for strongly

convex f this inequality holds for all (x, y). Our rate also recovers the

optimal rate of GD as a special case.

Corollary 5: For φ(x) = 1
2
‖x‖2 the optimal rate ρopt in (13) coin-

cides with the optimal convergence rate of GD.

Proof: If φ(x) = 1
2
‖x‖2, we have that φ�(z) = 1

2
‖z‖2 and (5) is

equivalent to GD. In this case, the condition number κφ =
Lφ

µφ
= 1,

and ρopt reduces to the optimal convergence rate for GD (see [34, Th.

2.1.15]).

B. O(1/k) Convergence for Convex f

We now propose an LMI, which establishes subexponential conver-

gence rate for the MD algorithm when the objective function is convex

(µf = 0).

Theorem 6: Let Assumption 1 hold and assume that f is convex

(µf = 0) and Lf -smooth (0 < Lf < ∞), and define the matrix Mc as

follows:

Mc =

⎡

⎢

⎣

0 0 0

0 0 ε−η

2
I

0 ε−η

2
I η2

2µφ
I

⎤

⎥

⎦
. (14)

If there exist some η > 0, σf ≥ 0, σφ ≥ 0, ε ≥ 0, such that the follow-

ing matrix inequality holds:

Mc + σfMf + σφMφ � 0 (15)

then the ergodic mean of function value at iteration K satisfies

f(x̄(K))− f(x�) ≤ Dφ�(z(0), z�)

εK

where x̄(K) = 1
K

∑K

i=1 x
(i).

We remark that a similar analysis can be applied to Theorem 6 to

find the best step-size that maximizes ε. The details are omitted due to

space limitation.

Remark 1 (Constrained MD): Consider the constrained version of

centralized (lazy) MD [39]

z(k+1) = z(k) − η∇f(x(k))

s(k) = ∇φ�(z(k))

x(k) = argmin
x∈X

Dφ(x, s
(k)) (16)

where X is a convex subset of R
d. By defining g(x) = IX (x) as the

indicator function of the set X and denoting its subdifferential by ∂g,

the optimality condition that characterizes x(k) is

∇φ(x(k))− zk ∈ ∂g(x(k)).

Using the fact that the subdifferential ∂g is monotone (since X is

convex), we can rewrite (16) as

z(k+1) = z(k) − ηu(k)

u(k) � ∇f(x(k))

v(k) � ∇φ(xk) (17)

subject to the QC

(v(k) − v� − (z(k) − z�))�(x(k)−x�) ≥ 0 ∀k.

Furthermore, we can write two separate QCs for the relationships

u(k) = ∇f(x(k)) and v(k) = ∇φ(x(k)). We can, therefore, employ the

same approach and derive an LMI as a sufficient condition to establish

exponential and O(1/k) convergence rates for strongly convex and

convex problems, respectively.

IV. CONVERGENCE ANALYSIS OF DISTRIBUTED MD

In the distributed setup, we have a network of agents, characterized

by an undirected graphG = (V, E), where each node inV = {1, . . . , n}
represents an agent, and the connection between two agents i and j is

captured by the edge {i, j} ∈ E . We use Ni � {j ∈ V : {i, j} ∈ E} to

denote the neighborhood of agent i. The graph Laplacian is represented

by L ∈ R
n×n.

Assumption 2: The graph G is undirected and connected, i.e., there

exists a path between any two distinct agents i, j ∈ V .

The connectivity assumption implies that L has a unique null eigen-

value; that is, L1n = 0.

A. Distributed MD Algorithm

We first introduce the distributed MD update, in which each agent i
in the network implements the following iterative algorithm:

zi
(k+1) = zi

(k) − η1
(

∇fi(xi
(k)) + yi

(k)
)

− η2
∑

j∈Ni

(zi
(k) − zj

(k))

yi
(k+1) = yi

(k) + η2
∑

j∈Ni

(zi
(k) − zj

(k))

xi
(k+1) = ∇φ�(zi

(k+1)). (18)

The first update uses private gradient information as well as the dual

variables from the neighbors. It also depends on a variable yi
(k) which

acts as an integrator. This algorithm is similar to the discretized version

of the distributed MD proposed in [22] using the idea of integral

feedback. However, the method differs slightly in the local averaging

in that the algorithm in [22] performs local averaging with respect to

the primal variable, and here, the averaging is done on the dual variable

zi
(k).

It is evident that the behavior of this system relies on the network

structure through the dependence on the Laplacian of the graph cap-

turing the network. Since L ∈ S
n, the LMIs will consist of matrices

whose dimensions scale with n, which is not suitable when n is large.
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Following the idea in [32] and [33], we transform the updates such that

the dependence on the full structure of the network is avoided. Define

W � In − η2L = ∆W +
1

n
1n1

�
n

and further denote the spectral norm of ∆W by λ � ‖∆W‖. The

quantity 1− λ is also known as the spectral gap.

