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Abstract—Influence Maximization (IM), which seeks a small

set of important nodes that spread the influence widely into the

network, is a fundamental problem in social networks. It finds

applications in viral marketing, epidemic control, and assessing

cascading failures within complex systems. Despite the huge

amount of effort, finding near-optimal solutions for IM is difficult

due to its NP-completeness. In this paper, we propose the first
social quantum computing approaches for IM, aiming to retrieve

near-optimal solutions. We propose a two-phase algorithm that

1) converts IM into a Max-Cover instance and 2) provides effi-

cient quadratic unconstrained binary optimization formulations

to solve the Max-Cover instance on quantum annealers. Our

experiments on the state-of-the-art D-Wave annealer indicate

better solution quality compared to classical simulated annealing,

suggesting the potential of applying quantum annealing to find

high-quality solutions for IM.

Index Terms—Influence Maximization, Social Networks, Quan-

tum Annealing

I. INTRODUCTION

The prevalence of social networks has made them a leading
channel for information diffusion, spreading various kinds of
information from opinions, and behaviors to fake news. The
rapid propagation of information in this channel has also
altered human societies at a fundamental level, as seen on
many occasions. Examples include the critical role of social
media in swaying public opinion in the 2016 U.S. presidential
election [1] and the use of social media ‘like a weapon’ in
the Ukraine war [2]. Thus, understanding the mechanisms
behind information diffusion, such as how to engineer a viral
campaign or mitigate fake news, is of uttermost importance.

In social networks, influence maximization (IM) problem
[3] seeks for a small subset of nodes whose activation will
result in the largest influence propagation in the network.
For example, a company can send free sample products to
an initial set of users (called seed nodes) who will advertise
the product via the word-of-mouth effect to create a viral
marketing campaign. The problem, proposed by Kempe et
al. [3], was investigated on two pioneering diffusion models,
namely, Independent Cascade (IC) and the Linear Threshold
(LT) models that capture social-psychological factors in the
adoption process [3]. It has remained one of the most well-
studied problems in social networks. Many of its applications
can be found in viral marketing and political campaigning [4],
outbreak detection [5], and rumor mitigation [6].

Despite a plethora amount of research on IM [7]–[13],
obtaining near-optimal solutions for the problem remains a

difficult task due to several theoretical challenges. Kempe et
al. prove the NP-hardness of the problem [3] and propose

(1 � 1/e � ✏) approximation algorithms using Monte-Carlo
simulation [3]. Indeed, IM cannot be approximated within a
factor (1�1/e+✏) [14] under a typical complexity assumption.
Further, computing the exact influence is shown to be #P-hard
[8]. A few works attempt to obtain exact and near-optimal
solutions for IM [15], [16], however, they all have exponential
time complexities in the worst-case.

The last few years have witnessed an exponential growth
in quantum and quantum-inspired computing with a record
number of breakthroughs [17]–[21]. Instead of encoding in-
formation with binary bits as in classical computing, quantum
computing (QC) utilizes qubits to encode superposition of
states [19] as well as quantum mechanics phenomena such as
entanglement and quantum tunneling to explore exponential
combinations of states at once. QC has paved the way for
faster, more efficient solutions to large-scale, real-world opti-

mization problems that are challenging for classical computers
[17], [19]. The two major paradigms in quantum computing
are gate-based QC and adiabatic quantum computation (AQC)
[22]. AQC has been shown to be equivalent to gate-based QC
with at most polynomial overhead [23]. In AQC, NP-hard
optimization problems are encoded into Ising Hamiltonians,
whose ground states induce optimal solutions.

One promising near-term avenue for QC is quantum an-

nealing (QA) [24], which can be seen as a relaxation of AQC,
where the condition of adiabaticity is relaxed. QA is the only
computing approach that provides a large enough number of
qubits for real-world problems from life science [25], portfolio
optimization [26], scheduling for car manufacturing [27] and
many others [28], [29]. Except for a few recent works in
community detection using quantum computing [30]–[32],
there is a largely untapped opportunity in applying QC for
social networks. Such quantum social computing approaches
can lead to a potential boost in finding near-optimal solutions
for many social network tasks including IM.

