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yet plasticity within phenological responses may allow adjustments to interan-
nual resource phenology. The diversity of migratory species and changes in un-

derlying resources in response to climate change make it challenging to generalize
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these relationships.

2. We use bird banding records during spring and fall migration from across North
America to examine macroscale phenological responses to interannual fluctua-

Handling Editor: Annette Fayet tions in temperature and long-term annual trends in phenology.

3. In total, we examine 19 species of North American wood warblers (family
Parulidae), summarizing migration timing from 2,826,588 banded birds from 1961
to 2018 across 46 sites during spring and 124 sites during fall.

4. During spring, warmer spring temperatures at banding locations translated to
earlier median passage dates for 16 of 19 species, with an average 0.65-day ad-
vancement in median passage for every 1°C increase in temperature, ranging from
0.25 to 1.26days °CL. During the fall, relationships were considerably weaker,
with only 3 of 19 species showing a relationship with temperature. In those three
cases, later departure dates were associated with warmer fall periods. Projecting
these trends forward under climate scenarios of temperature change, we fore-
cast continued spring advancements under shared socioeconomic pathways from
2041 to 2060 and 2081 to 2100 and more muted and variable shifts for fall.

5. These results demonstrate the capacity of long-distance migrants to respond to
interannual fluctuations in temperatures, at least during the spring, and showcase
the potential of North American bird banding data understanding phenological
trends across a wide diversity of avian species.
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1 | INTRODUCTION

As climates change, so do the phenology, distribution, and fitness
of organisms (Potvin et al., 2016; Socolar et al., 2017; Youngflesh
et al., 2021). While climate change can have differential impacts on
organisms, organismal phenology is often affected through advanc-
ing spring phenophases, including leaf out and insect emergence,
which often translate into shifting arrival and departure of migratory
organisms, or changes in reproductive timing of many primary and
secondary consumers (Boggs, 2016; Parmesan & Yohe, 2003; Polgar
& Primack, 2011).

The study of phenological change in North America is challeng-
ing because most datasets provide limited temporal and spatial cov-
erage or are limited to a few species (except see Marra et al., 2005;
Mayor et al., 2017; Van Buskirk et al., 2009; Youngflesh et al., 2021),
especially when changes are small, variable and dependent on mul-
tiple dimensions including temperature, wind conditions, precipita-
tion (Haest et al., 2019) and land use/land cover change (Saunders
et al., 2022). A more complete understanding of how climate change
is affecting organisms, now and forecast into the future, requires
studies to include a multitude of species across broad spatial and
temporal scales to address patterns throughout the annual cycle.

Migratory species are particularly vulnerable to the environmen-
tal impacts of climate change because they experience substantial
variation in environmental conditions through time and space (Culp
et al., 2017). One documented vulnerability for several migratory
species is the possibility of phenological mismatch, where the tim-
ing of prey availability differs from the timing of consumer needs
(Clausen & Clausen, 2013; Saalfeld et al., 2019; Visser et al., 2012).
Yet, while directional phenological shifts abound (Cohen et al., 2018;
Usui et al., 2017), interannual fluctuations in resources and the
subsequent responses to such fluctuations—a measure known
as migratory sensitivity—points towards phenotypic plasticity as
a mechanism for coping with potential mismatches (Youngflesh
et al., 2021). Disentangling plastic annual changes or adaptive evolu-
tionary changes remains challenging (Charmantier & Gienapp, 2014).
If inherited circannual clocks control migration phenology, which is
believed to be the case for many long-distance migrants (Akesson
et al.,, 2017; Gwinner, 1996), shifts in phenology are likely the re-
sult of evolutionary processes (Van Buskirk et al., 2012), rather
than annual responses to current conditions (e.g. phenotypic plas-
ticity). Weather conditions en route are likely to generate varia-
tion in timing (Deppe et al., 2015; Richardson, 1990), and stopover
decisions can ultimately drive large changes in migration duration
(Schmaljohann, 2019). Environmental and genetic drivers of phe-
nology likely interact to drive phenotypic change, and there is a
large body of evidence documenting multi-week variation in pheno-
phases within the same species, showing that variation is common

place, despite endogenous control (Cooper et al., 2015; Gonzalez
et al., 2020; Studds & Marra, 2011). Recent evidence suggests that
adaptation through evolution can occur over short decadal scales
for long-distance migrants (Helm et al., 2019). The importance of
evolutionary responses in adaptation to global change, especially in
long-distance migrants, is of great importance, particularly for mak-
ing predictions about how birds might respond in the future, but also
to understand if such evolutionary adaptations are broadly shown
by migratory species.

