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Abstract

Automatic pronunciation assessment (APA) plays an important
role in providing feedback for self-directed language learners
in computer-assisted pronunciation training (CAPT). Several
mispronunciation detection and diagnosis (MDD) systems have
achieved promising performance based on end-to-end phoneme
recognition. However, assessing the intelligibility of second
language (L2) remains a challenging problem. One issue is the
lack of large-scale labeled speech data from non-native speak-
ers. Additionally, relying only on one aspect (e.g., accuracy)
at a phonetic level may not provide a sufficient assessment of
pronunciation quality and L2 intelligibility. It is possible to
leverage segmental/phonetic-level features such as goodness of
pronunciation (GOP), however, feature granularity may cause
a discrepancy in prosodic-level (suprasegmental) pronunciation
assessment. In this study, Wav2vec 2.0-based MDD and Good-
ness Of Pronunciation feature-based Transformer are employed
to characterize L2 intelligibility. Here, an L2 speech dataset,
with human-annotated prosodic (suprasegmental) labels, is used
for multi-granular and multi-aspect pronunciation assessment
and identification of factors important for intelligibility in L2
English speech. The study provides a transformative compar-
ative assessment of automated pronunciation scores versus the
relationship between suprasegmental features and listener per-
ceptions, which taken collectively can help support the devel-
opment of instantaneous assessment tools and solutions for L2
learners.

Index Terms: Wav2vec 2.0, Transformer, goodness of pronun-
ciation, phoneme, prosody, suprasegmental.

1. Introduction

Recent advancements in acoustic modeling and automatic
speech recognition (ASR) techniques have allowed for the de-
velopment of CAPT tools. CAPT is aimed at self-directed
language learning and automatic mispronunciation detection
[1, 2, 3]. This facilitates non-native (L2) speakers to learn
foreign-spoken (L1) languages. Most advancement efforts fo-
cus on scoring phoneme-level pronunciation quality [4, 5, 6,
7, 8,9, 10]. The major focus is on providing diagnosis on
phonetic-level errors (phoneme substitution, deletion, insertion)
[11, 12, 13, 14, 15]. Recently, the importance of assessing
prosodic-level features (e.g. lexical stress, intonation) has in-
creased substantially [16]. L2 speech is influenced by supraseg-
mental and temporal differences from their first language, lex-
ical stress and speech rate, hypothesized to account for large
variations in L2 speech are believed to play a key role in influ-
encing L2 speech intelligibility [17], which is different from L1
speech intelligibility, typically assessed in the presence of noise
[18].
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International Teaching Assistants (ITAs) at North Amer-
ican universities have often faced communication difficulties
due to differences in their speech [19, 20]. Two important
prosodic components, speech rate [21, 22, 23, 24] and pause
units [24, 25, 26] are hypothesized to be related to intelligibil-
ity and perceived accentedness [21]. However, [24] suggests
that the relationship between speech rate and perception of L2
speech is curvilinear, implying an optimal rate may neither be
too high or too low and it may lie in between. Pause pat-
terns, different from L1 speakers, negatively impact perceptions
of fluency[25] and ITA effectiveness [26]. Lexical stress de-
viations also impact several dimensions of listener judgments.
L2 speakers’ speech rate is typically considered a strong pre-
dictor of perceived fluency [22, 23]. However, results from
[25] indicate that perception of L2 speech and speech rate is
curvilinear in that L2 speech that is spoken too quickly or too
slowly inhibits comprehension. Nevertheless, the complex re-
lationship between speech rate, lexical stress, other important
prosodic factors, and intelligibility still remains an ongoing re-
search question. In our study, an ITA dataset is prepared by col-
lecting data from international students who serve as teaching
assistants (TAs) in North American universities. The dataset is
subjectively rated for intelligibility and accentedness. Most ex-
isting approaches in L2 speech analysis focus on assessing pro-
nunciation. Pronunciation quality can be modeled at multiple
levels: phonetic, word and utterance, and multiple factors such
as prosody, stress, lexical stress, etc., These factors are typically
modeled separately [27, 28, 29, 30, 31, 32]. However, many
multi-level scores on phonetic, word, and utterance-level fea-
tures can be correlated. Recent advancements in machine learn-
ing have allowed us to learn a more comprehensive representa-
tion. In our task, a transformer-based model that is trained on
multiple aspects of pronunciation simultaneously is leveraged
to study the relationship between L2 intelligibility and multi-
level aspects of pronunciation. Furthermore, in this study, we
also consider both human transcripts and transcripts generated
by ASR, in order to (i) simulate conditions that exist in several
instantaneous assessment tools, and (ii) assess the robustness
of our L2 speech intelligibility assessment framework. Addi-
tionally, the phonetic-level MDD solution is also leveraged to
study the relationship between L2 speech intelligibility and the
lowest-level phonetic error characteristics.