In this paper, we provide the first quantum social computing
approach for IM, investigating the feasibility of obtaining near-
optimal solutions for IM on state-of-the-art quantum annealers
[33]. We propose a novel two-phase approach that 1) converts
the IM into a maximum coverage (Max-Cover) instance using
reverse influence sketch (RIS) proposed in [34] and 2) efficient
quadratic unconstrained binary optimization (QUBO) formu-
lations and robust parameter settings to solve the problem on
quantum annealers. The first phase provides a space-efficient

representation of the network’s influence landscape that is
critical due to the limitation on the number of qubits on
the existing quantum solvers. The second phase addresses the



challenges in implementing all-to-all coupling [33] among the
qubits, i.e., sparse QUBO formulations are easier to program
on existing quantum processing units (QPUs). Finally, we
provide comparisons between QA, on D-Wave Advantage,
the latest D-Wave annealer [33], and the classical simulated
annealing (SA) in terms of solution quality. Further, we
analyze the efficiency of the proposed formulations in terms
of the number of qubits and solution quality.

Related works. Kempe et al. [3] proposed two fundamental
cascade models, namely Linear Threshold (LT) and Indepen-
dent Cascade (IC) models, for IM problem. They showed that
IM is an NP-hard problem and proposed a greedy algorithm
with the ratio of approximations as 1�1/e�✏. The lazy greedy
approach was proposed in [5] to avoid the recomputation of
marginal gains for nodes at each iteration. Many heuristics
have been proposed to solve IM in large networks such as
LDAG [35], CELF++ [36], and so on.

Several sketching methods have been introduced to solve
IM in very large networks. Cohen et al. [37] investigate the
combined reachability sketch using bottom-k min-hash sketch
of the best reachable nodes to show small errors in estimating
influences. Borgs et al. [34] present a pioneer approach called
reverse influence sketch (RIS) that estimates the influence of
any seed set S by taking random nodes and measures the
fraction of those nodes reachable by S. The RIS has inspired
a collection of large-scale methods for IM such as TIM [38],
IMM [39], SSA/DSSA [12], and other [13], [40], [41].

QA has a wide range of applications [25]–[29]. However,
the only quantum social computing approaches are on the
community detection problem [30]–[32]. To the best of our
knowledge, there is no quantum computing method for IM.
There is a generic approach for solving Linear Integer Pro-
gramming, of which maximum coverage is a special case, on
quantum annealers [42]. However, such a generic approach
unlikely performs well without taking into account the limits
in existing QPUs including the limited connectivity and the
limited precious in coupling strength among the qubits. Thus,
effective formulations are needed for maximum coverage
instances generated from IM.

Organization. We introduce background on IM and QA
in section II. Section III proposes our two-phase algorithm
including RIS samples generation and QUBO formulations
for maximum coverage problem. The experiment results are
shown in section IV. Finally, section V presents our conclu-
sion and future directions.

II. PRELIMINARIES

We present the preliminaries on IM and solving optimiza-
tion with QA.

A. Influence Maximization Problem

Given graph G = (V,E,w) and an integer 1  k  |V |, the
Influence Maximization (IM) problem asks for a subset S ⇢ V

of at most k nodes that maximize the influence I(S), defined as
the number of active nodes at the end of a diffusion process
started at S. For simplicity, we adopt Independent Cascade

(IC) as the propagation model [3]. However, our approach
can be extended easily to Linear Threshold (LT) model [3].

Independent cascade model. In the IC model, each edge
(u, v) 2 E is associated to a weight w(u, v) 2 [0, 1] that
indicates the probability that u influences v. By convention, if
(u, v) /2 E, we also set w(u, v) = 0. Let S ✓ V be a subset
of nodes, called seed nodes. The activation happens in rounds.
At round zero, all the nodes in S are active, and all the others
are inactive. In each round, each newly activated node u in
the previous round will have a single chance to activate its
neighbors: for each neighbor v of u, v becomes active with
the probability w(u, v). Once a node gets activated, it will
remain active till the end. The process stops when there are
no more newly activated nodes in a round.