More than half of North American breeding species of birds are
migratory (Horton et al., 2019), providing a rich and diverse assem-
blage of breeding species for studying phenology in animal popula-
tions. Regular and systematic marking and monitoring of birds began
in a variety of locations across North America in the middle of the
20th century, allowing a robust and long-term study of phenologi-
cal patterns relative to a changing climate. Data on both spring and
fall migratory seasons are available across large geographical and
temporal scales, spanning more than 40° of latitude, 50° of longi-
tude, and in some locations, nearly 60years of observations. While a
number of studies have documented advancement of spring migra-
tion in avian species (Covino, Morris, et al., 2020; Marra et al., 2005;
Mgller et al., 2008; Sparks et al., 2005; Van Buskirk et al., 2009),
there are fewer examinations and more mixed patterns of how
changing climates may impact fall migration phenology (but see
Haest et al., 2019; Jenni & Kéry, 2003; La Sorte et al., 2015; Miles
etal., 2017). Advancements of spring timing are relatively consistent
and easily understood in the context of the fitness consequences,
with birds arriving earlier to their breeding grounds showing greater
reproductive success (Cooper et al., 2015; McKellar et al., 2013;
Morrison et al., 2019). Predictions of how the timing of fall migration
influences fitness are less clear. Existing work on fall phenological
changes are more varied, with some recent studies finding earlier fall
timing and others finding later timing (Covino, Horton, et al., 2020;
Horton et al., 2020). However, because the fall migration system is
largely composed of juvenile migrants making their first migration,
fall timing may have strong implications for survival and could affect
species' abilities to have multiple broods and ultimately influence re-
productive output (Both et al., 2019; Jenni & Kéry, 2003).

Wood warblers, family Parulidae, comprise a geographically, be-
haviorally, and ecologically diverse taxonomic group found through-
out the Americas. Approximately 50 wood warbler species regularly
breed within the United States and Canada (Chesser et al., 2020).
These species vary widely in their breeding range, non-breeding
range, and migratory behaviours, including migratory distance,
route and residency patterns. While some species have relatively
narrow breeding ranges, the ranges of other species span from
coast-to-coast. Although this group of birds is almost exclusively
insectivorous, their foraging behaviours and food preferences vary
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(Wilman et al., 2014). Since insectivorous birds use food sources that
are directly driven by climate and seasonal variation in temperature
(e.g. emergence date; Nordlie & Arthur, 1981; Visser et al., 2006),
and because temperature broadly drives ectothermic phenology
(Scranton & Amarasekare, 2017), we make an inferential leap that
temperature can serve as a predictor of warbler phenology and
resource availability. Warblers can provide insight into the link be-
tween climate change and migration phenology and whether there is
a consistent pattern across a diverse taxonomic group. Additionally,
while phenology is clearly driven by multiple factors (see above), if
a relationship is drawn between temperature and phenology, tenta-
tive forecasts of migration timing can be drawn from future climate
scenarios.

To this end, we examine spring and fall migration phenology of 19
species of wood warblers frequently banded across North America.
To quantify interannual fluctuation in timing and the possibility
for long-term changes in phenology, we test the hypothesis that
annual migration phenology is linked with seasonal temperature.
From previous studies, we predict a positive relationship between
spring phenology and temperature—that is, with warmer tempera-
tures we predict earlier migration phenologies (Cohen et al., 2018;
Van Buskirk et al., 2009). In fall, our predictions were more uncer-
tain; however, previous studies on North American passerines have
shown earlier migration phenologies during warmer seasons (Van
Buskirk et al., 2009). To extend these inferences, we forecast sea-
sonal migration timing under ~30- and 70-year site-specific future

climate scenarios.

2 | MATERIALS AND METHODS
2.1 | Bird banding records

We requested bird banding records from the United States
Geological Survey (USGS) Bird Banding Laboratory (BBL) for all
North American wood-warblers (family Parulidae). Data were re-
quested in April 2020. In total, 6,741,565 banding records were
provided, with 44 species regularly banded as evidenced by at
least 1000 captures from 1961 to 2018 (58years). We choose
this span of years to align with available historical temperature
data (see below). Following filtering protocols described below,
and used by Covino, Horton, et al. (2020), 19 species during both
spring and fall had adequate sample sizes for our analyses. In two
species cases, Palm Warbler Setophaga palmarum and Yellow-
rumped Warbler Setophaga coronata, both species were coded by
their subspecies names in the BBL. For Palm Warbler, we pooled
our summaries by the common name, whereby we lumped band-
ing counts of Western Palm Warbler and Yellow Palm Warbler. For
Yellow-rumped Warbler, we used the native BBL naming conven-
tion in our summaries, Aububon's Warbler and Myrtle Warbler.
In the case of Yellow-rumped Warbler, this was done because
of greater differentiation in subspecies geographic distribu-
tion. However, of these specific cases, only Myrtle Warbler met