To represent the updates collectively for all the agents, we define the

stacked vectors

z(k) = [z
(k)�
1 , . . . , z(k)�n ]�

y(k) = [y
(k)�
1 , . . . , y(k)�

n ]�

u(k) = ∇f(x(k)) � [∇f1(x
(k)
1 )�, . . . ,∇fn(x

(k)
n )�]�

x(k) = [∇φ�(z
(k)
1 )�, . . . ,∇φ�(z(k)n )�]�

v(k) = (∆W ⊗ Id)z
(k). (19)

We can now rewrite (18) as

z(k+1) =

(

1

n
1n1

�
n ⊗ Id

)

z(k) − η1(u
(k) + y(k)) + v(k)

y(k+1) = y(k) +

((

In − 1

n
1n1

�
n

)

⊗ Id

)

z(k) − v(k)

v(k) = (∆W ⊗ Id)z
(k)

x(k) = ∇φ�(z(k))

u(k) = ∇f(x(k)). (20)

To represent (20) in a state-space form, we can write
[

z(k+1)

y(k+1)

]

=

[

1
n
1n1

�
n ⊗ Id −η1Ind

(In − 1
n
1n1

�
n)⊗ Id Ind

][

z(k)

y(k)

]

+

[

0 −η1Ind Ind

0 0 −Ind

]

⎡

⎢

⎣

x(k)

u(k)

v(k)

⎤

⎥

⎦
. (21)

Additionally, we know the following constraints on the updates:
[

0

0

]

=

[

0 1n1
�
n ⊗ Id

0 0

][

z(k)

y(k)

]

+

[

0 0 0

0 0 1n1
�
n ⊗ Id

]

⎡

⎢

⎣

x(k)

u(k)

v(k)

⎤

⎥

⎦
. (22)

We define the state vector ξ(k)� �

[

z(k)� y(k)�
]

as well as the input

vector ζ(k)� �

[

x(k)� u(k)� v(k)�
]

. We can rewrite (21) and (22)

as

ξ(k+1) = Aξ(k) +Bζ(k) 0 = Fξ(k) +Gζ(k) (23)

where A,B,F,G are of appropriate dimensions. For ease of notation,

we denote H �

[

F G
]

.

For the purpose of convergence analysis, we characterize the fixed

point of (21). Define x� � 1n ⊗ x�, where x� ∈ R
d is a minimizer of

(1), and let z� � ∇φ(x�), u� � ∇f(x�), y� � −∇f(x�), and v� =
0. By letting z(k), y(k), v(k), x(k), and u(k) in (21) take the values of

z�, y�, v�, x�, and u�, it is easy to show that z(k+1) = z(k), y(k+1) =
y(k) using Assumption 2.

B. Exponential Convergence of Distributed MD

In the following theorem, we present the main result of this section.

We provide two LMIs to characterize the convergence rate of distributed

MD. The LMIs are written in terms of several decision variables,

including the step-size η1 and the convergence rate ρ. If we can find a

feasible solution for these LMIs, the distributed MD is guaranteed to

converge exponentially fast.

Before stating the theorem, we state the following lemma, which

will allow us to simplify the resulting SDP.

Lemma 7 (Lemma 6 in [32]): Suppose that square matrices J1, J2

satisfy J2
1 = J1, J

2
2 = J2, J1J2 = J2J1 = 0. For square matrices Q1

and Q2, define Q � Q1 ⊗ J1 +Q2 ⊗ J2. Then, the following are

equivalent: 1) Q � 0. 2) Q1 � 0, Q2 � 0.
Theorem 8: Let Assumptions 1 and 2 hold and assume all local func-

tions fi are µf -strongly convex and Lf -smooth. Define the following

matrices:

A1 =

[

0 −η1

1 1

]

, B1 =

[

0 −η1 1

0 0 −1

]

A2 =

[

1 −η1

0 1

]

, B2 =

[

0 −η1 1

0 0 −1

]

H1 =

[

0 0 0 0 0

0 0 0 0 0

]

,H2 =

[

0 1 0 0 0

0 0 0 0 1

]

and let Ri be a matrix whose columns form a basis for the null space

of Hi for i = 1, 2. Furthermore, define

Mf =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0

0 0 0 0 0

0 0
−µfLf

µf+Lf

1
2

0

0 0 1
2

−1
µf+Lf

0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Mλ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

λ
2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Mφ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
µφ+Lφ

0 1
2

0 0

0 0 0 0 0
1
2

0
−µφLφ

µφ+Lφ
0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

If there exists ρ ∈ (0, 1), η1 ≥ 0, P ∈ S
2, P � 0, σf ≥ 0, σφ ≥

0, σλ ≥ 0, such that the following matrix inequality holds for i = 1, 2 :

