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On Centralized and Distributed Mirror Descent: Convergence
Analysis Using Quadratic Constraints

Youbang Sun®, Mahyar Fazlyab

Abstract—Mirror descent (MD) is a powerful first-order optimiza-
tion technique that subsumes several optimization algorithms in-
cluding gradient descent (GD). In this work, we leverage quadratic
constraints and Lyapunov functions to analyze the stability and
characterize the convergence rate of the MD algorithm as well
as its distributed variant using semidefinite programming (SDP).
For both algorithms, we consider both strongly convex and non-
strongly convex assumptions. For centralized MD and strongly
convex problems, we construct an SDP that certifies exponential
convergence rates and derive a closed-form feasible solution to
the SDP that recovers the optimal rate of GD as a special case. We
complement our analysis by providing an explicit O(1/k) conver-
gence rate for convex problems. Next, we analyze the convergence
of distributed MD and characterize the rate numerically using an
SDP whose dimensions are independent of the network size. To
the best of our knowledge, the numerical rate of distributed MD has
not been previously reported in the literature. We further prove an
O(1/k) convergence rate for distributed MD in the convex setting.
Our numerical experiments on strongly convex problems indicate
that our framework certifies superior convergence rates compared
to the existing rates for distributed GD.

Index Terms—Convex optimization , decentralized optimization,
mirror descent, optimization algorithms, quadratic constraints,
semidefinite programming.

|. INTRODUCTION

Over the last two decades, distributed optimization over multiagent
networks has received a lot of attention in control, optimization, ma-
chine learning, and signal processing. In distributed optimization, a
group of n agents is connected via a graph and can communicate locally
with their neighbors. Each agent is assigned a local objective function
fi : R4 = R, and the agents aim to collectively minimize the global
objective function

zeRd

min {f(:c) s iZfi(m)} . )

The mostintuitive gradient-based algorithm to tackle the problem above
is distributed gradient descent (GD) [1], where at each iteration k, each
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agent ¢ updates its decision variables by a (private) local GD combined
with an averaging of its neighbors’ variables. In the unconstrained case,
this update is given by

k k k k k
2D =2 — OV @) + 83 (@l - 2l?)

JEN;

where n*) > 0 is the step size and 8 > 0 is the consensus parameter.
In the form given above, this update is able to achieve optimal rates for
convex problems using a diminishing step-size sequence. Optimality
here refers to matching the centralized convergence rate (iteration
complexity) up to some errors related to the network structure. However,
when the local functions are smooth, the centralized GD algorithm
employs a constant step-size sequence for which the above-distributed
counterpart fails to converge.

The mirror descent (MD) algorithm [2] is a primal-dual method
that has been actively studied in recent years. MD can be seen as
a generalization of GD, in which the squared Euclidean distance is
replaced by Bregman divergence as the regularizer. The freedom in the
choice of Bregman divergence makes MD suitable for various problem
geometries. MD has been proven to have the same iteration complexity
as GD for nonstrongly convex problems [3], and it may even scale
better with respect to the dimension of the decision variables [4]. In the
strongly convex scenario, MD is less studied, and very recently, its ex-
ponential convergence was established under the Polyak—}.ojasiewicz
(PL) condition [5]. Inspired by the success of MD in centralized
optimization, MD has also been studied in the distributed setting. To
the best of authors’ knowledge, the convergence rate of distributed MD
is not established for strongly convex and smooth problems, and only
recently, Sun and Shahrampour [6] provided a continuous-time analysis
suggesting local exponential rate (without explicitly characterizing
the rate).

