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Retrieving information from a black hole using quantum machine learning
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In a seminal paper [P. Hayden and J. Preskill, J. High Energy Phys. 09 (2007) 120], Hayden and Preskill
showed that information can be retrieved from a black hole that is sufficiently scrambling, assuming that the
retriever has perfect control of the emitted Hawking radiation and perfect knowledge of the internal dynamics
of the black hole. In this paper, we show that for t-doped Clifford black holes—that is, black holes modeled by
random Clifford circuits doped with an amount t of non-Clifford resources—an information retrieval decoder
can be learned with fidelity scaling as exp(−αt ) using quantum machine learning while having access only to
out-of-time-order correlation functions. We show that the crossover between learnability and nonlearnability is
driven by the amount of nonstabilizerness present in the black hole and sketch a different approach to quantum
complexity.
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I. INTRODUCTION

The onset of chaos is at the root of the explanation of
thermalization in closed quantum systems [1–5]. Although the
precise definition of quantum chaos remains elusive, one can
usefully refer to it as a bundle of features comprising infor-
mation scrambling [6–10], a complex pattern of entanglement
[11–15], universal behavior of out-of-time-order correlation
functions (OTOCs) [16–27], and quantum dynamics that
can be efficiently modeled by random unitary operators
[18,28–31]. Information scrambling is the quantum analog of
the butterfly effect, signaling that local disturbances are spread
through operator growth [32–34].

In the context of black-hole physics, one wonders whether
the information is destroyed by a black hole or can be recov-
ered from Hawking radiation as the black hole evaporates. It is
commonly assumed that a black hole thermalizes information
quickly [1,2,35] and that information is also rapidly spread
across every part of the system, making the black hole a fast
scrambler [36–39]. Moreover, one assumes evolution to be
described by a unitary operator U . Under these assumptions,
Hayden and Preskill showed that the Hawking radiation re-
leases information very quickly and that one can therefore
recover any information initially dumped into the black hole
with just a slight overhead of information readout from the
subsequent Hawking radiation [40]. This remarkable result
hinges on the fact that it is the very scrambling dynamics
of the black hole that allows information to be transferred
to the Hawking radiation. Yoshida and Kitaev showed how
this information can be retrieved by an observer with perfect
knowledge of both the initial state of the black hole and its
unitary dynamicsU [41].

*Lorenzo.Leone001@umb.edu

Obtaining perfect knowledge of a black hole’s internal
structure and dynamics sounds like an impossibly daunting
task. Could we perhaps learn U by feeding the Hawking
radiation into a suitable quantum machine learning (QML)
algorithm [42–61]? Such an approach seems promising at
first glance, but quickly becomes futile in practice; in order
for the recovery algorithm to work, the black hole must be
scrambling, but the supposed complexity of scrambling dy-
namics hinders our ability to learn about its details. Indeed,
extensive analysis [62–71] of the barren plateau problem, i.e.,
system size-exponential vanishing of cost function gradients
in variational quantum algorithms, has shown that no QML
training protocol can effectively learnU if it is scrambling.

And yet, even so, things are not hopeless. We cannot learn
U , but we can train a quantum circuit to decode it by learning a
model unitaryV that is good enough to unscramble the Hawk-
ing radiation, recover the information tossed into the black
hole, and perform teleportation. Despite being very different
from the original scrambler U , this so-called mocking black
hole V is optimized to perform the desired tasks.

In this paper, we show that if a black hole is modeled by
a unitary Ut consisting of an element of the Clifford group
with a doping t of non-Clifford resources, one can use a cost
function directly obtained from the OTOCs to learn a mocking
V capable of recovering information from the black hole with
fidelity F (V ) ∼ exp(−αt ). This is possible because, while
the Clifford group is a good scrambler [72–74], it does not
produce a complex pattern of entanglement across the subsys-
tems [75,76]. We also show that, with the same technique, one
can teleport a state with zero initial knowledge of black-hole
dynamics.

