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Inconsistent Matters: A Knowledge-Guided
Dual-Consistency Network for Multi-Modal
Rumor Detection
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Abstract— Rumor spreaders are increasingly utilizing multime-
dia content to attract the attention and trust of news consumers.
Though quite a few rumor detection models have exploited the
multi-modal data, they seldom consider the inconsistent seman-
tics between images and texts, and rarely spot the inconsistency
among the post contents and background knowledge. In addition,
they commonly assume the completeness of multiple modalities
and thus are incapable of handling handle missing modalities
in real-life scenarios. Motivated by the intuition that rumors in
social media are more likely to have inconsistent semantics, a novel
Knowledge-guided Dual-consistency Network is proposed to detect
rumors with multimedia contents. It uses two consistency detection
subnetworks to capture the inconsistency at the cross-modal level
and the content-knowledge level simultaneously. It also enables ro-
bust multi-modal representation learning under different missing
visual modality conditions, using a special token to discriminate
between posts with visual modality and posts without visual modal-
ity. Extensive experiments on three public real-world multimedia
datasets demonstrate that our framework can outperform the state-
of-the-art baselines under both complete and incomplete modality
conditions.

Index Terms—Multi-modal learning, rumor detection, social
media analysis.

I. INTRODUCTION

HE rapid growth of social media has revolutionized the
Tway people acquire news. Unfortunately, social media
has fostered various false information, including misrepre-
sented or even forged multimedia content, to mislead readers.
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The widespread rumors may cause significant adverse effects.
For example, some offenders use rumors to manipulate public
opinion, damage the credibility of the government, and even
interfere with the general election [1]. Therefore, it is urgent to
automatically detect and regulate rumors to promote trust in the
social media ecosystem.

Traditional rumor detection methods mainly rely on textual
data to extract distinctive features [2], [3], [4], [5]. With the
advancement of multimedia technology, visual contents have
become an important part of rumors to attract and mislead the
consumers due to more credible storytelling and rapid diffu-
sion [6], [7]. To this end, the rumor detection methods are
undergoing a transition from a uni-modal to a multi-modal
paradigm.

Detecting multimedia rumor posts is a double-edged sword.
On the one hand, it is more challenging to learn effective feature
representations from heterogeneous multi-modal data. On the
other hand, it also provides a great opportunity to identify
inconsistent cues among multi-modal data. Xue et al. [8] show
that to catch the eyes of the public, rumors tend to use theatrical,
comical, and attractive images that are irrelevant to the post
content. In general, it is often difficult to find pertinent and
non-manipulated images to match fictional events. And thus
posts with mismatched textual and visual information are very
likely to be fake [9]. Fig. 1(a) shows a real-world multimedia
rumor from Twitter, where there is a fire somewhere in the image
that has nothing to do with the textual content “two gunmen have
been killed”. Thus, it is essential to identify such cross-modal
inconsistency for multimedia rumor identification. Additionally,
one major drawback of these multi-modal methods is that they
assume the availability of paired data modalities in both training
and testing data. However, in many real-world scenarios, not
all modalities are available. For example, a large number of
posts on Twitter or Weibo have only textual contents, without
the visual modality. Compared with discarding any data points
with missing modality in previous studies [9], [10], [11], [12],
including these data points may lead to more representativeness
of the training data and thus better generalizability to the test
data, which is one major issue we aim to solve.

In addition to using visual information, rumor detection can
also benefit from the introduction of knowledge graphs (KG),
which can provide faithful background knowledge to verify
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(a) One real-world example of a fake multimedia tweet to show cross-
modal inconsistency. Its textual content “the two suspected #Char-
lieHebdo gunmen have been killed.” has nothing to do with its image
content that something behind the woods is on fire.

Fig. 1. Two real-world examples of fake multi-modal tweets.

the semantic integrity of post contents. Previous works [13],
[14] commonly used KG to complement the post contents by
various data fusion methods. However, they ignore the content-
knowledge inconsistency information. For example, in Fig. 1(b),
itwould be a great help to judge the truthfulness of the post, given
the background knowledge that sharks are unlikely to appear
in a subway. Intuitively, if we are able to spot the uncommon
co-occurring entities in the multi-modal post contents, such as
the entity pair “shark” and “subway” in Fig. 1(b) ,' it would
facilitate the detection of counterintuitive rumors.

Although a few recent multi-modal rumor detection methods
have captured the image-text dissimilarity as an indicative fea-
ture, they fail to consider the content-knowledge inconsistency
at the same time. The two types of consistency information can
complement each other, so that even if one is unreliable (for
example, no text-image dissimilarity is detected in Fig. 1(b)),
the other can help. Also, the two types of information can have
some complex interactions that can be learned by a deep network
to discover more efficient detection signals. Thus, it would be
beneficial to exploit both types of information for better rumor
detection.

Along this line, in this work, we aim to exploit both cross-
modal inconsistency and content-knowledge inconsistency for
multimedia rumor detection, without requiring full modalities.
The problem is non-trivial due to the following challenges. First,
since text, image, and KG data have different formats and struc-
tures, how to integrate them into a unified framework to detect
rumors is an open question. Second, there is no straightforward
way to measure and capture the aforementioned inconsistency.
Third, an effective detector is expected to robustly adapt to

'Note that entity inconsistency is not necessarily cross-modal as shown in
this example.
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(b) The other real-world example of a fake multimedia tweet to show
content-knowledge inconsistency. It is suspicious to see sharks appear in
a subway. Such abnormality should be captured and serve as an essential
clue for rumor identification.

different visual modality missing patterns: modality missing in
training data, testing data, or both.

To address the above challenges, we propose a novel
Knowledge-guided Dual-Consistency Network (KDCN) that can
capture the inconsistent information at the cross-modal level
and the content-knowledge level simultaneously. To validate our
motivation that inconsistency matters for rumor detection, we
analyze the rumor datasets and observe that the above two types
of inconsistency information present a statistically significant
distinction between rumor and non-rumor posts (see details
in Section I'V-C). Following this observation, our framework
mainly consists of two sub-neural networks: one is to extract
cross-modal differences between images and texts, and the other
is to identify the abnormal co-occurrence of pairs of entities
in the post contents by measuring their KG representation
distances. The two sub-neural networks are tightly coupled to
make the two sources of inconsistency information complement
each other, which can improve the robustness of the detection
of rumors, even if one source is unavailable or unreliable.
Moreover, to enable our framework to tackle the incomplete
modalities, we utilize pseudo images as a complement with a
special token to indicate it is not real. It is simple and can make
our framework unaltered to process the incomplete modality
data with the same procedure as modality-complete data, and
meanwhile provide stable performance under different cases of
missing visual modality.

