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ABSTRACT

Scoring thermal tolerance ftraits live or with recorded video can be
time consuming and susceptible to observer bias, and as with many
physiological measurements, there can be trade-offs between
accuracy and throughput. Recent studies show that automated
particle tracking is a viable alternative to manually scoring videos,
although some of the software options are proprietary and costly. In
this study, we present a novel strategy for automated scoring of
thermal tolerance videos by inferring motor activity with motion
detection using an open-source Python command line application
called DIME (detector of insect motion endpoint). We apply our
strategy to both dynamic and static thermal tolerance assays, and our
results indicate that DIME can accurately measure thermal
acclimation responses, generally agrees with visual estimates of
thermal limits, and can significantly increase throughput over
manual methods.
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INTRODUCTION

Temperature influences nearly every aspect of an ectotherm’s
biology, which has fueled the measurement of thermal limits in a
variety of organisms (Dallas and Rivers-Moore, 2012;
Lutterschmidt and Hutchison, 1997b). Thermal limits are the
minimum and maximum temperature at which a biological process
can occur, and motor performance is perhaps the most used metric
for assessing thermal limits. In insects, thermal tolerance provides
physiological information directly related to fitness and is relevant
for a number of research areas, ranging from basic ecophysiology
(Addo-Bediako et al., 2000) to the impacts of climate change on
insect diversity (Garcia-Robledo et al., 2016).

Thermal limits of motor performance can be scored using
dynamic methods that involve increasing or decreasing the
temperature until motor activity ceases, or, alternatively, insects
can be exposed to a static, extreme thermal condition until motor
failure occurs. Recent work indicates that dynamic and static
thermal tolerance measures are mathematically, and perhaps
physiologically, related (Jergensen et al., 2019; Kingsolver and
Umbanhowar, 2018; Rezende et al., 2014). Further, thermal
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tolerance can be assessed by measuring the resumption of activity
after a period of paralysis, as is the case for the commonly used chill
coma recovery time (Sinclair et al., 2015).

When an ectotherm approaches its thermal limits, it begins to be
physiologically and behaviorally impaired. For critical thermal
maxima (CTp,ay) or heat knockdown time (HKDT), the sequence
of responses includes the loss of righting response, the sudden
onset of muscular spasms, and finally the cessation of movement
(Lutterschmidt and Hutchison, 1997b), which results in multiple
possible interpretations of what constitutes the relevant
physiological endpoint. While attempts have been made to
standardize a measurement that would facilitate comparative
analysis (Lutterschmidt and Hutchison, 1997a), the precise
criteria can vary between phyla, making it difficult to compare
results across studies (e.g. Sponsler and Appel, 1991; but see
Sunday et al., 2011).

During chilling, a similar series of events occurs. When
approaching the lower thermal limit, an ectotherm first slows or
stops its normal activity, followed by a loss of coordination that
impedes locomotion (i.e. the critical thermal minimum, CT,,;,,), and
finally, at lower temperatures, movement ceases altogether (i.e. chill
coma onset) (Hazell and Bale, 2011). However, in practice,
typically only the CT,,, is reported and is often assessed by
recording failure of a locomotor behavior (typically righting
response, ability to cling to a surface, or a response to stimulus)
(Sinclair et al., 2015). For chill coma recovery time (CCRT),
recovery has been typically interpreted as the moment when the
insect is ‘able to stand on its legs’ (David et al., 1998). Thus, there
are many options available for assessing thermal tolerance, and
clear, consistently applied endpoints are paramount for precision
and repeatability.

In recent years, there has been an increase in large phenotypic
screens to compare thermal tolerance across species (Kellermann
et al., 2012; MacLean et al., 2019) or across genotypes of the same
species (Gerken et al., 2015; Lecheta et al., 2020; Qrsted et al.,
2018). Scoring thermal tolerance traits in real time or with recorded
videos is time consuming, and there can be trade-offs between
accuracy and throughput when analyzing large datasets. Thus,
methods for automated scoring of thermal tolerance are necessary
for improving repeatability and reducing strain on investigators.