B. Quantum Annealing and QUBO

Quantum Annealing (QA) provides an approach to find
near-optimal solutions for NP-hard problems that can be
encoded into a quadratic unconstrained binary optimization
(QUBO) or, equivalently, an Ising Hamiltonian [42]. A QUBO
minimizes a quadratic polynomial over binary variables

x⇤ = arg min
x2{0,1}n

Q(x) =
X

i,j2[n]

qijxixj ,

where x = (x1, · · · , xn) 2 {0, 1}n. Since, QUBO is an NP-
complete problem, there are polynomial-time reductions to
reduce all NP-complete problems to QUBO.

By changing variables xi =
si+1
2 , a QUBO can be easily

converted back and forth to an Ising Hamiltonian [43]

H(s) = �
nX

i=1

hisi �
nX

i,j=1

Jijsisj = �hT
s� sTJs (1)

Here, each discrete variable si 2= {�1,+1} represents the
site’s spin. Each assignment of spin value s 2 {�1,+1}n,
called a spin configuration, is associated with an energy of the
system; hi is the external magnetic field at site i and Jij is
the coupling strength between sites i and j. Then, minimizing
the QUBO is equivalent to find the lowest energy state, called
ground state, of the Hamiltonian.

The process of solving the NP-hard problems by the QA
method consists of three major steps: transform the optimiza-
tion problem to a QUBO, embed the QUBO graph to QPU’s
hardware graph, and perform an annealing schedule to find
ground states. First, we need to transform the optimization
problem into a QUBO formulation, the de facto input format
for quantum annealing. The QUBO is immediately turned into
a logical graph after definition, with each node representing a
variable and each edge denoting the interaction term between
two variables. In formulating QUBO, it is important that
the range of Jij does not exceed the hardware precision.
Otherwise, rounding errors will result in a programmed QUBO
that is different from the intended one [33].

Minor-embedding. Since, all-to-all connectivity among all
qubits is difficult to achieve on QPUs, we need to perform
a mapping between logical variables to physical qubits in a
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Fig. 1. Steps to solve Influence Maximization (IM) using quantum annealing. In phase 1 (yellow blocks), we convert an IM problem into Max-cover by
generating random RR sets. In phase 2 (blue blocks), we propose QUBO formulations to find the optimal solutions for Max-Cover using quantum annealing.

procedure called minor-embedding. Each logical qubits may
be mapped into multiple physical qubits. Those qubits will be
coupled with sufficient strong interactions. Setting the strength
of those interactions, known as chain strength, is critical
to guarantee that all those physical qubits will obtain the
same values. Since, the hardware graph in existing quantum
annealers are sparse graphs, minor-embedding of complete
QUBO will require a quadratic number of qubits [43]. Thus, to
limit the exploding of the required number of qubits, a sparse

QUBO is often desired.

III. QUANTUM SOCIAL COMPUTING FOR IM
We introduce a new quantum annealing approach to solve

IM. Our two-phase approach, shown in Fig. 1 consists of 1)
converting IM to maximum coverage (Max-Cover) [44] by
applying the RIS sample [34] and 2) constructing efficient
QUBO formulations for Max-Cover and robust parameter
settings for QA.

A. Phase 1 - Converting to Max-Cover using Reverse Influ-

ence Sketch (RIS)

Most existing approaches for IM including heuristics [35],
[36] and forwarding Monte-Carlo simulation [7], [45], [46] to
estimate influence are too complex to transform into QUBO
formulations. Fortunately, the pioneering approach of using
RIS [34] results in Max-Cover instances [44] that are simple
enough to program on quantum annealers.

Given a graph G = (V,E,w), RIS captures the influence
landscape of G by generating a collection R of random
Reverse Reachable (RR) sets. A random RR set Rj , j = 1..n
is generated from G as follows

1) Choose a random node v 2 V as a target node,
2) Generate a sample graph g from G in which we keep

each edge (u, v) 2 E with a probability w(u, v) and
discard (u, v) otherwise, and

3) Return Rj as the set of nodes that can reach to v in g.
The second step can be replaced by a reverse graph traversal
algorithm from v [34], revealing the existence of edges only
when needed. Once a collection R of sufficiently large RR

sets has been computed, the influence of any seed set S can

be approximated by the fraction of RR sets that have at least
one node in S. Thus, IM can be solved by finding a subset
of k nodes that ‘covers’ most of the generated RR sets. This
problem is the well-known Max-Cover problem (MC) [44].