To summarize, the contributions of our paper are
three-fold:

® We propose a novel knowledge-guided dual-consistency

network to simultaneously capture the cross-modal incon-
sistency and content-knowledge inconsistency. It is de-
signed to detect rumors with multi-modal contents, but can
also adapt to cases where the visual modality is missing.
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® To the best of our knowledge, we are the first to reveal that
rumor posts tend to contain entities that are farther away on
KG than non-rumors. This observation can serve as a useful
signal to distinguish between rumors and non-rumors.

e Extensive experiments on three real-world datasets show
that our framework can better detect rumors than the
state-of-the-art baselines. It is also advantageous in pro-
viding stable and robust performance under different visual
modality missing patterns, even under very severe missing
scenarios.

II. RELATED WORK
A. Rumor Detection

Rumor detection models rely on various features extracted
from multi-modal social media data, including post texts, social
context, the attached images, and the related knowledge graphs.
Thus, we review existing work from the following four cate-
gories: textual and social contextual-based methods, multime-
dia methods, fact-checking with KG, and knowledge-enhanced
methods.

1) Textual and Social Contextual Rumor Detection: Most
rumor detection models rely on textual features. Traditional
machine learning-based models are based on features extracted
from textual posts in a feature engineering manner [2], [15]. Re-
cent studies propose deep learning models to capture high-level
textual semantics, outperforming traditional machine learning-
based models. A recurrent neural network (RNN) based model
is proposed to capture the variation of contextual information of
relevant posts over time [4]. [16] proposes a user-attention-
based convolutional neural network (CNN) model with an
adversarial cross-lingual learning framework to capture both
the language-specific and language-independent features. [5]
proposes a convolutional approach for misinformation identi-
fication based on CNN to extract key textual features. [17]
proposes multi-channel networks to model news pieces from
semantic, emotional, and stylistic views.

Social context features represent the user engagements on
social media such as retweeting and commenting behaviors. So-
cial context features can provide important clues to differentiate
rumors from non-rumors. [18] develops a sentence-comment
co-attention sub-network to exploit both news contents and
user comments to jointly capture important sentences and user
comments as explanations to support the detection result. [19]
proposes a quantum-probability-based signed attention network
utilizing post contents and related comments to detect false
information. Both of these two studies utilize retweeting and
commenting content. [20] proposes a repost-based early rumor
detection model by regarding all reposts of a post as a sequence.
[21] proposes a graph-kernel based hybrid SVM classifier to
capture the high-order propagation patterns. This study uses
network structures as social context features. However, social
context features are usually unavailable at the early stage of
news dissemination.

2) Multimedia Rumor Detection: Several recent models be-
gin to explore the role of visual information. [22] proposes a
recurrent neural network to extract and fuse multi-modal and
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social context features with an attention mechanism. EANN [10]
learns post representations by leveraging both the textual and
visual information, using an adversarial method to remove event-
specific features to benefit newly arrived events. [11] proposes a
multi-modal variational autoencoder for rumor detection to learn
shared features from both modalities. The encoder encodes the
information from text and image into a latent vector, while the
decoder reconstructs the original image and text. [12] designs
a multi-modal multi-task learning framework by introducing
the stance task. However, these studies do not consider con-
sistencies between multi-modal information as our work does.
While SAFE [9] and MCNN [8] have considered the relevance
between textual and visual information, we distance our work
from theirs in that we capture the cross-modal inconsistency
differently, and also model the inconsistency between content
and external knowledge. In addition, these studies don’t touch
the modality missing issue, which is common for real-world
multi-modal rumor detection. COSMOS [23] focuses on a new
task of predicting whether the image has been used out of context
by taking as input an image and two corresponding captions
from two different news sources. If the two captions refer to the
same object in the image, but are semantically different, then it
indicates out-of-context use of image. It has a different problem
setting from this work.

3) Fact-Checking With KG: Some studies [24], [25], [26],
[27] extract structured triples (head, relation, tail) from the post
contents, and fact-check them with the faithful triples in KG. A
limitation of such approaches is that KG is typically incomplete
or imprecise to cover the complex relations in the form of
triple being extracted from the post. Consider an extracted triple
(Anthony Weiner, cooperate with, FBI) has two entities with
the “cooperate with” relation, where both entities are available
in KG, but the relation is not [26]. For such cases, structured
triple methods fail to make reliable predictions. By contrast, our
method is still applicable.

4) Knowledge-Enhanced Detection: A few studies use ex-
ternal knowledge to supplement post contents to obtain better
representations for rumor detection. A knowledge-guided article
embedding is learned for healthcare misinformation detection
by incorporating medical knowledge graph and propagating the
node embeddings through knowledge paths [28]. The multi-
modal knowledge-aware representation and event-invariant fea-
tures are learned together to form the event representation in
[13], whichis fed into a deep neural network for rumor detection.
A knowledge-driven multi-modal graph convolutional network
(KMGCN) [14] is proposed to model the global structure among
texts, images, and knowledge concepts to obtain comprehensive
semantic representations. [29] proposes an entity-enhanced
multi-modal fusion framework, which models correlations of
entity inconsistency, mutual enhancement, and text complemen-
tation to detect multi-modal rumors. [30] proposes a graph
neural model, which compares the news to the knowledge base
(KB) through entities for fake news detection. However, these
methods don’t consider the content-knowledge inconsistency.
Moreover, KMGCN is transductive, requiring the inferred nodes
to be present at training time, and is time-consuming due to graph
construction and learning.
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B. Multi-Modal Learning With Missing Modality

Modalities can be partially missing in multi-modal learning
tasks. For example, due to lighting or occlusion issues, faces can
not always be detected for the emotion recognition task [31],
resulting in modality missing. One solution to this problem is
data augmentation, where missing modality cases are simulated
by randomly ablating the inputs [32]. Another common solution
is using generative methods. Given the available modalities, the
missing modalities are predicted directly [33], [34], [35], [36].
Some studies learn joint multi-modal representations from these
modalities [31], [37], [38], [39], [40].

Note that most of the existing methods are designed for the
scenario that full modalities do exist but cannot be accessed
due to various constraints. However, for the rumor detection
task, the visual modality is missing mostly since there don’t
exist any corresponding images at all. Therefore, the previous
approaches such as generative methods may incur unnecessary
computational cost and bring large noises. To the best of our
knowledge, how to tackle the incompleteness of images for
multi-modal rumor detection has not been covered by existing
studies. Moreover, due to the large number of posts on social
media, a lightweight way is expected to provide superior and
robust performance for different missing cases.

III. METHODOLOGY
A. Problem Definition

Following previous studies [9], [10], [11], the rumor detection
task can be defined as a binary classification problem with
the two classes of rumor or non-rumor. In this paper, without
loss of generality, we consider a multi-modal rumor dataset
involving the visual and textual modalities, where some sam-
ples may lack the visual modality. Formally, let D = {D7, Dt}
denote the overall modal-incomplete dataset, and all posts in
D can be divided into two subsets D7 and D! according to
the presence or absence of the visual modal data, respectively.
DS = {T;, I, y; }; denotes the modal-complete subset, where T;
represents the textual data and I, represents the visual data of the
ith sample. y; is the corresponding class label. D' = {T},y,};
denotes the rext-only subset, where the visual data is missing.
Our goal is to leverage both modal-complete and text-only
subsets for model training. The proposed model needs to adapt to
different visual-modality missing conditions, that is, the visual
data can be missing in the training data, testing data, or both.