II. NOTATION AND TECHNIQUES

Let us introduce some notations and tools that are used
throughout the paper. Consider the Hilbert space of n qubits
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H, partitioned as n = nA + nB = nC + nD. Let d� ≡ 2n� with
� ∈ {A,B,C,D}. Denote Pn�

the Pauli group on n� qubits,
being � ∈ {A,B,C,D}. Let P� ∈ P� be local Pauli oper-
ators acting nonidentically only on �, where we omit the
identity on the complement of �. Let O be an operator on
H and let P�OP� be the twirling of O with P�; denot-
ing the average over the Pauli group Pn�

as 〈P�OP�〉Pn�
≡

d−2
�

∑
P�∈Pn�

P�OP�, we have

〈P�OP�〉P�
= tr�(O)

d�

, (1)

where tr�(·) denotes the partial trace on �. Consider a Hilbert
space HR of nA auxiliary qubits; then the Einstein-Podolsky-
Rosen (EPR) pair between A and R is denoted as |RA〉, living
onHR ⊗ HA, and is defined as

|RA〉 ≡ 1√
dA

dA∑

i=1

|i〉R ⊗ |i〉A . (2)

Denote ���′ ≡ |��′〉 〈��′| the projector onto the EPR pair
|��′〉. In what follows, we adopt the following pictorial rep-
resentation for EPR pairs:

(3)

where the horizontal lines represent the EPR pair and the dot
captures the normalization d−1/2

A . Let OA be a unitary operator
onHA; thenOA |RA〉 = OT

R |RA〉, where T is the transposition.
Diagrammatically

(4)

Consider two EPR pairs |RA〉 |BB′〉, where B′ is a nB qubits
auxiliary system, and consider a unitary operator OAB acting
on A and B, as OAB |AR〉 |BB′〉. The diagrammatic represen-
tation corresponding to the projection of OAB |AR〉 |BB′〉 onto
〈RA| is

(5)

Noting that 〈RA|OAB |RA〉 |BB′〉 = d−1
A (trAOAB) |BB′〉, we can

use the identity in Eq. (1) to establish the following relation
between diagrams:

(6)

where we considered the diagram corresponding to the projec-
tor d−2

A (trAOAB) |BB′〉 〈BB′| (trAO†
AB). The above relation will

be useful to prove the main equations of the paper.

III. DECODING A BLACK HOLE

Let us start by reviewing the decoding algorithm for infor-
mation retrieval from a scrambling black hole [40,41]. After
a long-time evaporation process, the state of the black hole
B is maximally entangled with the already emitted Hawking
radiation B′, which can be accessed by the observer Bob. This
state is described by an EPR pair |BB′〉. Alice possesses a
quantum state A maximally entangled with a reference state
R, that is an EPR pair |RA〉. The maximal entanglement be-
tween A and R quantifies the information about A possessed
by R. This information is lost when the black hole destroys
correlations between A and R. The initial state of the whole
system is thus described by |RA〉 |BB′〉.

Alice tosses her quantum state—depicted as a journal in
Fig. 1—into the black hole, which will soon emit new Hawk-
ing radiation D and retain internal degrees of freedom labeled
by C. So A,B label the internal degrees of freedom of the
black hole before Alice tosses her journal into it and B′ labels
the Hawking radiation already emitted at that point. After
tossing the journal, the internal degrees of freedom of the
black hole are described by a state on C and the Hawking
radiation is given by D + B′.

The black-hole dynamics are modeled by a unitary U =
IRB′ ⊗UAB which must be random enough to scramble infor-
mation. After the evolution U , the state of the entire system
is given by the pure state |�〉RB′CD = IRB′ ⊗UAB |RA〉 |BB′〉 in
RB′CD, which diagrammatically is given by

(7)

Notice that the number n of qubits initially internal to the
black hole obeys n ≡ nA + nB = nC + nD, so the Hilbert
space of the black-hole interior is shrinking as more Hawking
radiation is emitted.

The information possessed by Alice in her journal would
be recovered by Bob if he could process the Hawking radia-
tion and end up with a state maximally entangled with another
reference state R′ in his possession. In the case that Alice’s
state is a pure state |ψA〉, this would amount to teleporting
|ψA〉 from A to R′.

As [40] showed, the existence of such a recovery proce-
dure is contingent on the unitaryU being scrambling enough.
Because of unitarity, correlations can only be transferred, so
if U is scrambling enough to destroy correlations between
R and C, these must show up somewhere else and can be
decoded by a suitableV ∗. The information shared between the
qubits of Alice R and the internal degrees of freedom of the
black hole C is given by the mutual information I (R|C) :=
S(ρR) + S(ρC ) − S(ρRC ), where S(ρ�) ≡ −trρ� log2 ρ� is
the von Neumann entropy, and ρ� := tr�̄ |�〉 〈�| (with �̄