In this article, we leverage the framework of quadratic constraints
(QCs) to certify numerical exponential convergence rates for cen-
tralized as well as distributed MD for strongly convex and smooth
problems using SDP. For merely convex and smooth problems, we
also establish an ergodic O(1/k) convergence rate. We first analyze
centralized MD, for which we derive linear matrix inequalities (LMIs)
as sufficient conditions for convergence of the algorithm at a specified
rate (see Theorem 2, Theorem 6, and Proposition 3). For the strongly
convex case, we prove that these LMIs always have a feasible solution
that matches the optimal convergence rate of GD when the Bregman
divergence is chosen as the squared Euclidean distance (Proposition
4 and Corollary 5). Next, we analyze the convergence of distributed
MD and characterize the rate using LMIs (see Theorems 8 and 9).
To the best of our knowledge, the exponential rate of distributed MD
has not been previously established in the literature. Our numerical
experiments on strongly convex problems indicate that our framework
certifies superior convergence rates compared to the existing rates for
distributed GD.
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A. Related Literature

1) Distributed Optimization: To ensure that distributed GD (or
sub-GD) reach consensus, many methods [1], [7], [8] use diminishing
step-size (commonly 1/k). For distributed MD, similar studies have
been conducted for stochastic optimization [9], [10] and online opti-
mization [11], [12]. Doan et al. [13] provide convergence results for
both centralized and decentralized MD algorithms. However, conver-
gence rates obtained using diminishing step-size are subexponential and
suboptimal under assumptions of strong convexity and smoothness.

To address this issue, a number of recent works introduce an
additional variable in the state vectors to track past gradients (see,
e.g., [14], [15], [16], [17]). One of the earlier works in this direction
is the EXTRA algorithm proposed by Shi et al. [14], which uses the
information from the past two iterations to perform each update. For
smooth problems, EXTRA provably achieves O(1/k) convergence rate
under the convexity assumption and exponential convergence rate under
the strong convexity assumption, respectively.

A closely relevant literature is the continuous-time distributed GD,
where the algorithms are constructed by a set of ordinary differential
equations (ODEs). These works are mostly based on the idea of integral
feedback, which can be thought as the continuous-time analog of gradi-
ent tracking. In this case, each agent uses an integration term as a part of
the ODE (see, e.g., [18], [19], [20], [21]). In these works, the analysis
is carried out by proving the Lyapunov stability for the corresponding
continuous-time dynamics, and exponential stability can be obtained
in certain cases [20]. For MD, the continuous-time algorithm in [6]
and [22] and the discrete-time algorithm in [23] both adapt the integral
feedback (or gradient tracking) method and propose algorithms that
do not suffer from suboptimal convergence rates. Specifically, Sun
et al. [6] propose a continuous-time distributed MD that achieves a
“local” exponential rate for strongly convex problems, and Yu et al. [23]
provide an O(1/k) convergence rate under the convexity assumption
in discrete time. Nevertheless, the exponential rate of (discrete-time)
distributed MD for strongly convex and smooth problems remains an
open problem, which we target in the current work.

2) Integral QCs: Deriving convergence rates for iterative opti-
mization algorithms in the worst case is an integral part of algorithm de-
sign. However, this procedure is not principled, requires a case-by-case
analysis, and might lead to conservative rates. To automate convergence
analysis and derive sharp convergence rates, several past works have
used integral QCs (IQCs) and semidefinite programming in various
settings [24], [25], [26], [27], [28], [29], [30], pioneered by the work
in [24]. IQCs are a tool from robust control to analyze dynamical sys-
tems that contain components that are nonlinear, uncertain, or difficult to
model [31]. The basic idea is to abstract these troublesome components
by constraints on their input and output signals. This approach to
algorithm analysis can also guide the search for parameter selection in
algorithm design. The works in [32] and [33] are of particular relevance
to our work. They both provide the IQC-based analysis of distributed
gradient-based algorithms in strongly convex settings. Compared to
these works, our framework focuses on distributed MD in both strongly
convex and convex settings.

Il. PRELIMINARIES
A. Notations

The identity matrix of dimension n is denoted by I,, and the n-
dimensional vector with all entries 1 is represented by 1,,. We denote the
set of n-dimensional symmetric matrices by S™. The positive (negative)
semidefiniteness of matrix M is denoted as M = 0 (M =< 0). We
use ® and || - || to denote the Kronecker product and spectral norm,

respectively. We define the norm of vector v with respect to a positive
semidefinite matrix M as ||v|| 7. The indicator function of aset ¥ C R¢
is defined as Iy(z) = 0if z € X and [y (x) = +o0 otherwise.