B. Overview

As shown in Fig. 2, our framework mainly consists of four
components : (1) a preprocessig component to obtain entities and
their representations; (2) a cross-modal consistency subnetwork
for capturing the inconsistency between image and text for each
post. This subnetwork also has to deal with the visual modality
missing issue; (3) a content-knowledge consistency subnetwork
for capturing the inconsistency between the content and KG
through entity distances; (4) a classification layer that aggregates
various features and produces classification labels.
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The data flow is as follows. Given a social post from dataset
D, this post can have both textual and visual modalities, or have
textual modality only. We first extract entities from texts (and
images, if the visual modality is also available) and obtain the
entity representations. The collection of entity representations is
fed into the content-knowledge consistency subnetwork to get
the knowledge-level inconsistency features. Meanwhile, for a
specific post, a special token [CMT] is introduced as an indicator
to determine whether this post belongs to the modal-complete
subset DI or the text-only subset D. If the post belongs to
the text-only subset, since it lacks visual data, we supplement
the post with a pseudo image to make it compatible with the
cross-modal consistency subnetwork. Then the image and text
data, as well as the token are fed into the cross-modal consis-
tency subnetwork to produce cross-modal inconsistency features
and modal-shared features. After going through the above two
consistency subnetworks, the obtained features are fused and
fed into the classification layer to produce final labels. In the
following sections, we will describe each component in detail.

C. Multi-Modal Post Preprocessing

For the posts in the modal-complete subset D7, we essentially
follow the procedure in [14] to extract entities from texts and
images. For the text content, we use the entity linking solution
TAGME? [41] and Shuyantech3 [42] to extract and link the am-
biguous entity mentions in the text to the corresponding entities
in KG for English and Chinese texts, respectively. For the visual
content, we utilize the off-the-shelf pre-trained YOLOv3“ [43] to
extract semantic objects as visual words. The labels of detected
objects, such as person and dog, are treated as entity mentions.
These mentions are linked to entities in KG.

Then, the entity in the text modality is linked to entities in
KG. In this paper, we take Freebase’ as the reference KG. The
reasons why we choose Freebase as the knowledge source are
two-fold: (1) Freebase has a much larger scale set of entities than
Probase and Yago, which would facilitate the rumor detection
task. (2) There are off-the-shelf pre-trained entity embeddings
that can be used directly by our model. We then obtain the
pre-trained entity representations from the publicly available
OpenKE6, which are trained with TransE [44] on Freebase.
The entity representation embedding dimension is 50. Thus,
our model accepts quadruple inputs {Text, Image, Entity set,
Pretrained KG}. How to process the data instances without the
visual modality would be illustrated in Section III-D2.

D. Cross-Modal Consistency Subnetwork

The cross-modal consistency subnetwork is designed to cap-
ture the inconsistency between images and texts and deal with
the visual modality missing issue. It consists of two separate
encoders for texts and images, a decomposition layer to obtain

2TAGME is available at https:/tagme.d4science.org/tagme/

3Shuyantech is available at http:/shuyantech.com/entitylinking

4YOLOV3 pre-trained model is provided in https:/pjreddie.com/darknet/
yolo/#demo

SFreebase data dumps is available at https://developers.google.com/freebase/

50penKE is available at http://openke.thunlp.org
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Fig.2. The framework of the proposed knowledge-guided dual-consistency network. It consists of four components: (1) bottom: the data preprocessing component.

For the text-only post, a pseudo image (represented by a white square) is used to fill the position of the missing visual data, and a token [CMT] = 0 is used to
represent a text-only post (represented by a pink hexagon). For a post from the modal-complete dataset, a token [CMT] = 1 is used to represent a post with an
image. This component extracts and links the entity mentions from multimedia contents to the corresponding entities in KG. A post entity set is represented by
a yellow square. Then the entities are represented with pre-trained embeddings; (2) middle left: the cross-modal consistency subnetwork. It encodes the image
and text, and the CMT token is concatenated to the image representation. Then, it projects them into modal-shared and modal-unique spaces, and learns the

cross-modal inconsistency features. (3) middle right: the content-knowledge con
by concatenating any two entities from the set. In the figure, this operation is

sistency subnetwork. For a post entity set, an entity pair representation EP is formed
represented as Pair Concat. The Manhattan distances are calculated between any

two entities from the set, and we get the top-£ entity pairs with the largest Manhattan distances and their corresponding distances. This operation is represented as

M. This component uses the modal-shared content as query Q and the entity p.
mechanism that adopts both “+Softmax” and “-Softmax” operations to capture

air representations EP as the value and key, and a distance-aware signed attention
multi-aspect correlations to obtain content-knowledge inconsistency features as in

(8) and (9); (4) top: the rumor classification layer to combine the cross-modal inconsistency features, modal-shared features and content-knowledge inconsistency
features. Concat denotes the concatenation operation, and FC represents the fully-connected layer.

the corresponding modal-unique features and modal-shared fea-
tures, and a fusion layer to produce cross-modal inconsistency
features.

1) Text and Image Encoding: We map texts and images into
feature representations. Specifically, for the text information,
we use the initial word embeddings pre-trained by BERT, and
utilize the bi-directional long short-term memory (Bi-LSTM)
network to encode each textual sequence into a vector fol-
lowing the procedure in [45]. In particular, it maps the word
embedding w; into its hidden state h ;€< R%, where w;E R
denotes the pre-trained embedding of the jth word from a
word sequence with length M. We concatenate 71_0 and m to
obtain the hidden state of the textual content h € R2% . After
that, we encode the textual representation into a d-dimensional
vector H,

HT = RCLU(’U)T xh + bT)7 (1)

where wp € R¥2% and by € R%*! are learnable weights and
bias parameters.

Similarly, we encode an image into a d-dimensional vector
H 1 with a pre-trained CNN,

H; = ReLU(w; * (CNN(Image) + by), 2)

where Wy € R4*? and b, 1 € R*1 gre learnable parameters, d;
is the dimension of the pre-trained CNN image vector. However,
here we assume the visual data is available. How to make it
compatible with those posts where the visual modality data is
missing would be introduced in the following part.

2) Pseudo Image for Visual Modality Missing: Till now, we
have assumed full modality data are available for multi-modal
data preprocessing and encoding. We then discuss how to pro-
cess the data instances where the visual modality data is missing.

