PHYSICAL REVIEW B 107, 134202 (2023)

Entanglement complexity of the Rokhsar-Kivelson-sign wavefunctions
Stefano Piemontese ®,"* Tommaso Roscilde,? and Alioscia Hamma ®1-3-4

1Physics Department, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
2Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

3Dipartimento di Fisica “Ettore Pancini,” Universita degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy

4INFN, Sezione di Napoli, 80126 Napoli, Italy
® (Received 18 November 2022; revised 27 February 2023; accepted 28 February 2023; published 13 April 2023)

Entanglement comes in different forms, some more complex than others. In this paper we study the transitions
of entanglement complexity in an exemplary family of states—the Rokhsar-Kivelson-sign wavefunctions—
whose degree of entanglement is controlled by a single parameter. This family of states is known to feature a
transition between a phase exhibiting volume-law scaling of entanglement entropy and a phase with subextensive
scaling of entanglement, reminiscent of the many-body-localization transition of disordered quantum Hamiltoni-
ans. We study the singularities of the Rokhsar-Kivelson-sign wavefunctions and their entanglement complexity
across the transition using several tools from quantum information theory: fidelity metric, entanglement spectrum
statistics, entanglement entropy fluctuations, stabilizer Rényi entropy, and the performance of a disentangling
algorithm. Across the whole volume-law phase the states feature universal entanglement spectrum statistics.
Yet a “superuniversal” regime appears for small values of the control parameter in which all metrics become
independent of the parameter itself, the entanglement entropy as well as the stabilizer Rényi entropy appear
to approach their theoretical maximum, the entanglement fluctuations scale to zero as in output states of
random universal circuits, and the disentangling algorithm has essentially null efficiency. All these indicators
consistently reveal a complex pattern of entanglement. In the sub-volume-law phase, on the other hand, the
entanglement spectrum statistics is no longer universal, entanglement fluctuations are larger and exhibiting a
nonuniversal scaling, and the efficiency of the disentangling algorithm becomes finite. Our results, based on
model wavefunctions, suggest that a similar combination of entanglement scaling properties and of entanglement
complexity features may be found in high-energy Hamiltonian eigenstates—a very strong candidate being

offered by the many-body localization transition of disordered lattice-spin models.
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I. INTRODUCTION
A. Entanglement and its complexity

Quantum entanglement is often considered as being the
defining characteristic of quantum mechanics and it is a fun-
damental notion for some of the behavior that is impossible
for local classical physics, such as Bell nonlocality [1,2]. In
the context of quantum information, quantum entanglement
represents the resource behind the computational speed-up
offered by quantum algorithms and the central ingredient en-
abling protocols such as quantum teleportation [3—-6].

Since entanglement represents a fundamental form of
quantum correlations between different local parts of a sys-
tem, the question of its physical significance in quantum
many-body systems has surged to great importance in the past
two decades [7,8]. Quantum many-body systems are typically
governed by Hamiltonians featuring local interactions and this
locality is responsible for the spatial decay of correlations in
the ground state, as well as for the area-law scaling of the
entanglement entropy of a subsystem [8—10] corresponding,
e.g., to the von Neumann entropy of the subsystem density
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matrix. Entanglement has provided fundamental insights in
the study of quantum many-body phenomena, such as quan-
tum phase transitions (QPTs) [11-17], exotic phases of matter
featuring topological order [18-22], and quantum many-body
localization [23-29].

More recently, it has been recognized that entanglement
properties of wavefunctions go beyond a single quantity such
as the entanglement entropy of a subsystem. Beyond the no-
tion of bipartite and multipartite entanglement [30-32], it has
also been recognized that entanglement can be more or less
complex [33-35], in relationship with the resources needed to
produce it. The complexity of entanglement can be associated
with an ensemble of properties that appear to be concomitant,
namely the following.

(i) The emergence of a universal entanglement spectrum
statistics, namely a universal distribution for the gaps of the
entanglement spectrum, compatible with the Wigner-Dyson
distribution.

(i) The fact that it can only be produced by resources
that go beyond those required to produce stabilizer states,
namely quantum gates that fall outside of the Clifford
group and are sufficient for universal quantum computation
[36,37], which are responsible for any computational advan-
tage in quantum information processing [38]. This notion of
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“nonstabilizerness” has also been commonly referred to as
magic in the recent literature [39—43].

(iii) The scaling of entanglement fluctuations correspond-
ing to those of random states in the Hilbert space, as well as
of output states of random circuits using universal resources
[44,45].

(iv) The failure of a disentangling algorithm based on
Metropolis sampling of Clifford random circuits [33,34,45],
whereas states with simple patterns of entanglement can be
efficiently disentangled by such annealing methods.

Interestingly, the presence of magic is in principle indepen-
dent of the scaling of the entanglement entropy. Indeed there
are states which are not entangled and which possess magic—
e.g., states produced by single-qubit gates which are out of the
Clifford group. Nonetheless, the complexity of entanglement
is generally thought of as stemming from the conjunction
of a volume-law scaling for entanglement entropies and a
finite magic. Indeed these properties, along with a universal
entanglement spectrum statistics, have been shown to be at the
root of the onset of quantum chaos [44,46-48], the hardness of
disentangling algorithms [33,34,45], the universal behavior of
out-of-time-order correlation functions (OTOCs) [35,49,50],
and the hardness of simulatability of quantum many-body
systems [38,51].

While the role of entanglement properties in quantum
many-body systems has now been firmly established [7,8],
it is only very recently that the connection between nonsta-
bilizerness/magic and states produced by relevant quantum
many-body physics has been the subject of investigation
[51-53]. Relevant progress in this direction has been made
in Ref. [43], where a novel measure of nonstabilizerness—
called stabilizer Rényi entropy—has been introduced, which
is experimentally measurable [54] and directly amenable
to a numerical computation for quantum many-body states
[53,55].

