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Abstract

We advance the characterization of complexity in quantum many-body systems by ex-
amining W -states embedded in a spin chain. Such states show an amount of non-
stabilizerness or “magic”, measured as the Stabilizer Rényi Entropy, that grows loga-
rithmically with the number of qubits/spins. We focus on systems whose Hamiltonian
admits a classical point with extensive degeneracy. Near these points, a Clifford circuit
can convert the ground state into a W -state, while in the rest of the phase to which the
classical point belongs, it is dressed with local quantum correlations. Topological frus-
trated quantum spin-chains host phases with the desired phenomenology, and we show
that their ground state’s Stabilizer Rényi Entropy is the sum of that of the W -states plus
an extensive local contribution. Our work reveals that W -states/frustrated ground states
display a non-local degree of complexity that can be harvested as a quantum resource
and has no counterpart in GHZ states/non-frustrated systems.
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1 Introduction

The problem of simulating quantum states is, generally, intractable for classical computers. For
this reason, Feynman put forward the notion of a quantum computer [1] as only a quantum
device would be able to simulate a generic quantum system efficiently. This necessity is of par-
ticular relevance for states of quantum many-body systems that can be used to accommodate
new exotic phenomena of matter like quantum criticality [2], topological order [3–5], exotic
metals without quasi-particle excitations [6, 7] quantum systems away from equilibrium like
systems of ultra-cold atomic gases [8–10], etc.

However, the picture that has emerged after years of research is much more multifaceted
than what Feynman weighed. Indeed, the large amounts of studies of quantum properties,
most notably entanglement, in quantum many-body systems have fostered and given an im-
pulse towards relevant progress in their simulation. It is now well-known that states defined
in one-dimensional systems obeying area law [11, 12] can be efficiently represented and ma-
nipulated using matrix-product states (MPS) techniques [13, 14], tensor-networks [15, 16],
entanglement renormalization schemes [17] and other computational procedures. Hence, the
complexity of quantum simulations does not affect all quantum states and does not arise from
entanglement alone. Certain classes of states can be, at the same time, highly entangled and
efficiently simulated on a classical computer.

This is the case of the stabilizer states [18], namely those states that can be obtained
from the computational basis using both Pauli operations and the so-called Clifford gates. The
Clifford gates are a set of three quantum gates, namely the Hadamard, CNOT, and the Phase
gate [19,20], that are very efficient in creating entanglement [21,22] but do not provide any
quantum supremacy [1,23–25]. Since they can be efficiently represented (i.e. with a cost that
increases only polynomially with the size of the system) on a classical computer, there is no
information processing that a quantum computer could do by Clifford resources that would not
be efficiently performed by a classical computer. On the other hand, as soon as such circuits
get doped with non-Clifford resources, their entanglement pattern becomes more complex,
driving a transition to universality and quantum chaos [26–29].

In the context of quantum many-body systems, the study of non-stabilizerness has been
limited, probably because of the hardness of computing the existing measures for this resource,
which has been dubbed magic in the folklore [30–33]. Among the few exceptions [34–36] one
that is worth noting is [37] where the authors show the usefulness of quantum many-body
states with non-Clifford resources for quantum computation.

Lately, however, a new measure of non-stabilizerness has been introduced [38] as the
Stabilizer Rényi Entropy (SRE), which can be computed efficiently for MPSs [39] but is also
amenable to experimental measurement [40, 41]. In Ref. [42], by exploiting the computabil-
ity of the SRE, it was shown that the ground state of an Ising spin chain in a transverse
field, despite obeying entanglement area law [11], does possess an extensive amount of non-
stabilizerness. In the gapped phases, the SRE can be resolved by local quantities, i.e. its value
can be well approximated as the sum of the SRE of its parts. This picture fails at the quantum
critical point, where the correlation length diverges [43, 44], and the entanglement shows a
logarithmic violation of the area law. Here, the local approximation fails with a large offset
error due to entanglement and magic getting a diverging logarithmic correction [39] which
cannot be captured by local measures. Therefore, one has to consider very large blocks to get
a reasonable approximation of the exact result. It is worth reminding that at critical points
decimation schemes like the MPS encounter a hurdle, because of the logarithmic divergence of
entanglement. The resulting picture is of a quantum complexity emerging from a delocaliza-
tion of non-stabilizerness, i.e., the impossibility of resolving SRE in terms of local quantities.
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In this paper, we explore the delocalization of SRE in quantum many-body systems, by
considering a class of states – the W -states [45] – which are a global superposition of a macro-
scopic number of factorized states. By embedding these states as the ground states of a quan-
tum spin chain and adding additional interactions to dress these states with local correlation,
we achieve a detailed characterization of various contributions to their SRE.

