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ABSTRACT

Video-based Point Cloud Compression (V-PCC) is an emerging stan-

dard for encoding dynamic point cloud data. With V-PCC, point

cloud data is segmented, projected, and packed on to 2D video

frames, which can be compressed using existing video coding stan-

dards such as H.264, H.265 and AV1. This makes it possible to

support point cloud streaming via reliable video transmission sys-

tems. On the other hand, despite recent advances, many issues still

remain and prevent V-PCC from being used in low-latency point

cloud streaming. For instance, point cloud registration and patch

generation can take a long time.

In this paper, we focus on one unique problem in V-PCC: bit

allocation among different sub-streams ś the geometry sub-stream

and the attribute (color) sub-stream ś with the goal of improving

the visual quality of point clouds under the target bitrate. Existing

approaches either do not fully utilize the available bandwidth or

can take a long time to run, which cannot be used in scenarios

that require low-latency. To this end, we propose a lightweight,

frequency-domain-based profiling method for transforming the

dynamic point cloud data into a one-dimension vector. By using

two single-layer linear regression models, we can estimate the

compressed bitrate for geometry data and color information. This

allows us to perform bit allocation between the geometry map and

the attribute map with simple calculations. Evaluation results show

that compared to the baseline approach, our method can achieve

better visual qualities with smaller encoded segment sizes under

the target bitrate.

CCS CONCEPTS

· Information systems→Multimedia streaming; · Comput-

ing methodologies → Point-based models.
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1 INTRODUCTION

As devices such as LiDARs and depth cameras are becoming smaller

and more affordable, media formats that can support 6 degrees of

freedom (6-DoF) are gaining increased popularity among users in

emerging applications. Today, a number of new technologies have

been developed to create a world of digital twins. For example,

in real-estate, companies such as MatterPort [5] provide services

that capture representations of houses and apartments that can be

explored in 6-DoF for virtual open house. Groups such as CyArk [2]

aim to create a cyber-archive for cultural heritages. One data type

commonly used for representing 6-DoF media is point cloud.

To efficiently store and transmit the point cloud data, the Moving

Picture Experts Group (MPEG) developed the point cloud compres-

sion (PCC) standards [6]. Today, the standard includes two solutions:

video-based PCC (V-PCC) is mainly used for uniformly distributed

points data, while geometry-based PCC (G-PCC) focuses on sparse

point cloud which is usually used for big scenes such as cultural

heritages. With recent developments of V-PCC, it becomes possible

to encode and stream dynamic point cloud data. To do so, the origi-

nal point cloud data is segmented and projected to 2D frames. This

allows us to use any existing video codecs for encoding, and the

encoded data can be transmitted through existing content delivery

networks (CDNs) infrastructure.

Today, point cloud processing and encoding incurs very high

computation overheads, which prevent wide adoption of this repre-

sentation. Many factors contribute to the high computation over-

head, including point cloud registration for aligning point clouds

captured in different coordinate systems [19], segmentation for

generating 3D patches which are projected to 2D patches [9], and

packing 2D patches onto video frames for encoding [16]. In addi-

tion, within the V-PCC pipeline, the bit allocation step also requires

https://doi.org/10.1145/3581783.3612486
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a large amount of computation and can take a long time. The most

significant difference between video-based point cloud streams and

traditional video streams is that a point cloud stream contains mul-

tiple sub-streams, including the geometry map, the attribute map

(e.g., the color information), the occupancy map, and patch infor-

mation [9]. Among these sub-streams, the occupancy map and the

patch information are typically encoded in a lossless manner, while

the geometry map and the attribute map are encoded with lossy

encoding. Bit allocation decides how to distribute the available

bitrates between these two sub-streams.

Bit allocation usually start with compressed rate estimation,

which uses pre-processing for profiling the frame content. This

step is required because compression efficiency mainly depends

on the content itself. Rate estimation profiles the video content to

check if it is encoding-friendly and decides howmuch details should

be discarded (and thus lossy encoding) to fit under the available

bitrates. With this result, bit allocation can then decide how to

balance the available bitrates between geometry data (stored in the

geometry map) and color information (stored in the attribute map).

In łcommon test conditionž (CTC) [22], MPEG uses five fixed

combinations of quantization parameter (qp) settings for geometry

map and attribute map encoding. For all these five combinations,

the qp for geometry map is lower than the qp for the attribute map.

This means more geometry details are retained compared to color

details. However, using fixed assignments would under-use or over-

use the target bitrate, and thus may result in inferior visual quality

under the given target bitrate. Existing works have proposed both

profiling-based [15, 17] and non-profiling-based approaches [27].

However, these approaches either require a long pre-encoding time,

which may not be appropriate for low-latency streaming or use

heavyweight, computationally-intensive algorithms.

In this paper, we propose VQBA ś a viewport-quality-driven bit

allocation strategy using lightweight profiling and rate estimation.