our sampling criteria and was included in our analyses. To align
with accepted species common names, we labelled summaries of
Myrtle Warbler as Yellow-rumped Warbler. To summarize warbler
ages, ‘'young’ refers to hatch-year birds during the fall and second-
year birds during the spring, and ‘adult’ refers to after-hatch-year
birds during the fall and after-second-year birds during the spring.
We used the term ‘unknown’ for birds of unknown age during the
fall and the imprecise age category of after-hatch year during the
spring.

We defined spring migration from March 15 to June 15 and fall
migration from August 15 to November 15, 3-month periods. These
dates were selected because they broadly capture the dominant
pulse of songbird migration through North America in both spring
and fall, respectively (Horton et al., 2020). We excluded all records
outside these two seasons. We excluded data from sites that banded
extensively during the breeding and non-breeding periods, removing
any data from sites where greater than 50% of the captures occurred
between June 15 and August 15 (breeding) and between November
15 and March 1 (non-breeding). Additionally, we removed any birds
banded with age class ‘4’ (Bird Banding Laboratory Age Codes), in-
dicating a locally hatched bird incapable of sustained flight. We ac-
knowledge that age or sex can influence seasonal timing (Covino,
Horton, et al., 2020), however these traits could not be reliably de-
termined for all species and for particular species in specific seasons,
and for this reason they were not assessed in this study. However,
see Table S1 for a breakdown of age and sex for each species in-
cluded in this study.

Because banding records are presence only, we zero-filled
the banding records to discern true detection/non-detections
where possible. While the zeros do not influence our phenology
estimate, it was important to account for banding effort, which
we use as a data filter (e.g. a zero would at least indicate that
banding was conducted). For each species, data were zero-filled
using banding records across all warblers for a given site as an
indication of banding effort. For example, if species X was banded
on day 1 at site A, but species Y was not banded on day 1 at site
A, we assumed zero of species Y were banded for day 1 at site A.
Banding observations were then pooled into 0.5° latitudinal and
longitudinal locational bins for each species (hereafter termed ‘lo-
cation’), equating to about 55kmx55km or 3025km?. For each
season, these 0.5°x0.5° locations were only included if at least
10years of observations were present and an overall mean of 10
birds were banded across all years (Marra et al., 2005). Next, of
the locations that remained, we only included specific season-year
replicates if at least 25 days of banding occurred, and 15 individ-
uals of a specific species were banded. These protocols helped
ensure adequate seasonal effort and ensure phenology measures
were representative of species passage.

To estimate species phenology, we calculated the date at
which 50% of the cumulative sum of birds were captured at each
seasonal 0.5°x0.5°. We termed this median passage date. For our
analyses, we only included species that had at least five unique
locations represented per season. Additionally, at 40 stations
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that had both spring and fall banding records, we calculated the
interval (in days) between median passage dates. Lastly, for spring
and fall, we calculated the time interval between 25% and 75% of
cumulative sum of birds to quantify the length of the migratory
season.

Lastly, to insure that phenological patterns were representative
of migrant behaviour, rather than sampling behaviour, at each loca-
tion (0.5° by 0.5° pixel) for spring and fall, we examined three differ-
ent annual metrics: earliest banding date, median banding data and
maximum banding date. For each date, we assessed if these dates
changed significantly (alpha = 0.05) with year. We further examined
those locations with significant trends to see if there was a consis-
tent directionality of the trends, as any directional trends would be
cause for concern. We conducted binomial tests on these directional
coefficients with the null hypothesis about the probability of suc-
cess in a Bernoulli experiment being 50:50 (i.e. equal probability of
positive or negative trends). This investigation did not reveal consis-
tent changes for earlier or later banding across the time series (see

Supporting Information).

2.2 | Historical temperature data

In our analysis, we choose temperature as opposed to normalized
difference vegetation index (NDVI) or enhanced vegetation index
(EVI) to serve as a proximate cue of phenology, rather than an ulti-
mate factor shaping phenology. We made this decision because veg-
etative indices from satellite remote sensing are not available for the
1960s or 1970s. However, temperature and vegetative indices are
broadly correlated in quantifying phenology (Clinton et al., 2014),
and for this reason, we use temperature.