Notice that, although the results presented in [42] are associated with a particular model,
the picture there obtained is expected to be quite general. Indeed, these results agree with the
ones expected for ground states obtained by exploiting quasi-adiabatic continuation [46] from
a classical point with a finite degeneracy. In this context, a classical point is meant as a point in
the phase diagram where the Hamiltonian reduces to a sum of terms that commutes with each
other and the SRE of the symmetric mixture of all its elements vanishes. The deformations of
the Hamiltonian associated with the quasi-adiabatic continuation, induce the growth of local
quantum correlations, which explains both the extensivity and the local nature of the SRE [47].

In this work, we consider a different situation, where quantum many-body systems admit
classical points with ground state manifolds whose number of elements scale with L. These
states can be grouped into a finite number of families, each of which admits a base made of
states that can be obtained from each other by spatial translations. To provide an example,
this is the case of the spin one-half chains with topological frustration, which boils down to the
frustrated Ising model at the classical point [48–50]. This last system admits a ground state
manifold whose basis is the set of single kink states, i.e. states with perfect Néel order except
for a ferromagnetic defect (with two parallelly aligned neighboring spins) which constitute a
domain wall switching between Néel orders. The 2L kink states can be arranged in 2 different
families of states (with different parities for the magnetization), in which each element can be
obtained from the others by spatial translations (i.e., by shifting the kink).

Moving away from the classical point, generally, the extensive degeneracy gets lifted, and,
depending on the symmetry of the term competing with the Ising one, the ground state can be
represented by a symmetric coherent superposition of the kink states. This happens, among
other cases, when the competing term commutes with the parity of the magnetization along a
direction orthogonal to that of the Ising interaction [51–53]. The symmetric linear superposi-
tion of the kink states can be connected, through a Clifford circuit, with the W -states, whose
SRE will be shown to grow logarithmically in L. This non-vanishing SRE of the W -states can-
not be resolved in terms of local quantities, since it comes from the delocalized nature of the
linear superposition. Therefore, in the proximity of the classical point, we expect an SRE that,
instead of vanishing as in [42], depends logarithmically on L, thus signaling that they belong
to a different and inequivalent class of states, compared to the usual case. Moving further
away from the classical point, a finite correlation length is developed which adds to this loga-
rithmic growth part and an extensive correction, similar in nature to the one discussed above.
In fact, in the case of topologically frustrated systems, this second term can be traced back to
the SRE of the corresponding unfrustrated system.

The manuscript is organized as follows. First, in Sect. 2 we introduce the W -states, and
we evaluate analytically their SRE and its dependence on the system size. Next, in Sect. 3 we
show how the SRE of the W -states is related to the symmetric linear superposition of magnetic
defects (kinks) states which, in the proximity of a classical point, well-describes the ground
state of a family of topologically frustrated one-dimensional spin-1/2 models. Next, in Sect. 4
we analyze in detail some examples of topologically frustrated integrable models, and we
underline differences and analogies with the unfrustrated counterparts. Finally, in Sect. 5 we
draw our conclusion.
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2 W-states

Let us start by recalling that, to quantify the amount of non-stabilizerness for a generic state
defined on a one-dimensional system made of L qubits, it is possible to use the Stabilizer
2-Rényi Entropy (SRE) [38] that is defined as

M2(|ψ〉) = − log2

�

1
2L

∑

P

〈ψ| P |ψ〉4

�

, (1)

where the sum on the right-hand side runs over all possible Pauli strings P =
⊗L

j=1 Pj for

Pj ∈ {σ0
j ,σ

x
j ,σ y

j ,σz
j} where σ0

j stands for the identity operator on the j-th qubit.
Let us start by considering a set of L states, each of which is an element of the computa-

tional basis. Defining T the translation operator, we assume that each element |ψ j〉 satisfies
the following relation |ψ j+1〉 = T |ψ j〉. Since each |ψ j〉 is an element of the computational
basis, it is an eigenstate of 2L Pauli strings with associated eigenvalues equal to ±1. It has a
vanishing expectation value for all the other Pauli strings. Therefore, its SRE vanishes identi-
cally as well as the one of a classical state. However, if instead of considering only one of the
elements of the set, we take into account the translational invariant linear combination of all
of them, i.e. the state |χ〉 = L−1/2