Unlike pre-encoding based approaches, we use a frequency-domain-

based (DCT-based) video content profiling method, which can de-

scribe the potential compression efficiency of the video content by

a one-dimensional vector. We call this vector the łsegment profiling

vectorž. With this vector, we use a single-layer linear regression

model to predict the compressed/encoded bitrate of the sub-stream,

which can be computed using only one vector dot product. Bene-

fited by the non-encoding design and the block-operation-based

implementation, we can calculate a good bit allocation solution

for multiple sub-streams of a point cloud with less than one sec-

ond of time. This is significantly shorter compared to existing pre-

encoding-based approaches that take tens of minutes. Overall, this

paper makes the following contributions:

• We propose a frequency-domain-based method for lightweight

profiling of the dynamic point cloud content with no need for

time-consuming pre-encoding.

• We design a greedy bit allocation strategy based on the profiling

and rate estimation results.

• Evaluation results show that our proposed bit allocation scheme

can calculate the encoding parameters for multiple sub-streams

of a point cloud in less than one second of time, and the resulting

visual quality is on par with heavy-weight pre-encoding based

approaches.

2 BACKGROUND AND RELATEDWORKS

2.1 Point Cloud

Point cloud is a data type that can be explored with 6-DoF: from any

position in 3D space and in any orientation (𝑦𝑎𝑤, 𝑝𝑖𝑡𝑐ℎ, 𝑟𝑜𝑙𝑙). For

each data point in the point cloud, it typically contains six param-

eters, the Cartesian coordinates of (𝑥,𝑦, 𝑧) and color information,

e.g., (𝑅,𝐺, 𝐵). Point cloud data capturing and recording usually

requires setting up multiple devices łlooking atž the scene in an

łoutside-inž manner. To obtain data about the coordinates of points,

3D devices such as RGB-Depth cameras and/or LiDARs are needed

to record the geometry information of the scene. If multiple point

cloud frames are captured consecutively, we refer to the recorded

stream a dynamic point cloud stream.

2.1.1 Point Cloud Communications. With the recent boom of vir-

tual reality (VR) and augmented reality (AR) applications, point

cloud communications emerge as a mechanism for transmitting

representations of real-world that supports 6-DoF navigation. For

example, Gunkel et al. presented a VR communication system that

transmits the spatial (i.e., depth) information in addition to the

color information [11]. However, a limitation of this system is that

it cannot support full 6-DoF. To achieve more immersive experi-

ence, it is important to address the high computation and latency

of point cloud capture and compression. For capture, recent works

have proposed fast registration methods [12, 21]. For compression,

both video-based approach (V-PCC) and geometry-based approach

(G-PCC) are still slow today. Overall, point cloud communication is

still at an early-stage, with many challenges remaining to be solved.

2.2 Video-Based Point Cloud Compression

V-PCC is developed by MPEG for dynamic point cloud content

compression [9, 23]. We depict the overall workflow of V-PCC in

Figure 1. V-PCC aims to use existing video coding standards, e.g.,

HEVC, for encoding the dynamic content.

2.2.1 Patch Generation. The first step of V-PCC is segmentation [14,

18, 25, 26]. It segments the point cloud frame twice [8, 9, 23]. The

first time is coarse segmentation: all the data points are distributed

to six faces of a cube based on their normal vectors. Then, refine

segmentation clusters neighboring points who have the closest

normal orientations. Adjacent points with similar normal vectors

will be grouped together, forming a łflatž surface. Only one normal

is calculated to indicate the normal of the surface, while the remain-

ing details are dropped. After refine segmentation, the complicated

geometry will be divided into a number of mini-planes. Finally, the

patches will be rasterized into blocks with the size of 16 × 16 and

packed into a 2D frame [8, 9, 23]. For points that are projected to

the same patch, information about their depth from the patch is

stored in the geometry map and later encoded as the geometry

sub-stream in V-PCC (Figure 1).

2.2.2 Packing. After segmentation, the generated patches need to

be placed on a 2D frame. Since the captured object is not static,

the geometry structure varies in different frames. Any changes on

the geometry structure will affect the segmentation result, which

can further affect the packing process. In addition, the changing

structure can significantly increase the difficulty of inter-frame
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Figure 1: This figure shows the V-PCC encoding pipeline. In this paper, we focus on the łbit allocationž component in the

V-PCC pipeline. Our proposed VQBA approach can improve the visual quality of reconstructed point clouds with reduced

latency compared to existing approaches.

Table 1: qp combinations in 𝑟1 to 𝑟5 as introduced in CTC [22]

Setup r1 r2 r3 r4 r5

𝑄𝑔 : qp for geometry map 32 28 24 20 16

𝑄𝑐 : qp for attribute (color) map 42 37 32 27 22

prediction, which should be avoided. Global packing is proposed to

place similar patches over time at similar positions on the 2D frames,

which significantly reduces the vibration caused by content motion

between consecutive frames [8, 9, 23]. However, the trade-off here

is that the frame resolution will be larger. Global tetris packing

(GTP) [3] improves global packing by allowing non-uniform patches

to be rotated to fill the 2D plane with fewer patch movement.