To relate phenology measures with temperature, we down-
loaded historical mean monthly maximum temperature measures
from WorldClim (mean of daily maximum values) (https://www.
worldclim.org/data/monthlywth.html). We used the WorldClim
version 2.0 gridded monthly temperature data from January
1961 to December 2018 (Harris et al., 2020). WorldClim monthly
temperature data are derived from the Climatic Research Unit
gridded Time Series (CRU TS, version 4.03) (Harris et al., 2020).
CRU TS is global in coverage and disseminated along a 0.5° lat-
itude by 0.5° longitude grid over all land domains of the world,
except Antarctica. Temperature measures and subsequent inter-
polations are derived from a network of ground-based weather
stations. For our study, we averaged April and May measures to
align with spring banding efforts and September and October to
align with fall banding efforts. Temperature data were associated
with banding locations (i.e. 0.5° pixels). To understand how mi-
grants responded to annual fluctuations in seasonal temperature,
we calculated anomalies for each location. Anomalies were calcu-
lated by subtracting the annual seasonal mean from the long-term
seasonal mean from 1961 to 2018; hence, negative values denote
cooler seasons (relative to the long-term mean) and positive values
denoting warmer seasons.

2.3 | Climate forecast data

To examine how warbler phenology could respond to future cli-
mate scenarios (i.e. predictions of mean maximum temperature), we
downloaded climate scenarios from WorldClim (https://www.world
clim.org/data/cmipé/cmipéclimate.html). Specially, we used 10-min
resolution (~0.16°) projections from eight global climate models, in-
cluding BCC-CSM2-MR (Wu et al., 2019), CNRM-CM6-1 (Voldoire
et al., 2019), CNRM-ESM2-1 (Séférian et al., 2019), CanESM5 (Swart
et al., 2019), IPSL-CM6A-LR (Boucher et al., 2020), MIROC-ES2L
(Hajima et al., 2020), MIROCé (Tatebe et al., 2019) and MRI-ESM2-0
(Yukimoto et al., 2019). We examined four shared socioeconomic
pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, ordered by
decreasing climate intervention) for projections of temperatures in
2041-2060 and 2081-2100. Shared socioeconomic pathways rep-
resent a set of alternative futures of societal development, ranging
in challenges towards mitigating and adapting to climate change (e.g.
SSP1-2.6 predicts lower societal challenges towards climate change
mitigation and adaptation as compared to SSP5-8.5, and thus more
modest rates of climate change) (O'Neill et al., 2017). SSP1-2.6 is a
scenario that sees climate intervention and aims to keep warming
below 2°C by 2100 (between 1880-1900 and 2090-2100). SSP5-
8.5 represents a fossil-fuel development world through the 21st
century and is viewed as a worst-case scenario.

2.4 | Statistical analyses

We generated season-specific models for each warbler species to
quantify the relationship of migrant phenology with seasonal tempera-
ture anomalies, year and latitude. We tested for the interaction of tem-
perature anomalies and latitude: however, in both spring and fall it was
not an important contributor to the models. For each season and spe-
cies combination, we fit a linear mixed model with fixed effects of tem-
perature anomaly, year, latitude, and a random intercept of location
(i.e. 0.5° location bins). Year was included to detrend phenological time
series to reveal the influence of seasonal plasticity (ller et al., 2017)
and latitude used to account for spatial dependencies of phenologi-
cal timing. The random effect of location accounted for the fact that
observations from the same location are not independent. The latitude
fixed effect tests for a latitudinal trend in timing. In addition to species-
specific models, we also generated two global seasonal models (one for
spring and one for fall) with species added as a random effect.

For phenology predictions using future climate scenarios, we set
year (a fixed effect) to 2018, rather than extrapolate to the respec-
tive years represented by the climate scenarios (e.g. 2041-2060,
2081-2100, ~30- and 70-year horizons). Thus, our future predic-
tions are based on species' measured plasticity to temperature ef-
fects. We referenced phenologies under climate scenarios relative
to recent phenology patterns predicted using mean anomaly tem-
peratures from 2014 to 2018. Thus, for each location (i.e. 0.5° lo-
cation bins), we made a prediction of median passage date under
location-specific temperature anomaly forecasts for 2041-2060 and
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2081-2100. We then took the difference between those forecast
dates and those predicted for 2018, with negative values denoting
earlier dates and positive values denoting later dates.

All analyses and figures were generated using R version 4.0.2 (R
Core Team, 2020). We used the Me4 package to implement mixed
models (Bates et al., 2014) and generated confidence intervals
using MerTooLs (Knowles & Frederick, 2020) with 1000 bootstrap

iterations.