∑

j |ψ j〉 we obtain an SRE different from zero. To evaluate
the SRE of |χ〉, let us observe that regardless of the particular expression of |ψ j〉, since it is an
eigenstate of a Pauli string, it is always possible, by exploiting only local rotations, to map it
into the state | j〉 = σz

j |−〉
⊗L where |±〉 stand for the eigenstates of σx with eigenvalues ±1.

Hence, the symmetric superposition |χ〉 is equivalent to the well-known W -states [45] defined
as

|W 〉=
1
p

L

L
∑

j=1

σz
j |−〉

⊗L . (2)

W -states play a key role in the theory of quantum information since they maximize the mul-
tipartite entanglement [45] while retaining the maximum amount of bipartite entanglement
after local measurement on one of its part [54]. As such, they are considered good candidates
for realizing quantum memories [55].

From the expression of |W 〉 in (2) it is possible to evaluate analytically the value of
M2(|W 〉) which turns out to be equal to

M2(|W 〉) = 3 log2(L)− log2(7L − 6) (3)

(see Appendix A for detailed proof).
The result in (3) shows that there is a whole class of states, that is the W -states and all other

states that can be obtained from it with the help of a stabilizer circuit, whose SRE displays a
logarithmic dependence on the system size. This class is different from the one obtained by
using Clifford circuits on a fully separable state, a class to which also the GHZ states [56]
belongs and which is characterized by a zero non-stabilizerness.

3 Non-stabilizerness close to a classical point

Let us now turn back to consider a quantum many-body problem. If one of the states of the
set {|ψ j〉} is a ground state of a translationally-invariant Hamiltonian at its classical point,
then all the elements of the set, as well as all the possible linear combinations of them, are
also ground states of the Hamiltonian. This implies that the Hamiltonian holds, at its classical
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point, an extensive degeneracy. An example of a situation like the one described can be found,
for instance, in classical (non-disordered) frustrated systems [57–60].

By turning on a quantum (competing) interaction, in general, the massive degeneracy is,
at least partially, lifted. In agreement with perturbation theory, the ground state can be well
approximated by a linear combination of the elements in the set {|ψ j〉}. It is not possible to
make a general statement about the particular linear combination that minimizes the energy,
since it strongly depends on both the expression of the classical Hamiltonian and on the nature
of the perturbation. To have a taste of the richness of this phenomenology, see Ref. [61] for the
case of one-dimensional topologically frustrated models. Therefore, we are forced to choose
a particular family of models.

From now on, we focus on the translationally invariant one-dimensional model whose
Hamiltonian can be written in the form

H = J
L
∑

j=1

σx
j σ

x
j+1 −λ

L
∑

j=1

Oj . (4)

The parameter λ allows for tuning the relative weight of the two terms. At λ = 0 (classical
point), the Hamiltonian boils down to a simple 1D Ising model that, in the presence of topolog-
ical frustration, shows the extensive degeneracy in the ground state manifold that we are look-
ing for. In a translationally invariant 1D system, topological frustration is induced by choosing
antiferromagnetic interactions (J = 1) and by enforcing the so-called frustrated boundary con-
ditions (FBC) that are imposed by setting: 1) periodic boundary conditions (σαj = σ

α
j+L ∀ j, α);

2) odd number of sites (L = 2M + 1 for any strictly positive integer M).
The family of Hamiltonians in (4) features a second term in competition with the Ising

one which preserves translational invariance, violates the parity symmetry along the direction
of the Ising interaction but preserves the one with respect to an orthogonal direction, in our
case the z direction. Moreover, to exploit the methods presented in Ref. [42], we also require
the resulting model to be mappable to a free fermionic one, by making use of the Jordan-
Wigner transformation [44]. This family of Hamiltonians is extremely wide and includes,
among others, the transverse field Ising model (TFIM) [43], obtained by setting Oj = σz

j and
the Cluster-Ising model (CIM) [62, 63], that is the simplest example of the family of Cluster
models [64,65], which is obtained choosing Oj = σ

y
j−1σ

z
jσ

y
j+1.