Definition 1 (Strong convexity): A differentiable function f : R% —
R is ps-strongly convex on R if the following inequality is true for
all z,y € R%:

J@) + V@) - 2)+ 5y -l < Fw).

Definition 2 (Lipschitz smoothness): A differentiable function f :
R? — R is Lg-smooth on R? if LQ—foHQ — f(x) is convex, which
implies that for all 2,y € R¢

L
1) < H@) + V1 @) (v =) + Ly — 2],
We further denote the condition number of function f by « ¢ £ z—; >
1. When iy = 0, the function is only convex.
Proposition 1: Suppose f is i z-strongly convex and L g-smooth
on R, Then, the following inequality holds for all =,y € R?, and

u=Vf(zx), v=V[(y):

T r—wpsLy 1
r—y| |urz;le 2la =yl o, @
u—v i1, I |lu—v| —

=1
2 pytly

The above QC follows from the combination of strong convexity and
Lipschitz smoothness [24], [34].

B. Centralized MD Algorithm

We start by providing some background on the centralized MD
algorithm. For simplicity in the exposition, we study the unconstrained
case, but our analysis can also be extended to the constrained case.
Let us start with the GD algorithm, whose update is equivalent to the
following minimization:

b+ = argmin{f(x(k)) + V™) (z—z®)

T

1
+ %ux—x“ﬂ)w}

where 17 > 0 is the step size. In each iteration, the algorithm seeks to
minimize a first-order approximation of the function with a Euclidean
regularizer. As a generalization of GD, MD replaces the squared
Euclidean distance with Bregman divergence, which is defined with
respect to a distance generating function (DGF) ¢ : R? — R as follows:

Dy(z,2') £ ¢(x) — ¢(z) — (Vo(a'),x — /). 3)
Assumption 1: The DGF ¢ : R — R is He-strongly convex and
L 4-smooth.

The centralized (unconstrained) MD algorithm with step-size 7 is
written as

gD = argmin{f(x(k>) + Vi) (z —2®)

+ %D¢(:c, z<k))} (4)

where if we choose the Bregman divergence to be the squared Euclidean
distance, the update above reduces to GD.

We can also view the MD update through a different lens using
the convex conjugate of function ¢. The convex conjugate of function
¢, denoted by ¢*, is defined as ¢* (2) = sup,.pa{(z,2) — d(x)}. As-
sumption 1 guarantees that ¢* is Lgl -strongly convex and ,u;l—smooth.
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We refer the reader to [35] for further details. Correspondingly, the
following equivalence can be established:

2 =Vo(2') & 2 = Vo™ (7).
Then, the centralized MD update can be rewritten in the following form:
0V f(z)
= Vo' (1) ®)

Sk41) (R

2R+ —

or, equivalently, z(*T1) = 2(*) — (¥ f 0 V¢*)(2(®), which is remi-

niscent of GD. We can see that MD is more general than GD in that we

can exploit the geometry of the problem using an appropriate choice

of ¢, which makes MD more suitable for problems such as convex

clustering, matrix optimization with regularization, etc. [36], [37].
Denoting x* and z* as the fixed points of (5), we have

=2 V) @ = V()

which implies that * is a minimizer of f.

Ill. CONVERGENCE ANALYSIS OF CENTRALIZED MD

In this section, we provide a convergence analysis of the central-
ized MD using semidefinite programming. Our starting point is to
describe all the nonlinear functions in the algorithm, namely V f and
V¢* by QCs on their input—output pairs, resulting in a quadratically-
constrained linear system. We then find a suitable “rate-generating”
Lyapunov function for this constrained system using semidefinite
programming. We derive exponential (respectively, subexponential)
convergence rates for strongly convex (respectively, convex) functions.

A. Exponential Convergence for Strongly Convex f

In the following theorem, we characterize an LMI that depends on
parameters of f (py and L), parameters of ¢ (j14 and L), and several
decision variables (including the step-size 7 and the convergence rate
p € (0,1)). We prove that if the LMI is satisfied, the iterates converge
exponentially fast to the unique fixed point (z*, z*) with the rate p.