The relationship between entanglement and nonstabilizer-
ness/magic in physically relevant quantum many-body states
has first been explored in the context of quantum circuits,
where efficient entangling resources can be in principle lim-
ited to the Clifford group, while magic is only produced by
universal operations [33,34,56]. Indeed it has been shown
that output states of random Clifford circuits possess volume
law for entanglement just like Haar-random states; however,
their entanglement spectrum statistics is not Wigner-Dyson
distributed, but rather Poissonian. Moreover, the onset of
Wigner-Dyson statistics in the output states of random uni-
versal circuits is accompanied by the appearance of universal
scaling in the fluctuations of entanglement entropy, while
the fluctuations of output states of random Clifford circuits
display nonuniversal scaling [44,45,57]. “Simple” entangle-
ment, associated with the absence of magic, has another
relevant algorithmic consequence: an entanglement annealing
algorithm, which generates a disentangling random Clifford
circuit via the Metropolis algorithm, is very efficient in dis-
entangling a state featuring simple entanglement, without any
information on the circuit that generated it in the first place.
On the other hand, by gradually “doping” random Clifford
circuits with universal operations, such as T-gates, one can
drive a transition towards a complex pattern of entanglement
[44,45,57-60].

In the case of quantum many-body states which are
eigenstates of a local Hamiltonian, entanglement complexity
exhibits a very rich palette of possibilities. Disordered Heisen-
berg spin chains, corresponding to interacting 1D fermions
with a random chemical potential, and featuring a many-body
localization transition, have been shown [51] to exhibit two
different forms of entanglement spectrum statistics. At low
disorder, the model possesses high-energy eigenstates obey-
ing the eigenstate-thermalization hypothesis (ETH) [61-65]
and exhibiting a volume-law scaling for entanglement en-
tropies. These states are also shown to feature a universal
Wigner-Dyson entanglement spectrum statistics and for these
states the disentangling algorithm fails. Therefore, the ETH
phase corresponds to a complex-entanglement phase. Upon
increasing the disorder strength, the many-body localization
transition is accompanied by a violation of the Wigner-Dyson
entanglement spectrum statistics and by area-law scaling of
entanglement. As a result, the disentangling algorithm can
achieve a significant reduction of the entanglement entropy
via a random Clifford circuit, although the convergence of this
algorithm for such states has not been studied. A third form
of entanglement complexity is exhibited by disordered XX
spin chains, corresponding to noninteracting fermions with a
random chemical potential. For those systems, all states fea-
ture Anderson localization for any disorder strength, namely
an area-law scaling of entanglement and concomitantly they
show a Poisson entanglement spectrum statistics and are ef-
ficiently disentangled by an annealed random Clifford circuit
[51].

A different picture is found instead in the ground state of
paradigmatic local Hamiltonians such as the quantum Ising
model: there entanglement is known to exhibit an area-law
scaling, translating into a half-system entanglement entropy
which is O(1) in one dimension for every point of the phase
diagram, except at the critical point of the ferromagnetic-
paramagnetic transition [13]. However, the stabilizer entropy
exhibits always a volume-law scaling. In such models, the
critical point is special because it is the point where magic also
delocalizes and cannot be resolved in terms of local quantities
[53]: in the gapped phase of a chain with N qubits the magic
M of ablock of L spins would serve as a good approximation
for the magic of the whole chain My by My >~ N/LM;. On
the other hand, at the critical point, long-range correlations
manifest themselves by an error in the approximation scaling
with L~

The ground state of the 1D quantum Ising model does not
exhibit a complex entanglement pattern, as its entanglement
spectrum statistics is far from the Wigner-Dyson distribution.
Indeed, it features also other symptoms of simple entangle-
ment pattern: it is efficiently disentangled by entanglement
annealing [33,45] and lacks a volume-law scaling for en-
tanglement entropy in spite of the volume-law scaling for
stabilizer entropy. This is likely going to be the case for the
ground states of most local Hamiltonians, given that an area-
law scaling of entanglement (up to logarithmic corrections) is
their characteristic feature. Moreover, even in the presence of
volume-law entanglement, a volume-law scaling for the sta-
bilizer Rényi does not imply universal entanglement spectrum
statistics, but rather this scaling should be faster than a specific
threshold as shown in Refs. [44,45,57].
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The unifying picture emerging from these results is the
following. Complex entanglement, exhibiting volume-law
scaling for entanglement entropy and a Wigner-Dyson en-
tanglement spectrum statistics, is a characteristic of excited
Hamiltonian eigenstates satisfying ETH, as well as states
prepared with random universal circuits. On the other hand,
entangled states which are not complex are found as eigen-
states of strongly disordered Hamiltonians, as output states
of random Clifford circuits, and ground states of local
Hamiltonians.

B. Probing entanglement complexity in model wavefunctions

The above emerging picture is so far only reported “piece-
wise” in the recent literature—namely only partial aspects
of entanglement complexity have been investigated for either
Hamiltonian eigenstates or output states of random circuits.
In this paper we aim at a thorough investigation of entangle-
ment complexity in a family of quantum many-body states
which have the property of admitting an explicit expression
for their coefficients, depending on a single parameter, and
which feature a rich palette of different phases with varying
entanglement complexity upon tuning the control parame-
ter. This one-parameter family of states has the so-called
Rokhsar-Kivelson (RK) form, equipped with a random sign
structure (hereafter denoted as RK-sign family)—namely the
wavefunction coefficients in the computational basis have
amplitudes given by the Boltzmann weights of the so-called
random-energy model (REM) [66] of statistical mechanics
and random signs. In particular, the RK model is based on
a quantum random energy model (QREM). This model can be
seen as the limit p — oo of the p-spin model (see [67]). As
such, the RK model is nonlocal.

The parameter A controlling the property of the states cor-
responds to the inverse temperature for the REM. These states
have been first studied in Ref. [28], where they have been
found to exhibit a transition from a phase possessing volume-
law scaling of entanglement to a phase featuring subextensive
scaling, reminiscent of many-body localization.

In this work, we show rigorously that the RK-sign states
possess a transition at a critical value A, revealed by the
fidelity metric and corresponding to the spin-glass phase tran-
sition of the REM. Nonetheless the existence of this transition
is in fact independent of the sign structure of the states, while
the entanglement properties are crucially dependent on such
a structure. As a consequence the entanglement properties
reveal a different picture, exhibiting a rich palette of differ-
ent scaling regimes and complexity features. We investigate
all the known complexity metrics for entanglement, namely
(i) the scaling of the half-system entanglement entropy, (ii)
the adherence of the entanglement spectrum statistics to the
Wigner-Dyson distribution, as measured by the Kullback-
Leibler divergence Dgp, and by the average ratio of adjacent
gaps in the entanglement spectrum, (iii) the amount of non-
stabilizerness measured by the stabilizer Rényi entropy M>,
(iv) the behavior of entanglement ensemble fluctuations, and
(v) the hardness of factorizing by means of an entanglement
annealing algorithm [33,34,45].