As stated in Section II-B, one common solution to address
the missing modality issue is to use generative methods. But
they are designed for the scenario that full modalities do exist
but cannot be accessed due to various constraints. However, for
the rumor detection task, it is common that the visual modality
does not exist in the source post, and thus it is not necessary to
generate the images at all. Moreover, generating images based on
the available textual modality would incur heavy computational
costs in handling the large number of posts on the social network.

To address this issue, we propose a novel approach that uses a
pseudo image with a special token to supplement these data in-
stances. By taking this approach, we can address the problem of
the incompleteness of modalities in terms of flexibility (missing
modalities in training, testing, or both) without alternating the
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framework architecture. It is also advantageous in efficiency as
no extra training or generative overhead is required. Moreover,
different from traditional methods that discard the data instances
with missing modality, it can take full advantage of the training
data and can thus better generalize to the test data.

Specifically, for each post in the text-only subset D! =
{T},y;};, the text modality is processed in the same way as the
modal-complete post described in Section III-D1. To address
the visual data missing issue, we propose to fill the position
of the visual data with a pseudo image. Concretely, we use a
white image (RGB(255, 255, 255) as the pseudo visual data. To
distinguish it from the real image, a special Complete-Modality
Token ([CMT]) is introduced. [CMT]={0,1}, where 0 indicates
that the post is from the text-only subset, and 1 indicates coming
from the modal-complete subset.

After that, our model accepts quintuple inputs: {Text, Image,
Entity set, Pretrained KG, [CMT] = 1} for the modal-complete
subset D and {Text, pseudo Image, Entity set, Pretrained KG,
[CMT]=0} for the text-only subset D*.

Then we improve the image encoding method in (2) to make it
accommodate both real and pseudo images. Specifically, we put
the corresponding complete-modality token [CMT] after every
image representation. They are concatenated and mapped into a
low d -dimension space:

H = ReLU(wy * [CNN(Image); [CMT]] + br), (3)

where wy € R¥(d1+1) and by € R4*! are learnable parameters.
The effect of [CMT] will be verified in the experimental section.

Please note that besides the above [CMT] token method, we
have also tried to generate images based on generative adversar-
ial networks as well as use randomly generated images to serve
as the missing images. The performance of these comparison
methods is reported in Section I'V-F.

3) Multi-Modal Decomposition: Enlightened by the idea
of projecting the multi-modal representations into different
spaces [46], we break down the raw visual and textual rep-
resentations into the modal-unique space and modal-shared
space. While a cross-modal shared layer is proposed to extract
modal-invariant shared features, an image-specific layer and a
text-specific layer are used to extract the corresponding modal-
unique features:

I, =W hareaHr € R%
I,=P;H;cR¥%

Ty = WshareaHr € R*

T, =PrHyp e R%™ )

where H; and Hr are the encoded visual and textual fea-
tures obtained in the last subsection, W sharea € R%*¢ and
{Pr,Pr} € R%*? are projection matrices for the modal-
shared space and modal-unique space, respectively. Is and I,,
are the decomposed modal-shared and modal-unique image
features, respectively, while T'g and T',, are the decomposed
modal-shared and modal-unique text features, respectively.

To ensure that the decomposed modal-shared space is unre-
lated with the modal-unique spaces, the orthogonal constrain is
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introduced as:
W sharea(Pr)" =0
W sharea(Pr)" =0 Q)
which can be converted into the following orthogonal loss,
Lo =||Wsharea(P1)" |7 + [|W sharea(Pr)" |7,  (6)

where || - [|% denotes the Forbenius norm. We verify that the
orthogonal loss is useful for improving detection performance
in the ablation study in Section IV-G.

After obtaining two modal-unique features and two modal-
shared features in (4), we combine them as the cross-modal in-
consistency representation f,,ique and the overall modal-shared
representation fgpqre, that is

funique = [Tu;Tu - I'u,;Iu]
fshare = [Ts§Ts®Is§Is}> (7

where © denotes the element-wise multiplication operation,
Sunique € R3% is used to measure the inconsistency information
between modalities, and fspqre € R34 is used to represent the
shared information between modalities. Similar ideas to obtain
the cross-modal contrast features can also be found in [46].
But unlike it which only focuses on the opposition between
different modalities, we also retain the modal-shared content
to preserve the comprehensive multi-modal semantics. Then
both funique and fshare Would serve as part of the input for
the final classification layer as (10) in Section III-F. In this way,
when the final classification objective is optimized, the image
feature and text feature would be enforced to be projected into
the same semantic space, and their cross-modal contrast would
be assessed in this space by measuring the difference 7', — [,,. In
addition, the modal-shared content would also be fused with the
knowledge information in the content-knowledge consistency
subnetwork, which would be described in Section III-E2.

E. Content-Knowledge Consistency Subnetwork

Here we introduce how to capture the content-knowledge
inconsistency features.

1) Entity Pair Sorting: After preprocessing in Section III-C,
the obtained entity representation is denoted as e; € R%. We
measure their Manhattan distance for each pair of entity rep-
resentations within a post and retain the top-k (k = 5) entity
pairs with the largest distances and their corresponding distance
values. Note that for those posts where the number of entities
is less than 4, the number of entity pairs can’t reach 5 (C3 = 6,
C2 = 3). To address this issue, we make a supplement with
pseudo entities whose representations are random vectors. We
concatenate the pairwise entity representations to get the entity
pair representation EP; € R (j € [1,k]). Also we get the
entity pair distance dis’ € R (i € [1, k])

2) Content-Knowledge Fusion With Distance-Ware Signed
Attention: To incorporate KG with post contents, we propose to
fuse the top-k largest-distance entity pairs with the modal-shared
contents with the attention mechanism. We propose a novel
approach that uses the modal-shared content as query @ and
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the entity pair representations E P as the value and key, and
a distance-aware signed attention mechanism to learn the most
relevant parts for fusion. By taking this approach, we can address
the problem of content-knowledge consistency modeling and
capture their complex semantic relationships. This is different
from the traditional usage of query, value and key in the attention
mechanism as we can also capture the negative correlation
between query and key. Moreover, unlike the originally signed
attention in [19], another factor (i.e., the entity distance) is taken
into consideration to adjust the soft weights to better obtain
content-knowledge inconsistency features.

We then illustrate the design of the distance-aware signed
attention mechanism in detail. In the traditional attention mech-
anism, if the correlations between query and keys are negative
(i.e., their compatibility (e.g., dot product) value is negative), we
would treat it as insignificant. However, such a negative correla-
tion may represent the opposing semantics that can be beneficial
to the rumor detection task. Our signed attention mechanism, on
the contrary, adds a “-Softmax” operation using the opposite
compatibility values between queries and keys as input to the
Softmax function to amplify the negative correlations. Thus the
compatibility values would go through two channels, that is, both
the traditional Softmax (i.e., “+Softmax’) and the “-Softmax”
functions, to capture both positive and negative relationships be-
tween the modal-shared contents and the top-£ largest distance
entity pairs. We thus obtain two attention weights corresponding
to the two channels, that is,

Q = Concat(Is,Ts)

Oé;os = Softmax (62\(/?65:‘))
aiLeg = —Softmax (Q\(/L;TZZ)> ®

where the modal-shared feature @ is the concatenation of
modal-shared features for images and texts. Both agos and of,, g
denote the attention weights of the ith entity pair but reflect the
positive and negative correlations, respectively. A larger afms
(resp. o), ;) means that the entity pair is more positively (resp.
negatively) semantically related to the content.