being the complement of �) are reduced density matri-
ces for � ∈ {R,C,RC}. One can easily see [6] that for
the state |�〉RB′CD one has I (R|C) = nA + nC − S(ρRC ). De-
fine the OTOC as �(U ) := d−1〈tr[PAPD(U )PAPD(U )]〉PA,PD ,
where PD(U ) ≡ U †PDU ; then, the mutual information can be
related to the OTOCs �(U ), by S2(ρRC ) = − log2

dA
dC

�(U )
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FIG. 1. Quantum machine learning protocol for learning the mocking unitaryV capable of performing information recovery from Hawking
radiation. Using a cost function given by OTOCs, the model learns to recover a set of known training states (the green journals) that are tossed
into the black hole. This model unitary V is then used to decode the Hawking radiation emitted after tossing in a new, unknown journal and
retrieve the information contained within it.

proven in [6], as

I (R|C) � − log2 d
2
A�(U ). (8)

A unitary U is said to be scrambling if and only if �(U ) �
d−2
A + d−2

D − (dAdD)−2, where � means up to an order d−2. In
the limit of dA � dD, the scrambling dynamics will therefore
imply that I (R|C) � 0, thus resulting in the destruction of
correlations between R and C. Thanks to the unitarity of U ,
all the information has been transferred to Bob; the mutual
information I (R|DB′) between R and the qubit in Bob’s pos-
session B′ together with the new emitted Hawking radiation D
is maximal, i.e.,

I (R|DB′) � nA. (9)

Let us see how Bob is able to recover the information ini-
tially possessed by Alice. Bob possesses an EPR pair A′R′
and applies a unitary V ∗ to the old Hawking radiation B′
and one-half of his pair A′. Then, by reading the additional
Hawking radiation D, effectively entangling it in another EPR
pair DD′, Bob projects by �DD′ onto DD′ to obtain a final
state |�out〉 = 1√

Pout
�DD′V ∗

B′A′UAB|RA〉|BB′〉|A′R′〉, where Pout
is a normalization. Diagrammatically

(10)

Following [41,77,78], the normalization Pout can be computed
with the help of the diagrammatic formalism introduced in
Sec. II as

(11)

The above diagram is obtained from contracting the diagram
corresponding to �DD′V ∗

B′A′UAB|RA〉|BB′〉|A′R′〉 with itself. By
using Eq. (1) and its diagrammatical representation in Eq. (6),

one arrives to

Pout = 1

d
〈tr[PD(U )PAPD(V )PA]〉PA,PD . (12)

The recovery algorithm is successful if one obtains a max-
imally entangled pair between R and R′ that is factorized
from the rest. In this way, the information about A originally
in the hands of Alice has been successfully transferred to
Bob [40]. In other words, the final state must read |�out〉 �
|RR′〉 ⊗ |rest〉CC′ ⊗ |DD′〉. Success of the algorithm can be
established by computing the fidelity F (V ) := tr(�out�RR′ ),
where �out ≡ |�out〉 〈�out|; the product F (V )Pout can be eas-
ily computed using diagrammatical techniques as

(13)

which is obtained by crunching the diagram in Eq. (10) with
the one corresponding to |RR′〉 [see Eq. (3)]. Using Eq. (6)
one arrives to

F (V )Pout = 1

d2
Ad

〈trPD(U )PD(V )〉PD . (14)

Putting together Eqs. (12) and (14), one derives the main
equation of the paper, i.e., the recovery fidelity F (V ) as a
function of the scramblerU and the decoder V :

F (V ) = 1

d2
A

〈tr[PD(U )PD(V )]〉PD
〈tr[PD(U )PAPD(V )PA]〉PA,PD

. (15)

In the above expression, the role of V is to mock the
behavior of the black hole modeled by U . If V = U ,
the behavior of U is obviously replicated perfectly.
Indeed, the result in [41] shows that in the ideal case
V = U , the fidelity F (U ) reads F (U ) = 1

d2
A�(U )

, and
one can see that if the black hole is indeed scrambling,
one obtains a fidelity F (U ) = 1 − O(d2

A/d
2
D). One can

easily see [77] that tr[PD(U )PAPD(V )PA] = 〈�PA
out|PD ⊗

P∗
D′ |�PA

out〉 where |�PA
out (U,V )〉 := (UAB ⊗V ∗

B′A′ )(PA ⊗
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1A′RR′BB′ ) |RA〉 |BB′〉 |A′R′〉. Thus, F (V ) is a quantity that can
be recast as a ratio of expectation values of local observables
(on D) with supports on accessible parts of the system, D
being the emitted Hawking radiation. Note that, if the qubits
in A are nA = O(1), the new emitted Hawking radiation D
that is collected by Bob must obey nD = nA + log2 ε−1/2 to
feature a ε-maximal mutual information I (R|DB′) = nA − ε

[see Eq. (8)]. Thus, collecting slightly more qubits than the
ones contained in A, Bob decodes the scrambled information
by local O(1) measurements.