Max-Cover [44]. Given a collection of subsets S =
{S1, S2, . . . , Sm} over am universal set of elements E =
{e1, e2, . . . , en}. The goal is to find a subset S ✓ S of
sets, such that |S|  k and the number of covered ele-
ments |

S
Si2S0 Si| is maximized. Max-Cover is an NP-hard

problem [44] and cannot be approximated within a factor
1� 1/e+ ✏, unless P=NP [14].

An example of the conversion into Max-Cover is shown in
Fig. 1. Nodes b, a, and c are selected at the target nodes, re-
spectively. The RR sets are generated by finding the nodes that
can reach to the target nodes, i.e., R = {R1 = {a, b, d}, R2 =
{a}, R3 = {c, d}}. Finally, we construct an instance of Max-
Cover problem with four sets including Sa = {R1, R2}, Sb =
{R1}, Sc = {R3}, and Sd = {R1, R3}. The optimal solution
for k = 2 is to select S = {a, d} to cover all RR sets. That
also returns the optimal seed set for the IM instance.

B. Phase 2 - Efficient QUBO formulations for Max-Cover

In phase 2, we take the Max-Cover instance produced in
phase 1 and transform it into a QUBO formulation (Fig. 1).
The QUBO formulation, can be seen as a graph, will be
mapped into physical qubits on the QPU, and solved through
an annealing process to obtain near-optimal solutions.

We begin by presenting the Integer Linear Programming
for Max-Cover problem in [44]. Then, we propose two QUBO
formulations: 1) Linear formulation that adds a linear, in terms
of element frequencies, number of slack variables and 2)
Binary formulation that adds a logarithmic number of slack
variables using binary encoding [42].

a) Integer Linear Programming for Max-Cover: Let xi

be binary variables for 1  i  m denoting whether or not
subset Si is selected. In other words, xi = 1 iff Si is selected.
In addition, yj = 1 if ej is covered, and yj = 0 otherwise
for 1  j  n. The Max-Cover objective is to maximize



the sum of yj as shown in the Integer Linear Program (ILP)
formulation in Eq. 2.

max
nX

j=1

yj (2)

s.t.

mX

i=1

xi = k

X

ej2Si

xi � yj , j = 1..n

x 2 {0, 1}m,y 2 {0, 1}n

b) QUBO Linear Formulation: First, we convert inequal-
ity constraints to equalities by adding slack variables sj

yj �
X

ej2Si

xi + sj = 0, j = 1..n (3)

where fj = |{Si|ej 2 Si} is the frequency of ej , i.e.,
the number of times that ej appears in the subsets and
sj 2 {0, 1, . . . , fj}.

In the second constraint, the upper bound of sj depends on
the number of sets containing the element ej in Eq. 4

X

ej2Si

xi � yj =

fj�1X

i=1

zij , zij 2 {0, 1}, j = 1..n, z. (4)

To limit the number of equivalent optimal solutions, we add
a penalty

Pn�1
i=1 (zi � zizi+1) = 0 to the objective (Wall-

encoding). The domain-wall encoding improves the solution
quality as investigated in [47].

We formulate a base QUBO Linear formulation as follow

min f(x,y, z) = �
nX

j=1

yj (5)

+ P1

 
mX

i=1

xi � k

!2

+ P2

nX

j=1

0

@yj �
X

ej2Si

xi +

fj�1X

i=1

zij

1

A
2

+

fj�1X

i=1

(zi+1 � zizi+1)

where P1, P2 > 0 are penalties.
Settings the penalties values is important to obtain high-

quality solutions. On the one hand, the penalties need to be
sufficiently large to preserve the optimal solutions. On the
other hand, the penalties should not be set too large or they
will exceed the precision limit of the QPUs. We show below
the feasible range for the penalties.