At the classical point λ = 0, the Hamiltonian in (4) admits a ground state manifold with
a degeneracy equal to 2L, as an effect of Kramer’s degeneracy theorem. This manifold is
described by the union of two extensive sets of states, which are {|k〉= T k−1⊗M

j=1σ
z
2 j |−〉

⊗L}
and {|k′〉= T k−1⊗M

j=1σ
z
2 j |+〉

⊗L} for all k and k′ running from 1 to L = 2M +1 where |±〉 are
the eigenstates of σx with eigenvalues ±1. The elements of these two sets of states are known
as kink states or domain-wall states and are Néel’s states with a localized magnetic defect (two
neighboring spins parallelly oriented which interpolate between the two Néel orders) [61].

Depending on the choice of Oj , a finite λ reduces the extensive ground state degeneracy
of the classical point to a finite odd number. In the cases analyzed in this paper, we have
two different behaviors. For the topologically frustrated TFIM, we have that the degeneracy
is completely removed and the dimension of the ground state manifold is always equal to
1 [51, 52]. On the contrary, for the CIM, we have two different situations. If L is odd, but it
is not an integer multiple of 3 the degeneracy is completely lifted, and we obtain a ground
state manifold whose dimension is equal to 1. On the other hand, if L is simultaneously odd
and an integer multiple of 3 the dimension of the ground state manifold is equal to 3. [53].
However, independently of the degree of the ground state degeneracy, as the lowest energy
state we always find the symmetric superposition of kink states with zero momentum that we
can write as
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k

Figure 1: Pictorial representation of the Clifford circuit Ŝ in (6) for L = 5. The H and
Z boxes stand respectively for the Hadamard computational and the σz operator on
the chosen qubit. The CNOT gates involve two qubits and are represented by a line
connecting a black dot, indicating the qubit that acts as the controller, and a colored
circle signaling the one that can be flipped.

|Wk〉=
1

p
2L

L
∑

k=1

(|k〉+ |k′〉) . (5)

The |Wk〉 looks similar to |W 〉 and can be obtained from it using a simple stabilizer circuit.
This means that we can write |Wk〉= Ŝ |W 〉 where Ŝ is the stabilizer circuit

Ŝ =
L−1
∏

j=1

C(L, L − j)

 

M
∏

j=1

σz
2 j−1

!

H(L)σz
L

L−1
∏

j=1

C( j, j + 1)Πz . (6)

In (6) H( j) = 1p
2
(σx

j + σ
z
j ) stands for the Hadamard gate acting on the j-th qubit, while

C( j, l) = exp
�

ıπ4 (1−σx
j )(1−σz

l )
�

is the CNOT gate on the l-th qubit controlled by the value

of the j-th one while Πz =
⊗L

j=1σ
z
j is the parity operator along z. It is worth underlining that

since the operators in the second tensor product of the CNOT operators do not commute each
other, the product must read as

∏L−1
j=1 C( j, j+1) = C(L−1, L) ·C(L−2, L−1) · . . . ·C(1,2). This

circuit is depicted in Fig. 1 in the case of L = 5. Since M2 is invariant under stabilizer Clifford
circuits, we have M2(|WK〉) =M2(|W 〉). Thus, for systems that satisfy our hypothesis, in the
proximity of the classical point, the SRE does not vanish but scales logarithmically as in eq. (3).

4 Analysis of some topologically frustrated models

Moving further away from the classical point with extensive degeneracy, the approximation
we used in the previous section ceases to be valid. Therefore, We must determine the exact
expression for the ground state and obtain the value of the SRE from it. This procedure cannot
be performed with general arguments such as those used up to now, and the problem must
be analyzed case by case. In this paper, we will focus on two different models, namely the
topologically frustrated version of both the TFIM and the CIM, whose ground states have been
analyzed in previous works [51,53] exploiting the Jordan-Wigner transformations that allow
mapping the spin systems in free-fermionic ones.