In agreement with Ref. [28] we find that the RK-
sign states possess two scaling regimes for the half-system

volume-law entanglement
universal ESS
sub-volume-law entanglement
non-universal ESS
super-universal regime

S
rd

0 0.2 Ap ~ 048 M.~ 0.589 A

FIG. 1. Schematic diagram of the various entanglement phases
we found for the RK-sign states. The entanglement transition at Ag
divides a phase with volume-law scaling of the entanglement entropy
and universal (Wigner-Dyson) entanglement entropy statistics (ESS)
from a phase with sub-volume-law entropies and nonuniversal ESS.
A further superuniversal regime is identified within the volume-law
phase.

entanglement entropy, namely a volume-law scaling for A <
Mg and a sub-volume-law scaling for A > Ag, with Ap < A..
The volume-law regime is characterized by the adherence of
the entanglement spectrum to the Wigner-Dyson statistics,
and as such it can be qualified as featuring complex entangle-
ment; on the other hand, the sub-volume-law phase exhibits
a nonuniversal entanglement spectrum statistics. Nonetheless
for the whole range of parameters, encompassing the two
above-cited phases, the stabilizer Rényi entropy is extensive,
revealing that the entanglement of the RK states requires uni-
versal resources to be prepared. Most remarkably, within the
volume-law phase a superuniversal regime exists for A < 0.2,
in which all complexity metrics become essentially indepen-
dent of A and take a universal behavior: the stabilizer Rényi
entropy scales to its maximum possible value, the fluctuations
of entanglement entropy exhibit a universal scaling to zero
as in random quantum states, and the disentangling algorithm
fails completely to reduce the entanglement entropy of the
state. A sketch of the various entanglement regimes is given in
Fig. 1.

This paper is organized as follows. In Sec. II we in-
troduce the RK-sign family and show the existence of a
singularity in the fidelity metric. In Sec. III we describe
our results for the entanglement entropy scaling and its en-
semble fluctuations, the entanglement spectrum statistics, the
stabilizer Rényi entropy, and the efficiency of a disentan-
gling algorithm. Conclusions and perspectives are offered in
Sec. IV.

II. QUANTUM PHASE TRANSITION OF THE
ROKHSAR-KIVELSON-SIGN FAMILY

A. RK-sign wavefunctions

In this section, we define the family of states dubbed RK
sign and study their fidelity metric [68—70]. We consider a
system of N qubits, whose Hilbert space is spanned by the
computational basis |o) = |0y, 02, ..., on) of eigenstates of
the o'* Pauli operators. The RK-sign family [28,71], dependent
on the parameter A, is then defined as

lv() = )- 6]

T2 L

Here the “energies” E, obey the so-called random energy
model (REM) [66], namely they are normally distributed
variables with zero mean and variance Var(E;) = N; the
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signs W, are random with probabilities p(W, = £1) = % The
normalization factor contains the partition function Z(A) =
>, e **£ namely the partition function of the REM model
at inverse temperature 7! = 2 (taking kg = 1).

For W, = 1, the above wavefunctions correspond to the so-
called RK states, which are related to ground states of strongly
frustrated quantum antiferromagnets [72]. On the other hand,
the randomization of the sign is a necessary condition for the
RK states to mimic the physics of excited eigenstates of local
Hamiltonians [28,73,74], which exhibit in general a volume-
law scaling of entanglement entropies. Indeed states which
have random but equally signed coefficients are expected to
not exhibit any scaling of the subsystem entanglement entropy
[73]. Hence, in order to represent states which have entan-
glement complexity, a crucial ingredient of the model is the
addition of random signs, potentially leading to volume-law
scaling of entanglement [28,73,74].

The scaling of entanglement entropy with subsystem size
in the RK-sign states is fundamentally controlled by the pa-
rameter A, which governs the distribution of the amplitudes
for the wavefunction coefficients. Entanglement entropies are
found to exhibit a transition from a volume-law scaling at
small XA to sub-volume-law scaling at large A [28]. One may
suspect that this transition is connected with the thermody-
namic transition happening for the REM at A, = +/2 In2/2 ~
0.589, at which the second derivative (the specific heat) and
higher derivatives of the partition function Z(A) become sin-
gular. Yet, examining the scaling of Rényi entropies with
different indices n for a (1/3)-(2/3) bipartition of the system,
Ref. [28] concludes that the entanglement transition occurs at
smaller values of A and in a way which is dependent on the
Rényi index. In Sec. III A we shall confirm this result by fo-
cusing on the von Neumann entropy (corresponding ton = 1)
for a (1/2)-(1/2) bipartition. Nonetheless, in the remainder of
this section we shall instead focus on another indicator of tran-
sitions in one-parameter families of wavefunctions, namely
the fidelity metric, which can be proven rigorously to exhibit
a transition at A..

B. Singularity in the fidelity metric

One-parameter families of quantum states, similar to the
RK-sign one, can be easily obtained as eigenstates of a
quantum Hamiltonian H (1) dependent on a parameter. Singu-
larities in such families of states as a function of A correspond
therefore to (excited-state) quantum phase transitions of the
Hamiltonian of interest. Even though we do not have a “par-
ent” Hamiltonian for the RK-sign family, it is simple to build
one mathematically (via projectors onto the states of inter-
est) and the random nature of the RK-sign states implies
that the parent Hamiltonian is a disordered one, with disor-
der strength controlled by A. The transition in the RK-sign
model can therefore be viewed as a disorder-induced tran-
sition in excited eigenstates of a random Hamiltonian, akin
to the many-body localization transition of disordered spin
models.

