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ABSTRACT

Scoring thermal tolerance traits live or with recorded video can be

time consuming and susceptible to observer bias, and as with many

physiological measurements, there can be trade-offs between

accuracy and throughput. Recent studies show that automated

particle tracking is a viable alternative to manually scoring videos,

although some of the software options are proprietary and costly. In

this study, we present a novel strategy for automated scoring of

thermal tolerance videos by inferring motor activity with motion

detection using an open-source Python command line application

called DIME (detector of insect motion endpoint). We apply our

strategy to both dynamic and static thermal tolerance assays, and our

results indicate that DIME can accurately measure thermal

acclimation responses, generally agrees with visual estimates of

thermal limits, and can significantly increase throughput over

manual methods.
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INTRODUCTION

Temperature influences nearly every aspect of an ectotherm’s

biology, which has fueled the measurement of thermal limits in a

variety of organisms (Dallas and Rivers-Moore, 2012;

Lutterschmidt and Hutchison, 1997b). Thermal limits are the

minimum and maximum temperature at which a biological process

can occur, and motor performance is perhaps the most used metric

for assessing thermal limits. In insects, thermal tolerance provides

physiological information directly related to fitness and is relevant

for a number of research areas, ranging from basic ecophysiology

(Addo-Bediako et al., 2000) to the impacts of climate change on

insect diversity (Garcia-Robledo et al., 2016).

Thermal limits of motor performance can be scored using

dynamic methods that involve increasing or decreasing the

temperature until motor activity ceases, or, alternatively, insects

can be exposed to a static, extreme thermal condition until motor

failure occurs. Recent work indicates that dynamic and static

thermal tolerance measures are mathematically, and perhaps

physiologically, related (Jørgensen et al., 2019; Kingsolver and

Umbanhowar, 2018; Rezende et al., 2014). Further, thermal

tolerance can be assessed by measuring the resumption of activity

after a period of paralysis, as is the case for the commonly used chill

coma recovery time (Sinclair et al., 2015).

When an ectotherm approaches its thermal limits, it begins to be

physiologically and behaviorally impaired. For critical thermal

maxima (CTmax) or heat knockdown time (HKDT), the sequence

of responses includes the loss of righting response, the sudden

onset of muscular spasms, and finally the cessation of movement

(Lutterschmidt and Hutchison, 1997b), which results in multiple

possible interpretations of what constitutes the relevant

physiological endpoint. While attempts have been made to

standardize a measurement that would facilitate comparative

analysis (Lutterschmidt and Hutchison, 1997a), the precise

criteria can vary between phyla, making it difficult to compare

results across studies (e.g. Sponsler and Appel, 1991; but see

Sunday et al., 2011).

During chilling, a similar series of events occurs. When

approaching the lower thermal limit, an ectotherm first slows or

stops its normal activity, followed by a loss of coordination that

impedes locomotion (i.e. the critical thermal minimum, CTmin), and

finally, at lower temperatures, movement ceases altogether (i.e. chill

coma onset) (Hazell and Bale, 2011). However, in practice,

typically only the CTmin is reported and is often assessed by

recording failure of a locomotor behavior (typically righting

response, ability to cling to a surface, or a response to stimulus)

(Sinclair et al., 2015). For chill coma recovery time (CCRT),

recovery has been typically interpreted as the moment when the

insect is ‘able to stand on its legs’ (David et al., 1998). Thus, there

are many options available for assessing thermal tolerance, and

clear, consistently applied endpoints are paramount for precision

and repeatability.

In recent years, there has been an increase in large phenotypic

screens to compare thermal tolerance across species (Kellermann

et al., 2012; MacLean et al., 2019) or across genotypes of the same

species (Gerken et al., 2015; Lecheta et al., 2020; Ørsted et al.,

2018). Scoring thermal tolerance traits in real time or with recorded

videos is time consuming, and there can be trade-offs between

accuracy and throughput when analyzing large datasets. Thus,

methods for automated scoring of thermal tolerance are necessary

for improving repeatability and reducing strain on investigators.