In Fig. 2, we depict the results obtained for the SRE as a function of λ for both models. For
the sake of clarity, in the case of CIM, we split the discussion in two, depending on whether the
size of the system is or is not an integer multiple of 3. This choice is justified not only from the
presence or absence of a ground state degeneracy in the frustrated case but also from the fact
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Figure 2: Behavior of the SRE as a function of the parameter λ for the TFIM (Panel
A), CIM with odd L not integer multiple of 3 (Panel B) and CIM with L odd and
integer multiple of 3 (Panel C). Both models show a critical point at λ= 1 where the
unfrustrated models reach a local maximum. In all panels, the points represent the
value of SRE obtained for frustrated systems (J = 1) while the lines depict the SRE
for unfrustrated ones (J = −1).

that even the non-frustrated models exhibit two different behaviors for L equal or different
from an integer multiple of 3 [62].

In all panels, we see similar behaviors. For the unfrustrated models, the SRE vanishes at
the classical point, increases with λ reaching the maximum at the critical value λ = 1, and
then decreases vanishing in the limit of diverging λ. The only exception to this picture is the
CIM with L = 3 which clearly shows a pathological behavior due to the fact that the cluster
interaction extends to the whole system. On the contrary, the SRE for the frustrated model
always starts with a non-zero value, as predicted in eq. (3), then, depending on the size of the
system, can or cannot reach a maximum before the quantum critical point. Increasing L such
a maximum becomes both more evident and closer to the phase transition. Above the critical
point, the behaviors of the SRE for the frustrated systems are similar to the unfrustrated ones
and tend to coincide as λ increases.

On the other hand, in Fig. 3, for several values of λ, we evaluate the SRE as a function of
L for the ground states of the unfrustrated models (left column) and the frustrated ones (right
column). In agreement with the results obtained in [42], regardless of the value of λ, the SRE
for the unfrustrated models always displays a linear dependence on L. Instead, the picture of
the frustrated models is much richer. The linear dependence on L is preserved for both the
critical (λ = 1), and the gapped case (λ > 1). On the contrary, for λ < 1 we see a non-linear
dependence on L.

While it is easy to extrapolate the behavior of the SRE for the unfrustrated systems with
large L, thanks to the linear trend visible even at small sizes, for the frustrated models the
situation is more complex. Analyzing the data, we can identify two clearly different behaviors.
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Figure 3: Comparison between the SRE for the unfrustrated system (left column) and
the topologically frustrated (right column) for the different models: TFIM (panels A);
CIM with L not an integer multiple of 3 (panels B); CIM with L an integer multiple of
3 (panels C). The different values of λ are in the legends. While SRE always grows
linearly with the chain length for the unfrustrated cases, topological frustration adds
non-linear contributions that, in the thermodynamic limit, reduce to eq. (7).

In the thermodynamic limit, in the topologically frustrated phases, the SRE can be seen as the
sum of a local term equal to the one of the corresponding unfrustrated model, and a second
contribution coming from the delocalized |Wk〉 state. This means that, at least for large L, we
expect that, in the frustrated phase,

M2(J = 1, L,λ) =M2(J = −1, L,λ) +MW
2 (L) , (7)

where MW
2 (L) is the SRE of a W -state that is given in (3). On the other hand, M2(J = 1, L,λ)

stands for the SRE for the frustrated model while M2(J = −1, L,λ) stands for the SRE eval-
uated in the unfrustrated one, obtained changing the sign of J but keeping fixed the values
of both L and λ. On the contrary, immediately outside such a phase, the effect of frustration
tends to disappear as L increases.

To highlight this picture, in Fig. 4 we plot the behavior of the relative frustrated SRE cor-
rection that is the difference between the SRE for the frustrated and the unfrustrated models,
for fixed values of λ and L, normalized with MW

2 (L), i.e.

R(L,λ) =
M2(J = 1, L,λ)−M2(J = −1, L,λ)

MW
2 (L)

. (8)

In all the cases analyzed in the figure, the results are consistent with our picture. In fact, for
λ < 1, i.e. when the system is in the frustrated phase, the quantity R(L,λ) tends asymptoti-
cally to 1 for large chains. In all other cases, it tends to vanish with L. It is worth noting that
the values of the ratio are not exactly 1 or 0 but tend to these thresholds only for large L.