In order to investigate the existence of quantum phase tran-
sitions as a function of the parameter A of the RK-sign family,
one can adopt a general strategy to detect the existence of
quantum phase transitions in one-parameter families of states

as singularities in the dependence of the state properties on the
parameter itself. Such a strategy is based on the behavior of
the fidelity [69,75] between two nearby states parametrized by
A1 ™ Ao, defined as f(Aq, A2) = [{(¥(11)]¥(X2))|?. For every
A, we can evaluate f(A, A + €) for an infinitesimal €, allowing
for the expansion f(A, A +€) ~ 1 — g5, €2 + o(€?). The co-
efficient g;, is the so-called fidelity (quantum Fisher) metric
[70,76] or fidelity susceptibility [77],

g = (W 1d9) — (W1, @)
= —1 ” A A+ 3
- Eﬁf( ’ G) o ’ ( )

providing a notion of distance in Hilbert space among states
belonging to the one-parameter family.

Quantum phase transitions can be generically detected by a
nonanalycity [78] in g, as shown in a wide variety of recent
numerical studies [69,75,79,80]. Moreover, the fidelity metric
is the quantum Fisher information of the quantum state, ex-
pressing the fundamental sensitivity of the state to variations
of the A parameter and bounding the precision with which the
A parameter can be estimated by making measurement on the
state. The singularity of the fidelity metric at quantum phase
transitions is therefore at the root of the enhanced metrological
sensitivity for parameter estimation associated with quantum
criticality [81].

The fidelity metric for the RK-sign wavefunctions can be
easily computed analytically and it can be directly related to
thermodynamic properties of the REM—related to the ampli-
tudes of the wavefunction coefficients. We start by observing
that the A derivative of the state vector |9, ) takes the form

|0,) = \/_Z( E)rem — Eo)Woe "7 10}, (4)

where (E")rpm = £ Y, Efe ?*Eo is the thermodynamic av-
erage for the REM Thls allows us to compute the two
terms appearing in the expression of the fidelity metric,

Eq. (2):

(W 10,0) = Z( E)rem — Eg)'e 5)

= (E>REM - (E)ZREM’ (6)

(Y1) = Z(

Hence the fidelity metric, averaged over the ensemble of en-
ergies {E,}, is equal to the energy fluctuations of the REM at
inverse temperature 7! = 2A:

T = (EDgpwm = (A?E)rem, ®)

)Rem — Eg)e 2 =0, (7)

where (.. .) denotes the average over the ensemble of RK-sign
states at fixed A.

The energy fluctuations of the REM are directly re-
lated to its heat capacity via the fluctuation-dissipation
relation

d(E)rem _ (A’E)gem
or T

©))

Crem =
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FIG. 2. Plot of the fidelity metric g;; per qubit for different
system sizes. Each point is an average over N, = 1000 realizations
of the wavefunction. The dashed line shows the expected behavior in
the thermodynamic limit.

In turn the heat capacity of the REM is analytically known
[66,82] to exhibit a jump singularity at the transition of the
model:

0, T <T,, (10)
| E TS,

with T, = 1/+/2 In2 [83]. This immediately implies that the
fidelity metric of the RK-sign family g, = T*Cgrgym inherits
the singularity of the specific heat of the REM model at
re=1/Q2T.) =+/21n2/2 in the form of a simple step-
function singularity:

— )0, A>aA,
g“_{N, A <A (i

The above analytical calculation is strictly valid only in
the thermodynamic limit N — oo. It is instructive to examine
finite-size effects by computing g;, numerically on finite-N
wavefunctions via the finite-element derivative formula:

1 fOuA+26) = 2fOu A+ )+ 1
2 €? ’

For every realization of W,, E;, we compute g;, and average
it over Ny = 1000 realizations. In Fig. 2 we show the behavior
of g, for different system sizes N = 8, ..., 18. The curves
of g,/N for different values of N are found to cross in
the vicinity of the critical value A., consistent with the exis-
tence of a jump in the thermodynamic limit. To reconstruct
the position of the critical point X, from finite-size scaling, we
analyze the derivatives of g;, for our finite systems. For each
N, we consider the polynomial that fits the points of g;, as a
function of A. Then, we take the first derivative of these poly-
nomials and identify the minimum points A, (V) [Fig. 3(a)].
We fit the minima A (N) to an exponential curve of the form
A exp(—B/N) + C, such that Ay (N — oo) = A+ C. This
scaling law is phenomenological, but it is strongly suggested
by our data [as shown in Fig. 3(b)] and the extrapolated value
of Ay, Ap(00) = 0.588 +0.013 is in quantitative agreement

8w = — (12)
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FIG. 3. (a) First derivatives of the polynomials used to fit g;, /N,
for different system sizes N: the dots mark the minima A, (N) of
each curve. (b) Localization of the critical point A. through finite-
size scaling: the minima Ay (N) are fitted to an exponential curve
of the form Ay (N) = A exp[52] + C. A x*-minimization approach
[84] gives A = 0.249 £ 0.005, B =149 £ 1.4, C = 0.339 £ 0.007,
and A. is extrapolated to infinite size as N-! = 0. The results
are plotted here on a semilogarithmic scale, where a linear trend
(R? ~ 0.9994) emerges.

with the REM transition point A, = +/2 In2/2 ~ 0.589. This
scaling analysis highlights the fact that finite-size effects are
very strong for the system sizes we considered.

III. ENTANGLEMENT COMPLEXITY TRANSITION

In this section, we examine the quantum phase transition
of the RK-sign family from the point of view of entanglement
complexity, computing the behavior of different complexity
metrics as a function of the parameter A. More precisely, we
will compute the entanglement entropy for a subsystem with
N/2 qubits, the entanglement spectrum statistics, the stabilizer
Rényi entropy, the ensemble fluctuations of the entangle-
ment entropy, and the disentangling power of a Metropolis
algorithm.
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FIG. 4. (a) von Neumann entanglement entropy S(i) per qubit
as a function of A, for different system sizes N. In the inset, first
derivative of the best-fit curves for S(A); the dots mark the minimum
of each curve. (b) S(¥)/N, as a function of N, for different X in the
interval [0,1.5].

A. Scaling of entanglement entropy

For every state |1/ (A)) we consider an equal bipartition into
two groups of N/2 qubits and calculate the von Neumann
entropy of the reduced density matrix of the half system
Sn2(¥) = —Tr(pn2log, pny2), where pwjz = Tyl ) (V.
The half-system entropies are then averaged over a sample
of size Ny of RK-sign states to give the results shown in
Fig. 4. There we observe that, upon increasing A, a clear
transition takes place between a phase with volume-law scal-
ing of entanglement at low A and a phase with subextensive
scaling. In fact, the low-A phase appears to exhibit superex-
tensive scaling, but this can only be a finite-size effect, as
extensive scaling is the fastest one allowed for entanglement
entropy. Moreover, the volume-law phase remarkably con-
tains a regime for A < 0.2 where the entanglement entropy

is constant, a feature that will be common to other figures of
merit examined in this work.