3 | RESULTS

3.1 | Bird banding records

In total, 2,826,588 banded warblers were included in our analyses
from 1961 to 2018; 674,089 birds banded during spring and 2,152,499
during fall (Figure 1; Figure S1). Through this time series, we did not
find evidence of systematic shifts in spring or fall banding effort
(see Supporting Information). During spring, 36.6% of warblers were
sexed as female, 51.8% as male, and 11.6% as unknown (Table S1).
During fall, 27.2% of warblers were sexed as female, 32.8% as male,
and 40.0% as unknown (Table S1). Examining age classes, spring
migrants were 40.0% young, 19.6% adult and 40.4% unknown age
class and fall migrants were 75.7% young, 16.3% adult, and 8.1% un-
known age class (Table S1). Common Yellowthroat (15.9%), Magnolia
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Warbler (14.5%) and Yellow-rumped Warbler (14.2%) were the three
most banded species during spring, accounting for 44.6% of individu-
als banded during spring. Yellow-rumped Warbler (33.1%), Common
Yellowthroat (10.5%) and American Redstart (8.7%) were the most
common fall migrants and tallied 52.2% of individuals banded during
fall. During spring, 46 locations were represented and 124 locations
during fall (Figure 2). On average, spring locations tallied 22.2 +11.8
(+SD) years of data (Figure 2), with an average of 7.2 +5.3 (+SD) spe-
cies represented at each location (Figure S2). During fall, locations
tallied an average of 21.6 +12.2 (+SD) years of data (Figure 2), with
an average of 6.4 +4.8 (+SD) species represented at each location
(Figure S2). Comparing the 40 locations where both spring and fall
banding operations were conducted, we found that the interval be-
tween spring and fall median passage dates lengthened significantly
(0.06 daysyear’i, 0.04 to 0.08 95% ClI, 3.4days longer from 1961 to
2018). Overall, the duration of fall migration was considerably longer,
on average the interval between the dates of 25% and 75% cumula-
tive captures were 6.3days longer during fall than spring (paired t-
test, t 5o, ==-53.8, p <0.001, 40 locations).

3.2 | Historical relationship with temperature

During spring, temperature anomalies were a significant predic-

tor of median passage date for most species, with 16 of 19 species

Season
[ Spring

B

FIGURE 1 Percent of seasonal
captures and number of migratory
warblers banded during spring (March
15 to June 15) and fall (August 15 to
November 15) from 1961 to 2018. In
total, 2,826,588 banded warblers were
included in phenology analyses. Warbler

0 10 20

Percent of Captures

30 40 illustrations reproduced by permission of

Lynx Edicions.
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years

10 20 30 40 50 60

FIGURE 2 Migration banding locations during (a) spring (N = 46)
and (b) fall (N = 124) showing the number of years of data included
in our analyses. Points represent 0.5° latitude by 0.5° longitude
locations. Inset used to highlight higher density banding areas of
North America.

showing significantly negative slopes, indicating earlier median
passage date during warmer spring periods (Figure 4a,b; Table S2).
This can be visualized at a single location (Appledore Island) for
Common Yellowthroat Geothlypis trichas, whereby migrants arrive
earlier during anomalously warm seasons (F1,3o =6.66, p = 0.015,
Figure 3). Year was a significant predictor in 8 species, with 7 of
8 species showing negative slopes in those cases, ranging from
-0.027 to -0.069 daysyear™ (Table $2). Orange-crowned Warbler
(p=-1.216days °C?, -2.104 to -0.344, 95% Cl), Tennessee Warbler
(p=-0.973days °C™ -1.279 to -0.611, 95% Cl), and Chestnut-sided
Warbler (= -0.906 days °Ct -1.158 to -0.617, 95% Cl) showed the
greatest phenological advancements for every 1°C increase in tem-

perature. Across all species using a single mixed model with species

as arandom effect, we observed a 0.65-day (-0.72 to -0.56, 95% Cl)
advancement in median passage for every 1°C increase in tempera-
ture (p <0.001), and a O.O27—daysyear’1 (-0.036 to -0.017, 95% ClI)
advancement with each passing year. In other words, warmer spring
temperatures led to earlier passage dates, with more recent migra-
tory movements also occurring slightly earlier.

During fall, temperature anomalies were a significant predictor
of median passage date for only 3 of 19 species, with those three
species showing a positive slope, indicating a delay in median pas-
sage date during warmer fall periods (Figure 4c,d; Table S3). While
Common Yellowthroat did not show an overall response to tem-
perature anomalies, it did show a directional trend at one of our
longest-term banding locations, whereby migrants median passage
data were later during anomalously warm seasons (F1,40 =4.892,
p = 0.0327, Figure 3). Year was a significant predictor in 12 species,
showing a negative slope for 7 species and a positive slope for 5
species (Table S3). Across all species using a single mixed model with
species as a random effect, we only found that latitude (-1.43-days
°latitude™, -1.60 to -1.27, 95% ClI, p <0.001) was predictive of fall
phenology, with temperature anomalies and year having a nonsignif-

icant influence (p = 0.069 and p = 0.220, respectively).