2.2.3 Bit Allocation/Rate Control. A point cloud stream is encoded

as multiple sub-streams, including the geometry map representing

the structure information of the points, the attribute map contain-

ing the color information, the occupancy map indicating whether

a corresponding pixel is a valid one, and patch information. The

occupancy map and the patch information are typically encoded

using lossless encoding methods, while the geometry and attribute

sub-streams are encoded in a lossy manner to achieve higher com-

pression ratio.

In common test condition (CTC) provided by MPEG [22], five qp

combinations of quantization parameters are provided for encoding

the geometry and attribute sub-streams, regardless of what the

input point cloud content is. In Table 1, 𝑄𝑔 is the qp value used

for geometry map encoding, and 𝑄𝑐 is for attribute map encoding.

There are two main issues with this approach. First, adjusting 𝑄𝑔

and 𝑄𝑐 at the same time may not be a good idea compared to

changing 𝑄𝑔 and 𝑄𝑐 separately. Such bundled changes may cause

the changing steps of the encoded bitrate being too big, exceeding

or wasting the available bandwidth. In addition, for different point

cloud contents, the amount of motion and texture complexity can

vary substantially. Limiting the qp selections to a limited set of

fixed setups may not give the best results for all contents.

Existing works in bit allocation for point cloud compression

mainly use two approaches. The first is based on segment profiling,

which usually requires pre-encoding for measuring the complexity

of the point cloud content. For example, Li et al. [15] proposed

a method which needs to encode the first segment of the stream

twice for pre-encoding using two combinations of 𝑄𝑔 (the qp for

geometry map) and 𝑄𝑐 (the qp for attribute (color) map) values:

(28, 37) and (20, 27). Liu et al.[17] proposed to find the optimal

qp combination of the given point cloud segments through three

pre-encodings. The three (𝑄𝑔 , 𝑄𝑐 ) combinations used in their ap-

proaches are (30, 40), (36, 30), and (38, 28). Pre-encoding results are

used to calculate the parameters of their optimization model, which

is used for calculating the best qp combinations. However, the pre-

encoding process can take a long time and should be avoided if

possible. To reduce and limit the pre-encoding time, Li et al. [15]

only pre-encodes the first segment of the point cloud stream. The

same idea can be incorporated into the approach by Liu et al.[17]

as well. However, this approach assumes that the full content of the

point cloud stream is similar to the first segment, which may not

be true in practical settings if the content changes substantially.

Besides profiling-based approaches, Yuan et al. [27] proposed a

non-profiling based solution that using the differential evolution

(DE) algorithm to find a good qp combination. It is the first work

that proposes to assign different qp values to different frames in a

segment. Given that no pre-encoding is involved, it can save time.

However, there exists other limitations. In their experiments, to get

the qp values for 4 frames, the population size (NP) is set to 50, and

the number of iteration is 75. This is a reasonable setting since NP

is typically set to 10 times of the result dimension [4]. However, a

point cloud segment usually contains many more frames than just

4. This means the NP needs to be very large in practical scenarios.

If given a normal segment with 32 frames, the NP needs to be over

300, and the times of iteration goes much larger. The large-scale

DE is no longer a lightweight solution.

3 DESIGN OF VQBA

3.1 Segment Profiling

Discrete cosine transform (DCT) is commonly used in existing

video coding standards. Today, it is still being used as the basic

algorithm in new generations of video coding such as the upcom-

ing VVC/H.266 standard. By applying DCT to signals, different

frequency components of the signal can be obtained. In this work,

we propose to use DCT for lightweight profiling. Unlike image and

video encoding that apply DCT to 8x8 blocks, we perform DCT on

the whole video frame to profile the full frame content. Next, we

explain how we use DCT for frame profiling and segment profiling.
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Figure 2: We perform frame profil-

ing by applying band-pass filter to

the DCT result with a given stride

𝑆 , as in Equation1, and summing up

DCT coefficient magnitudes in each

band. In this way, we obtain a 1D

vector indicating the amount of dif-

ferent level of frequencies.

3.1.1 Frame Profiling. Considering 2D DCT, low-frequency signals

are located in the upper-left corner. Given𝑢 = 𝑣 = 𝜉 , then any other

points 𝑢′ <= 𝜉 and 𝑣 ′ <= 𝜉 will not contain higher frequency

components than the point at (𝑢, 𝑣). So we can apply a low-pass

filter by cropping a sub-matrix with the upper-left corner at (0, 0)

and the lower-right corner at (𝑢, 𝑣) where 𝑢 = 𝑣 .

Considering the principle of the current lossy video coding stan-

dard, low-frequency information is retained, and high-frequency

part is dropped/discarded. Usually, the magnitude of low-frequency

component’s DCT coefficient is higher than the high-frequency

component. If we record the sum of DCT coefficient magnitudes in

each frequency range as shown in Figure 2 using Equation 1 below,

we can obtain a 1D vector, 𝑃 , where elements with lower indices

have greater values compared to elements with higher indices.