Traditionally, thermal limits have been scored by monitoring
individual insects in vials submerged in a water bath and observing
insects in real time (Sinclair et al., 2015). Recently, Laursen et al.
(2021) used particle tracking software (i.e. EthoVision XT) to score
videos of thermal tolerance assays to increase automation and
throughput. The results were qualitatively similar to manual
estimates, although automated measurements were more variable
as a result of visual artifacts and disturbances in the water bath, as
well as the automated method’s inability to detect subtle
movements. Heating and cooling insects in air provides a means
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to obtain higher quality video recordings, and MacLean et al. (2022)
used a similar automated approach to score thermal tolerance videos
of Drosophila melanogaster in acrylic arenas. Here, the automated
method consistently recapitulated effect sizes in response to
hardening treatments, and the differences in absolute values
between the automated and traditional methods (i.e. in a water
bath) are likely due to the differing thermal properties of the
experimental apparatuses.

Thus, automated tracking methods appear to be a viable
alternative to manually scoring videos, but continued efforts are
needed to further benchmark these methods against classic human
approaches and increase their flexibility for a variety of experiments
that require assessment of motor activity. In particular,
existing methods using particle tracking may not be suitable for
traits that involve subtle movements such as rotation, limb
movements and spasms, and some of the software options for
particle tracking can be costly. Here, we present a novel strategy for
automated scoring of thermal tolerance videos by inferring motor
activity with motion detection. We tested three computational
scoring methods and compared their results against visually
obtained estimates to identify a computational interpretation of
thermal limits that is most reliable. Our strategy is flexible, and we
have applied it to both dynamic (CT.x and CT,,;,) and static
(HKDT and CCRT) assays. Our method can accurately measure
thermal acclimation responses, generally agrees with visual
estimates of thermal limits, and can significantly increase the
throughput over manual methods. We provide an open-source
Python command line application we call DIME (detector of insect
motion endpoint) that can be used to transform videos to motion
data alongside R functions to estimate thermal limits using three
distinct scoring methods.

MATERIALS AND METHODS
Thermal performance assays
Thermal performance was assessed in two dynamic assays (CTpax,
CTpin) and two static assays (HKDT, CCRT) using the Oregon R
strain of Drosophila melanogaster Meigen. Flies were reared at
25°Cona 12 h:12 h light:dark photoperiod on a standard cornmeal—
yeast-molasses diet. To induce biological variation in thermal
performance, adult flies were exposed to one of three acclimation
treatments (18, 25 and 30°C) after adult emergence for a period of
5 days in programmable incubators (MIR-154, Panasonic
Healthcare Co., Ltd). On the sixth day after emergence, flies were
transferred to custom acrylic observation arenas using aspirators
without anesthesia. Observation arenas hold up to 30 flies in
individual wells (see README file in GitHub: https:/github.com/
fernan9/DIME) and were constructed from laser-cut acrylic layers.
The wells in the arenas were sealed with a transparent acrylic lid on
one side to facilitate recording, while the other side was sealed with
nylon mesh to allow gas exchange. Flies that were crushed or
mutilated during the loading process were removed from analyses.
Three replicates (blocks) of 30 individuals were performed per
assay, giving a total sample size of 90 individuals. Each block
included 5 males and 5 females from each of the three acclimation
treatments, and the position of each sex-acclimation treatment
combination was assigned randomly in the observation arena and
was kept identical for every replicate. Observation arenas containing
flies were placed in the center of a programable incubator
(Panasonic Healthcare MIR-154) to perform thermal tolerance
assays, which were recorded using a webcam (Logitech V-U0028).
The setup was designed to keep the entire observation arena within
the frame, avoiding light reflections of the light sources, and

keeping a fixed lens focus to avoid spurious motion data due to
variable depth of field. The distance between the objective and the
observation arena varied between trials (12.5-19.0 cm), and
recording distance did not affect the results.