Traditionally, thermal limits have been scored by monitoring

individual insects in vials submerged in a water bath and observing

insects in real time (Sinclair et al., 2015). Recently, Laursen et al.

(2021) used particle tracking software (i.e. EthoVision XT) to score

videos of thermal tolerance assays to increase automation and

throughput. The results were qualitatively similar to manual

estimates, although automated measurements were more variable

as a result of visual artifacts and disturbances in the water bath, as

well as the automated method’s inability to detect subtle

movements. Heating and cooling insects in air provides a meansReceived 17 August 2023; Accepted 11 October 2023
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to obtain higher quality video recordings, andMacLean et al. (2022)

used a similar automated approach to score thermal tolerance videos

of Drosophila melanogaster in acrylic arenas. Here, the automated

method consistently recapitulated effect sizes in response to

hardening treatments, and the differences in absolute values

between the automated and traditional methods (i.e. in a water

bath) are likely due to the differing thermal properties of the

experimental apparatuses.

Thus, automated tracking methods appear to be a viable

alternative to manually scoring videos, but continued efforts are

needed to further benchmark these methods against classic human

approaches and increase their flexibility for a variety of experiments

that require assessment of motor activity. In particular,

existing methods using particle tracking may not be suitable for

traits that involve subtle movements such as rotation, limb

movements and spasms, and some of the software options for

particle tracking can be costly. Here, we present a novel strategy for

automated scoring of thermal tolerance videos by inferring motor

activity with motion detection. We tested three computational

scoring methods and compared their results against visually

obtained estimates to identify a computational interpretation of

thermal limits that is most reliable. Our strategy is flexible, and we

have applied it to both dynamic (CTmax and CTmin) and static

(HKDT and CCRT) assays. Our method can accurately measure

thermal acclimation responses, generally agrees with visual

estimates of thermal limits, and can significantly increase the

throughput over manual methods. We provide an open-source

Python command line application we call DIME (detector of insect

motion endpoint) that can be used to transform videos to motion

data alongside R functions to estimate thermal limits using three

distinct scoring methods.

MATERIALS AND METHODS

Thermal performance assays

Thermal performance was assessed in two dynamic assays (CTmax,

CTmin) and two static assays (HKDT, CCRT) using the Oregon R

strain of Drosophila melanogaster Meigen. Flies were reared at

25°C on a 12 h:12 h light:dark photoperiod on a standard cornmeal–

yeast–molasses diet. To induce biological variation in thermal

performance, adult flies were exposed to one of three acclimation

treatments (18, 25 and 30°C) after adult emergence for a period of

5 days in programmable incubators (MIR-154, Panasonic

Healthcare Co., Ltd). On the sixth day after emergence, flies were

transferred to custom acrylic observation arenas using aspirators

without anesthesia. Observation arenas hold up to 30 flies in

individual wells (see README file in GitHub: https://github.com/

fernan9/DIME) and were constructed from laser-cut acrylic layers.

The wells in the arenas were sealed with a transparent acrylic lid on

one side to facilitate recording, while the other side was sealed with

nylon mesh to allow gas exchange. Flies that were crushed or

mutilated during the loading process were removed from analyses.

Three replicates (blocks) of 30 individuals were performed per

assay, giving a total sample size of 90 individuals. Each block

included 5 males and 5 females from each of the three acclimation

treatments, and the position of each sex-acclimation treatment

combination was assigned randomly in the observation arena and

was kept identical for every replicate. Observation arenas containing

flies were placed in the center of a programable incubator

(Panasonic Healthcare MIR-154) to perform thermal tolerance

assays, which were recorded using a webcam (Logitech V-U0028).

The setup was designed to keep the entire observation arena within

the frame, avoiding light reflections of the light sources, and

keeping a fixed lens focus to avoid spurious motion data due to

variable depth of field. The distance between the objective and the

observation arena varied between trials (12.5–19.0 cm), and

recording distance did not affect the results.