A. Learning the black-hole decoder

Can we learn the black hole by observing its Hawking
radiation by some quantum machine learning algorithm? The
presence of barren plateaus [62–69] seems to forbid any kind
of learning if the black hole is scrambling enough, which is
also the condition that allows information retrieval. The main
result of this paper is that—under suitable conditions– - one
can nevertheless learn a decoder V that mocks the behavior of
the black hole sufficiently enough to recover information.

Consider the case that the black hole is modeled
by a t-doped random Clifford circuit U ∈ Ct :=
{Ct−1TtCt−2 · · · T2C1T1C0 |Ck ∈ C(2n)} with Tk being single
qubit T gates applied on random qubits [75]. Such operators
are scrambling enough [75,79] for every t . However, for
t = 0, i.e., random Clifford operators, a learning protocol
based on a METROPOLIS algorithm is possible [11,80,81].
Moreover, it has been recently shown that low t-doping
random Clifford circuits can be efficiently disentangled by
annealing through a suitable METROPOLIS algorithm [15].
In the following, we show a similar METROPOLIS algorithm
based on the cost function F (V ) ≡ [1 + c(U,V )]−1 to learn
the mocking operator V .

From the quantum machine learning point of view, we
describe the procedure as follows. To learn V , we first train
our estimator c(U,V ) by preparing a number O(n2) of copies
of a known state. This state is used as the input of a black hole.
Starting with the identity V0 = I , one tries the cost function
c(U,V ) and optimizes it by local modifications using a Clif-
ford gate g, so that V0 
→ gV0. Acceptance of the gate depends
on improving the cost function c(U,V ) or lowering it with
Boltzmann probability parametrized by β (see Appendix B).
The many copies of the training journal tossed in the black
hole (Fig. 1) correspond to the steps of the METROPOLIS algo-
rithm needed. After the training, one has settled on a V that
minimizes the cost function c(U,V ) with the number of steps
allowed. One can then use V in the recovery algorithm, and
recover information about a new journal tossed into U with
fidelity F (V ).

The numerical simulation of the whole algorithm is com-
putationally very expensive. In order to perform the numerical
simulations on a smaller space, we can exploit the fact that we
are working in the scenario dC � dD. By averaging over the
Pauli group on C instead of D, the cost function c(U,V ) can
be computed as

c(U,V ) =
∑

PC ,PA �=1A |tr[(U †PCVPA)]|2∑
PC

|tr[(U †PCV )]|2 , (16)

FIG. 2. Average over 200 realizations of the fidelity F (V ), de-
noted as F (V ), at the end of the METROPOLIS algorithm as a function
of the doping t , fit to a exp(−αt ) + b where α = 0.167, a = 0.72,
b = 0.28 for nC = 1, while α = 0.129, a = 0.85, b = 0.15 for nC =
2. Each realization is performed for a newly generated black-hole
unitary U . Inset: Same for the teleportation fidelity Fψ (V ), with the
same values for α (see Appendix B).

which can be proven using Eq. (1) (see Appendix B). The
simulations are conducted for a system of n = 10 qubits ini-
tialized in the state |0〉⊗n, with nA = 2 and nC = 1, 2. U is a
random Clifford circuit consisting of t layers each with O(n2)
local gates controlled-NOT (CNOT), H , and P interspersed by
a single T gate per layer [15,75]. We indeed stress that O(n2)
gates from the local gate set {CNOT,H,P} are sufficient to
distill any Clifford operator [82]. This fact lies behind the
reason why, during the training process, we make use only
of O(n2) state preparations that result in O(n2) many updates
V 
→ gV .