In the case of the dynamic assays, CT.;, and CT,.. a
0.25°C min~' cooling or heating ramp starting at 25°C was
programmed in the incubator with a function that changes
temperature by 2.5°C every 10 min interval. Even though the
program includes discrete temperature steps, the heating and cooling
capacity of the incubator, coupled with thermal buffering by the
arena, led to an approximately linear thermal ramp (coefficient of
determination R?> CTyn: 0.999, 0.998, 0.999; R? CTpax: 0.999,
0.999, 0.986), as measured in the well microenvironment with a
DHT22 temperature sensor (Aosong Electronics Co., Ltd) and an
Arduino Nano microcontroller platform (Arduino SRL).

After the experiment, a linear model was fitted to the cooling or
heating section of the ramp, and the linear coefficients were used to
translate the time of knockdown into a CT,;, or CT .. The slopes
measured in both cases were constant throughout the duration of the
assay but slightly less steep than programmed (CT;,: —0.227,
—0.223, —0.230°C min~!; CTppay: 0.236, 0.238, 0.230°C min~'). In
static assays, a constant temperature of 36.5°C was used for HKDT.
Two incubators were used to perform CCRT bioassays; the first was
used to induce chill coma for 2 h at 0°C followed by immediate
transfer to the second incubator for recovery at 25°C. Examples of
the thermal profile for each assay are given in Fig. S1, with slopes
indicated in the case of dynamic assays and an approximate time to
reach 90% of the target temperature in the case of static assays.

Transformation of insect motor activity

Our command line application DIME transformed biological
activity in thermal performance videos to a numerical variable of
motion detection. DIME was developed in Python v3.8.8 and makes
use of the computer vision library OpenCV v4.5.3 (Bradski, 2000).
The program transforms motion to a numerical variable which is a
measurement of relative pixel intensity change (rPIC) within a
region of interest (ROI). Each ROI contains a single individual
insect on a constant background and must be drawn by hand at the
beginning of the computer analysis (see README file in GitHub:
https:/github.com/fernan9/DIME).

A video is analyzed as a series of images representing single
frames of video data (video frame), and the number of images
extracted per second depends on the frame rate of the video, which is
extracted automatically from the metadata of the file at the
beginning of the analysis. Video frames are extracted as pixel
matrices in the blue—green—red (BGR) color space and transformed
to a single grayscale value using the standard-definition luminance
formula Y’=0.299R+0.587G+0.114B as implemented in the
OpenCV  command COLOR_BGR2GRAY. The procedure
continues by computing the difference between pairs of
consecutive grayscale pixel matrices to generate a series of
difference matrices. Motion between video frames is encoded on
each pixel of the difference matrix as a deviation from 0. Three
filters are applied to each difference matrix, a Gaussian blur to
remove flickering particles in the background using the OpenCV
command GaussianBlur (vertical and horizonal kernel size [£]=3), a
dilation filter to maximize the difference between areas of change
with the command dilate (convolution iterations [i]=2), and a binary
threshold to set pixel values to either complete white (0) or black
(255) using a threshold of 20. Finally, motion detection per
individual is achieved by calculating the average absolute pixel
intensity change per ROI in the filtered difference matrix. As the

2

)
(@)}
9
je
o
©
-+
c
()
£
—
()
o
x
NN
Y
(©)
‘©
c
—
>
(®)
-_



METHODS & TECHNIQUES

Journal of Experimental Biology (2023) 226, jeb246548. doi:10.1242/jeb.246548

maximum value of intensity in pixel change is 255 (complete
black), the values of rPIC will vary from 0 when no motion is
detected in the ROI to 255 when every pixel changes.