Meanwhile, an entity pair with a larger entity distance should
influence the learning object more significantly. Following this
intuition, we devise the final attention weight for each of the
entity pairs by taking both of the factors into consideration and
employ the weights to calculate the weighted sum of the entity

pair representations, that is,

i distal
B = —k 1 3
ijl disi x ol
k .
frg=> BUEP))
i=1
Fhg = Concat (FF5°, fre) ©

where dis® (i € [1,k]) denotes the entity distance for the ith
entity pair, 3¢ (x € {pos,neg}) is the distance-aware signed
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TABLE I
THE CORRESPONDENCE BETWEEN THE DATASETS AND THE EXPERIMENTS

Expeiments Datasets
modal-incomplete  modal-complete
Preliminary analysis v
Comparison experiments v v
Ablation studies v
Robustness experiments v

attention weights, f  (* € {pos, neg}) is the positive/negative
entity-pair embedding based on the signed attention weights, an
Frg € R* denotes the final semantic vector that represents the
content-knowledge inconsistency features.

F. Rumor Classification Layer

Lastly, we concatenate the cross-modal inconsistency fea-
tures, content-knowledge inconsistency features and the modal-
shared features, and feed it into a fully-connected layer with
Sigmoid activation function to obtain the predicted probability
for instance 1, that is,

Z/J’L. = O'(wf[funzque @ fshaTe @ fkg] + bf)

where w¢ and by are the weight and bias parameters. We then
use cross-entropy loss as the rumor classification loss:

Lc = - Z yllo‘ggz

(10)

(1)

where y; is the ground truth label of the :th instance. In addi-
tion, we also incorporate the orthogonal loss for multi-modal
decomposition in (6). Thus, the final total loss is

L=L.+LL, (12)

where A is the weight of the orthogonal loss.

IV. EXPERIMENTS

In this section, we conduct data analysis to validate the mo-
tivation that the dual-inconsistency information can be used to
distinguish the rumors, and perform extensive experiments to
evaluate the effectiveness of our proposal.

A. Experimental Overview

The experiments that we conduct can be divided into four
parts: preliminary analysis, comparison experiments between
our model and baselines, ablation studies, as well as robustness
to different missing patterns. Since these experiments are con-
ducted on either modal-incomplete or modal-complete datasets
(or both of them), to make it clearer, we show which datasets
correspond to which experiments in Table 1.

For preliminary analysis, since we need to measure the cross-
modal consistency to validate the statistically significant distinc-
tion between rumors and non-rumors, we conduct experiments
on the modal-complete datasets. For comparison experiments,
we perform experiments on both modal-incomplete and modal-
complete datasets to validate that our framework can outperform
the baselines under both complete and incomplete modality
conditions. Ablation studies are conducted on modal-incomplete
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AND THREE MODAL-COMPLETE DATASETS

TABLE II
THE STATISTICS OF THE THREE ORIGINAL MODAL-INCOMPLETE DATASETS
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TABLE III
THE AVERAGE SUM OF THE FIVE LARGEST ENTITY DISTANCES AND THE
AVERAGE IMAGE-TEXT SIMILARITY ON THREE DATASETS

#Posts #False #True #Posts w/ Image #Entities/Post
Twitter modal-incomplete | 18001 11775 6226 15557 5.302
modal-complete 15557 10184 5373 15557 5.536
Pheme  modal-incomplete | 5642 1923 3719 2374 4.383
modal-complete 2374 686 1688 2374 5.363
Weibo ~ modal-incomplete | 6691 3542 3149 5450 3.232
modal-complete 5450 3104 2346 5450 3.557

datasets, since our model is mainly proposed for the real-world
rumor detection scenario where visual modality is commonly
missing. For the robustness experiments, we randomly mask
some portion of the images, which is performed on the modal-
complete datasets where the portion of images is gradually
decremented from 100% to 0%.

B. Dataset

We conduct experiments on three real-world datasets, i.e.,
two English datasets: Twitter [47], Pheme [48] and one Chinese
dataset: Weibo [49]. Twitter and Pheme datasets are both col-
lected from Twitter, while the Weibo dataset is collected from
Weibo. The Twitter dataset is available at https://github.com/
MKLab-ITI/image- verification-corpus. The Pheme dataset
is available at https://figshare.com/articles/PHEME_dataset_
of_rumours_and_non-rumours/4010619. The Weibo dataset
is available at https://www.dropbox.com/s/46r50ctrfaOurlo/
rumdect.zip?dl=0 As one primary objective of our proposal is
to incorporate the post content and external knowledge informa-
tion, we remove the data instances from which no entities can
be extracted, as at least two entities are required in our model.
As the statistics of the resulting datasets are shown in Table II,
these three original datasets are all modal-incomplete. Note that
if there are multiple images attached to one post, we randomly
retain one image and discard the others. For the Twitter dataset,
one image can be shared by various posts.

To evaluate the performance of our model on the modal-
complete dataset as well, we remove all the data instances from
the original datasets without any images. We thus obtain three
modal-complete datasets where both text and image are available
for each post. The statistics of the modal-complete datasets are
also shown in Table II. It is obvious that these modal-complete
datasets are subsets of the original modal-incomplete datasets.

C. Preliminary Analysis of Dual Inconsistency

We conduct data analysis on the modal-complete datasets
to validate that the two inconsistency metrics have statistically
significant distinctions between rumors and non-rumors.

1) Entity Distance Analysis: We conduct entity distance
analysis to show that the largest entity distances of a post are
statistically different for rumors and non-rumors. Specifically,
we measure the Manhattan distance of each pair of entity rep-
resentations within a post and retain the top-k (k = 5) largest
distance values (as described in Section III-E). The average sums
of the five largest distances for all rumor and non-rumor posts
are shown in Table III. We can observe that, on average, the sum
of entity distances for rumors is larger than that for non-rumors.