Theorem 2: Let Assumption 1 hold and assume that f is ¢ p-strongly
convex and L ¢-smooth. Define matrices M., My, M, as follows:

(21 0 0
Msc - 0 0 %W[d
- >
o 2l S
[0 0 0 |
—urL
Mf = |0 M;LiLfv 1 %Id
1 1
10 2l nytLytd
_— . _
net+Lg d 7£d 0
My = i1, o iLZId 0] . (6)
0 0 0

If there exist some p € (0,1),17 > 0,07 > 0,04 > 0, such that the
following matrix inequality holds:

Mse+0o;My+o,My <0 (7)

then the MD algorithm in (5) converges exponentially fast with the rate
of p. In particular

2D¢* (Z(O), Z*) k

STeRAE R k.

Iz = a*||? <
1o
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Proof: Denote u(®) £ V f(x(®)) and define the stacked vector
I*)T (u(k) _ ’U/*)T] . (8)

Then, from Proposition 1, we obtain the following quadratic inequali-
ties:

O (20 — )T (g) —

e(k)TMfe<k) >0, e(k>TM¢e(k> >0 Vk

which are imposed by V f and V ¢, respectively. Consider the Lyapunov
candidate V(®) = p=F Dy, (2(F) 2*). Recall that ¢* is L;l-strongly
convex and u;l—smooth, so the Lyapunov function is, indeed, nonneg-
ative and continuously differentiable. Using Lemma 10 (provided in the

appendix of [38]), we can calculate the Lyapunov function difference
between two consecutive iterations as

YD k) < p*kfle(k)TMSCe(k). )
Utilizing the two quadratic inequalities imposed by the nonlinearities,
we can write

VD) _ ) < kel (0T pp ()
<p FeMT (M, + oMy + oy My)e™.

Now if the LMI in (7) holds, the Lyapunov function is nonincreasing,
which yields

Dyr (20 2%) = pPV R < ph V(O = phD o (20 2%).
= Dy(z*,2™) and

(10
Observing Dy« (27, 2*)

Blle® o | < Dy(a*,a®).

Theorem 2 provides a matrix inequality feasibility problem that
establishes the exponential convergence rate of MD for a given p. This
matrix inequality is linear in (p, oy, o) (but not in 7)), allowing us to
find the smallest p by the semidefinite program

minimize p
P0 4,0 f

(1)

subjectto 0 < p<1
7,0¢,0 f 2 0
Msc +0'fo +G¢M¢ j O.
If, in addition, we want to optimize p over the step-size 7, we can use
Schur Complements to “convexify” the matrix inequality with respect
to 1. We state this result formally in the next proposition.

Proposition 3: The optimization problem in (11) is equivalent to the
following SDP:
minimize p
1,0,04,0 f

subjectto 0 < p<1

,0¢4,0f¢ 2 0
(12)
k) p=1 %
Hept+Lg 2pg 2 0 0
) Lolooe | % 4 Bilsos —of VFe
2 pe+Le pp+Ly 2 V2
0 ’”f of _n__
2 mgtLy V21
0 —VHe n 1
V2 q/2,u,¢)
x =0

Restrictions apply.
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We refer to the appendix of [38] for the proof of this proposition.
‘We now show that the SDP in (12) has a feasible solution for which we
can analytically calculate the convergence rate.

Proposition 4: The following selection

24
nN=0f=———
T
o, = ALy (1+rs)
(ks 4 Lyf)? Kglkg — 1)
Aps L
popt = 1 — —12 (13)

(ng + Lg)?s

is a feasible solution to the SDP in (12).

The proof of the proposition can be found in the appendix of [38].
Note that p,p is an upper bound on the optimal value of (12).

The recent work in [5] also proposed an explicitrate of 1 — ﬁ for

MD under the PL condition. Although the PL condition is weaker than
strong convexity, pop is strictly smaller than the rate in [5]. Furthermore,
in our result, we do not make full use of strong convexity: We only
require the quadratic inequality (2) to hold for the pair (z,z*) (z
arbitrary and =* the fixed point of the algorithm), whereas for strongly
convex f this inequality holds for all (z,y). Our rate also recovers the
optimal rate of GD as a special case.