The location of the transition between the two scaling
regimes (volume law vs subextensive scaling) can be in prin-
ciple deduced from the position of the minimum derivative
of the Sy2/N curves: indeed, regardless of the specific scal-
ing dimension of the entanglement entropy at the transition,
one can generally expect that the critical point be marked
by the strongest decrease of Sy/» upon varying the control
parameter. The inset of Fig. 4(a) shows that the minimum
derivatives exhibit little scaling in position and indicate an en-
tanglement transition at Ap ~ 0.48 < A.. While this estimate
might still be affected by significant finite-size corrections,
our conclusion (entanglement transition preceding the REM
transition) is in agreement with the findings of Ref. [28]. In
fact it is easy to understand why the two transitions should be
independent, based on rather general arguments. As we have
seen in Sec. II B, the fidelity metric is uniquely sensitive to
the amplitudes of the wavefunction coefficients and their A
dependence—namely on the localized vs delocalized nature
of the wavefunctions when expressed on the computational
basis. On the other hand, as shown in Ref. [73], the sign struc-
ture of the coefficients is crucially important in determining
the scaling of the entanglement entropy: if one considered,
e.g., positive-definite coefficients, all RK states would ex-
hibit a sub-volume-law scaling of entanglement entropy. This
means that different sign distributions for the coefficients (less
random than the one adopted here) can move the entangle-
ment transition of the RK-sign family or make it disappear
altogether, while by construction the fidelity-metric transition
remains insensitive to these features. Hence the entanglement
transition and the REM transition are necessarily decoupled.
This observation may look surprising, but in fact changes
in the behavior of the entanglement pattern are not always
accompanied by a singularity in the fidelity metric related
to a QPT [17,85]. As an example, Ref. [86] shows that the
ground-state factorization occurring in the XYZ model in a
field, albeit providing a special behavior in the entanglement
properties, does not show any singularity in the fidelity metric
related to the ground-state wavefunction.

B. Entanglement spectrum statistics

In this section we examine the entanglement spectrum
statistics, which has been pointed out as a fundamental
indicator of entanglement complexity in Refs. [33,34,56].
Considering the eigenvalues of the half-system reduced den-
sity matrix {a;} i=1,..., 2% — 1) in increasing order a; <
aiy1, we define the gaps between adjacent eigenvalues §; =
ajy1 — aj, as well as the two different ratios of adjacent gaps:

5
= (13)
k
_ min[g41, 5] (14)

= .
max|[x1, 6]

We then focus on the gap-ratio distribution P(7) and on the
average gap ratio (7), built from the gaps of all the density
matrices associated with a sample of RK-sign states (of size
N; = 1000) upon varying the A parameter.
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It has been shown [34,56] that complex entanglement is
associated with level repulsion in the entanglement spectrum
and, specifically, with the emergence of Wigner-Dyson (WD)
statistics, namely the distribution of gap ratios [87]

1 r+r*yr
Pyp(r) = - —————.
Z(1+r+r)ttay
This distribution of gap ratios is associated with random ma-
trices belonging to the Gaussian orthogonal ensemble (GOE)
(forwhichy = landZ = %), as well as the Gaussian unitary

ensemble (GUE) (for whichy =2and Z = 8‘1‘—%) [88]. In our

case of interest, the reduced density matrix is real valued (as
are the wavefunction coefficients) so that the relevant ensem-
ble is expected to be the GOE. On the other hand, “simple”
entanglement is associated with departure from the Wigner-
Dyson statistics and the emergence of alternative statistics not
showing level repulsion—the simplest case being Poisson’s
statistics, associated with random eigenvalues, resulting in a
gap-ratio distribution Ppojsson(7) = (1 4 )72 [89].

In Fig. 5 the gap-ratio distribution P(r) (blue stars) is
shown for two different values of A on the two sides of the
entanglement transition. For A = 0 (< Ag) we see that the gap
distribution agrees well with the GOE Wigner-Dyson form, as
expected from a complex-entanglement phase. On the other
hand, for A = 1.5 (> Ag), the distribution strays away from
the Wigner-Dyson form, although it is not complying either
with Poisson statistics.

To quantify the discordance between the gap-ratio distri-
bution P(r) of the RK-sign states and that resulting from
Wigner-Dyson statistics, Pwp(r), we evaluate the Kullback-
Leibler divergence between the two distributions

DxL[P(r)||Pwp(r)] = Y P(r) In[P(ri)/Pwp(r)]l.  (16)
k

s)

We show Dy as a function of A in Fig. 6(a) for different sys-
tem sizes, along with an extrapolation to the thermodynamic
limit. As one can see, for A < Ag, Dy extrapolates to zero in
the thermodynamic limit. Upon crossing the transition, Dgp,
becomes finite: this suggests that the entanglement transition
of the RK-sign states is marked by a sharp shift in the en-
tanglement spectrum statistics, namely it is accompanied by a
sharp transition in entanglement complexity as well.

Another way to quantify the discordance of the entangle-
ment spectrum statistics with the Wigner-Dyson statistics is to
evaluate the average (7) defined in Eq. (14). This average can
be used as a direct indicator of the specific statistics followed
by the entanglement spectrum, as it takes the value (7) ~ 0.53
for the GOE, whereas, e.g., for Poisson statistics one has the
value (7) ~ 0.39 [90]. (7) is plotted as a function of A in
Fig. 6(b), where one can see that for a certain A, the phase with
A < A, is essentially consistent with the GOE statistics, while
for A > A, there is a gradual departure from GOE behavior.
The exact value of A, at which this departure happens cannot
be estimated precisely, due to the residual noise in (7) close
to the transition. Our calculations show that (7)(A = 0.44) =
0.528 £0.003 and (7)(A = 0.5) = 0.524 £ 0.002, allowing
us to locate the transition point in this interval of A values.
This result is compatible with the value of the entanglement
transition Ag = 0.48 and leads us to consider the two points as

A=0
10’ — = Poisson
0.81" —— GUE
== GOE

Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

;
(a)
A=15
1'0_‘;‘. — — Poisson
0.8l —— GUE
Y —— GOE
0.6 LA \ % Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r
(b)

FIG. 5. Comparison between the distribution P(r) for the gaps of
the entanglement spectrum of N = 18 qubits and known statistical
distributions (GOE, GUE, and Poisson—see text), for two different
values of A: (a) A = 0; (b) A = 1.5.

equivalent: A, >~ Ag. These metrics suggest therefore that the
whole volume-law phase of the RK-sign states exhibits uni-
versal Wigner-Dyson statistics of the entanglement spectrum.