An additional subtraction filter was applied to rPIC data to
remove spurious movement originating from strong vibration in
the incubator, automatic refocusing of the lens or background
movement. The filter changes the rPIC values for an entire frame
difference that is higher than a user-selected threshold to zero. This
threshold can be selected from a histogram that is plotted after each
run and must be applied independently per video file. Extreme
peaks must be identified, and multiple iterations may be necessary
to achieve the desired result. Application of the filter in this study
and a short description of the procedure of filtering are available
from GitHub (https:/github.com/fernan9/DIME).

Inference of thermal tolerance endpoints

Bioassay scoring has been traditionally performed by human
observers who are trained to identify and record behavioral changes
which are later analyzed and interpreted. In this study, we prompted
experimenters to score the endpoint for CTj,, CTax and HKDT as
the time when the individual moved to the last position in the
observation well, while for CCRT, the endpoint was scored as
the moment when the fly recovered an upright position. With
experience, the experimenter’s records become more accurate as
they learnt to discard behaviors that are misleading and optimize
the recording process using their own methodologies. To test for
interobserver variation, we assigned three experimenters to score a
subset of the dataset and compared the precision of estimates
between observers and against the computational methods (see
below).

For computational assessment of thermal tolerance, we compared
three computational methods to extract endpoints from the motion
data: change point, individual median and optimal threshold.
The change point method takes advantage of the large amount
of motion data collected during the assay and applies a statistical
model to identify the time point where activity starts or ends.
The individual median and optimal threshold methods are
computational approaches mimicking the heuristic applied by
experimenters to score videos: panning through the video from
inactivity to activity and determining the first movement observed
either as the activity onset or the endpoint. Comparing these
approaches would provide information on the bias introduced by
independent scoring methodologies.

Specifically, the change point method uses the entire activity data
to statistically determine the time point where activity changes
between active and inactive states. In this interpretation, the change
point method considers motor activity in rPIC as a sequence of
observations with an underlying pattern where the initial and final
means are different, and the change point between them is unknown
(Hinkley, 1970). Here, we apply a maximum likelihood estimator
to identify a single change point of motion along the thermal
performance assay of each experimental subject using the ‘at most
one change’ command as implemented in the R library changepoint
v2.2.3 (Killick and Eckley, 2014).

Both the individual median and optimal threshold methods use a
threshold to determine which rPIC values reflect motor activity, but
the methods differ in the way the threshold is determined. The
threshold for individual median is determined using the median of
the non-zero rPIC values observed individually per well. The
optimal threshold method is a modified version of the scoring
methodology described in MacLean et al. (2022) where the
threshold is determined per video and is optimized using the data

of all individuals. In their definition, the algorithm first identifies the
maximum activity level of uninformative data (noise) and then
scores the last motion event above this threshold (MacLean et al.,
2022).

Based on code provided in MacLean et al. (2022), we
implemented their algorithm as the optimal threshold method by
using a series of n thresholds (default »=10). As most of the
variation is usually present in the lower distribution of the data,
the threshold values are evenly distributed between 0 and 70% of
the maximum activity recorded in the first individual. Estimates for
every individual are computed for each threshold, providing
n datasets. Consecutive pairs of datasets with increasing threshold
values are then fitted to a linear regression, providing n—1
regression lines (Fig. S1). The first regression with the highest R?
is said to be where the scoring becomes stable (i.e. when all
individuals are scored above the noise level). The optimal threshold
is the one with the minimum value between the pair used for the
selected regression. For CTyax, CTmin and HKDT, the last value
above this threshold is considered the endpoint of activity and is
scored as the thermal limit. In the case of CCRT, the algorithm is
applied to the reversed data to capture the first event. One
modification was made to the MacLean et al. (2022) method:
originally the last event was scored only on decreasing values as
they approach the noise threshold; we removed this condition and
allowed any value to be scored, as ending motions such as a spasm
or a last jump may be larger in magnitude than immediately
previous events. Despite this difference, we expect the original and
our modified version of optimal threshold to have similar
performance.