Corollary 5: For ¢(x) = %]/ the optimal rate p,y in (13) coin-
cides with the optimal convergence rate of GD.

Proof: 1If ¢(x) = %]z, we have that ¢*(z) = 1| z||* and (5) is
equivalent to GD. In this case, the condition number k4 = % =1,
and p,p reduces to the optimal convergence rate for GD (see [34, Th.
2.1.15)).

B. O(1/k) Convergence for Convex f

‘We now propose an LMI, which establishes subexponential conver-
gence rate for the MD algorithm when the objective function is convex
(g =0).

Theorem 6: Let Assumption 1 hold and assume that f is convex
(g = 0) and L s-smooth (0 < Ly < 00), and define the matrix M. as
follows:

0 0 0
M,= [0 0 SII

2
e—n n
0 S S

(14)

If there exist some 7 > 0,05 > 0,04 > 0, € > 0, such that the follow-
ing matrix inequality holds:

MC+O'fo+O'¢M¢jO (15)

then the ergodic mean of function value at iteration K satisfies

£609) - @) < D)

—(K) _ 1 K i
where 2(F) = LS 20,
We remark that a similar analysis can be applied to Theorem 6 to
find the best step-size that maximizes e. The details are omitted due to
space limitation.

Remark 1 (Constrained MD): Consider the constrained version of
centralized (lazy) MD [39]

2D = () _ g p ()
sk) — V(;S*(z(k))

z® = argmi£D¢(x,s(k)) (16)
xE

where X is a convex subset of R%. By defining g(x) = Iy (z) as the
indicator function of the set X’ and denoting its subdifferential by Jg,
the optimality condition that characterizes z(*) is

Vo(z®) — 28 € ag(x®).

Using the fact that the subdifferential Og is monotone (since X is
convex), we can rewrite (16) as

2D = 2 (B) oy (F)
u® & v f(z®)

v P & Ve (zh) 7

subject to the QC
(W™ —v* — (2™ —2*) (@™ —2*) >0 Vk.

Furthermore, we can write two separate QCs for the relationships
u® = Vf(z®™)andv® = Ve (x(¥)). We can, therefore, employ the
same approach and derive an LMI as a sufficient condition to establish
exponential and O(1/k) convergence rates for strongly convex and
convex problems, respectively.

IV. CONVERGENCE ANALYSIS OF DISTRIBUTED MD

In the distributed setup, we have a network of agents, characterized
by anundirected graph G = (V, £), whereeachnodein ) = {1,...,n}
represents an agent, and the connection between two agents ¢ and j is
captured by the edge {7, j} € £&. Weuse N; £ {j € V: {i,j} €} to
denote the neighborhood of agent ¢. The graph Laplacian is represented
by £ € R™*™.

Assumption 2: The graph G is undirected and connected, i.e., there
exists a path between any two distinct agents ¢, j € V.

The connectivity assumption implies that £ has a unique null eigen-
value; that is, £1,, = 0.

A. Distributed MD Algorithm

We first introduce the distributed MD update, in which each agent ¢
in the network implements the following iterative algorithm:

20D = 28— (Vi ®) +4,)

— Z(zi(m —z;()

JEN;

B = 5,8 o 37 (P - 2, ®)
JEN;

z; (T = VT (z,5Y). (18)

The first update uses private gradient information as well as the dual
variables from the neighbors. It also depends on a variable 1/;(¥) which
acts as an integrator. This algorithm is similar to the discretized version
of the distributed MD proposed in [22] using the idea of integral
feedback. However, the method differs slightly in the local averaging
in that the algorithm in [22] performs local averaging with respect to
the primal variable, and here, the averaging is done on the dual variable

It is evident that the behavior of this system relies on the network
structure through the dependence on the Laplacian of the graph cap-
turing the network. Since £ € S™, the LMIs will consist of matrices
whose dimensions scale with n, which is not suitable when n is large.