𝑃 (𝑖) =

(𝑖+1)×𝑆−1
∑︁

𝑢=𝑖×𝑆

(𝑖+1)×𝑆−1
∑︁

𝑣=0

|𝐶 (𝑢, 𝑣) | +

𝑖×𝑆−1
∑︁

𝑢=0

(𝑖+1)×𝑆−1
∑︁

𝑣=𝑖×𝑆

|𝐶 (𝑢, 𝑣) | (1)

Given stride 𝑆 and frequency range 𝑖 , we obtain 𝑃 (𝑖) by sum-

ming up the DCT coefficient magnitudes in the frequency range.

The stride parameter 𝑆 allows us to adapt the profiling vector’s

granularity. A large value of 𝑆 decreases the output vector length.

3.1.2 Segment Profiling. For videos and dynamic point cloud streams,

inter-frame compression is typically applied for exploiting similar-

ities among a series of continuous frames. In video compression

literature, a series of continuous frames is referred to as a łsegmentž.

It is know that content movements over time can significantly af-

fect motion vectors, which are used for inter-frame compression.

Thus, movements can affect the compression efficiency much more

than the static content. This motivates us to profile the segment by

calculating the standard deviation of each element in the profiling

vectors of frames in the segment as in Equation 2.

𝑉 (𝑖) =

√

√

√

1

𝑁

𝑁−1
∑︁

𝑛=0

(𝑃𝑛 (𝑖) − 𝑃 (𝑖))2 (2)

This results in a vector 𝑉 with the same length as single frame

profiling vectors. Each element in the resulting variance vector

indicates the standard deviation of DCT coefficient magnitude in

specific frequency ranges among frames in the segment.𝑁 indicates

the number of continuous frames in consideration. For example,

consider a V-PCC sub-stream with 32 frames that contains 1280 ×

1280×32 pixels, after segment profiling, we can describe this content

with just a 1D vector.

For segment profiling experiments, we use four segments from

different point cloud streams in the 8iVFBv2 dataset [13]. Among

the four streams, longdress has complicated textures and is with

(a) Profiling result for geometry segments (b) Profiling result for color segments

Figure 3: Results of segment profiling.

frequent motions, loot has simple texture and is with few motions,

redandblack is much similar to longdress, and soldier has com-

plicated textures but is with few movements. The profiling results

are shown in Figure 3. In this figure, the x-axis represents values of

the profiling vectors with the index ordered from low to high, and

the y-axis represents the standard deviation (variance) calculated by

Equation 2.We find that the curves of longdress and redandblack

have similar distributions, and so do loot and soldier. longdress

has the most high-frequency color information, making it the most

difficult stream to be encoded (Figure 4 in Section 3.2 also confirms

this). The 1D vector obtained from segment profiling allows us to

perform rate estimation. We discuss rate estimation in Section 3.3.

3.2 Joint Geometry and Attribute Visual Quality

In the current V-PCC standard, the quality metrics for geometry

information and color information are separated. PSNR-based ge-

ometry distance is used for measuring volumetric distortion [24],

and traditional PSNR is used for color frames. However, the differ-

ent calculation processes of the two metrics make it very hard to

present a fair evaluation for the decoded point cloud.

It is also very hard to describe the quality of a point cloud using

a simple PSNR metric. In Figure 4, we can see the PSNR values

for geometry data and attribute data fall into different ranges. For

geometry sub-streams, the PSNR values are all over 60, while the

values for the color sub-streams are mainly below 40. Some research

groups have proposed models that assign different weights for

geometry and color and combine the two metrics, e.g., [15, 17].

However, as in Figure 4, the gradient of geometry quality and color

quality are very close, which means the linear combination of the

two metrics will still produce a linear gradient.

Instead of using the metrics described above, we use a viewport-

quality-based metric that more closely relates to the users’ true

viewing experience for evaluation. Because true 3D displays are

rare and expensive, today, people still have to use 2D displays for

watching any 2D or 3D content. That means 3D content must be

rendered on a 2D display to be viewed by users. We thus argue that

directly using a metric that quantifies the quality of the rendered

viewport would more closely relate to the user’s true viewing ex-

perience. In our study, we used views rendered from the original,

uncompressed point cloud as the ground-truth and compared them

against the views rendered from compressed and decoded point

cloud data to obtain the viewport-PSNR results. The resolution of

rendered views is 960 × 960. The idea of studying viewport-based

quality is also used in existing subjective visual quality studies. For

example, Zerman et al. [28] studied the subjective visual quality of
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Figure 4: The figure shows the PSNR values with different

quantization parameters (qp). łgeož represents the geometry

data, and łcolorž represent the color/attribute data.

3D representations that are compressed using different methods.

They used Blender for rendering the viewports and FFmpeg for

compressing the rendered viewports to videos. The subjective study

was conducted by having subjects watch FFmpeg-encoded videos

of viewports.