In the thermodynamic limit, quantities defined on finite supports converge to the same
value for a frustrated system and its unfrustrated counterpart, but when the size is finite
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Figure 4: Behavior of the relative frustrated SRE correction R(L,λ) as function of L
for different models and values of λ: TFIM (panels A); CIM with L not an integer
multiple of 3 (panels B); CIM with L an integer multiple of 3 (panels C).

there are corrections scaling like 1/L [51]. We stress that these corrections cannot explain
the logarithmic dependence of the SRE on the size of the chain, since it provides only a size-
independent correction to the extensive SRE of the frustrated model. Nevertheless, it allows
quantifying the finite-size effects on the magic. In fact, in Ref. [42] the authors proved the
local nature of the SRE for the unfrustrated Ising model by showing how its behavior is well
mimicked by the SRE of the reduced density matrix of a single spin. In other words, labeled
α1(λ) the SRE of the reduced density matrix of a single qubit

α1(λ) = log2

�

1+m2
z

1+m4
z

�

, (9)

where mz = 〈σz
j 〉 is the expectation value of σz

j over the ground state of the unfrustrated
model, we have that the SRE M2(J = −1, L,λ ̸= 1) ≃ Lα1(λ). In the frustrated case, the
expectation value of σz

j acquires a correction proportional to L−1 (〈σz
j 〉 = mz + 2/L), which,

when plugged into (9), gives

M2(J = 1, L,λ ̸= 1)≃ Lα1(λ) + 4mz

�

1
1+m2

z
−

2m2
z

1+m4
z

�

. (10)

We see that even accounting for the correction, a local approximation for the SRE fails to
reproduce the non-local logarithmic growth coming from the W -states. This feature can also
be connected to MPS representations. States that can be represented as translational invariant
MPSs, such as the ground state of the unfrustrated Ising model, have extensive SRE [39]. In
contrast, the W -state has no efficient representation as a translational invariant MPS [13,66],
thus a violation of the extensive property of SRE is possible. Obviously, MPS representations
of W -states with boundary tensors exist but, they are not translational invariant MPS. On the
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other hand, one can find a translational invariant MPS representation for the W -states but
with linearly increasing bond dimensions [67].

Furthermore, we note that (10) is not valid for the CIM since mz = 0. This fact implies
that in order to mimic the SRE for the unfrustrated model, we cannot limit the reduced density
matrix of a single spin, but we have to take larger partitions, where we can recover similar
behaviors.

5 Conclusions

In conclusion, in our work, we have considered a well-known family of states in the field of
quantum information, namely the W -states. For this family, we have calculated the value of
the SRE, and we have highlighted the logarithmic dependence of the latter on the size of the
system. This non-zero SRE does not come from the individual states whose combination gives
life to the W -states, but from the particular, non-local, superposition of them, which produces
a completely delocalized SRE. In fact, the W -states are written in terms of states that are
eigenstates of Pauli strings and therefore, taken individually, they have a null non-stabilization
value.

We have shown how these states are realized naturally in a quantum spin chain close to its
classical point when the system is topologically frustrated. The quantum term competing with
the Ising interaction, but preserving the parity of the magnetization in a transverse direction
selects a superposition of factorizable kink states which, through a Clifford circuit, can be
exactly mapped into the W -states. Since any measure of non-stabilization remains unaffected
by the application of a Clifford circuit, the ground state of the (nearly classical) spin chain and
the W -state share the same, non-vanishing SRE which grows logarithmically with the number
of qubits/spins. This behavior should be contrasted to that of non-frustrated systems, which
are close to their classical point approach GHZ-state and have zero SRE.

Moving away from the classic point, the competition between the quantum interactions
gives rise to an additional contribution that scales linearly with L in a way that is analogous
to that of the unfrustrated counterparts. Therefore, in a topologically frustrated system, the
SRE is the result of the coexistence of a dominant local contribution and a subdominant one
originating from the delocalized nature of the W -states.

This work combines quantities and concepts from two different fields: quantum computing
and the theory of complex quantum systems, and provides new insights for both. From the
many-body point of view, it offers further evidence of the difference between the same model
with and without topological frustration and shows that the former has a much richer (non-
local) complexity.