3.3 | Climate forecast

Examining future spring climate scenarios, temperatures were con-
sistently warmer at sampling locations, regardless of the shared
socioeconomic pathway. Under SSP-585, median passage date was
predicted to shift 1.58+0.81 (+SD) days earlier under temperature
predictions from 2041 to 2060 and 3.60+1.59 (+SD) days earlier
from 2081 to 2100 (Figure 5). From 2041 to 2060, temperatures
were on average 1.62+0.85°C (SSP-126, +SD), 1.98+0.88°C (SSP-
245, +SD), 2.06+1.03 °C (SSP-370, +SD) and 2.52+1.01°C (SSP-
585, +SD) relative to the mean temperature from 2014 to 2018.
From 2081 to 2100, temperatures were 1.66+0.85°C (SSP-126),
3.09+1.06°C (SSP-245, +SD), 4.54+1.58°C (SSP-370, +SD) and
5.80+1.75 °C (SSP-585, +SD) higher relative to the mean tem-
perature from 2014 to 2018. See Tables S4 and S5 for all modelled
scenarios.

Like spring, fall future climate scenarios showed consistent
warming—although magnitudes were weaker. Under SSP-585, me-
dian passage dates are predicted to delay 0.17+0.58 (+SD) days
under temperature predictions from 2041 to 2060 and 0.48+1.45
(+SD) days later from 2081 to 2100 (Figure 5). From 2041 to 2060,
temperatures were on average 1.11+0.86°C (SSP-126, +SD),
1.49+£0.89°C (SSP-245, +SD), 1.60+1.07 °C (SSP-370, +SD), and
2.07 +£1.04°C (SSP-585, +SD) relative to the mean temperature
anomalies from 2014 to 2018. From 2081 to 2100, temperatures
were 1.12+1.85°C (SSP-126, +SD), 2.62+1.05°C (SSP-245, +SD),
417 +1.61°C (SSP-370, +SD), and 5.47+1.80 °C (SSP-585, +SD)
higher relative to the mean temperature from 2014 to 2018. See

Tables S4 and S5 for all modelled scenarios.
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FIGURE 3 Median passage date for Common Yellowthroat (Geothlypis trichas, COYE) relative to temperature anomalies (°C) from 1980
to 2018 during spring and 1976 to 2018 for fall for a single location. This location (43°N, -70.5°W), refers to a single banding station,
Appledore Island, ME. Points are shaded according to year and their size scaled to the number of seasonal captures (spring mean 599.8
COYE banded, fall mean 120.8 COYE banded). The fitted line and 95% confidence band are from least-squares linear regression. Here,
the slope of the line differs significantly from zero for both seasons (spring p = 0.011, fall p = 0.033). Warbler illustration reproduced by

permission of Lynx Edicions.

4 | DISCUSSION

We amassed six decades of bird banding records from 19 warbler
species to characterize putative changes in spring and fall migration
phenology, in total summarizing records from 2.8 million migrants
from 130 locations in North America. During spring, the direction of
phenological responses to interannual fluctuations in mean tempera-
ture were largely consistent across all warbler species, with most spe-
cies showing earlier median passage dates during warmer seasons.
While many long-distance migrants are thought to initiate migration
phenology based on cues entrained by day length (Gwinner, 1996), it
is clear that responses to seasonal conditions plays an important role
in shaping seasonal migration timing. Annual adjustments to season-
ality likely occur en route through advancements or delays in stopo-
ver duration or flight speed (Marra et al., 2005), although changes
in stopover duration tend to be the greatest contributor to seasonal
shifts (Schmaljohann & Both, 2017). While Horton et al. (2020) and
Youngflesh et al. (2021) found that spring phenological advance-
ments were more pronounced at northerly sites, we found no inter-
action between temperature anomalies and latitude in influencing
phenology. This may be, in part, due to more limited latitudinal sam-
pling in this study. The distribution of banding locations in this study
shows a strong eastern bias (Figure 2), with relatively few sites rep-
resented in the central and western flyways. While it is unsurprising

that coverage is limited in more remote regions of North America
(e.g. Canada, Alaska), is it particularly notable that long-term records
are lacking from some of the most import migrant corridors in North
America (Dokter et al., 2018), including broad regions surrounding
the Gulf of Mexico, lower mid-west, and southeast.