Entity Distance Image-text Similarity
Twitter Pheme Weibo | Twitter Pheme Weibo
Rumors 97.13 89.13 99.98 -0.058  -0.043  -0.063
Non-rumors | 90.20 82.89 96.31 0.041 0.091 0.021

To statistically verify the observation, we make it a hypothesis
and conduct hypothesis testing. For each dataset, two equal-sized
collections of rumor and non-rumor tweets are sampled. And
two-sample one-tail t-test is conducted on the 100 data instances
to validate whether there is a sufficient statistical correlation to
support the hypothesis. Let py be the mean of the five largest
entity distances of the rumor collection and ., represent that
of non-rumors. The null hypothesis is Hy, and the alternative
hypothesis is H;. The hypothesis of interest is:

HOZIJ/f_MTSO

Hy:pp—p >0 (13)

The results show that there is statistical evidence on all the
datasets. On Pheme, the result, t = 4.090, df = 90, p-value =
0.000047 (significance alpha= 5%), rejects the I hypothesis.
The confidence interval CI is [0.212,42.112], the effect size is
0.826. The conclusions are similar to Twitter and Weibo datasets.

2) Image-Text Similarity Analysis: We also conduct the
image-text similarity analysis towards rumors and non-rumors.
In particular, we first decompose the raw textual and visual
representations to obtain image-unique and text-unique em-
beddings excluding their shared information (refer to (4) in
Section III-D for details) and measure their cosine similarity to
get the image-text similarity. The average similarity results are
shown in Table III. We can observe that the similarity for rumors
is negative on all three datasets, while that for non-rumors is
positive, so the similarity for rumors is much smaller than that
for non-rumors, in line with our expectations. Moreover, we
also perform hypothesis testing and confirm there is statistical
evidence on all datasets.

The rumor and non-rumor collections are set the same as
Section IV-C1. Let 0; be the mean of cosine-similarity of the
rumor collection and 6,. represents that of non-rumors. The null
hypothesis is H, and the alternative hypothesis is H{. The
hypothesis of interest is:

Hi:0;—-60,>0

H} :0p — 0, <0 (14)

The results show that there are statistical evidence on
the datasets. On Twitter dataset, the result, t = —3.7925,
df = 97, p-value = 0.000129 (significance alpha= 5%),
rejects the H, hypothesis. The confidence interval CI is
[—0.425888, —0.002151], the effect size is —0.7662. We also
found statistical evidences on Pheme dataset, witht = —7.9051,
df = 94, p-value = 2.4769 x 10~'2 (significance alpha=
5%), rejects the Hy hypothesis. The confidence interval CI is
[—0.317446, —0.001603], the effect size is —1.5970. On the
Weibo dataset, the results are t = —2.8743, df = 93, p-value


https://github.com/MKLab-ITI/image-verification-corpus
https://github.com/MKLab-ITI/image-verification-corpus
https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
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(c) Twitter dataset

Results of the sensitivity analysis with varying number of entities and entity pairs on Pheme, Weibo and Twitter datasets under the modal-incomplete

condition. The two horizontal lines indicate accuracy and F1 values of the proposed model KDCN.

= 0.0025 (significance alpha= 5%), rejects the H hypothesis.
The confidence interval CI is [—0.001603, —0.317373], the ef-
fect size is —0.5807. Our analysis shows that on each dataset,
the rumors own distinct content-knowledge inconsistency and
cross-modal inconsistency from non-rumors, which can help
distinguish rumors from non-rumors.

In the above data analysis as well as the methodology section,
we consider top-k (k = 5) largest distances between entities,
rather than averaging distances between all entity pairs, as the
latter would weaken the contrast between rumors and non-
rumors. The gap between the average distances of non-rumors
and rumors would decrease significantly by the increase of &
in preliminary analysis. When k > 5, the average distances be-
tween non-rumors and rumors become marginal. This is because
even for rumors, there are still some consistent entities. For the
example in Fig. 1, a shark that appears in water is reasonable,
and a subway station usually has elevators. In addition, since
some posts have few entities, a larger k£ may lead to the adoption
of more pseudo entities in our framework, which may introduce
larger noises. We later empirically show in Fig. 3 that consider-
ing top-5 can achieve good performance.

D. Experimental Setup

In all experiments, we randomly split the Pheme and Weibo
datasets into training, validation, and testing sets with a split
ratio of 6:2:2 without overlapping, and conduct a 5-fold cross-
validation to obtain the final results. For the Twitter dataset,
since it has an official data splitting when publishing, we follow
its splitting ratio (approximately 8:1:1) and don’t apply 5-fold
cross-validation. All the data splittings have ensured that images
in the training set and testing set will not be overlapped.

Our algorithms are implemented on Pytorch framework [50]
and trained with Adam [51]. In terms of parameter settings,
the learning rate is {0.0005, 0.00005}, and batch size is {64,
128}. The weight of the orthogonal loss is A = 1.5. We adopt
an early stop strategy and dynamic learning rate reduction for
model training.

We use the pre-trained BERT [52] as initial word embeddings
for text encoding in our model: bert-base-uncased for English,

and bert-base-chinese for Chinese. For other models that don’t
adopt BERT, we use GloVe ” instead.

E. Baselines

The baselines are listed as follows:

e BERT [53] is a pre-trained language model based on
deep bidirectional transformers, and we use it to get the
representation of the post text for classification. We use
BERT with fine-tuning to detect rumors, which is available
at https://github.com/huggingface/transformers.

e Transformer [54] uses the self-attention mechanism and
position encoding to extract textual features for sequence
to sequence learning. We only use its encoder here. we
use the publicly available implementation at https://github.
com/jayparks/transformer.

® TextGCN [55] uses a graph convolution network to clas-
sify documents. The whole corpus is modeled as a het-
erogeneous graph to learn the word and document embed-
dings. The heterogeneous graph contains word nodes and
document nodes. The edges are built based on word occur-
rence and document word relations. We use the publicly
available implementation at https://github.com/chengsen/
PyTorch_TextGCN.

e EANN [10] uses an event adversarial neural network
to extract event-invariant features from images and texts
for rumor detection. For modal-incomplete instances, we
use white images to supplement. We used the authors’
implementation, which is available at https://github.com/
yaqingwang/EANN-KDD18.

e SAFE [9] is a similarity-aware fake news detection
method. It extracts textual and visual features for news
and then further investigates the relationship between the
extracted features across modalities. For modal-incomplete
instances, we use white images to supplement. We used
the authors’ implementation, which is available at https:
/Igithub.com/Jindi0/SAFE.