In the case of the dynamic assays, CTmin and CTmax, a

0.25°C min−1 cooling or heating ramp starting at 25°C was

programmed in the incubator with a function that changes

temperature by 2.5°C every 10 min interval. Even though the

program includes discrete temperature steps, the heating and cooling

capacity of the incubator, coupled with thermal buffering by the

arena, led to an approximately linear thermal ramp (coefficient of

determination R2 CTmin: 0.999, 0.998, 0.999; R
2 CTmax: 0.999,

0.999, 0.986), as measured in the well microenvironment with a

DHT22 temperature sensor (Aosong Electronics Co., Ltd) and an

Arduino Nano microcontroller platform (Arduino SRL).

After the experiment, a linear model was fitted to the cooling or

heating section of the ramp, and the linear coefficients were used to

translate the time of knockdown into a CTmin or CTmax. The slopes

measured in both cases were constant throughout the duration of the

assay but slightly less steep than programmed (CTmin: −0.227,

−0.223, −0.230°C min−1; CTmax: 0.236, 0.238, 0.230°C min−1). In

static assays, a constant temperature of 36.5°C was used for HKDT.

Two incubators were used to perform CCRT bioassays; the first was

used to induce chill coma for 2 h at 0°C followed by immediate

transfer to the second incubator for recovery at 25°C. Examples of

the thermal profile for each assay are given in Fig. S1, with slopes

indicated in the case of dynamic assays and an approximate time to

reach 90% of the target temperature in the case of static assays.

Transformation of insect motor activity

Our command line application DIME transformed biological

activity in thermal performance videos to a numerical variable of

motion detection. DIMEwas developed in Python v3.8.8 andmakes

use of the computer vision library OpenCV v4.5.3 (Bradski, 2000).

The program transforms motion to a numerical variable which is a

measurement of relative pixel intensity change (rPIC) within a

region of interest (ROI). Each ROI contains a single individual

insect on a constant background and must be drawn by hand at the

beginning of the computer analysis (see README file in GitHub:

https://github.com/fernan9/DIME).

A video is analyzed as a series of images representing single

frames of video data (video frame), and the number of images

extracted per second depends on the frame rate of the video, which is

extracted automatically from the metadata of the file at the

beginning of the analysis. Video frames are extracted as pixel

matrices in the blue–green–red (BGR) color space and transformed

to a single grayscale value using the standard-definition luminance

formula Y′=0.299R+0.587G+0.114B as implemented in the

OpenCV command COLOR_BGR2GRAY. The procedure

continues by computing the difference between pairs of

consecutive grayscale pixel matrices to generate a series of

difference matrices. Motion between video frames is encoded on

each pixel of the difference matrix as a deviation from 0. Three

filters are applied to each difference matrix, a Gaussian blur to

remove flickering particles in the background using the OpenCV

command GaussianBlur (vertical and horizonal kernel size [k]=3), a

dilation filter to maximize the difference between areas of change

with the command dilate (convolution iterations [i]=2), and a binary

threshold to set pixel values to either complete white (0) or black

(255) using a threshold of 20. Finally, motion detection per

individual is achieved by calculating the average absolute pixel

intensity change per ROI in the filtered difference matrix. As the
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maximum value of intensity in pixel change is 255 (complete

black), the values of rPIC will vary from 0 when no motion is

detected in the ROI to 255 when every pixel changes.

An additional subtraction filter was applied to rPIC data to

remove spurious movement originating from strong vibration in

the incubator, automatic refocusing of the lens or background

movement. The filter changes the rPIC values for an entire frame

difference that is higher than a user-selected threshold to zero. This

threshold can be selected from a histogram that is plotted after each

run and must be applied independently per video file. Extreme

peaks must be identified, and multiple iterations may be necessary

to achieve the desired result. Application of the filter in this study

and a short description of the procedure of filtering are available

from GitHub (https://github.com/fernan9/DIME).