To generate the viewports, we render the point cloud frame both

before encoding and after decoding. For these point clouds, we

use the virtual camera implemented by the Open3D library [29]

to take pictures of them (i.e., render the viewport based on the

viewing position and camera direction). We can then compare the

visual quality of these pictures, i.e., pictures generated using the

decoded point cloud vs. ground-truth pictures generated using the

uncompressed point cloud. We selected 16 vantage points, 8 on the

equator (e.g., the waist area of the person in the dataset), 4 with

60 degrees latitude (e.g., the shoulder area), and 4 with -60 degrees

latitude (e.g., the leg area). We also adjusted the focal length of the

virtual camera to reduce the blank area while leaving no content

out of the view. If a given point cloud data has a large volume, we

can increase the number of vantage points, so that they are more

uniformly distributed. Comparing to existing quality metrics that

are based on the geometry distance [24] and the decoded frames

(not after reconstruction), our visual-based quality metric directly

measures the quality of the rendered views.

We encoded four streams in the dataset with 30 different combi-

nations of qps with𝑄𝑔 ∈ {32, 28, 24, 20, 16} and𝑄𝑐 ∈ {42, 38, 34, 30,

26, 22}. We then rendered the decoded and reconstructed point

cloud frames. For each reconstructed point cloud frame, we took 16

pictures of them from different vantage points as described above

and calculated the mean value of the viewport-PSNRs. The results

are shown in Figure 5. In this figure, dots of the same color repre-

sent results from the same point cloud streams in the dataset. We

find that the PSNR gradient for geometry data is much greater than

color information. At any point, given a qp combination (𝑄𝑔, 𝑄𝑐 ),

decreasing the qp value for geometry map 𝑄𝑔 gives a better visual

quality than 𝑄𝑐 . This indicates we can decrease 𝑄𝑔 for the geome-

try data greedily and choose 𝑄𝑐 for attribute information with the

remaining available bitrates/bandwidth.

Figure 5: Viewport-

PSNR values under

different combinations

of quantization parame-

ters (qp).

3.3 Video-Level Bit Allocation

3.3.1 Rate Estimation. CTC by MPEG uses five fixed qp combina-

tions for encoding geometry map and attribute map. These fixed

setups are problematic and can be improved if the 𝑄𝑔 (qp for the

geometry map) and 𝑄𝑐 (qp for the attribute map) can be flexibly

selected. However, given a point cloud segment and a target bitrate,

it is very challenging to decide the qp values for encoding. If the qp

is chosen too small, and the encoded segments have much larger

bitrate than the available network bandwidth, the segment needs

to be re-encoded, which can incur additional delay, or the segment

may be dropped. If the qp is chosen too large, causing too much

high frequency details to be discarded, then the visual quality will

suffer. It is thus very important to choose appropriate qp values for

point cloud streaming, especially under low-latency scenarios.

Within the video encoding pipeline, motion estimation and quan-

tization substantially affect the encoded bitrate and quality. Quan-

tization filters the high frequency signals and noises. Motion esti-

mation is needed for inter-frame prediction and is the most time-

consuming component. If we can profile a segment and estimate

the motion across frames, then it is possible to quickly estimate the

encoding complexity and encoded bitrate.

By using the segment profiling method described in Section 3.1,

we obtain a 1D vector where each element indicates the variance of

the specific frequency range among the frames from the segment.

When quantization is applied to DCT coefficients as with typical

compression, a higher qp discards more information, while achiev-

ing better compression ratio; with a lower qp , frames retain more

details, but result in a larger encoded bitrate. Thus, different qps

directly affect the variance vector. Given a point cloud segment, we

can calculate a profiling vector under the specific qp .

To do so, we modified Equation 1 by adding the quantization

step to simulate the effect of different qp values for encoding. The

resulting equation is shown in Equation 3. We calculated the sum

of the profiling vector using Equation 4 and plotted them in Figure

6. This figure shows a linear relationship between the profiling

vector and the encoded bitrate of the segment. We can see that

by simply summing up elements in the profiling vector, we can

formulate a roughly flat rate-variance plane. This indicates that by

converting the segments into profiling vectors, it is now possible to

find a cross-content model for estimating the encoded bitrate with

no pre-encoding needed.

𝑃 (𝑖) =

(𝑖+1)×𝑆−1
∑︁

𝑢=𝑖×𝑆

(𝑖+1)×𝑆−1
∑︁

𝑣=0

|
𝐶 (𝑢, 𝑣)

𝑄
|+

𝑖×𝑆−1
∑︁

𝑢=0

(𝑖+1)×𝑆−1
∑︁

𝑣=𝑖×𝑆

|
𝐶 (𝑢, 𝑣)

𝑄
| (3)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑︁

𝑉 (𝑖) (4)
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Figure 6: The figure shows the linear corre-

lation between encoded rates and segment

profiling result.
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Figure 7: Overall VQBA bit allocation workflow.

We trained two simple linear-regression-based models for fit-

ting the geometry-rate curve and attribute-rate curve, respectively,

for encoded bitrate estimation. The linear model is described in

Equation 5. We used two separate models because in the V-PCC

pipeline, the geometry sub-stream and the color sub-stream are

encoded separately and packed together with other sub-streams

after encoding.

Estimated Bitrate =
∑︁

𝑤𝑖 ·𝑉 (𝑖) + 𝑏 (5)

3.3.2 Geometry-Greedy Strategy. Given that the point cloud is an

emerging form of media and has not yet been widely used, there

is no existing qp adaptation scheme that can be used as baseline.