Authorized licensed use limited to: Northeastern University. Downloaded on December 05,2023 at 02:58:10 UTC from IEEE Xplore. Restrictions apply.
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Following the idea in [32] and [33], we transform the updates such that
the dependence on the full structure of the network is avoided. Define

WAL, — ol = AW + 21,17
n

and further denote the spectral norm of AW by A 2 ||[AW/||. The
quantity 1 — A is also known as the spectral gap.

To represent the updates collectively for all the agents, we define the
stacked vectors

20 = [z:(lk)T, e zﬁfvﬁ]T
k
y® =[P

u® = VEE®) 2 [V )T, V@)
a®) = [V ()7, ..., Ver (20N
v® = (AW @ 1)z, 19)

We can now rewrite (18) as

1
LH1) <51”12 ® Id) 20 _ iy (@® 4 y®) 4 p®

=y 4 ((In - l1n12) ® Id> 28 _ ()
n

o™ = (AW @ I4)z®

y(k+1)

z®) = ver(2(M)
u®) = vf(z®). (20)

To represent (20) in a state-space form, we can write

— Ind Z(k)
-Ind y(k)
(k)

I,
Id ] o)
nd ’U<k)

S (k+1) B %1n11 ® I,

0 —m Ind
0 0

+ 1)

Additionally, we know the following constraints on the updates:
0| |0 1,1)®@I4| |z®
o 1o 0 y®)

0 0 0
0 0 1,1/®I,

20
w®

)

(22)

We define the state vector ¢ (F)T £ |:Z(k>T y(k)T] as well as the input

Vf:ctorg(’“)Té[ac(’“)T w7 v(k)T].Wecanrewﬂte(21)and(22)
as

gD = Ae®) 4 BeR) g = Fet®) 4 G¢® (23)

where A, B, F, G are of appropriate dimensions. For ease of notation,
we denote H £ [F G] .

For the purpose of convergence analysis, we characterize the fixed
point of (21). Define z* £ 1,, ® x,, where 2, € R? is a minimizer of
(1), and let z* & V¢ (x*), u* £ VE(2*), y* & —VE(z*), and v* =
0. By letting 2% y®) 4(*) (%) “and u*) in (21) take the values of
2, y*, v*, x*, and u*, it is easy to show that z(F+1) = (k) o (k+1) —
y®) using Assumption 2.

B. Exponential Convergence of Distributed MD

In the following theorem, we present the main result of this section.
We provide two LMIs to characterize the convergence rate of distributed
MD. The LMIs are written in terms of several decision variables,
including the step-size 7; and the convergence rate p. If we can find a
feasible solution for these LMIs, the distributed MD is guaranteed to
converge exponentially fast.

Before stating the theorem, we state the following lemma, which
will allow us to simplify the resulting SDP.

Lemma 7 (Lemma 6 in [32]): Suppose that square matrices .J, J
satisfy J2 = Jy, J2 = Jy, J1Jo = JoJ; = 0. For square matrices Q;
and Q,, define Q £ Q, ® J, + Q2 ® J,. Then, the following are
equivalent: 1) Q@ = 0.2) Q1 = 0,Q2 = 0.

Theorem 8: Let Assumptions 1 and 2 hold and assume all local func-
tions f; are p p-strongly convex and L p-smooth. Define the following
matrices:

. . 1
A = 0 M By = 0 m
1 0 0 -1
- - 1
Ay — m By — 0 M
0 1 0 0 -1
I 1
" 00 00 0 - 0 00 0
000 0 0 0000 1

and let R; be a matrix whose columns form a basis for the null space
of H; for i = 1, 2. Furthermore, define

00 0 0 0
00 0 0 0
—upL
My= |0 0 gL 0
—1
oo 1 7 0
00 0 0 0
220 0 0 0
0000 O
My=10 0 0 0 0
0000 O
(00 0 0 -1
r_ -1 1
7 0 5 00
0O 0 0 00
—pg L
My = 3 0 e 000
0o 0 0 00
L 0 0 0 00

If there exists p€ (0,1),m >0,P€S? P>0,0;>0,04 >
0, 0, > 0, such that the following matrix inequality holds for¢ = 1,2 :

RT(

+Ufo+O')\M;L+O'¢M¢> R; <0

B PA, B PB;

(24)

then the distributed MD algorithm (18) initialized at y® =0 converges
exponentially with a rate of p as follows:

160 =" fbor,, < P16 = oo,

Authorized licensed use limited to: Northeastern University. Downloaded on December 05,2023 at 02:58:10 UTC from IEEE Xplore. Restrictions apply.
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Proof: Define the vector e®) T = [¢(®)T  ¢(F)T] Forany %, € S2,
we can establish the following (in)equalities:

eMT(My @ Ig)e®™ >0
BT (My @ Ig)e™ >0
e®T(M, @ Ig)e™ >0
eOTHN (8 @ Ig)He® = 0.