Analysis of computational scoring reliability

Each experimental block was scored visually by one of the authors
(block 1: F.R.P.-G., block 2: A.C.W., block 3: S.Z.), who each had
different experience scoring thermal limits to simulate a realistic
large-screening experimental setup. All statistical analyses were
conducted using R v4.1.0 (http:/www.R-project.org/). First, an
exploratory analysis of variance (ANOVA) was conducted in joint
datasets containing the visual and computational estimates to
identify variance associated with the methodology, using the model:

Thermal limit estimate ~ Temperature,ccjimaton + Method

+ Sex + Block. (1)

A post hoc Tukey test for honestly significant differences (HSD)
was applied to identify significant average differences between
computational and visual methodologies. No significant variance
associated with the variable Sex was detected in lower thermal
tolerance assays (CT,,;, and CCRT), so we decided to exclude this
variable from the rest of the analyses. Also, significant variance
associated with the wvariable Block was observed (CTpax:
F2’348:48.33, PSOOOI, CTmin: F2’226:13‘99, PSOOOI, HKDT:
F5339=76.98, P<0.001; CCRT: F,,5c=7.8, P<0.001). With this
information, we fitted datasets from independent scoring methods
to a mixed effects model using acclimation temperature
(Temperature,ecimation) @S a fixed effect and Block as random
effect with the R library Imer from the Ime4 v1.1-29 package (Bates
et al., 2015), using the equation:

Thermal limit ~ Temperature,ecimaton + ( 1[Block).

)

Population marginal means, their associated standard errors, and the
post hoc Tukey HSD test applied to pairwise differences between
treatment levels were calculated using the package emmeans v1.8.0
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(https:/CRAN.R-project.org/package=emmeans). The Kenward—
Roger approximation of degrees of freedom was applied when
testing independent scoring methods to account for small and
unbalanced datasets (e.g. when a methodology was not able to
provide an estimate), the confidence intervals were adjusted using
the Sidak method, and the P-values were adjusted using the Tukey
method for comparing a family of three estimates.

Inter-method agreement between computational and visual
estimates was measured with the concordance correlation
coefficient (CCC), which evaluates the degree to which pairs of
measurements fall in the 45 deg line of perfect correlation
(Lawrence and Lin, 1989). In addition, CCC can provide
information on the source of disagreement when decomposed
into the bias corrector factor C,, a measure of accuracy, and
the Pearson correlation coefficient p, a measure of precision.
Accuracy in C, measures how far the best-fit line deviates from
the 45 deg line; p measures how far each observation deviates
from the best-fit line. In our case, CCC and their components were
computed as implemented in the R package DescTools v0.99.45
(https:/CRAN.R-project.org/package=DescTools) in paired datasets

containing one computational method (change point, individual
median, optimal threshold) and the visual dataset per thermal
tolerance assay. Finally, individuals presenting outlying scoring
differences were identified with an agreement test (Martin Bland and
Altman, 1986) to investigate the cause of the disagreement. For each
thermal tolerance assay, we calculated the mean difference () and the
standard deviation of the difference in the comparisons visual—
individual median and visual-optimal threshold datasets to estimate
the “limits of agreement’ at d+2 s.d.