2. Related work
2.1. GOPT Overview

Conventional methods like GOP [4, 5, 7, 8, 10] have been ex-
tensively studied. Recent advancements in transformer-based
models have enabled advanced GOP-based approaches that
can effectively capture the relationship between phonemes and
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Figure 1: Assessment of L2 Speech Intelligibility using GOPT
and Wav2Vec2.0 models

words within an utterance. Development of Self-attention-
based models [32, 33] resulted in GOPT (Goodness of Pro-
nunciation Transformer), which is a recently developed pro-
nunciation assessment model that is based on Goodness of Pro-
nunciation (GOP) features and a Transformer self-attention ar-
chitecture [34]. Multi-level labels (one phoneme-level, three
word-level, and five utterance-level accuracy, prosody, and flu-
ency) are used to achieve multi-aspect and multi-grained super-
vision for GOPT training. GOPT is a state-of-the-art model that
jointly predicts multi-aspect scores of pronunciation assessment
with different granularities. This contrasts with several conven-
tional approaches which also independently incorporate differ-
ent aspects of pronunciation markers. GOPT learns the correla-
tion between utterance-level tokens and phoneme-level tokens
through the attention mechanism

2.2. Wav2vec2.0 Overview

Wav2vec 2.0 [35] is a pre-trained method that uses a feature en-
coder, a context network, and a quantization module, to learn a
contrastive learning objective. Wav2vec 2.0 has achieved state-
of-the-art results on phone recognition for CAPT. Wav2vec
2.0’s latent representation also renders rich phonetic informa-
tion [36].

3. Experimental Setup

In this work, we make use of the international teaching
assistance (ITA) dataset and leverage state-of-the-art GOP-
based Transformer and Wav2vec 2.0 for characterizing utter-
ance, word and phoneme level pronunciation. The proposed
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Table 1: Statistics of ITA Dataset and Human/Machine Annota-
tions for Intelligibility Assessment.

Intelligibility ﬁﬁﬁ;ztlon/scﬁ:éghme # Speakers | # Utterances
HSR - 15 887
L2 - ASR 15 5012
HSR+ Prosody - 57 3000
Prosody ASR 57 4839
L2-High HSR - 19 438

framework for the assessment of L2 intelligibility using hu-
man/machine annotations and multi-level pronunciation prop-
erties is shown in Fig. 1.

3.1. ITA Dataset

For this study, 54 adult learners, with diverse L1 backgrounds
and English-speaking abilities, produced a total of 76 conver-
sational in-class speech recordings, with an average length of
6.06 minutes. The ITA recordings can be broadly categorized
based on the level of non-native speech proficiency and intelli-
gibility: (i) ‘L2’ (Low intelligibility) and (ii) ‘L2-High’ (High
intelligibility). Along with the speech utterances, some parts of
ITA recordings are supplemented by both human and machine
annotations. Human annotations include transcripts referred to
as human speech recognition (HSR) and prosodic annotations,
whereas at the machine level ASR transcripts are generated.
‘L2-High’ has HSR transcripts available whereas some portions
of the ‘L2’ speech has both HSR transcripts and prosody an-
notations. Only a few utterances have only HSR transcripts.
Whisper-ASR [37] is used to obtain ASR transcription for utter-
ances that have missing HSR transcripts. L2’ level has several
combinations of supplementary human and/or machine annota-
tions for every portion of the ITA recordings. The number of
speakers and utterances for every portion of the ITA recordings
as described in Table 1.

3.1.1. Human labeled Transcripts and Prosody Ratings

Fifteen trained linguists rated the speech based on accentedness
and intelligibility. Speech rate, measured in syllables per sec-
ond, silent pause and filled pause durations were recorded and
omitted from syllable count. Additionally, lexical stress scores
were calibrated using polysyllabic words extracted from speech
event transcripts scored against the CMU Pronouncing Dictio-
nary [38]. A lexical stress score indicates the duration, intensity,
or pitch emphasis of the stressed syllable. Furthermore, the ac-
centedness and intelligibility of the speakers were also rated by
the linguistic listener pool.

3.1.2. Whisper ASR Transcripts Generation

Although the ITA dataset is nearly labeled and carefully com-
piled, transcribers have generally reported difficulty in reliably
deciphering the content. Therefore, additionally Whisper ASR
network [37] is considered to provide auxiliary transcription,
and assess the robustness of intelligibility scoring. Whisper
[37] performs end-to-end ASR on 30-second audio chunks. The
Whisper architecture is based on an encoder-decoder Trans-
former.