7GloVe: Global Vectors for Word Representation: https://nlp.stanford.edu/
projects/glove/


https://github.com/huggingface/transformers
https://github.com/jayparks/transformer
https://github.com/jayparks/transformer
https://github.com/chengsen/PyTorch_TextGCN
https://github.com/chengsen/PyTorch_TextGCN
https://github.com/yaqingwang/EANN-KDD18
https://github.com/yaqingwang/EANN-KDD18
https://github.com/Jindi0/SAFE
https://github.com/Jindi0/SAFE
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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TABLE IV
COMPARISON OF DIFFERENT MODELS FROM THE PERSPECTIVE
OF MODALITY USED

Method Modality

Image KG

-

BERT
Transformer
TextGCN
EANN
SAFE
CompareNet
KMGCN
KDCN Text-only
KDCN

R NN
AN ENEEENEN

EENENEN

e CompareNet [30] proposes a graph neural model, which
compares the news to the knowledge base (KB) through
entities for fake news detection. We used the authors’
implementation, which is available at https://github.com/
BUPT-GAMMA/CompareNet_FakeNewsDetection.

e KMGCN [14] is a state-of-the-art rumor detection model
that uses a graph convolution network to incorporate visual
information and KG to enhance the semantic represen-
tation. Since the authors don’t release the code, we im-
plemented the method. We followed the implementation
details described in KMGCN except for choosing a differ-
ent KG. Instead of using Probase and Yago in the original
KMGCN, we used Freebase as the reference knowledge
graph and acquired isA relation of the entities, to make a
fair comparison with our model. The Freebase isA rela-
tion data dump is available at https://freebase-easy.cs.uni-
freiburg.de/dump/

e KDCN Text-only is our full model but trained using the
single-modal text data only, replacing all the input im-
ages with white images. It represents an extremely modal-
incomplete condition that all the images are missing.

Table IV compares the baselines and the proposed model

KDCN from the perspective of the modality data that are used.
All baseline models and our model can be grouped into four
categories: models using only text modality, models using both
text and image data, models using text and knowledge data,
and models using text, image, and knowledge data. Note that
since EANN and SAFE require images as input and cannot
adapt to modal-missing conditions, we also use white images
as supplementary in modal-incomplete cases, which is the same
as our model for a fair comparison.

F. Results and Discussion

Table V demonstrates the performance of all the compared
models on three datasets. We can observe that under both modal-
incomplete and modal-complete conditions, our model KDCN
generally significantly outperforms all the baselines in all the
metrics, which confirms that considering the two inconsistencies
would benefit the rumor detection task.

Among the three state-of-the-art textual representation mod-
els, BERT outperforms both Transformer and TextGCN on
Weibo and Twitter datasets under modal-incomplete conditions.
While under the modal-complete condition, BERT outperforms
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the other two on all three datasets, demonstrating its supe-
rior capability in capturing the textual semantics for rumor
detection.

We then compare the models involving the visual information
with the above text-only models. Although EANN considers
both visual and textual information, it performs not as well as
BERT and TextGCN under both modal-incomplete and modal-
complete conditions. The possible reason is that EANN uses
CNN to extract the textual feature, which is not as powerful as
Transformer and GCN. SAFE outperforms EANN in most cases,
indicating that the text-image dissimilarity captured in SAFE is
an effective feature for rumor detection.

KMGCN achieves comparable or better performance com-
pared to TextGCN and CompareNet under both modal-
incomplete and modal-complete conditions. Since all these three
models adopt graph convolution networks as the backbone, it
indicates that the image and knowledge features can provide
complementary information and improve performance.

Despite the lack of visual information, KDCN Text-only
performs better than textual representation models, and achieves
the runner-up performance in most cases, indicating that the
content-knowledge inconsistency can enhance the model per-
formance.

Compared to the baselines, we can attribute our proposal’s
superiority to three critical properties: (1) we model two types
of inconsistent information, which are suitable to rumor identi-
fication; (2) we adopt BERT as the initial text representation to
capture textual semantics; (3) we adopt the complete-modality
token to make the model applicable for visual modality missing
conditions and achieve robust performance.

Please note that to address the visual-modality missing issue,
we also have tried to generate images based on the correspond-
ing text content using generative adversarial networks, and it
achieves comparable performance as using the white image
with a special [CMT] token. In particular, its performance on
the Pheme-incomplete dataset is 0.8438 and 0.8382 in terms
of Acc. and F1, respectively. Despite the similar performance as
our proposal, using generative adversarial networks would incur
heavy computational costs. We also have tried to use randomly
generated images as a complement, and the performance on the
Pheme-incomplete dataset is 0.8099 in terms of Acc., which is
much lower than our proposal. The possible reason is that it
introduces noises that are entirely unrelated to the text.

G. Performance of the Variations

We investigate the effects of our proposed components by
defining the following variations:

e w/o Visual: the variant that removes the visual information.

e concat. TV: the variant that concatenates the textual and
visual representations instead of their cross-modal incon-
sistency and modal-shared features.

e w/o KE: the variant that removes the content-knowledge
consistency subnetwork.

e mean KE: the variant that utilizes the mean pooling of
the entity representations instead of the content-knowledge
inconsistency features.


https://github.com/BUPT-GAMMA/CompareNet_FakeNewsDetection
https://github.com/BUPT-GAMMA/CompareNet_FakeNewsDetection
https://freebase-easy.cs.uni-freiburg.de/dump/
https://freebase-easy.cs.uni-freiburg.de/dump/
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TABLE V
RESULTS OF COMPARISON AMONG DIFFERENT MODELS ON PHEME, WEIBO AND TWITTER DATASETS UNDER MODAL-INCOMPLETE AND MODAL-COMPLETE
CONDITIONS
. KDCN

Datasets Metric  Bert  Transformer TextGCN EANN SAFE  CompareNet KMGCN Text-only KDCN
Acc. 0.817 0.789 0.826 0.815 0.786 0.750 0.825 0.848 0.849

Prec. 0.816 0.773 0.806 0.799 0.775 0.750 0.806 0.833 0.836

modal-incomplete Rec. 0.764 0.799 0.821 0.771 0.554 0.750 0.804 0.837 0.827

Fl1. 0.789 0.785 0.813 0.782  0.646 0.750 0.805 0.835 0.831

Pheme Acc. 0.819 0.774 0.810 0.766  0.782 0.765 0.812 0.842 0.862
Prec. 0.809 0.755 0.775 0.701 0.635 0.765 0.775 0.811 0.833

modal-complete Rec. 0.726 0.648 0.744 0.687 0.515 0.765 0.753 0.802 0.831

F1. 0.765 0.697 0.759 0.693 0.569 0.765 0.764 0.806 0.832

Acc. 0.912 0.832 0.878 0.836  0.906 0.850 0.881 0919 0.924

Prec. 0.912 0.832 0.878 0.837 0.902 0.850 0.881 0919 0.924

modal-incomplete Rec. 0913 0.831 0.878 0.836  0.906 0.850 0.880 0.919 0.923

F1. 0.913 0.831 0.878 0.836  0.904 0.850 0.880 0.919 0.924

Weibo Acc. 0.881 0.772 0.860 0.788 0.895 0.833 0.861 0.925 0.943
Prec. 0.886 0.779 0.871 0.786 0915 0.833 0.864 0.925 0.941

modal-complete Rec. 0.881 0.772 0.861 0.791 0.897 0.833 0.856 0.925 0.943

F1. 0.884 0.775 0.866 0.786  0.906 0.833 0.860 0.925 0.942

Acc. 0.892 0.822 0.839 0.796  0.867 0.826 0.846 0.901 0.931

Prec.  0.894 0.803 0.823 0.729 0.876 0.825 0.829 0.890 0.917

modal-incomplete Rec. 0.863 0.819 0.849 0.719  0.927 0.782 0.852 0.892 0.941

F1. 0.879 0.811 0.836 0.724  0.901 0.796 0.840 0.891 0.929

Twitter Acc. 0.835 0.791 0.712 0.697  0.843 0.823 0.825 0.837 0.945
Prec. 0.821 0.772 0.721 0.695  0.847 0.823 0.813 0.796 0.946

modal-complete Rec. 0.810 0.791 0.744 0.698  0.851 0.783 0.788 0.814 0.916

FI1. 0.815 0.781 0.732 0.697  0.849 0.796 0.800 0.805 0.931

The best performance per dataset is shown in bold, while the runner-up performance is underlined.