The results are shown in Fig. 2. As we can see, for t = 0
a mocking operator V for a black hole modeled by a pure
random Clifford circuit can be learned with perfect fidelity. As
the number t of non-Clifford resources increases, the fidelity
for the mocking operator V decreases exponentially in t . No-
tice that the fidelity also depends on the size nC of the interior
of the black hole. The fact that we are not learning the operator
U can be checked by comparingV withU . Indeed, this would
be forbidden by the barren plateau result found in [62]. We
find that d−1|trU †V |2 < 0.004 for every value of t , including
t = 0. It is important to remark that we only try to reconstruct
the mockingV using merely Clifford resources, in spite of the
fact that the original U also contains non-Clifford resources.
Although searching forV within the Clifford group means we
cannot reconstruct perfectly U ; the learning algorithm fails
with the addition of non-Clifford resources. For instance, for
t = 6, nA = 2, nC = 1, the fidelity obtained using only Clif-
ford gates attains a value of 0.53 versus 0.4 when allowing the
inclusion of T gates. Universal resources are powerful, but
pollute the algorithm [15].

The same recovery algorithm of [77] can be used to employ
the recovery unitary V to perform quantum teleportation be-
tween Alice and Bob. We now show that the previous learning
of the mocking V can be efficiently used to perform telepor-
tation without having any previous knowledge ofU . Let |ψA〉
be the pure state of Alice to be teleported, and let |�ψA

out〉 be

062434-4
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the output state of the black hole manipulated by the decoding
protocol employed by Bob, i.e.,

∣∣�ψA
out

〉
:= 1√

Pψ

�DD′V ∗
B′A′UAB |RA〉 |BB′〉 |ψA〉 , (17)

where Pψ is a normalization. Similarly to Eq. (15), the
fidelity Fψ (V ) to teleport a state |ψA〉, i.e., Fψ (V ) ≡
tr(ψA |ψψA

out〉 〈ψψA
out |), can be computed as (see Appendix A)

Fψ (V ) = 〈tr[ψAtrB(V †PCU )]tr[ψAtrB(U †PCV )]〉PC
〈tr[ψAtrB(V †PCU )trB(U †PCV )]〉PC

. (18)

In the above formulas we denoted ψA ≡ |ψA〉 〈ψA|. In the
inset of Fig. 2 we plot the value Fψ as a function of the
doping t . Again, perfect teleportation is achieved for a Clifford
black hole (t = 0) while the fidelity Fψ (V ) decreases as non-
Clifford resources are employed.

B. Quantum complexity

We have seen that the Clifford black hole can thus be
perfectly learned—again, in the sense that one can learn
the mocking operator V—while this learning becomes less
and less reliable with the injection of non-Clifford resources.
Why is that? This is another instance of the fact [75,83] that
quantum complexity arises when scrambling (that is, efficient
entanglement) is combined with nonstabilizerness, or magic
[83–88]: the resource that is at the root of quantum advantage
for quantum computers and the nonsimulability of generic
quantum systems by classical computers [82,89].

While Clifford circuits are just as efficient in scrambling as
a Haar-random unitary, they do not create a complex pattern
of entanglement, and the fluctuations of entanglement are
very different [75]. Quantum complexity is driven by the con-
spiracy of entanglement and nonstabilizerness (magic), or, in
other words, by the complexity of entanglement [11,12,90]. In
particular, the ensemble fluctuations of the OTOCs defined as
��t := 〈�(U )2〉U∈Ct − 〈�(U )〉2U∈Ct behave very differently,
and it is not surprising that they are governed by the eight-
point OTOC, which probes more fine-grained properties of
scrambling [75] (see Appendix C):

��t � 1

d2
Ad

2
D

[〈OTOC8(U )〉U∈Ct + O(d−2)]. (19)

Using the techniques introduced in [75,76], one can com-
pute Eq. (19) and find ��t � d−2

A d−2
D ( 34 )

t , which interpolates
between ��t = O(d−2

D ) and O(d−2
D d−2) for t = O(1),O(n),

respectively. The relative fluctuations for the cost function
F−1 for U = V are therefore very small, revealing a barren
plateau. However, in searching for the mocking black hole V
we minimize the cost function for a V that is far from the
ideal U . The situation here is similar to the effectiveness of
the success of the disentangling algorithm by the METROPOLIS

algorithm [11,15] in random circuits that are at 2-designs. A
formal proof of why this kind of algorithms does converge in
polynomial time is beyond the scope of this paper.