3.2. Acoustic Model and GOP Feature Extraction

Goodness-of-pronunciation (GOP), an early DNN-based
method proposed to characterize MDD, focuses on evaluating



phonetic errors. In our study, a Kaldi-based ASR acoustic
model, which is based on the factorized time-delay neural
network (TDNN-F), is trained with Librispeech [39]. GOP fea-
tures for the ITA dataset are extracted using Kaldi Librispeech
S5 recipe. GOP extraction involves processing the audio
sample along with its corresponding canonical transcription
within the acoustic module to obtain a sequence of frame-level
phonetic posterior probabilities, these are then force-aligned at
the phoneme level and converted to 84-dimensional goodness
of pronunciation (GOP) features.

3.3. GOPT Inference and Scoring

The GOPT is trained using the 84-dim GOP feature as in-
put. GOPT is trained on Speechocean762 [40], a free open-
source dataset designed for pronunciation assessment. Spee-
chocean762 is multi-labeled and provides rich label informa-
tion at every level. During GOPT training, the mean squared
error (MSE) as the loss is computed at the utterance, word and
phoneme levels and averaged.

3.4. MDD using Wav2vec 2.0

Along with the GOPT, the MDD evaluation is considered an
auxiliary machine annotation/score, used for the characteriza-
tion of the reliability of the pronounced phonemes and aspects
of L2 speech. More recently, MDD has been achieved via end-
to-end phoneme recognition [41]. The implemented model ap-
plies the momentum pseudo labeling technique to Wav2vec 2.0
fine-tuning, to leverage the unlabeled L2 speech for improved
phoneme recognition performance [41]. MDD information is
computed using the phoneme scorer (JiWER) that interprets the
phoneme predictions from Wav2Vec2.0 [42].

4. Results

All the utterances are transcripted using either HSR or ASR
techniques. All the utterances from the ITA-Recordings, includ-
ing both L2’ and ’L2-High’ portions, are assessed using the
multi-granular and multi-level GOPT. Now, some portions may
have additional prosodic annotations, and MDD information.
In summary, for every utterance of the ITA dataset, GOPT pro-
duces five utterance-level scores (accuracy, fluency, complete-
ness, prosody, and total score), three world-level scores (accu-
racy, stress, and total score) and a phoneme level score. Addi-
tionally, annotations/scores are available based on the portions
in ITA-Recording. The prosodic annotations are: (i) articulation
rate, (ii) lexical stress score, and (iii) silent pause duration and
MDD information is: (i) PER: phoneme error rate (ii) MER:
match error rate and (iii) IL: information loss. The intelligibil-
ity scores are characterized by (i) intelligibility at phrase level,
(ii) intelligibility as a total number of words understood, and
(iii) average intelligibility for the entire duration.

4.1. Multicollinearity Test and Regression Analysis

The ITA dataset was tested for multicollinearity and it showed
that there was no significant correlation between the predictors.
For all variations of the ITA dataset, a simple linear regression,
random forest regressor, and XGBoost regressor were applied
and the results are as shown in Table 2. Random forest regres-
sor was found to be the best-performing model based on mean
square error and R2 metrics as highlighted in Table 2.
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Table 2: Comparative analysis of regression types on different
combinations of annotations/scoring on ITA dataset

ITA . x:r‘l’m““"/ SC(I)\I;[l:(ighine Regression MSE R2
Linear 0.0761 0.0213
HSR Random Forest | 5.24E-09 | 1.0000
XGBoost 6.46E-08 | 1.0000
Linear 0.0547 0.0352
ASR Random Forest | 1.88E-07 | 1.0000
XGBoost 6.78E-05 | 0.9987
Linear 0.0472 0.1384
HSR+ Prosody Random Forest | 8.28E-10 | 1.0000
12 XGBoost 1.02E-06 | 1.0000
Linear 0.03137 | 0.4680
Prosody ASR Random Forest | 9.30E-29 | 1.0000
XGBoost 2.77E-09 | 1.0000
Linear 0.046829 | 0.1708
ASR + MDD | Random Forest | 1.15E-08 | 1.0000
XGBoost 2.18E-07 | 1.0000
Linear 0.0249 0.5772
Prosody ASR + MDD | Random Forest | 9.22E-29 | 1.0000
XGBoost 5.50E-10 | 1.0000
Linear 0.0761 0.0210
L2-High HSR Random Forest | 3.18E-10 | 1.0000
XGBoost 6.07E-08 | 0.9999