While spring migrants showed clear phenological variation in
response to seasonal conditions, fall migrants showed mixed and
nonsignificant trends, with only latitude serving as an important
broadscale driver of the timing of migratory passage (i.e. earlier
at northern sites, later at southern sites). Our results are largely in
line with others that have examined fall migration (Covino, Horton,
et al., 2020; Horton et al., 2020; Van Buskirk et al., 2009), where
comparatively, fall migration timing patterns are more variable and
trends are more muted relative to spring phenological change. The
interval between spring and fall median passage dates lengthened
significantly, largely driven by spring advancement, but in some in-
stances, fall delays. These intervals varied by species, with 9 spe-
cies showing significant expansions in the spring to fall passage
interval, ranging from 0.5 to 2.9days decade™, with Tennessee
Warbler showing the greatest change. We also observed signifi-
cantly wider intervals between the dates of 25% and 75% cumula-
tive captures during fall than spring (~6 days longer). Differences
in seasonal migration length are likely a reflection of differential
departure by age classes in the fall, general fitness advantages of
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FIGURE 4 Linear regression of spring (a and b) and fall (c and d) median passage date relationship relative to mean maximum temperature
for 19 wood-warbler species. (a and c) Species-specific fitted lines from linear mixed model with locations (i.e. 0.5° locational bins) as a
random effect and phenology predicted across species-specific temperature ranges (between the 2.5% and 97.5% quantiles) and at 42.5°N
latitude (median of locations). (b and d) Slope () and 95% confidence intervals from species-specific linear mixed models showing phenology
change per °C. Regression lines shaded in (a) and (c) correspond to species-specific colours of (b) and (d). Solid lines represent significant
trends (p <0.05, a and c¢) and solid confidence interval lines represent intervals not overlapping zero (b and d). Dashed lines show non-
significant trends (p >0.05) and intervals overlapping zero. Warbler illustrations reproduced by permission of Lynx Edicions.

rapid spring arrival, and seasonal differences in prevailing winds
and suitability for north or southbound flights. Regardless, we did
not detect a broadscale signal that fluctuations in fall interannual
phenology were driven by the variation in seasonal temperature.
In a fossil-fueled development scenario (SSP5-8.5) (Kriegler
etal.,2017), the models we leveraged showed an average of 2.1 and
5.5°C of warming in 2060 and 2100, respectively. These changes
put warblers on pace to shift 1.5 (year 2060) and 3.6 (year 2100)
days earlier in the spring, with some species like Orange-crowned

Warbler, Tennessee Warbler and Nashville Warbler showing mul-
tiple scenarios of greater than 7days of advancement by 2100,
particularly at more northerly sites where warning trends are most
prominent. If food resources are not ultimately a limiting resource
(i.e. a phenological mismatch), additional time between spring and
fall migration periods may eventually afford opportunities for ad-
ditional broods or buffer against nest failure if renesting is possible
(Mgller et al., 2010). While much attention regarding phenologi-
cal mismatch is focused on spring and summer phenophases, it is
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FIGURE 5 Predicted median passage date for spring and fall migration periods using shared socioeconomic pathway (SSP-585) climate
scenarios for 2041-2060 (grey) and 2081-2100 (black). Predictions referenced from median passage predictions from year 2018 and
location-specific mean anomalies from 2014 to 2018 and location latitude. Box plots show the distribution of predictions from eight

separate models (see Section 2) across all locations.

unclear how fall changes in temperature and food resources will
shape migrant fitness (Gallinat et al., 2015). Our results did not
overwhelming demonstrate changes in the timing of fall migration,
and by extension, forecast phenologies were similarly equivocal.
Warming temperatures have already been shown to extend the
overall autumn period, delaying leaf senescence and affording ad-
ditional insect generations (Fu et al., 2018; Ibafez et al., 2010).
However, fruit ripening may be advancing (Menzel et al., 2006).
During fall migration, migrants with diets composed of both fruit
and insects have been shown to gain significantly more mass
during migration (Parrish, 1996). With temperatures forecast to
continue changing in both spring and fall, and the timing of fall
migration showing modest shifts, phenological mismatches have
the potential to be more detrimental in the fall.