R�
i

([

A�
i PAi − ρP A�

i PBi

B�
i PAi B�

i PBi

]

+ σfMf + σλMλ + σφMφ

)

Ri � 0 (24)

then the distributed MD algorithm (18) initialized at y(0) = 0 converges

exponentially with a rate of ρ as follows:

‖ξ(k) − ξ�‖2P⊗Ind
≤ ρk‖ξ(0) − ξ�‖2P⊗Ind

.
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Proof: Define the vector e(k)� = [ξ(k)� ζ(k)�]. For anyΣeq ∈ S
2,

we can establish the following (in)equalities:

e(k)�(Mf ⊗ Ind)e
(k) ≥ 0

e(k)�(Mφ ⊗ Ind)e
(k) ≥ 0

e(k)�(Mλ ⊗ Ind)e
(k) ≥ 0

e(k)�H�(Σeq ⊗ Ind)He(k) = 0.

The first two inequalities are derived from Proposition 1, the third

inequality is due to the fact that λ = ‖∆W‖, and the equality follows

from the affine constraint in (22).

Define the Lyapunov function

V (k) = ρ−k(ξ(k) − ξ�)�P ′(ξ(k) − ξ�)

where P ′ � P ⊗ Ind. Then, using (23), we can write

V (k+1)−V (k)=ρ−k−1e(k)�

[

A�P ′A− ρP ′ A�P ′B

B�P ′A B�P ′B

]

e(k).

Now, if the following LMI holds:
[

A�P ′A− ρP ′ A�P ′B

B�P ′A B�P ′B

]

+ σfMf ⊗ Ind

+ σλMλ ⊗ Ind + σφMφ ⊗ Ind +H�(Σeq ⊗ Ind)H � 0 (25)

then for any e(k), we have that

ρ−k−1e(k)�

[

A�P ′A− ρP ′ A�P ′B

B�P ′A B�P ′B

]

e(k) ≤ 0

or, equivalently,

(ξ(k) − ξ�)�P ′(ξ(k) − ξ�) ≤ ρk(ξ(0) − ξ�)�P ′(ξ(0) − ξ�).

In words, the squared norm of system variables decreases exponentially

fast to zero. Next, we simplify the LMI such that the dimension is not

dependent on the agent number n. Our approach follows that in [32].

Define J1 and J2 in Lemma 7 as J1 = (In − 1
n
1n1

�
n)⊗ Id, J2 =

1
n
1n1

�
n ⊗ Id. It is easy to verify that these matrices satisfy the con-

straints in Lemma 7. We then have that

A = A1 ⊗ J1 +A2 ⊗ J2

B = B1 ⊗ J1 +B2 ⊗ J2

H = H1 ⊗ J1 +H2 ⊗ J2.

Consider the following for i = 1, 2 :
[

A�
i PAi − ρP A�

i PBi

B�
i PAi B�

i PBi

]

+ σfMf + σλMλ

+ σφMφ +H�
i ΣeqHi � 0. (26)

Since matrices J1, J2 satisfy the conditions in Lemma 7, if we consider

Q,Q1, and Q2 as the negative left-hand side of (25) and (26), respec-

tively, then a feasible set of solutions that satisfy (26) is equivalently

a feasible set of solutions for (25). Then, we only need to show the

equivalence of (24) and (26), which follows from [40, Lemma 3.1].

This equivalence is also used in the proof of [32, Th. 7].

The theorem provides two LMIs that establish the exponential con-

vergence rate of distributed MD. As we can see the LMIs are more

involved compared to the centralized case, and it is challenging to find

even a suboptimal analytical rate.

We finally remark that common analysis on distributed MD involves

general primal–dual norms [11], whereas QCs are defined with respect

to the Euclidean norm. The use of general primal–dual norms in

nonstrongly convex problems helps with improving the rate up to a

multiplicative factor of
√
d. However, in a strongly convex case, the

rate is exponentially fast, and a more general analysis can only change

the iteration complexity by at most logarithmic factors of d, which is

an interesting avenue to investigate in the future.

C. O(1/k) Convergence for Convex Functions

In the following theorem, we present the counterpart of Theorem 8

for convex problems.

Theorem 9: Let Assumptions 1 and 2 hold and assume all local func-

tions fi are convex (µf = 0) and Lf -smooth. Recall the definitions of

matricesA1, A2, B1, B2,H1,H2, R1, R2,Mf ,Mλ,Mφ in Theorem 8

and define the following additional matrices:

M1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0

0 0 0 0 0

0 0 Lf 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

M2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 1
2

0

0 0 1
2

0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

If there exist η1 ≥ 0, P ∈ S
2, P � 0, σf ≥ 0, σφ ≥ 0, σλ ≥ 0, ε ≥ 0,

such that the following matrix inequality holds for i = 1, 2 :

R�
i

(

[

A�
i PAi − P A�

i PBi

B�
i PAi B�

i PBi

]

+ σfMf

+ σλMλ + σφMφ + εMi

)

Ri � 0 (27)

then, the iterates of the distributed MD algorithm (18) initialized at

y(0) = 0 satisfy the following inequality:

n
∑

i=1

(

f(x̄
(K)
i )− f�

)

≤ V (0)

εK

where x̄
(K)
i � 1

K

∑K−1
k=0 x

(k)
i .