4.2. Characterization of L2 Intelligibility using Feature Im-
portance

Random forest regressor was found to be the best-performing
model and they have been used for assessing feature impor-
tance. The feature importance results for all combinations of
annotations/scoring for the ITA dataset are described in Fig. 2.
In Fig. 2 A), a comparative analysis of L2 intelligibility pre-
dictors for ‘L2-High:HSR’, ‘L2:HSR’, and ‘L2:ASR’ config-
urations reveal that only utterance level scores of GOPT are
significant and other word level and phonetic predictors are
not dominant predictors. Fluency is the top predictor for ‘L2-
High:HSR’, prosody is the top predictor for ‘L2:HSR’ and in-
terestingly, accuracy is the top predictor for ‘L2:ASR’ con-
figuration. In Fig. 2 B), four configurations for L2 speech,
namely: ‘HSR + Prosody’, ‘ASR + Prosody’, ‘ASR + MDD’,
‘ASR + Prosody + MDD’ are considered for comparative anal-
ysis of non-native speech intelligibility predictors. As earlier,
among GOPT scores, only utterance level scores are signifi-
cant and comparing ‘HSR + Prosody’ based model with ‘ASR
+ Prosody’ suggests that human-labeled prosodic predictors
are significant for L2 intelligibility. Among GOPT utterance
scores, only prosody and total scores contribute towards pre-
dicting L2 intelligibility for ‘HSR + Prosody’ configuration and
Whisper-ASR generated transcripts seems to degrade the re-
liability of GOPT-generated utterance-level scores. Also, the
important prosodic features such as ‘articulation rate’, ‘lexical
stress’ and ‘silent pause duration’ remain the most important
features which influence human labeled intelligibility scores.
Among ‘ASR + MDD’ and ‘ASR + MDD + Prosody’ con-
figurations, human prosodic information seems to play a very
dominant role in predicting L2 intelligibility. In the absence of
any human labels and relying on Whisper-ASR generated tran-
scripts and the MDD information, namely: information loss,
phoneme error rate and match error rates were significantly in-
fluential for predicting L2 intelligibility characteristics. Addi-
tionally, all utterance-level GOPT predictors also contributed
towards predicting L2 intelligibility. However, we observe that
between GOPT and MDD scores, the phoneme-level MDD
scores played a dominant role in influencing L2 intelligibility.
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5. Discussion

Previously it has been found that lexical stress and speech rate
independently relate to L2 speech intelligibility. In our as-
sessment, prosodic features were found to outweigh the multi-
level granular features of pronunciation significantly, especially
when human-labeled prosodic features were available. Among
all scores, only the utterance level scores, specifically prosody,
completeness, total score, and others were dominant in the ab-
sence of any prosodic features. Furthermore, a comparative
analysis of phoneme-level MDD diagnostic features was found
to be more influential than GOPT scores, despite the availabil-
ity of multi-level scoring. Analysis of features showed interest-
ing aspects of L2 intelligibility: (i) Human or ASR transcrip-
tion does not significantly influence the factors that impact L2
speech intelligibility; (ii) Apart from transcription, human-rated
prosodic factors are dominant in influencing L2 intelligibility;
(iii) MDD is still a major factor for assessing L2 intelligibility;
(iv) Among automatic/machine learning based predictors, lower
phonetic level features are more important compared to multi-
level GOPT features, however, human transcribed prosodic fea-
tures are more relevant compared to lower level phonetic tran-

scription.
6. Conclusion

This study has considered a framework to assess L2 speech
intelligibility by considering several aspects of pronunciation:
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(i) lower phonetic level pronunciation-based MDD solution;
(i1) Multi-level granular pronunciation assessment tool; (iii)
Transcription robustness: Human vs ASR; (iv) Human rated
prosodic labels. Most existing approaches use MDD solutions
for characterizing L2 pronunciation. However, our study shows
that an automatic assessment of L2 speech intelligibility can be
carried out reliably, irrespective of human or automatic speech
transcription. Human-rated prosodic predictors are the domi-
nant factors in the assessment of L2 speech intelligibility. Also,
there is no significant difference in the dominant predictors for
L2 speech intelligibility when HSR transcripts are compared to
ASR generate versions. However, MDD predictors do become
highly dominant in characterizing L2 speech intelligibility. Fur-
ther, MDD features are still dominant in the presence of multi-
level GOPT features. The findings from this analysis provide
direction for the development of robust systems for character-
izing L2 speech intelligibility. Furthermore, with the increas-
ing demand for instantaneous L2 speech assessment tools, the
results of this experimental framework underscore the need to
develop more accurate tools to estimate human-rated prosodic

features and MDD solutions.
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