IV. CONCLUSIONS

A black hole is a very mysterious object that crunches
and scrambles information. The internal dynamics of the
black hole cannot be resolved even by a quantum machine
learning algorithm, so information retrieval from a black
hole through Hawking radiation seems hopeless. However,
we have shown that one can learn a mocking unitary that is
capable of unscrambling and decoding the Hawking radiation
by a METROPOLIS algorithm based on the observation of out-
of-time-order correlation functions. The learning is possible
for black holes that can be modeled by slightly polluted Clif-
ford circuits. Highly polluted black holes cannot be learned.
This result illustrates the crossover from simpler to complex
quantum behavior and demonstrates how the onset of quan-
tum chaos is driven by the conjunction of entanglement and
nonstabilizerness. In view of the results on quantum certifi-
cation in [91], it would be interesting to show that the same
intractability also shows up in the number of measurements
needed to reliably measure the OTOCs in order to effectively
perform information retrieval.

ACKNOWLEDGMENTS

The authors acknowledge support from NSF Grant No.
2014000. The work of L.L. and S.F.E.O. was supported in part
by a College of Science and Mathematics Dean’s Doctoral
Research Fellowship through fellowship support from Oracle,
Project No. R20000000025727.

APPENDIX A: PROOF OF EQ. (18)

To prove Eq. (18) we can proceed using the techniques
introduced in the main text, although the setup is slightly dif-
ferent. First, consider the initial state (output of the black-hole
evolution) to be |�〉B′CD := UAB |ψ〉A |BB′〉. Bob first applies
the decoder unitary V ∗

B′A′ on the state |�〉B′CD |A′R′〉 and then
projects it on �DD′ . The output state reads

(A1)
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where Pψ is a normalization factor. Using the diagrammatical representation of |�out〉, one computes

(A2)

and

(A3)

and taking the ratio between Eqs. (A2) and (A3) one obtains Eq. (18).

APPENDIX B: METROPOLIS ALGORITHM

First let us write Eq. (2) in a smaller space, proving
Eq. (3). Consider the denominator of Eq. (2); using tr(O2) ≡
tr(TO⊗2) where T is the swap operator defined on H⊗2, we
can rewrite this term as

〈tr[PD(U )PAPD(V )PA]〉PA,PD

= 〈
tr(U † ⊗V †P⊗2

D U ⊗VP⊗2
A T )

〉
PD,PA

= 1

dAdD
tr(U † ⊗V †TDU ⊗VTAT )

= 1

dDdA
tr(V † ⊗U †TCU ⊗VTA)

= 1

dd2
A

∑

PC ,PA

|tr(U †PCVPA)|2, (B1)

where we used the following facts:
∑

P�
P⊗2

� = d�T� where
T� is the swap operator having support on � and TT� = T�̄

where �̄ is the complement of �. Similarly for the numerator
of Eq. (2)

〈tr[PD(U )PD(V )]〉PD = 1

d

∑

PC

|tr(U †PCV )|2. (B2)

Putting it all together, we find

F (V ) = [1 + c(U,V )]−1, (B3)

where c(U,V ) is defined in Eq. (3). Note that c(U,V ) � 0
with c(U,V ) = 0 if and only if F (V ) = 1, making c(U,V )
the best candidate for a cost function. Let us describe the

algorithm to numerically find an optimal recovery mocking
unitary V .

Algorithm 1 Training Algorithm.

1: U ← random doped Clifford circuit Ct
2: Fmax ← F (U )
3: V ← 1l
4: F ← F (V )
5: while F < Fmax do
6: Vold ← V
7: Fold ← F
8: g ← random Clifford gate
9: V ← gV
10: F ← F (V )
11: if F < Fold then
12: r ∈ [0, 1]
13: if r < exp[−β(F−1 − F−1

old )] then
14: Undo change: V ← Vold

15: F ← Fold

16: end if
17: end if
18: end while

A constant cooling schedule is employed with β = 250. In
each iteration of the while loop, several 2n × 2n matrix multi-
plications must be performed to obtain the operatorUPCV †PA.
These operations quickly become computationally expensive
as we increase the system size; even the fastest algorithms
for this task [92,93] would require a computation time that
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TABLE I. The table shows the fit parameters for the exponential
model applied to the data. The model equation is a exp(−αt ) + b,
where α, a and b are the fit parameters, while t is the number of
t-gates polluting the Clifford circuit. The parameters are computed

for both F f
(U,V )

and Fψ

(U,V )
for nC = 1, 2.

nC = 1 nC = 2

α 0.167 0.129

F f
(U,V )

a 0.7243 0.8483
b 0.2757 0.1517

Fψ

(U,V )
a 0.5860 0.6794
b 0.4140 0.3206

grows exponentially in n. Furthermore, to avoid indefinite
runtimes when the gradient of c(U,V ) becomes small, we
halt the algorithm after Tmax steps. The value of Tmax used
is 100n2 when nC = 1 and 300n2 when nC = 2, chosen em-
pirically by observing the algorithm’s runtime when t = 0.
Note that the time requirement grows with the number of
qubits as Tmax ∝ n2, as seen also in [11,15,80]. Therefore, the
numerical analysis in this paper is performed for systems of
ten qubits, as larger system sizes would require exponentially
larger computational times.