We refer to the appendix of [38] for the proof of this theorem. Given

that f(x̄
(K)
i )− f� is nonnegative, it is easy to see that the function

evaluated at the ergodic average of each agent iterate converges to a

minimum with a rate of O(1/K).

D. Evaluating the Tightness of Results

For the distributed MD algorithm, we provide numerical results

based on Theorem 8. First, we demonstrate the influence of the network

structure, and then, we compare the rate recovered by Theorem 8 to

existing theoretical rates on distributed GD when it achieves exponential

convergence.

1) Impact of the Network Structure on Convergence

Rate: We calculate the worst case convergence rate with several

choices of λ and plot it with respect to the step-size η1. We set the

local functions to have condition number κf = 2 and the DGF to have

condition number κφ = 2. Each curve in the plot represents a certain λ

and is obtained by scanning feasible values for the decision variables in

the LMIs (24). From Fig. 1(a), we can see that there exists an optimal

step-size to obtain the best convergence rate and that as λ increases, the

best rate becomes worse. Hence, for any given network structure and

its corresponding Laplacian matrix, we should select η2 such that λ is

minimized. This is consistent with results on distributed optimization,

where having a larger λ deteriorates the performance.
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Fig. 1. Optimal convergence rate for distributed MD obtained by solving LMIs under various assumptions. (a) Convergence rates generated from
Theorem 8 versus step-size η1. (b) Fixed κφ = 5. Varying λ and κf , optimal learning rate is chosen. (c) Comparison of the convergence rates for
different methods.

In Fig. 1(b), we keep κφ = 5 constant and study the optimal conver-

gence rate for different λ andκf . When the condition number increases,

the optimal rate worsens. This behavior aligns with GD, where κφ = 1.

2) Comparison With Distributed GD: To the best of our

knowledge, there is currently no work that provides an exponential

convergence rate for distributed MD algorithm. Hence, we select two

previous works on distributed GD, namely [14] and [15], and compare

our performance with the theoretical rates provided in these works. In

order to provide a fair comparison, we must set κφ = 1 to ensure that

MD reduces to GD. We also set the local functions to have condition

number κf = 3.

Of the two related works above, EXTRA [14] is of particular

relevance to our algorithm. If the matrix W̃ in EXTRA is set to be

(In +W )/2, the EXTRA algorithm coincides with our algorithm with

the exception of having a coefficient difference of 1
2

for the tracking

term. Note that the theoretical convergence rate of EXTRA relies on

the spectral norm of ∆W as well as the smallest nonzero eigenvalue

λn of W . We plot the convergence rate of EXTRA under the following

three different scenarios:

1) λn = λ (EXTRA pos);

2) λn = −λ (EXTRA neg);

3) λn ≈ 0 (EXTRA).

From Fig. 1(c), we can see that when λ is small, the rate recovered

by Theorem 8 significantly outperforms EXTRA. As λ increases, the

convergence rate calculated for our method starts increasing. We also

include the theoretical convergence results from Qu et al. [15], which

are consistently outperformed by EXTRA.

Note that the point of this plot is not to declare a winner among algo-

rithms. The goal is to show that the richness of the Lyapunov function

and QC analysis provides machinery to obtain better convergence rates,

especially compared to the rates that are algorithm specific. In this case,

our algorithm can coincide with EXTRA but still our analysis provides

better rates. Our observation is in line with empirical results of [32].

V. CONCLUSION

In this article, we adapted the IQC approaches in [24], [25], [32],

and [33] to pose the convergence analysis of the MD algorithm as a

semidefinite program. We characterized the convergence rate for both

centralized and distributed settings, and empirical evaluations were

performed under the assumption of strongly convex and smooth local

objective functions. For the centralized case, we derived a closed-form

feasible solution to the SDP for the convergence rate, which depends

on the condition number of the DGF. For the decentralized case, we

numerically derived the convergence rates using SDP. These SDPs do

not scale with the ambient dimension and the network size. Using

the QC framework, we further proved the O(1/k) convergence rate

for centralized and distributed MD in the convex and smooth setting.

It would be interesting to derive analytical rates for the distributed

case. Another important direction is the analysis of the MD algorithm

with primal–dual norms. This is a challenging problem as current SDP

approaches rely on the Euclidean norm and they do not lend themselves

to general primal–dual norms.
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