C. Ensemble fluctuations of the entanglement entropy

References [44,45,57] have shown that another signature of
entanglement complexity in an ensemble of wavefunctions is
offered by ensemble entanglement-entropy fluctuations. Fol-
lowing the analysis of the above-cited references, we define
the variance of sample-to-sample fluctuations of the half-
system entanglement entropy

Var(Sn2) = S3,,(¥) — Snp(¥) 2, an

where again the symbol (...) represents the average over a
number Ny of samples (here, Ny = 1000).

Figure 7 shows the variance of the half-system entan-
glement entropy as a function of A; a peak appears for
intermediate A getting sharper with increasing system size and
moving to lower values of A. While a scaling analysis of the
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FIG. 6. Entanglement spectrum statistics of the RK-sign wave-
functions as a function of A: (a) Kullback-Leibler divergence Dy
between the RK-sign distribution of gap ratios and the one stemming
from Wigner-Dyson statistics. The dashed vertical line marks the
critical value Ag; (b) (7) as a function of A, compared with the
corresponding values for the GOE statistics (*0.53) and the Poisson
statistics (*0.39). All results are obtained from a pool of 1000 RK-
sign wavefunctions.

peak position is rendered complicated by the noisy nature of
the variance extracted from limited statistics, it appears rather
plausible that the peak position drifts towards the entangle-
ment transition at Ag. Moreover, the peak clearly separates
rather sharply two scaling regimes: one of very slow scaling
of the variance upon increasing the system size at small A and
another one of much faster scaling at large A.

The scaling ansatz capturing the size dependence of the
variance across the entire parameter range reads as

Var(Sy/2/N) ocd™?, (18)

where d = 2V is the Hilbert-space dimension. The exponent
can then be obtained from a linear fit of log,[Var(Sy/2/N)] vs
N—examples of such fits are shown in Fig. 8(a) for two values

00 02 04 06 08 1.0 12 1.4
A

FIG. 7. Entanglement-entropy fluctuations of the half-bipartition
of the system, as functions of A, for different system sizes. The
averages computed in the derivation of Var(Sy,,) are obtained from
a pool of 1000 samples.

of A, providing widely different values of 6 between the A <
Mg regime and the A > Ap regime. Figure 8(b) puts together
the values of the 6 exponent obtained for different values of
A. In particular, two asymptotic regimes emerge: one for A <
0.2 with 0 =~ 1.2 and one for A 2 1.5 with 6 = 0.14. The first
regime is in fact rather remarkable, as it exhibits a universal
scaling of entanglement entropy fluctuations consistent with
that of the output states of random quantum circuits, for which
0 ~ 1.25 [45]. These two regimes are separated by a sharp
drop in 8 which marks the transition for A &~ Ag, accompanied
by the slowest scaling. This behavior is clearly reflected in the
appearance of the peak in Fig. 7.

D. Stabilizer Rényi entropy

As we have seen in the previous sections, the entanglement
transition of the RK-sign states—from volume-law scaling
to subextensive scaling—is accompanied also by a transition
in entanglement complexity as revealed by the entanglement
spectrum statistics. A similar phenomenology has been ob-
served for the high-energy excited states of the disordered
XXZ model [51]. Nonetheless, it is important to remark that
volume-law scaling for entanglement is not necessarily con-
nected to a complex pattern of entanglement, as it has been
shown in a series of works [33,34,44,51,56,91]. For instance,
the output of a random quantum circuit made of Clifford
gates features volume-law scaling for entanglement, but it
exhibits Poisson entanglement spectrum statistics and nonuni-
versal fluctuations for the entanglement entropy [44,45]. The
above example refers to states that have been produced with
Clifford-group gates; therefore, a direct way to tell apart such
states with respect to the RK-sign ones is to probe the nonsta-
bilizerness/magic of the latter. In order to do so, we consider
the entropy associated with the probability distribution over
the Pauli decomposition of a state—the so-called stabilizer
Rényi entropy [43], which quantifies explicitly nonstabilizer-
ness.
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FIG. 8. (a) Scaling of the entanglement entropy ensem-
ble fluctuations with system size, fitted to the scaling ansatz
log,[Var(Sy,2)/N] = —0ON + const, for two values of A. The dashed
lines represent the best-fit lines for each choice of A: if A = 0, one
finds & = 1.205 £ 0.009, whereas, if A = 1.5, one finds 6 = 0.140 £+
0.006. (b) Exponent 0 for the scaling of entanglement-entropy fluc-
tuations as a function of A.

The stabilizer 2-Rényi entropy is defined as follows:
consider the set P of all operators obtained from the ten-
sor product of N single-qubit Pauli gates—that is, P =
(I,X,Y,Z}®N. If P, (n=1,...,4") are the elements of P,
then the stabilizer 2-Rényi entropy M, of any pure state ) is

given by
P,
22<w| W)) N (19)

Note that the computation of this quantity requires one to
evaluate 4" expectation values of 2V x2V operators and that,
for each value of A, the random nature of the RK-sign states
requires that we also average the result over several (V)
samples. This means that M, (1) requires significantly longer
computation times with respect to other quantities that have
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FIG. 9. (a) Stabilizer Renyi entropy M, per qubit as a function
of A, for different system size; each point is computed averaging
over N; = 400 samples. (b) Scaling of stabilizer Renyi entropy per
qubit at A = 0. The system size N goes from 6 to 11. The number of
realizations N, is 25 for N = 11 and 400 otherwise. R> = 0.9996 [92]
indicates a good linear fit. The intercept of the best-fit line represents
the value of M,(0) in the thermodynamic limit: M,(0) >~ 0.99N.

been considered earlier in this work. It is therefore com-
putationally expensive to reach the same system sizes as
those considered in the previous sections and to provide a
proper finite-size scaling analysis. Nonetheless, already the
accessible sizes we could consider (N = 6,7, 8,9) provide
a suggestive picture of the behavior of nonstabilizerness in
the RK-sign states, as shown in Fig. 9(a). There the curves
of M, /N appear to exhibit a superextensive scaling for suf-
ficiently low A—which, similar to the entanglement entropy,
must necessarily turn into extensive scaling at larger N, as one
can prove that M, < N for N qubits [43]. In fact, as shown
in Fig. 9(b), for A = 0 we can show that M, /N extrapolates
to a value close to 0.99, nearly saturating its upper bound.
We argue that this scaling behavior should persist over the
entire regime A < 0.2, given that the stabilizer Rényi entropy
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is essentially independent of A over this A range for all the
system sizes we considered.