Instead, we can refer to the scheme used in WebRTC [7], which is a

real-time communication system, since real-time scenarios has the

similar constraints as low-latency streaming. In WebRTC, for any

new stream, qp starts from the value of 106. If the encoded stream

cannot consume all the available bandwidth (bitrate), the qp value

can be reduced, which results in higher encoded bitrate. Otherwise,

qp is increased until hitting the largest value possible. If the result-

ing encoded stream still consumes too much bandwidth (bitrate),

then future frames will be scaled to a smaller frame resolution. For

point cloud streaming, we can use a similar strategy. To reach a

close-optimal result, the quantization steps for both the geometry

map and the attribute map can start from the biggest value and

reduce to a smaller value subject to bandwidth constraints.

Since our goal is to improve the visual quality under limited

available bandwidth (encoding target bitrate), we aim to allocate

more bits to the part that can result in more visual quality increases.

Figure 5 shows that with the same change in qp (i.e., Δ𝑄𝑔 = Δ𝑄𝑐 ),

reducing 𝑄𝑔 can improve the visual quality in PSNR more than

the other way. This motivates us to propose a geometry-greedy

strategy: given a bandwidth/bitrate limit, we prioritize reducing

the geometry qp , 𝑄𝑔 . We use the bitrate estimation model for

quickly checking if the selected qp combination satisfies the given

bandwidth constraint.

For example, in the beginning, both 𝑄𝑔 and 𝑄𝑐 are set to 42 (the

highest qp value used in CTC), which corresponds to quantization

step size of 80. By using the rate estimation models, we can check

if the sum of the predicted geometry rate and the color rate is

smaller than the available bandwidth. If it does, we can decrease

the quantization step size. We decrease the geometry qp first until

Figure 8: The figure shows how

we perform block operation for

frame profiling with a given 2D

DCT frame.

running out of the bandwidth or hitting the lowest qp cap. After

that, we can assign the remaining bandwidth to color information

until the color qp hits the cap. The workflow of our bit allocation

scheme is presented in Figure 7. We discuss the implementation

details in the next section.

4 IMPLEMENTATION

Block Operation. To profile a segment, we need to first apply

quantization to the DCT matrix and then perform non-uniform

additions. How additions are performed can significantly affect the

performance. In our implementation, we used the block operation

APIs from Eigen [10]. The DCT matrix is divided into blocks with

size of 𝑆 × 𝑆 and divided by a quantization step corresponding to

the qp . After quantization, the values within the same frequency

range (band) will be added together to formulate a 1D vector from

a 2D DCT frame. By default, the divisions and additions are op-

erated pixel-by-pixel and line-by-line, which is very slow as each

frequency (band) needs to scan the whole frame once. Instead,

as shown in Figure 8, we divide the 2D frame into blocks with

the same dimension. In this way, all the calculations are done in a

block-by-block manner. Compared to the naive implementation, the

processing time is reduced from 780𝑚𝑠 to about 100𝑚𝑠 by applying

the block operation, for a single-time inference.

Segment Profiling Vector. Based on DCT calculation, we know

that the low-frequency components are concentrated on the upper-

left corner. With full-frame DCT implementation used by us, the

resolution of the output must be the same size as the input. For

values around the lower-right corner (i.e., high-frequency informa-

tion), however, they are not as important. To decrease computing

overhead, in our implementation, we only calculate variance vector

for the upper-left corner with the resolution of 320 × 320. Even so,

we observe that after quantization is applied to the DCT results,
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most values of the 320× 320matrix are 0, and most non-zero values

are around the upper-left corner.

In the V-PCC implementation (mpeg-pcc-tmc2) (shown in Fig-

ure 1), the pixel width of the packed frame is fixed to 1280, and the

lowest frame resolution is 1280 × 1280. If it is not enough for large,

complicated scenes, only the height will be extended to cover the

whole point cloud. Considering the DCT function, calculating only

a 320 × 320 matrix is safe and efficient.

Linear Regression Model. We use the linear regression model

from the scikit-learn library [20] for estimating the encoded

bitrate given the variance vector. We trained two models for bitrate

estimation for geometry and color data, respectively. The trained

model can work for different point cloud streams, which is more

desirable compared to per-stream model training.

For training, due to the slow speed of mpeg-pcc-tmc2, it takes

several days to get a few data points for a segment. So we have

to validate our idea with limited number of data. To prevent over-

fitting, we shrink the segment profiling vector length and the model

size. To keep the frame information while shrinking the length of

the output vector, we set the stride parameter 𝑆 = 64. The resulting

profiling vector length used in experiments is only 4, which is a

more appropriate size for the 84 data points in total. Each linear

model only contains 5 parameters.