From a quantum information theory perspective, the results presented in this paper pro-
vide a new embedding of W -states in a physically realizable setting and a generalization
of these states to a finite correlation length. Furthermore, the additional SRE of the frus-
trated systems, particularly relevant for microscopic and mesoscopic systems, can be a valu-
able resource for the design of devices based on topological frustrated models. To provide
an example, let us consider fault-tolerant quantum computers, which are quantum computers
with a physical error rate below a certain threshold. Accordingly with the threshold theo-
rem [68–70], through quantum error correction schemes, the associated logical error can be
suppressed to arbitrarily low levels. Fault-tolerant quantum computations are commonly run
by state synthesis protocols, where a resource state |φ〉ini combined with error-corrected Clif-
ford operations is transformed into a target state |φ〉target [71]. Magic (SRE) quantifies the
non-stabilizer resources needed to synthesize a particular state or unitary [31, 72, 73]. As
the SRE is invariant under Clifford unitaries, a necessary condition for state synthesis is that
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M2(|φ〉target) ≤ M2(|φ〉ini). Thus, it bounds the minimum amount of magic resource states
needed to simulate a state on a quantum computer. For example, the commonly used magic
state |T 〉 defined as |T 〉 = 1p

2
(|0〉 + e−iπ/4 |1〉), which can be used to realize a single T-gate,

that together with the Hadamard and the CNOT gates give access to universal quantum com-
putation [74] has magic equal to M2(|T 〉) = log2(4/3). But, even if we consider L = 3, which
represents the minimum size for which we can distinguish among W and GHZ states, the
SRE of a W -state is larger by log2(4/3). Hence, a single three-qubit W -state, and therefore
any topological frustrated one-dimensional system, could provide an amount of non-stabilizer
resources sufficient for the realization of a T-gate.
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A Analytic derivations of SRE

In this Appendix, we detail the analytical derivations of the SRE for a W state. Let us start by
recalling the definition of the W state in the x-basis (see (2)) as

|W 〉=
1
p

L

L
∑

i=1

σz
i |−〉

⊗L . (A.1)

Denoting with P a generic Pauli string operator defined on the system of L qubit, to determine
the SRE given in (1), we have to evaluate the expectation value of the W state over P, i.e.

〈W | P |W 〉=
1
L

L
∑

i, j=1

〈−|⊗L σz
j Pσ

z
i |−〉

⊗L . (A.2)

Let us consider separately the two different cases, i = j and i ̸= j, that will provide two
different kinds of contribution to the SRE, i.e.

MW
2 (L)≡M2(|W 〉) = − log2

�

1
2L

�

Oi= j +Oi ̸= j

�

�

. (A.3)

When i = j, we have that only the string in which there is no σ y
k either σz

k give a non-zero
expectation value. Hence, the non-vanishing contribution will arrive only by 2L strings that
can be put in the form P ′ =

⊗L
k=1σ

α
k , where α ∈ {0, x}. The absolute value of each term

defined in eq. (A.2) depends on the number l = 0, . . . , L of σx
k operators in the string P ′ and

it is equal to ∥ L−2l
L ∥. Taking into account all the possible combinations, the contributions of

these terms is

Oi= j =
L
∑

l=0

�

L − 2l
L

�4 L!
l!(L − l)!

. (A.4)
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On the opposite, in the case i ̸= j, the terms that provide a non-zero contribution
lives in a different set. In fact, in this second case, only string operators of the form
P ′′ =

⊗L
k=1,k ̸=i, j σ

α
k ⊗ (σβi σ

β
j ), where α ∈ {0, x} while β ∈ {y, z} provide a non-vanishing

contribution which absolute value is equal to 2
L . Since all of them provide the same contribu-

tion to the magic, it is easy to see that Oi ̸= j can be written as

Oi ̸= j =
L−2
∑

l=0

2
�

2
L

�4 L(L − 1)
2

(L − 2)!
l!(L − 2− l)!

. (A.5)

Introducing both (A.4) and (A.5) in (A.3), and after a few simplifications we obtain

MW
2 (L) = 3 log2(L)− log2(7L − 6) . (A.6)
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[48] V. Marić, S. M. Giampaolo and F. Franchini, Quantum phase transition induced by topo-
logical frustration, Commun. Phys. 3, 220 (2020), doi:10.1038/s42005-020-00486-z.
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