Application to other insect species

The CT,,,x of six additional insect species was evaluated using our
methodology (individual median) and visual estimations. The
additional species tested were the Asian tiger mosquito (Aedes
albopictus), the southern house mosquito (Culex quinquefasciatus),
the common bed bug (Cimex lectularius), the subterranean termite
(Reticulitermes  flavipes), the fall army worm (Spodoptera
frugiperda) and the red flour beetle (7ribolium castaneum).
Insects were reared under standard conditions at multiple
insectariums in the University of Kentucky Department of
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Fig. 1. Comparison between thermal tolerance estimates scored with different methodologies. The methodologies were change point (CP), individual
median (IM) and optimized threshold (OT) versus visual estimates. (A) Critical thermal maxima (CTpax; n=90 for IM, OT and visual; n=87 for CP). (B) Critical
thermal minima (CTyin; n=78 for IM, OT and visual). (C) Heat knockdown time (HKDT; n=87 for all). (D) Chill coma recovery time (CCRT; n=88 for IM, OT
and visual). Colored circles are raw data, outlined circles represent mean treatment values and error bars are s.e.m. for the three different acclimation
temperatures. Asterisks indicate statistical significance with Tukey’s HSD test (*P<0.05, ***P<0.001).
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Entomology and loaded onto acrylic plates for experiments
immediately after receipt, except for fall army worm larvae,
which were held in our laboratory until the 3rd instar was
reached, and common bedbugs, which were held for 7 days at
room temperature after a blood meal. When available, a previously
determined estimate was obtained from the literature. The incubator
was programmed for a 20 min holding time at 25°C followed by the
0.25°C min~' heating ramp, except for fall army worm larvae, for
which it was held at 30°C before starting a ramp with the same rate.

RESULTS AND DISCUSSION

Scoring efficacy by computational methods

Motor activity was transformed into a sequence of motion events
with our computational tool DIME. Average processing time
including transformation and scoring was 18 min (1.80 GHz
processor) per 2.5 h long video (640x360 pixels) in contrast to
1 h for visual inspection of the same 30 subjects. As processing time
increases with increasing pixel resolution, video frame
manipulation takes up most of the computing resources. Greater
throughput can be achieved by increasing the number of subjects per
video and increased processing power. The computational methods
individual median and optimal threshold provided a score for every
individual; however, for lower thermal limits, change point scores
were removed from the downstream analysis as most were not
meaningful.

Variance introduced by methodology

Variation due to methodology was only observed in upper thermal
limits. CT .« presented the greatest differences between automated
and visual scoring methods (Fig. 1A). Both the individual median
and optimal threshold methods resulted in statistically significant
deviations from visual estimations (—0.39 and -0.56°C,
respectively, both P<0.001), whilst the magnitude of the
difference with the change point method was more pronounced
(—1.39°C, P<0.001). Methodological differences were also present
in HKDT assays (Fig. 1C). Estimates obtained using the change
point and individual median methods differed from visual
observations on average by —17.3 min (P<0.001) and —6.48 min
(P=0.03), respectively, while optimal threshold estimates were not
significantly different (—4.88 min, P=0.14). In general, estimates
from the change point method were smaller than those using the
individual median and optimal threshold methods, suggesting that
this approach may be scoring a different component of the
biological response to thermal stress.

In contrast, no statistical variance was introduced by methodology
in lower thermal limits. In the case of CT,,;,, the average differences
of individual median and optimal threshold against visual estimates
were 0.26°C (P=0.34) and —0.11°C (P=0.83). In a similar way,
CCRT estimates between computational and visual estimates were
—0.97 min (P=0.64) and —2.2 min (P=0.1), respectively. The
similarity in variances between methods could be a result of the
reduced amount of motion events, but the relative lack of movement
may also introduce variation when automatically scoring some
individuals (see sources of disagreement below).

Recapitulation of thermal acclimation effects

In dynamic assays, computational scoring methodologies
consistently recapitulated the differences in thermal tolerance due
to acclimation (Table 1). In contrast, in static assays, there was some
variation in statistical groupings between scoring methodologies. In
visual estimates of HKDT, flies acclimated at 25°C were statistically
different from those acclimated at 30°C, while flies acclimated at