Increasing the value of A, the M, /N curves are found to
drop to smaller values, with a maximum A derivative (in ab-
solute value) corresponding roughly to Ag. Nonetheless, even
upon entering the sub-volume-law phase, the scaling of the
stabilizer Rényi entropy appears to maintain a volume law.
The coexistence between an extensive stabilizer Rényi en-
tropy and subextensive entanglement entropy is not surprising
and it has been observed in the ground state of the quantum
Ising chain [53].

E. Disentangling hardness

A final, more heuristic probe of the complexity of en-
tanglement featured by the RK-sign states is offered by the
efficiency of disentanglement using an entanglement anneal-
ing algorithm. Within this algorithm, the RK-sign states are
evolved with a Clifford circuit stochastically built as follows.
The random extraction of a single qubit gate (Hadamard gate,
S gate) or a two-qubit (CNOT) gate is put to a Metropolis-
algorithm test: namely, if the gate leads to a decrease in
entanglement entropy across the average over all the half-
system bipartitions, then the gate is retained. If instead the
entanglement entropy increases by a AS, then the gate is re-
tained with a Metropolis-Hastings algorithm scheme, namely
with a probability of acceptance given by p = exp(—BAS).
Here 8 is a fictitious inverse temperature, which is a parameter
of the algorithm and which can be a function of the annealing
step (defining the so-called annealing schedule). The detailed
scheme of the algorithm can be found in Refs. [34,45].

Several recent works have shown a link between entan-
glement complexity of a state and hardness to disentangle it
with the above-cited algorithm. In Refs. [33,34,45,56,57] on
random quantum circuits, the presence of magic in the quan-
tum states—obtained for example by inserting 7 gates in the
random circuit—is found to lead to output states of the circuit
exhibiting Wigner-Dyson entanglement spectrum statistics.
And, in turn, the same states are found to be hard to disentan-
gle using the entanglement annealing algorithm—namely the
maximum amount of reduction of the von Neumann entropy
in a given bipartition that can be obtained by the annealing
algorithm is small compared to the initial entropy. A similar
phenomenon accompanies the ETH-MBL transition in disor-
dered systems, as shown in Ref. [51].

Based on the above-cited works, we apply the
disentangling-hardness diagnostics to the RK-sign states,
expecting it to evolve significantly when moving across the
entanglement transition. Introducing the initial half-system
entanglement entropy (S;) and the final one (Sy) after the
disentangling procedure, we define the efficiency of the
algorithm via the relative disentangling performance:

n) =1-25¢/Si, (20)
where the symbol (...) indicates again the average over a
number N; of extractions of the initial state and subsequent re-
alization of the annealing algorithm. In the following we take
N; = 200, at which we observe a convergence of the averaged
disentangling performance with the size of the sample.
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FIG. 10. Efficiency n of the disentangling algorithm applied to
RK-sign states with N = 12 qubits. (a) Constant-8 schedules, with
different B values. (b) Variable-8 schedules: blue (const): S(t) =
Bo orange: B(1) = Pi(t) = folt + D'; green: B(1) = Pa(t) = By +
7.1x107%2; red: B(t) = P3(t) = Bo + 1.2x107¢%. In both panels,
the algorithm has a total duration of fyax = 7200 steps and the
averages are performed over a sample of size N, = 100.

The performance of the annealing algorithm depends in
principle on (1) the annealing schedule, namely the variation
of the effective inverse temperature § with the number of
annealing steps, and (2) the total number of annealing steps
tmax and its scaling with system size. Our results indicate
nonetheless that, in the & < 0.2 regime, the efficiency of the
algorithm remains very low, regardless of its parameters.

Figure 10 shows n(X) for different annealing schedules,
namely for various values of 8 being held constant [Fig. 10(a)]
and for different power-law annealing schedules in the form
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FIG. 11. Dependence of the disentangling efficiency on the an-
nealing schedule duration tyax = kN 2 Here N = 12 and N, = 200.

B(t) = Bo + Bit* in Fig. 10(b). We observe that, regardless of
the specific annealing schedule—the length being fixed—its
performance remains very low in the small A regime on which
the figures focus. In particular the performance is minimal and
nearly independent of A for A < 0.2, which corresponds to a
plateau regime for the entanglement entropy [Fig. 4(a)], the
scaling of entanglement fluctuations (Fig. 8), and the stabilizer
Rényi entropy (Fig. 9). Given the small sensitivity on the
annealing schedule, in the following we shall concentrate on
the simplest, constant-§ scheme; in particular in Fig. 10(a)
we observe that the disentangling efficiency stops increasing
with B8 for 8 2 400; hence in the following we will consider
B =400, as this value falls in the regime that shows the
saturation in efficiency.

As for the dependence on the overall length of the anneal-
ing schedule, following [33,34,45] we take fyax (V) to scale
as tyax = kN2, where k is constant. In Fig. 11 we plot (i)
for different values of k, observing again that for A < 0.2 there
is nearly no dependence of the disentangling efficiency on the
length of the annealing protocol, while for larger values of A
the efficiency goes up with k—marking a regime of partial
disentanglement—but the k dependence becomes weak for
k ~ 100. A final remark concerns the size dependence of the
disentangling efficiency: Fig. 12 shows that, when the anneal-
ing duration scales in the same way with N2, the disentangling
efficiency strongly decreases with increasing system size; in
particular, for A < 0.2, the efficiency is found to rapidly scale
to zero upon increasing N.