Lemma 1. For P1 > maxj fj and P2 > 1, any optimal

solution (x,y, z) of the QUBO in Eq. (5) induces an optimal

solution (x,y) for Max-Cover in Eq 2 and vice versa.

We omit the proof due to the space limit.

Despite the simplicity of the linear formulation, it has one
advantage that most interaction Jij are in {�1, 1}, i.e., it
reduces the requirement on the coupling precision of the
quantum annealers.

We continue with the analysis of the sparsity of the proposed
formulation.

Lemma 2. QUBO Linear formulation (LF) in Eq 5 contains

nL = m+
Pn

j=1 fj variables and
1
2

⇣
m

2 + 3
Pn

j=1 f
2
j + nL

⌘

non-zeros.

Proof. The number of variables, summing up the length of
(x,y, z) is

nL = m+ n+
n�1X

j=1

fj = m+ n+
nX

j=1

fj � n

= m+
nX

j=1

fj (6)

To count the number of non-zeros, we note that the non-
zeros on the diagonals is nL, the number of variables. Thus,
the rest is to count the number of off-diagonal non-zeros.

Summing up the number of off-diagonal terms in each
‘constraint’ in Eq. 5, the number of non-zeros is at most

m+
nX

j=1

fj +
m(m� 1)

2
+

1

2

nX

j=1

fj(3fj � 1) (7)

=
1

2

0

@2m+ 2
nX

j=1

fj +m
2 �m+ 3

nX

j=1

f
2
j �

nX

j=1

fj

1

A (8)

=
1

2

0

@m
2 + 3

nX

j=1

f
2
j + nL

1

A (9)

This yields the proof.

c) Binary Formulation: QUBO with Binary Encoding:

We provide a more ‘compact’ formulation, at the expense of
higher interaction Jij values.

For fj > 1, we replace the slack variables in the linear for-
mulation with Nj = blog (fj � 1)c+ 1 new binary variables,
following the binary encoding in [42], as shown in the Eq 10.

0  s  fj ) s =

Nj�1X

k=0

2kzkj + (fj + 1� 2Nj )z
(Nj)
j , (10)

zkj 2 {0, 1}

TABLE I
COMPARING SIMULATED ANNEALING AND QUANTUM ANNEALING

USING LINEAR FORMULATION (LF) AND BINARY FORMULATION (BF)

n

Linear Formulation Binary Formulation

var. qubit inf. time(s) var. qubit inf. time(s)
SA QA SA QA SA QA SA QA

10 157 266 7.1 7.1 0.36 0.1 152 254 7.0 7.1 0.35 0.1
15 158 269 8.1 8.1 0.38 0.1 151 247 7.95 8.1 0.34 0.1
20 182 449 9.4 10.0 0.45 0.1 171 341 9.2 10.2 0.42 0.1
25 173 390 10.5 10.75 0.41 0.1 167 324 10.0 10.25 0.42 0.1
30 185 529 11.7 12.3 0.46 0.1 185 529 11.7 11.1 0.43 0.1



This results in our new QUBO binary formulation

min f(x,y, z) = �
nX

j=1

yj (11)

+ P1

⇣ mX

i=1

xi � k

⌘2

+ P2

nX

j=1

⇣
yj �

X

ej2Si

xi +

Nj�1X

k=0

2kzkj + (fj + 1� 2Nj )z
(Nj)
j

⌘2

Similarly, we can set the penalty values the same way we did
for the linear formulation.

Lemma 3. For P1 > maxj fj and P2 > 1, any optimal

solution (x,y, z) of the QUBO in Eq. (11) induces an optimal

solution (x,y) for Max-Cover in Eq 2 and vice versa.

This new binary formulation has substantially fewer vari-
ables non-zeros as shown in the below lemma.

Lemma 4. QUBO Binary formulation (BF) in Eq 11

contains nB = m + n +
Pn

j=1 Nj variables and

1
2

⇣
m

2 + 2(Nj + 1)
Pn

j=1 fj +
�Nj

2

�
+ 2nB �m

⌘
non-zeros

where Nj = blog (fj � 1)c+ 1 for fj > 1 and 0 otherwise.