Workflow. Figure 7 shows the overall workflow of our proposed

scheme. Every time a new frame arrives, the cropped DCT result is

calculated. 𝑄𝑔 and 𝑄𝑐 are initialized to be 42. For a single iteration,

32 DCT frames are divided by the corresponding quantization step

block by block. Then the rest segment profiling processes will be

applied. After we get the segment profiling vector, we use the rate

estimation model for predicting the encoded bitrate under 𝑄𝑔 = 42

and 𝑄𝑐 = 42. If the sum of the predicted geometry bitrate and

predicted color bitrate is greater than the given bandwidth, the

iteration will be stopped, and the encoder will begin encoding with

the selected qp combination. If there is still bandwidth available,

the geometry-greedy strategy will reduce 𝑄𝑔 first. After that the

next round of the iteration will start with updated qp combination.

Binary Search. In our initial implementation, we used a complete

searching strategy, checking for qp values one by one to find the

result. We can see from Figure 5 that both the geometry-rate curve

and color-rate curve are monotone. This allows us to apply a binary

search strategy to find the result in a faster way, which reduces the

number of iterations from 𝑂 (𝑛) to 𝑂 (log𝑛) where 𝑛 indicates the

scale of the qp candidate, e.g., if the highest qp is set to 42, and the

lowest qp is 16, then 𝑛 = 27.

5 EVALUATION

For experiments, we used a machine with an Intel i5-8600K CPU

and a GPU of NVIDIA GEFORCE 1080. HM-16.21 with SCM-8.8

is used for point cloud compression [1]. The coding structure is

set as random access (RA). The group of frame size is set to 32,

which is same as the number of frames in a segment in CTC. The

occupancy precision is set to 4. All experiment data is from the

8iVFBv2 dataset [13].

5.1 Bitrate Estimation

Since we increased the stride parameter to 𝑆 = 64 to avoid over-

fitting during the training processes due to limited data points,

Table 2: The average error rate for the predicted/estimated

bitrate vs. the real bitrate obtained after encoding.

longdress loot red-black soldier All (1:27) All (1:41)
Geo. 5.6% 6.6% 6.9% 8.5% 7.9% 9.2%
Attr. 9.5% 22.0% 16.0% 30.3% 18.0% 17.8%

Table 3: Viewport quality and corresponding segment size

by Liu et al. [17] vs. the proposed geometry-greedy strategy.

By simply reducing the geometry qp and increasing the at-

tribute qp, the visual quality can be improved while reducing

the encoded segment size in all but one scenario. Note that

Liu et al. [17] did not provide results for redandblack under

180𝑘𝑏𝑝𝑚𝑝, we thus are unable to provide the comparison re-

sults here.

Method

Viewport Quality / Segment Size

(PSNR (dB) / KBytes)

longdress loot soldier

Liu [17] 28.87 / 380.7 30.91 / 290.3 31.42 / 314.0

GGS-1 29.06 / 374.5 31.19 / 290.3 31.15 / 317.3

GGS-2 29.32 / 356.4 31.24 / 268.2 31.71 / 303.4

the length of the calculated segment profiling vector, from a 320 ×

320 DCT frame, is only 4. We always drop the first component

of the profiling vector since it contains the direct current (DC)

component. Thus, the linear regression model for bitrate estimation

only contains 5 parameters. If the size of data points grow as we

obtain a larger dataset, we can increase the model size to fit the

data scale.

For evaluation, we tested our method using cross-validation over

all the four streams that we can use in the 8iVFBv2 dataset. For

each set of experiments, bitrate estimation is done separately for

the geometry sub-stream and the color information, considering

the V-PCC workflow. The results are shown in Table 2. For each

stream, each rate estimate model is trained with data from the re-

maining three streams and validated on the untrained stream itself.

In addition, we also present results of cross-content performance

in the last two columns. With 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 : 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 1 : 27, the

model is trained using three segments randomly selected from the

four streams, which is about 3.6% of all the segments, and validated

with the rest segments. With 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 : 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 1 : 41, only

two randomly selected segments are used for training. With more

different streams and segments used for training, we believe the

performance gaps (caused by over-fitting) between the different

models will be much smaller. Table 2 shows that the estimated bi-

trate for geometry sub-streams is more accurate than attribute/color

sub-streams. We conjecture that this is because we only applied

our profiling method on the Y-channel, which contains the illumi-

nation information, from the 3-channel (YUV) data. So the color

information contained in the other two channels is not profiled,

causing the lower prediction accuracy.

5.2 Geometry-Greedy Strategy

In this part, we validate our proposed geometry-greedy strategy.

We selected a group of qp combinations from the work done by

Liu et al. [17] with target bitrate of 180𝑘𝑏𝑝𝑚𝑝 . We applied our

geometry-greedy strategy (GGS) to the given qp combination. In

Table 3, GGS-1 means we reduce 𝑄𝑔 by 1 while increasing 𝑄𝑐 by
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Table 4: Results under 2.5𝑀𝑏𝑝𝑠 bandwidth/bitrate. Left: qp combinations calculated by Liu et al. and our method. Right:

corresponding viewport quality and encoded segment sizes.