TABLE VI
RESULTS OF COMPARISON AMONG DIFFERENT VARIANTS ON
MODAL-INCOMPLETE PHEME, WEIBO AND TWITTER DATASETS

Method Pheme Weibo Twitter
Acc. F1. Acc. F1. Acc. F1.

KDCN 0.849 0.831 0.924 0.924 0.931 0.929
-w/o Visual 0.846 0.836 0918 0918 0.907 0.902
-concat. TV 0.836  0.821 0.922 0.922 0917 0912
-w/o KE 0.832 0.817 0921 0921 0.908 0.898
-mean KE 0.843 0.826 0921 0.922 0.930 0.925
-w/o CMT 0.844 0.829 0922 0.923 0921 0912
-w/o Orthog. Loss  0.839 0.823 0919 0.920 0.923 0.920

® w/o CMT: the variant that removes the complete-modality
token ([CMT]). Then (2) would be H; = ReLU(wy *
(CNN(Image)) + br).

® w/o Orthog. Loss: the variant that removes the orthogonal
loss from the final total loss, with only the cross entropy
loss left.

The ablation study in Table VI demonstrates that the proposed
components are indispensable for achieving the best perfor-
mance. Visual features can improve performance. To further
show the effectiveness of the inconsistency features, we use the
same input but alternate aggregating mechanisms, i.e., mean KE
and concat. TV, instead of the proposed inconsistency mecha-
nisms. We can observe that the results of both mean KE and
concat. TV are lower than the proposed model, indicating that
the inconsistency features are more effective than the aggre-
gated features for rumor detection. w/o Orthog. Loss also yields
worse performance than the proposed model, suggesting that the
constraint on the decomposed modal-unique and modal-share
spaces is beneficial for the model to learn a better representation
of multi-modal data. The results of w/o CMT are lower than
the KDCN model, indicating that the addition of the [CMT]

token does help the model distinguish between the presence and
absence of the visual modality.

To verify the effectiveness of the knowledge information, we
conduct the sensitivity analysis with a varying number of entities
and entity pairs, and design the following variants:

e rm n KE: the variant that randomly removes n (n €

{1, 2, 3}) entities from the post entity set.

* rm n KE pair: the variant that randomly removes top-n
(n € {1,2,3}) largest distance entity pairs from the post
entity set.

As shown in Fig. 3, it can be observed that the accuracy
decreases gradually as more entity pairs are removed in the
content-knowledge consistency subnetwork. Similar trends can
be observed when one or more entities are removed. It veri-
fies the crucial impact of the knowledge information for our
task.

It can be observed that the performance degradation when
removing the entities and entity pairs on the Weibo dataset is
not as large as on the other two datasets. The possible reason
is that the number of extracted Chinese entities is not as large
as the other two English datasets due to the limited coverage of
KG on Chinese entities. In particular, as shown in Table I, the
column of “Entities/Post” shows the average number of entities
in one post for these datasets, and we can see that Weibo has
the lowest number. In fact, for Weibo-incomplete and Weibo-
complete datasets, the average number of entities in one post
is nearly 3. Since we measure the Manhattan distance for each
pair of entity representations within a post and retain the top-
5 entity pairs with the largest distances, for the above cases
when the number of entity pairs cannot reach 5 (C3 = 6, C3 =
3), we would make a supplement with pseudo entities whose
representations are random vectors. It may introduce noises and
cannot achieve better performance. This suggests that we can
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Fig. 5. Two rumor cases detected by our model.

utilize a larger-scale KG and more powerful entity-extracting
techniques to further improve performance in future work.

H. Robustness to Different Missing Patterns

To verify the robustness of our model against the visual
modality missing issue, we conduct experiments under different
missing patterns.

Setting of Different Missing Patterns. We randomly mask
some portion of the images in the modal-complete datasets
(Twitter-mc, Pheme-mc and weibo-mc) to produce different
visual-modality missing datasets. Specifically, we produce the
following missing patterns: training with 100% Text + 1 %
Image and testing with 100% Text + ;% Image. n and p €
[0,20,40,60,80,100].

Results of Robustness to Different Missing Patterns. Fig. 4
shows the results of our approach under the different missing
patterns. We have two observations. First, the rumor detection
performance of our model is quite stable under different missing
patterns. Moreover, despite the lack of visual data, most of these
results are still better than the baselines with full-modal data as
shown in Table V. Second, according to Fig. 4, as the np and p are
larger, the blue color of the entry generally becomes darker. It
indicates that our model would perform better when more visual
data is available.

1. Case Studies

We analyze two rumor cases that our model can recognize
accurately. They are from Twitter and Pheme, respectively. In
Fig 5(a), the extracted entity set is {Zombie, Tropical cyclone,
New York City, RT (TV network), ThinkProgress}. The average

sum of the five largest entity distances is 119.73, larger than
the average sum of the rumors on Twitter (i.e., 97.13 shown
in Table III), implying the existence of content-knowledge
inconsistency. Its image-text similarity value is 0.277, much
larger than the average value for rumors (—0.058 in Table III),
indicating the image and text are well matched. In Fig. 5(b), it
is obvious that the image and text are not well-matched, verified
by its low image-text similarity value (only —0.133). The two
cases help to confirm that our model can effectively capture the
two types of inconsistent information for rumor identification.

V. CONCLUSION

We propose a knowledge-guided dual-consistency network
for multi-modal rumor detection, which involves the cross-
modal inconsistency and content-knowledge inconsistency in-
formation in one framework. Additionally, our framework can
also deal with visual modality issues in real-world detection
scenarios. Extensive experiments on three datasets have demon-
strated our proposal’s effectiveness in capturing and fusing both
types of inconsistent features to achieve the best performance,
under both modal-complete and modal-incomplete conditions.
Note that the inconsistent features captured by our framework
can be easily plugged into other rumor detection frameworks to
further improve their performance. In future work, we plan to
explore more effective inconsistency features and devise a more
explainable and robust model.
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