18°C were not different from either group (ANOVA, Tukey,
0=0.05). For automated scoring, statistical grouping was slightly
different, as the 18 and 25°C acclimation groups were
indistinguishable and both were different from the 30°C acclimation
group. The reduced s.e.m. in automatic scores suggests that these
methodologies had increased power to identify treatment effects by
providing reduced measurement error, supporting the notion that
interobserver bias could be a source of reduced statistical power in
HKDT (Castaneda et al., 2012). In the case of CCRT, treatment
grouping from the visual estimates was recapitulated by individual
median scoring, but not by optimal threshold scoring. In this case, the
optimal threshold method was not able to separate treatments from
each other, despite having lower s.e.m. than individual median
estimates. However, on the whole, our observations were consistent
with previous observations that automatic scores recapitulate treatment
effects (Laursen et al., 2021; MacLean et al., 2022), confirming that
automated scores can provide meaningful thermal limit estimates.

Concordance between automated and visual estimates

To evaluate the reliability of automated scoring, we used the CCC, a
measure of agreement. The decomposition of CCC into C, and p
provides specific information on accuracy with the bias correction
factor (Cp,) and precision with the product-moment correlation (p)
(Table S1). The agreement of automatic scoring methodologies was
higher in static than in dynamic methods, with individual median
providing an overall accuracy above 91% but variable precision
(range 66-91%), and optimal threshold presenting a similar pattern
>79% C,, 50-92% p). Scores from the change point method
presented the lowest CCC values, confirming our suspicion that this
scoring method could be measuring a different component of thermal
performance, albeit with high correlation (p) for HKDT. Our CCC
values for automated versus visual estimates were comparable to or
even higher than previously reported for HKDT (Castaneda et al.,
2012) but slightly lower than those obtained by our interobserver
CCC estimates (Table S1). In general, the capacity of individual

Table 1. Effect of temperature on thermal tolerance estimates of CT,,,y,
CTmin, HKDT and CCRT calculated with change point, individual
median, optimal threshold and visual methods

Acclimation temperature

Method 18°C 25°C 30°C
CTmax (°C)
Change point 38.6+£0.372 38.7+0.372 39.4+0.371°
Individual median 39.4+0.272 39.6+0.272 40.4£0.27°
Optimal threshold 39.4+0.15°2 39.5+0.152 40.4+0.15°
Visual 39.9+0.2742 40.2+0.2742 40.8+0.274°
CTmin (OC)
Individual median 4.1+0.392 5.9+0.377° 7.25+0.39°
Optimal threshold 3.23+0.398? 5.81+0.391° 7.01+0.398°
Visual 3.19+0.3162 5.91+0.307° 7.33+0.316°
HKDT (min)
Change point 61.5+6.97° 60.4+6.97° 71.946.99°
Individual median 71.947.22 70.1+7.22 84.4+7.24°
Optimal threshold 73.616.72°2 71.5+6.72° 85.76.77°
Visual 81.4+9.042° 74.4+9.042 88.2+9.09°
CCRT (min)
Individual median 21+1.782 22.5+1.82° 27.3+1.78°
Optimal threshold 20.7+1.642 21.7£1.672 24.8+1.642
Visual 21.6+1.532 23.5+1.582 28.7+1.53

CT nax, critical thermal maximum; CTnin, critical thermal minimum; HKDT, heat
knockdown time; CCRT, chill coma recovery time. Data are meansts.e.m.
Means not sharing any letter are significantly different (Tukey’s HSD test at the
5% level of significance).
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Fig. 2. Source of discrepancies between pairs of measurements. Agreement tests (left) for individual median and threshold optimization against visual
scores, and two individual examples of each assay (right) for (A—C) CTnax (1=90), (D—F) CTnin (n=78), (G-I) HKDT (n=87) and (J-L) CCRT (n=88). In the
agreement tests, short-dashed lines indicate the limits of agreement based on individual median—visual differences, and long-dashed lines are for optimal
threshold—visual differences. Orange squares indicate differences for scores estimated with the individual median method; blue circles indicate differences for
those estimated with the optimal threshold method. In the activity plots on the right (showing relative pixel intensity change, rPIC), the time where the gray
shading ends indicates the visual estimate, and the red vertical dashed line indicates the estimate obtained with the change point method.
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median and optimal threshold methods to accurately capture the
thermal limits is supported by the reduced bias (high Cy), but the
variable p suggests that discrepancies exist between individual pairs
of measurements.