With bird migrants facing a multitude of environmental threats
(Loss et al., 2015), population declines are hardly a surprise. Recent
estimates of nearly a net loss of 3 billion breeding birds from 1970 to

2017 are sobering (Rosenberg et al., 2019). Of the 19 warbler species
examined in this study, Rosenberg et al. (2019) found 13 to be in de-
cline, with Blackpoll Warbler showing the greatest magnitude (307
million) and proportional decline (88%). In total, a net of 599 million
breeding warblers of these 19 species were estimated to have disap-
peared over from 1970 to 2017, a period largely overlapping with our
study period. However, some species including Black-throated Blue
Warbler, Northern Waterthrush and Magnolia Warbler have shown
population increases, yet our estimated changes in phenology do
not appear to covary with North American population trends, either
in spring or fall. Broadly examining these patterns, across a diverse
suite of species is necessary to understand the potential for interac-
tions of population changes and phenology (Dunn & Mgiller, 2014;
Mgller et al., 2008).

One of the key challenges faced in using bird banding records is
the inability to verify seasonal or daily effort—key figures that aid
in zero filling and standardization of station effort. While nearly all
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banding stations collect information pertaining to how daily opera-
tions are conducted, for example, how many nets were opened, the
size of those nets, or more simply, if banding activities were con-
ducted. However, these pieces of information are not archived by
the USGS bird banding lab. Amassing this information, site-by-site,
would be a considerable undertaking, and at times, may not be pos-
sible if records have been lost through time. Estimates of seasonal
phenology are likely more robust than other banding metrics, like
abundance or capture rates, but effort data can alleviate some the
assumptions made in this study. Acquiring information from addi-
tional species would surely help to support efforts to account for
effort. For instance, the addition of commonly banded species, be-
yond warblers or even migratory birds, would help resolve additional
instances of zeros, and thus a reference point for if a station banded
on a particular day. Expanding this taxonomic lens also serves to
broaden our insights into how migrants are responding to changing
environments.

Through phenotypic plasticity, migrants can respond, to some
degree, to changing seasonal temperatures, but will this be enough
to match the effects of climate change? Unfortunately, our data
and results cannot answer this question. While phenotypic plas-
ticity is clearly demonstrated, and future climate projections predict
advancements into the future for spring migrants, our approach
assumes that plasticity is unbounded and past behaviours are in-
dicators of future climate response—our future projections are
true extrapolations. If spring migration initiation is constrained by
endogenous cues (Gwinner, 1996), then there are clearly limits to
the amount of change that can occur en route. However, selection
for earlier departures—evolution—is an alternative mechanism that
over time and successive generations, can reshape migration initi-
ation timing (Jonzén et al., 2006). The pace of changing resources
may outpace evolutionary selection, although results from Helm
et al. (2019) suggest change is possible on a relatively short time
scale. Quantifying evolutionary changes in migration timing is im-
mensely challenging (Charmantier & Gienapp, 2014), especially in
unstructured datasets like bird banding data. If past plasticity is an
indication of future phenological patterns, we predict continued ad-
vancements, with the magnitude largely dependent on humanity's

ability to mitigate climate impacts.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the

Supporting Information section at the end of this article.

Figure S1: Annual totals of 19 focal wood-warbler species banded
from 1961 to 2018 during spring (March 15 to June 15) and fall
(August 15 to November 15).

Table S1: Number and percent of migratory warblers banded during
spring (March 15 to June 15) and fall (August 15 to November 15)
from 1961 to 2018.

Figure S2: Migration banding locations during (A) spring (N = 46) and
(B) fall (N = 124) showing the number of species recorded at each
location. Points represent 0.5° latitude by 0.5° longitude locations.
Inset used to highlight higher density banding areas of North
America.

Table S2: Linear regression of spring median passage date
relationship and mean maximum temperature and year for 19 wood-
warbler species. Species-specific slopes generated from linear mixed
model with location (i.e. 0.5° location bins) as a random intercept.
Confidence intervals (95%) calculated from 1000 bootstrap samples.
Coefficients with p-values <0.05 are shaded in grey.

Table S3: Linear regression of fall median passage date relationship
and mean maximum temperature and year for 19 wood-warbler
species. Species-specific slopes generated from linear mixed
model with location (i.e. 0.5° location bins) as a random intercept.
Confidence intervals (95%) calculated from 1000 bootstrap samples.
Coefficients with p-values <0.05 are shaded in grey.

Table S4: Means (+SD) of predicted median passage date for spring
and fall migration periods under four different shared socioeconomic
pathway climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5) for 2041-2060. For each scenario, averages from eight model
were taken. Predictions referenced from median passage predictions
from 2018 and mean temperatures from 2014 to 2018.

Table S5: Means (+SD) of predicted median passage date for spring
and fall migration periods under four different shared socioeconomic
pathway climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5) for 2081-2100. For each scenario, averages from eight model
were taken. Predictions referenced from median passage predictions
from 2018 and mean temperatures from 2014 to 2018.
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