In conclusion, we observe that the disentangling efficiency
is a good indicator of the higher complexity of entanglement
of the RK-sign states for small A compared to those at large
. Neither the fidelity-metric transition at A, nor the entangle-
ment transition at Ag seem to affect the A dependence of the
annealing efficiency. Yet the overall behavior reveals again a
special regime for A < 0.2 in which the annealing efficiency
is very weakly dependent on any parameter of the annealing
schedule (including its duration) and it rapidly falls to zero

0 Pilieiep) cmitlh : :
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 12. Dependence of the disentangling efficiency on system
size for the constant-8 schedule. Here N, = 200 and fyax = 100N2.

with system size. On the other hand, longer entanglement
annealing schedules lead to a larger disentangling efficiency
in the complementary A 2 0.2 regime.

F. Superuniversal regime

As seen in the previous sections, for A < 0.2 we observe
a superuniversal regime, namely a regime in which the en-
semble of states belonging to the RK-sign family exhibits an
average entanglement, entanglement fluctuations, and magic
which scale in a way very similar to that of the ensemble of
random states in Hilbert space. Such states can be thought of
as generated from a same reference state (say all N spins up),
which is acted upon by a unitary which is random in the sense
of the Haar measure. Similarly one can view the RK-sign
states as generated via random unitaries distributed according
to a different measure than the Haar measure (hereafter called
RK-sign measure). In this section we attempt a more detailed
comparison of the RK-sign measure with the Haar measure,
aiming at better characterizing the superuniversal regime and
contrasting it with respect to the regimes at larger X.

First of all, we can understand the similarity between the
statistical properties of the RK-sign states at small A and the
ones of random states by noticing that, in the limit A — 0,
[¥ (X)) is a superposition of all possible basis configurations
with equal amplitudes and random signs. The amplitudes of
the wave-function coefficients are fixed and the phase of the
coefficients is extracted out of a bimodal distribution (with
values O or ) instead of a fully flat one (on [0, 277]). Yet this
appears to be sufficient in order to reproduce the above-cited
scaling of entanglement and magic properties of fully random
states. In particular, this observation strongly suggests that the
randomization of amplitudes is irrelevant for entanglement
complexity and that its defining aspect is phase randomiza-
tion.

Moving beyond these qualitative observations, we compare
the Haar-measure ensemble with the RK-sign ensemble by
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FIG. 13. Logarithm of ®,({y;(M\)})D; as a function of A, for
different values of the moment index (¢ = 1, ..., 4). Each data point
corresponds to an ensemble of K = 1000 realizations of RK-sign
states of N = 12 qubits.

evaluating whether the latter makes up for an approximate
t design [93], namely, whether the RK-sign measure is capa-
ble of reproducing the statistics of the Haar measure of up to
the 7th moment. As it has been shown in Ref. [44], an impor-
tant threshold is that of + = 4, which sharply discriminates the
Clifford group from the Haar measure and it is at the onset
of quantum chaos. The ensemble {|v;(1)) fi —with K the
number of samples—is a (projective) ¢ design if and only if
its rth frame potential, defined as [93]

1
@ (Y1) = 25 D 14w 1) @1)
Jk

attains the value

d+t—1\""
@({%(A)}&)=Dﬁz< +§ ) . (22

where d = 2V is the dimension of the Hilbert space. In gen-
eral, one has CD,({w;(k)}f(:]) > D,~!. An ensemble with the
property D, ®, ~ 1 realizes an approximate ¢ design. On the
contrary, high values of the product D, ®, denote low random-
ness of the ensemble of wave functions.

The off-diagonal contributions to @, can be written as
O, ({y: (W)Y ) = @, ({y;(M)}E ) — K~'. Numerical evalua-
tion shows that the number ® converges rapidly with K, which
means that it also well represents the limit K — oo for the
frame potential ©,.

In Fig. 13 we plot the logarithm of CTD,({l//,-()L)}lK:l )D; for a
sample {1/fi()»)},K:  of K = 1000 realizations of RK-sign states
of N = 12 qubits, as a function of A, and for different values
of the moment 7. As we can see, the superuniversal region
shows a constant behavior of the 7-frame potential, which has
the same order of magnitude of the value for a 4 design. In this
sense this is an approximate 4 design. In comparison, as one
crosses over away from the superuniversal region, the value

of D, ®, rapidly increases to very high values, as one can see
from a logarithmic scale; see Fig. 13. This signals a marked
departure from a projective ¢ design—the more pronounced
the higher the moment 7.

We observe therefore that the the superuniversal regime
features high (albeit imperfect) randomness of the ensemble
of wavefunctions, together with a nearly perfect independence
of such randomness with respect to the parameter A.

IV. DISCUSSION

In summary, our analysis of the entanglement features of
the RK-sign wavefunctions shows that this family of states
possesses an entanglement transition decoupled from that
of the fidelity metric and separating a volume-law phase,
characterized by universal Wigner-Dyson statistics for the
entanglement spectrum, from a sub-volume-law phase with
nonuniversal entanglement spectrum statistics. Within the
volume-law phase a superuniversal regime appears character-
ized by universal entanglement entropy fluctuations, stabilizer
Rényi entropy scaling towards its theoretical maximum, and
close-to-null efficiency of a disentangling algorithm. These
results show that the RK-sign states showcase a very rich
palette of different levels of entanglement complexity, es-
sentially encompassing all the regimes observed previously
piecewise in various model systems—from the output states
of random quantum circuits to ground and excited states of
many-body Hamiltonians.

The phenomenology unveiled here in a one-parameter fam-
ily of model quantum states may be expected to appear in the
entanglement features of excited Hamiltonian eigenstates—
a strong candidate being the excited states of disordered
Hamiltonians featuring a many-body localization transition. A
systematic study of entanglement complexity metrics for such
states (and in particular of the stabilizer Rényi entropy), going
beyond the analysis offered by Ref. [51], appears therefore as
a rather appealing perspective. Nonetheless it is important to
underline the significant computational overhead required to
extract the stabilizer Rényi entropy of quantum states; on the
technical side, more efficient approaches may be envisioned to
calculate it, based, e.g., on a stochastic sampling of the Pauli
decompositions of a state.
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