Source of disagreement between pairs of measurements

To identify the source of the disagreement between individual
scorings, we evaluated individual median and optimal threshold
datasets against visual estimates using a graphical technique
(Fig. 2). In many cases, the scores from visual, individual median
and optimal threshold methods overlapped (e.g. Fig. 2E,H,K),
particularly in CT,;, and CCRT datasets. As expected from the
CCC, greater individual variation between visual and automated
individual scoring was present in CT,,,x and HKDT. The majority
of the discrepancies were underestimations of the endpoint time
by the automated method, originating from an interaction
between the decreasing activity levels in the last movements of
the individual and the threshold differences between scoring
methods (e.g. Fig. 2B,C).

Biological variation in the motor response also introduced
technical error. For example, individuals with slow movements were
not detected accurately by the motion detection software, as in the
case of well 8 in block 1 of CTy;, (Fig. 2F). In other cases when the
scoring threshold was low, automated CCRT estimates were scored
on small appendage motion events instead of righting position
because of its high sensitivity (e.g. optimal threshold estimate in
Fig. 2L). These discrepancies can be readily identified with visual
inspection (e.g. Fig. 21), and reliable estimates can be achieved with
a combination of automatic scoring (individual median or optimal
threshold) followed by human supervision. However, given the
frequency of discrepancies in the automatic scoring of CCRT,
additional time investment may be required when analyzing
large datasets, and this method may be less suitable for
unsupervised analyses. A thorough evaluation of sensitivity is
beyond the scope of the current article, but our analysis tool can be
tuned to capture, or exclude, subtle movements when necessary by
calibrating the detection sensitivity with the video transformation
parameters.

Application of automated scoring for thermal limits

Our results indicate that the automated methods individual median
and optimal threshold for scoring thermal limits can provide
comparable values to manual scoring of CT,,x, CTpnin, HDKT and
CCRT. The values obtained in this study are also consistent with
previous work on thermal limits in D. melanogaster. While previous
work indicated discrepancies in thermal limit estimates between air-
and water-cooled apparatuses (MacLean et al., 2022), CT,,;, and
CT,hax estimates obtained here were within ~1°C of those from a
previous study in our lab using a water-jacketed cylinder (Lecheta
et al. (2020), although different lines and rearing conditions were
used between the two studies. To further demonstrate the utility of
this method beyond Drosophila, we applied our automated scoring
of CTax to six other insect species (Table S2). The automated
methodology scored CT,,,x in every case, despite differences in
body structure, size or locomotion. For cases where previous CTiyay
estimates exist for the additional species, the estimate of CT,,,,x was
in line with expected values, although methodological differences
(genetic background, rearing conditions, assay conditions, etc.)
make it challenging to directly compare our results with the
literature. The CT,,,x estimate for bedbugs (Cimex lectilarius) was
identical to that previously reported in DeVries et al. (2016), while
for the subterranean termite Reticulotermes flavipes, which had the

largest discrepancy, our CT,,,, estimate was still within 3°C of a
previous study (Sponsler and Appel, 1991). When comparing the
automated results with visual estimates, where there were
differences, the automated method often underestimated the
activity endpoint time, likely because of an inability to accurately
adjust the ‘threshold’ of biological activity for every single
individual. Thus, while automated measurements of thermal
tolerance may slightly vary from classic visual estimates, we see
an opportunity for reproducible and high throughput methodologies
such as DIME and other similar approaches (e.g. Awde et al., 2020;
Laursen et al., 2021; MacLean et al., 2022) to increase sample sizes
and standardize endpoints used for insect thermal limits.
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