Method
𝑄𝑔, 𝑄𝑐 (2.5𝑀𝑏𝑝𝑠)

longdress loot redandblack soldier

Liu [17] 30, 38 26, 28 N/A 28, 32

Ours 30, 42 22, 34 28, 40 24, 39

Method
Viewport Quality/Segment Size (PSNR (dB) / KBytes)

longdress loot redandblack soldier

Liu [17] 30.23/380.7 31.73/290.3 N/A 32.65/314.0

Ours 30.02/304.6 33.89/265.5 30.49/333.2 34.08/287.0

Table 5: Results under 5𝑀𝑏𝑝𝑠 bandwidth/bitrate. Left: qp combinations calculated by Liu et al. and our method. Right: corre-

sponding viewport quality and encoded segment sizes.

Method
𝑄𝑔, 𝑄𝑐 (5𝑀𝑏𝑝𝑠)

longdress loot redandblack soldier

Liu [17] 24, 32 22, 22 26, 26 22, 26

Ours 22, 36 16, 28 22, 32 20, 30

Method
Viewport Quality/Segment Size (PSNR (dB) / KBytes)

longdress loot redandblack soldier

Liu [17] 32.52/717.0 34.02/606.9 31.54/776.9 33.80/644.6

Ours 33.12/579.7 32.44/527.5 30.96/579.4 33.35/537.8

1; GGS-2 means that we reduce 𝑄𝑔 by 2 while increasing 𝑄𝑐 by 2.

The results presented are the visual-based point cloud compression

quality metric we proposed in Section 3.2. We can see that by simply

applying the geometry-greedy strategy to the baseline results, in

most conditions, our GGS results outperform the baseline results

with lower bitrates and higher visual quality.

5.3 Bit Allocation

For bit allocation, Liu et al. [17] propose to pre-encode the seg-

ments with three different setups in order to calculate the profiling

parameters. They solve the optimal qp combination with the given

target bitrate and the calculated parameters. In our method, we

replace the pre-encoding process with DCT-based profiling, which

is a lightweight solution targeting to get the close-optimal solution

with fewer calculation.

We validated our method by comparing it with baseline approach

by Liu et al. [17], while limiting the total bitrate to 2.5𝑀𝑏𝑝𝑠 and

5𝑀𝑏𝑝𝑠 . Note that these chosen bitrates match the target bitrate of

180𝑘𝑏𝑝𝑚𝑝 and 365𝑘𝑏𝑝𝑚𝑝 in Liu et al. [17]. The results are shown

in Table 4 and Table 5. In these tables, the viewport quality results

are obtained by placing the camera on the equator and rotate 0.4

degrees per frame. We loop the 32 frames segment to rotate the full

360 degrees. Overall, for each experiment, 900 views are rendered

and compared with their corresponding ground-truth views.

We can see that both methods reach similar 𝑄𝑔 and 𝑄𝑐 values

under the same setups, while our geometry-greedy approach prefers

devoting more available bitrates to the geometry sub-stream. In

addition, Tables 4 and 5 also show results about the viewport quality

and the encoded segment sizes in KBytes. In all cases, the encoded

segment sizes of our approach is smaller than Liu et al. [17]. For all

but one, the encoded segment sizes are within the bitrate target. In

three cases, our approach results in better viewport quality even

with smaller segment sizes. The improvement is most significant

for loot and soldier videos under 2.5 Mbps bandwidth.

5.3.1 Latency. Compared to the approach by Liu et al. [17], we re-

placed the computing-intensive pre-encoding step with lightweight

matrix manipulation. In addition, we further used block operations

and the binary search to boost the performance. As a result, we

reduce the bit allocation time from tens of minutes to sub-second

Table 6: Average time used for obtaining the qp combinations.

Method
Average Processing Latency

longdress loot redandblack soldier

Liu [17] 5199.87𝑠 6196.04𝑠 6120.76𝑠 9334.95𝑠

Ours 861𝑚𝑠 912𝑚𝑠 871𝑚𝑠 997𝑚𝑠

level (shown in Table 6). We also notice that bit allocation for sim-

pler streams such as loot and soldier takes longer time than the

other more complicated streams. This is because simpler streams

require lower qp to fully utilize the available bandwidth, which

involves more iterations to find the best qp combinations, even

with binary search applied.

6 CONCLUSION

In video-based point cloud compression (V-PCC), information about

the geometry and attribute (color) of the dynamic point cloud is

encoded as separate sub-streams. It is important to determine ap-

propriate encoding parameters for these sub-streams so that the

best overall quality of the encoded stream can be obtained. Existing

approaches use pre-configured parameters, which may not work

well for all contents, or rely on a pre-encoding step, which can be

time-consuming.

In this paper, we proposed VQBA ś a visual-quality-driven bi-

trate allocation scheme for dynamic point cloud stream encoding.

Unlike existing works that rely on computing-intensive stream pre-

encoding, we design a lightweight, DCT-based, segment-profiling

method for bitrate estimation. The profiling step generates a 1D

vector that characterizes the potential compression efficiency of the

point cloud segment, and we use it for encoded bitrate estimation

via a simple linear regression method. With fast bitrate estima-

tion, we are able to perform bit allocation in under one second

of time, significantly faster than existing methods which can take

tens of minutes. Results show that our method can achieve better

visual qualities with smaller encoded segment sizes compared to

the baseline approach.
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