The parameters for the results fit to a exp(−αt ) + b are
shown in Table I.

APPENDIX C: THE COMPLEXITY OF SCRAMBLING:
THE EIGHT-POINT OTOC

In this section, we present a single correlation function that
tells us whether the algorithm is going to fail or not, i.e., the
eight-point out-of-time-order correlator, proving Eq. (5). First,
let us write the OTOC �(U ) = 〈tr[PAPD(U )PAPD(U )]〉PA,PD as

�(U ) = 1

d2
A

+ 1

d2
D

− 1

d2
Ad

2
D

+ 1

d2
Ad

2
D

×
∑

PA,PD �=1l

1

d
tr[PAPD(U )PAPD(U )] (C1)

and we thus can alternately define a scrambling unitary U as
one such that

f (U ) ≡ 1

d2
Ad

2
D

∑

PA,PD �=1l

otoc4(PA,PD(U )) = O(d−1), (C2)

where we defined OTOC4(PA,PD(U )) :=
1
d tr[PAPD(U )PAPD(U )]. Note that for U ∈ C(2n) being a
Clifford operator OTOC4(PA,PD(U )) = ±1 for any choice of

PA,PD, but f (U ) = O(d−1) still holds for Clifford unitaries,
i.e., Clifford unitaries are scramblers. Note also that

〈 f (U )〉U =
(
d2
A − 1

)(
d2
D − 1

)

d2
Ad

2
D

〈OTOC4(P1,P2(U ))〉U , (C3)

for any P1,P2 chosen to be two nonidentity Pauli operators
and U being a Clifford or t-doped Clifford operator. Now let
us look at the fluctuations in the ensemble of t-doped Clifford
operatorsU ∈ Ct . Direct calculation leads to

��t = 〈 f (U )2〉U − 〈 f (U )〉2U = 〈 f (U )2〉U + O(d−2), (C4)

and the second equality follows from the definition of scram-
bling unitaries, i.e., 〈 f (U )〉U = O(d−1) [see Eq. (C2)], and it
holds for any t ∈ N. Thus, turn to analyze 〈 f (U )2〉U :

〈 f (U )2〉U =
(
d2
A − 1

)(
d2
D − 1

)

d4
Ad

4
D

〈OTOC4(P1,P2(U ))2〉U
+〈R(U )〉U , (C5)

R(U ) : = 1

d4
Ad

4
D

∑

PA,PD,P′
A,P′

D �=1l

[1 − δ(PA = P′
A)δ(PD = P′

D)]

× OTOC4(PA,PD(U )) OTOC4(P
′
A,P

′
D(U )). (C6)

Using standard techniques of the Haar measure over groups
[75,94–96] one proves that for any t ∈ N we have 〈R(U )〉 =
O(d−2). Lastly, using the fact that the Pauli group forms a
1-design [18], it is easy to prove [18] the following:

otoc4(P1,P2(U ))2 = OTOC8(U ), (C7)

where we defined the following eight-point out-of-time-order
correlation function:

OTOC8(U )

:= 1

d
〈tr[P1P2(U )P1P2(U )PP1P2(U )P1P2(U )P]〉P∈Pn

, (C8)

where P1 and P2 are any nonidentity Pauli operators. We can
finally write the following formula:

��t =
(
d2
A − 1

)(
d2
D − 1

)

d4
Ad

4
D

〈OTOC8(U )〉U + O(d−2), (C9)

and in the limit of dD � dA � 1 one arrives to Eq. (5). Thus
the ensemble fluctuations of the four-point OTOC are propor-
tional to the ensemble average of an eight-point correlation
function, which probes more fine-grained properties of scram-
bling, i.e., the complexity of scrambling. We thus define the
complexity of scrambling produced by some unitary opera-
tor U as the behavior of the eight-point correlation function
defined in Eq. (C8).
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