The first two inequalities are derived from Proposition 1, the third
inequality is due to the fact that A = ||AW||, and the equality follows
from the affine constraint in (22).

Define the Lyapunov function

VI =g R (™ —)TP(E - ¢)

where P' £ P ® I,,4. Then, using (23), we can write

T T
Ykt (k) — k-1 (R)T A'PPA—pP A'P'B o)
BTP'A B'P'B
Now, if the following LMI holds:
ATP'A—pP ATPB
BTP,A BTP,B +O'fo®Ind

+ 0 M; @ Ing + 0sMy ® g+ H' (Seq ® Ina)H 20 (25)
then for any e(®), we have that

ATP'B
B"P'B

TprgA _ /
—k—le(k)T A'P'A pP €<k) <0
BTP'A

p

or, equivalently,
(€W =€) TPI(E® =€) < pHE@ =) TP(EW — ).

In words, the squared norm of system variables decreases exponentially
fast to zero. Next, we simplify the LMI such that the dimension is not
dependent on the agent number n. Our approach follows that in [32].
Define .J; and Jo in Lemma 7 as J; = (I, — +1,1)) ® Iy, Jo =
11,1) ® I It is easy to verify that these matrices satisfy the con-
straints in Lemma 7. We then have that

A=A J1+A® Jy

B=B®J+By®Js

H=H,®J1+Hy® J,.
Consider the following fori =1,2:

BTPa,  prpp| oM oM

+ oMy + H! S H; <0. (26)

Since matrices Jp, J5 satisty the conditions in Lemma 7, if we consider
Q,Q1, and Q- as the negative left-hand side of (25) and (26), respec-
tively, then a feasible set of solutions that satisfy (26) is equivalently
a feasible set of solutions for (25). Then, we only need to show the
equivalence of (24) and (26), which follows from [40, Lemma 3.1].
This equivalence is also used in the proof of [32, Th. 7].

The theorem provides two LMIs that establish the exponential con-
vergence rate of distributed MD. As we can see the LMIs are more
involved compared to the centralized case, and it is challenging to find
even a suboptimal analytical rate.

We finally remark that common analysis on distributed MD involves
general primal—dual norms [11], whereas QCs are defined with respect
to the Euclidean norm. The use of general primal-dual norms in
nonstrongly convex problems helps with improving the rate up to a
multiplicative factor of v/d. However, in a strongly convex case, the
rate is exponentially fast, and a more general analysis can only change
the iteration complexity by at most logarithmic factors of d, which is
an interesting avenue to investigate in the future.

C. O(1/k) Convergence for Convex Functions

In the following theorem, we present the counterpart of Theorem 8
for convex problems.

Theorem 9: Let Assumptions 1 and 2 hold and assume all local func-
tions f; are convex (uy = 0) and L y-smooth. Recall the definitions of
matrices Ay, Ay, By, By, Hi, Ha, Ry, Ry, My, M;, My in Theorem 8
and define the following additional matrices:

00 0 00 00 0 0 0
00 0 00 00 0 00
My= |0 0 Lf 0 Of Mo=1{0 0 0 % 0
00 0 00 00 12 00
00 0 00 00 0 00

If there exist ; > 0, P € S%, P = 0,07 > 0,0, > 0,0, > 0,¢ > 0,
such that the following matrix inequality holds fori = 1,2 :

RT(

+UAMA +O’¢M¢ +6M1>Rl j 0

AlPA, - P
B PA,

Al PB;

€2))

then, the iterates of the distributed MD algorithm (18) initialized at
y(©) = 0 satisfy the following inequality:

> (s - ) < 22

i=1

(K K-1_(k
where 7 £ Ly 10

We refer to the appendix of [38] for the proof of this theorem. Given
that f (iEK)) — f* is nonnegative, it is easy to see that the function
evaluated at the ergodic average of each agent iterate converges to a
minimum with a rate of O(1/K).