The proof is similar to that of the linear formulation and
skipped to save space.

IV. EXPERIMENTS

We present experimental results on D-Wave Advantage [33],
the latest quantum annealer from D-Wave.

A. Setup

Datasets. We generate random networks following Erdos-
Renyi model using networkx package [48]. The network size
is chosen in {10, 15, 20, 25, 30}. The edge probability p is set
so that the average degree of each node is 5. All edges are
set to have the same weight (probability) and the weight is
selected among the values {0.001, 0.01, 0.05, 0.1}.

Parameters. We set the penalty P1 to be the number of
samples P2 = 2. The default parameters include the network
size n = 30, the edge weight is w = 0.05, and the number of
seed nodes k = 5.

Solvers. We compare two different solvers for QUBO,
simulated annealing and quantum annealing, both from D-
Wave’s Ocean SDK. For the D-Wave annealer, we use the
default annealing time of 20µs with 5000 samples, i.e., a total
annealing time of 0.1s. We set the chain strength to be the
largest absolute value of Jij in the QUBO. For the simulated
annealing, we repeat 100 times and report the best result.

B. Results

Physical qubits. We measure the number of physical qubits,
after embedding into D-Wave QPUs, for the two QUBO
formulations. The results are shown in Fig. 2. As expected,
the binary formulation consistently requires fewer qubits and
the gap gets wider with the increase of the network size and
the edge weight.

(a) w = 0.05 (b) n = 30

Fig. 2. Comparison of the number of qubits with QUBO Linear and QUBO
Binary formulations

Solution Quality. We show the solution quality for sim-
ulated annealing and quantum annealing using two different
formulations in Table I. We set the number of nodes n =
10, . . . , 30, k = 5, the weights w = 0.05, and the number
of RR sets is 100. The solution quality is measured by the
estimated influence (Inf.) (the fraction of covered RR sets
times n).

Overall, the solution quality, Inf., of QA is slightly better
than those of SA for both linear and binary formulations.
Both return the same Inf. for small networks, n = 10, 15. QA
returns slightly higher Inf. for larger sizes, n = 15, 20, 25, 30.
While linear formulation requires more variables and qubits,
it frequently produces better solutions which can be attributed
to the small weights in its QUBO.

Time. The running time for simulated annealing ranges
from 0.3 to 0.5 seconds, while the annealing time for QA is 0.1
second. Notice that the running time for QA does not include
the access time and the time to embed the QUBO into the
hardware graphs. While the embedding time is currently high,
the advance in algorithms and future hardware-software co-
design for quantum annealers will bring down this overhead.

V. CONCLUSION

We propose the first quantum annealing approach for IM.
The results demonstrate some advantage of quantum annealing
over the classical simulated annealing on the problem. Thus,
it advocates for further investigation of quantum computing
approaches for IM and quantum social computing in gen-
eral. Future directions include designing specialized anneal-
ing schedule, reverse annealing, customized minor-embedding
approaches for the problem.
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in moiré superlattices,” Nature, vol. 604, no. 7906, pp. 468–473, 2022.

[22] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Rev. of

Mode. Phys., vol. 90, no. 1, p. 015002, 2018.
[23] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and

O. Regev, “Adiabatic quantum computation is equivalent to standard
quantum computation,” SIAM review, vol. 50, no. 4, pp. 755–787, 2008.

[24] T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse
ising model,” Physical Review E, vol. 58, no. 5, p. 5355, 1998.

[25] D. M. Fox, C. M. MacDermaid, A. M. Schreij, M. Zwierzyna, and R. C.
Walker, “Rna folding using quantum computers,” PLOS Compu. Bio.,
vol. 18, no. 4, p. e1010032, 2022.

[26] C. Grozea, R. Hans, M. Koch, C. Riehn, and A. Wolf, “Optimising
rolling stock planning including maintenance with constraint program-
ming and quantum annealing,” arXiv preprint arXiv:2109.07212, 2021.

[27] S. Yarkoni, A. Alekseyenko, M. Streif, D. Von Dollen, F. Neukart, and
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