D. Evaluating the Tightness of Results

For the distributed MD algorithm, we provide numerical results
based on Theorem 8. First, we demonstrate the influence of the network
structure, and then, we compare the rate recovered by Theorem 8 to
existing theoretical rates on distributed GD when it achieves exponential
convergence.

1) Impact of the Network Structure on Convergence
Rate: We calculate the worst case convergence rate with several
choices of A and plot it with respect to the step-size 7;. We set the
local functions to have condition number x; = 2 and the DGF to have
condition number x4 = 2. Each curve in the plot represents a certain A
and is obtained by scanning feasible values for the decision variables in
the LMIs (24). From Fig. 1(a), we can see that there exists an optimal
step-size to obtain the best convergence rate and that as A increases, the
best rate becomes worse. Hence, for any given network structure and
its corresponding Laplacian matrix, we should select 72 such that X is
minimized. This is consistent with results on distributed optimization,
where having a larger A deteriorates the performance.
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In Fig. 1(b), we keep k4 = 5 constant and study the optimal conver-
gence rate for different A and  y. When the condition number increases,
the optimal rate worsens. This behavior aligns with GD, where rg = 1.

2) Comparison With Distributed GD: To the best of our
knowledge, there is currently no work that provides an exponential
convergence rate for distributed MD algorithm. Hence, we select two
previous works on distributed GD, namely [14] and [15], and compare
our performance with the theoretical rates provided in these works. In
order to provide a fair comparison, we must set k4 = 1 to ensure that
MD reduces to GD. We also set the local functions to have condition
number Ky = 3.

Of the two related works above, EXTRA [14] is of particular
relevance to our algorithm. If the matrix W in EXTRA is set to be
(I, + W) /2, the EXTRA algorithm coincides with our algorithm with
the exception of having a coefficient difference of % for the tracking
term. Note that the theoretical convergence rate of EXTRA relies on
the spectral norm of AW as well as the smallest nonzero eigenvalue
An, of W. We plot the convergence rate of EXTRA under the following
three different scenarios:

1) X, = X (EXTRA pos);
2) An = —X (EXTRA neg);
3) A, ~ 0 (EXTRA).

From Fig. 1(c), we can see that when X is small, the rate recovered
by Theorem 8 significantly outperforms EXTRA. As A increases, the
convergence rate calculated for our method starts increasing. We also
include the theoretical convergence results from Qu et al. [15], which
are consistently outperformed by EXTRA.

Note that the point of this plot is not to declare a winner among algo-
rithms. The goal is to show that the richness of the Lyapunov function
and QC analysis provides machinery to obtain better convergence rates,
especially compared to the rates that are algorithm specific. In this case,
our algorithm can coincide with EXTRA but still our analysis provides
better rates. Our observation is in line with empirical results of [32].

V. CONCLUSION

In this article, we adapted the 1IQC approaches in [24], [25], [32],
and [33] to pose the convergence analysis of the MD algorithm as a
semidefinite program. We characterized the convergence rate for both
centralized and distributed settings, and empirical evaluations were
performed under the assumption of strongly convex and smooth local
objective functions. For the centralized case, we derived a closed-form
feasible solution to the SDP for the convergence rate, which depends
on the condition number of the DGF. For the decentralized case, we
numerically derived the convergence rates using SDP. These SDPs do
not scale with the ambient dimension and the network size. Using

the QC framework, we further proved the O(1/k) convergence rate
for centralized and distributed MD in the convex and smooth setting.
It would be interesting to derive analytical rates for the distributed
case. Another important direction is the analysis of the MD algorithm
with primal-dual norms. This is a challenging problem as current SDP
approaches rely on the Euclidean norm and they do not lend themselves
to general primal-dual norms.
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