Inference of thermal tolerance endpoints

Bioassay scoring has been traditionally performed by human

observers who are trained to identify and record behavioral changes

which are later analyzed and interpreted. In this study, we prompted

experimenters to score the endpoint for CTmin, CTmax and HKDT as

the time when the individual moved to the last position in the

observation well, while for CCRT, the endpoint was scored as

the moment when the fly recovered an upright position. With

experience, the experimenter’s records become more accurate as

they learnt to discard behaviors that are misleading and optimize

the recording process using their own methodologies. To test for

interobserver variation, we assigned three experimenters to score a

subset of the dataset and compared the precision of estimates

between observers and against the computational methods (see

below).

For computational assessment of thermal tolerance, we compared

three computational methods to extract endpoints from the motion

data: change point, individual median and optimal threshold.

The change point method takes advantage of the large amount

of motion data collected during the assay and applies a statistical

model to identify the time point where activity starts or ends.

The individual median and optimal threshold methods are

computational approaches mimicking the heuristic applied by

experimenters to score videos: panning through the video from

inactivity to activity and determining the first movement observed

either as the activity onset or the endpoint. Comparing these

approaches would provide information on the bias introduced by

independent scoring methodologies.

Specifically, the change point method uses the entire activity data

to statistically determine the time point where activity changes

between active and inactive states. In this interpretation, the change

point method considers motor activity in rPIC as a sequence of

observations with an underlying pattern where the initial and final

means are different, and the change point between them is unknown

(Hinkley, 1970). Here, we apply a maximum likelihood estimator

to identify a single change point of motion along the thermal

performance assay of each experimental subject using the ‘at most

one change’ command as implemented in the R library changepoint

v2.2.3 (Killick and Eckley, 2014).

Both the individual median and optimal threshold methods use a

threshold to determine which rPIC values reflect motor activity, but

the methods differ in the way the threshold is determined. The

threshold for individual median is determined using the median of

the non-zero rPIC values observed individually per well. The

optimal threshold method is a modified version of the scoring

methodology described in MacLean et al. (2022) where the

threshold is determined per video and is optimized using the data

of all individuals. In their definition, the algorithm first identifies the

maximum activity level of uninformative data (noise) and then

scores the last motion event above this threshold (MacLean et al.,

2022).

Based on code provided in MacLean et al. (2022), we

implemented their algorithm as the optimal threshold method by

using a series of n thresholds (default n=10). As most of the

variation is usually present in the lower distribution of the data,

the threshold values are evenly distributed between 0 and 70% of

the maximum activity recorded in the first individual. Estimates for

every individual are computed for each threshold, providing

n datasets. Consecutive pairs of datasets with increasing threshold

values are then fitted to a linear regression, providing n−1

regression lines (Fig. S1). The first regression with the highest R2

is said to be where the scoring becomes stable (i.e. when all

individuals are scored above the noise level). The optimal threshold

is the one with the minimum value between the pair used for the

selected regression. For CTmax, CTmin and HKDT, the last value

above this threshold is considered the endpoint of activity and is

scored as the thermal limit. In the case of CCRT, the algorithm is

applied to the reversed data to capture the first event. One

modification was made to the MacLean et al. (2022) method:

originally the last event was scored only on decreasing values as

they approach the noise threshold; we removed this condition and

allowed any value to be scored, as ending motions such as a spasm

or a last jump may be larger in magnitude than immediately

previous events. Despite this difference, we expect the original and

our modified version of optimal threshold to have similar

performance.

Analysis of computational scoring reliability

Each experimental block was scored visually by one of the authors

(block 1: F.R.P.-G., block 2: A.C.W., block 3: S.Z.), who each had

different experience scoring thermal limits to simulate a realistic

large-screening experimental setup. All statistical analyses were

conducted using R v4.1.0 (http://www.R-project.org/). First, an

exploratory analysis of variance (ANOVA) was conducted in joint

datasets containing the visual and computational estimates to

identify variance associated with the methodology, using the model:

Thermal limit estimate � Temperatureacclimation þMethod

þ Sexþ Block: ð1Þ

A post hoc Tukey test for honestly significant differences (HSD)

was applied to identify significant average differences between

computational and visual methodologies. No significant variance

associated with the variable Sex was detected in lower thermal

tolerance assays (CTmin and CCRT), so we decided to exclude this

variable from the rest of the analyses. Also, significant variance

associated with the variable Block was observed (CTmax:

F2,348=48.33, P≤0.001; CTmin: F2,226=13.99, P≤0.001; HKDT:

F2,339=76.98, P≤0.001; CCRT: F2,256=7.8, P≤0.001). With this

information, we fitted datasets from independent scoring methods

to a mixed effects model using acclimation temperature

(Temperatureacclimation) as a fixed effect and Block as random

effect with the R library lmer from the lme4 v1.1-29 package (Bates

et al., 2015), using the equation:

Thermal limit � Temperatureacclimation þ ð1jBlockÞ: ð2Þ

Population marginal means, their associated standard errors, and the

post hoc Tukey HSD test applied to pairwise differences between

treatment levels were calculated using the package emmeans v1.8.0
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(https://CRAN.R-project.org/package=emmeans). The Kenward–

Roger approximation of degrees of freedom was applied when

testing independent scoring methods to account for small and

unbalanced datasets (e.g. when a methodology was not able to

provide an estimate), the confidence intervals were adjusted using

the Šidák method, and the P-values were adjusted using the Tukey

method for comparing a family of three estimates.

Inter-method agreement between computational and visual

estimates was measured with the concordance correlation

coefficient (CCC), which evaluates the degree to which pairs of

measurements fall in the 45 deg line of perfect correlation

(Lawrence and Lin, 1989). In addition, CCC can provide

information on the source of disagreement when decomposed

into the bias corrector factor Cb, a measure of accuracy, and

the Pearson correlation coefficient ρ, a measure of precision.

Accuracy in Cb measures how far the best-fit line deviates from

the 45 deg line; ρ measures how far each observation deviates

from the best-fit line. In our case, CCC and their components were

computed as implemented in the R package DescTools v0.99.45

(https://CRAN.R-project.org/package=DescTools) in paired datasets

containing one computational method (change point, individual

median, optimal threshold) and the visual dataset per thermal

tolerance assay. Finally, individuals presenting outlying scoring

differences were identified with an agreement test (Martin Bland and

Altman, 1986) to investigate the cause of the disagreement. For each

thermal tolerance assay, we calculated themean difference (�d) and the

standard deviation of the difference in the comparisons visual–

individual median and visual–optimal threshold datasets to estimate

the ‘limits of agreement’ at �d±2 s.d.

Application to other insect species

The CTmax of six additional insect species was evaluated using our

methodology (individual median) and visual estimations. The

additional species tested were the Asian tiger mosquito (Aedes

albopictus), the southern house mosquito (Culex quinquefasciatus),

the common bed bug (Cimex lectularius), the subterranean termite

(Reticulitermes flavipes), the fall army worm (Spodoptera

frugiperda) and the red flour beetle (Tribolium castaneum).

Insects were reared under standard conditions at multiple

insectariums in the University of Kentucky Department of
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Fig. 1. Comparison between thermal tolerance estimates scored with different methodologies. The methodologies were change point (CP), individual

median (IM) and optimized threshold (OT) versus visual estimates. (A) Critical thermal maxima (CTmax; n=90 for IM, OT and visual; n=87 for CP). (B) Critical

thermal minima (CTmin; n=78 for IM, OT and visual). (C) Heat knockdown time (HKDT; n=87 for all). (D) Chill coma recovery time (CCRT; n=88 for IM, OT

and visual). Colored circles are raw data, outlined circles represent mean treatment values and error bars are s.e.m. for the three different acclimation

temperatures. Asterisks indicate statistical significance with Tukey’s HSD test (*P<0.05, ***P<0.001).
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Entomology and loaded onto acrylic plates for experiments

immediately after receipt, except for fall army worm larvae,

which were held in our laboratory until the 3rd instar was

reached, and common bedbugs, which were held for 7 days at

room temperature after a blood meal. When available, a previously

determined estimate was obtained from the literature. The incubator

was programmed for a 20 min holding time at 25°C followed by the

0.25°C min−1 heating ramp, except for fall army worm larvae, for

which it was held at 30°C before starting a ramp with the same rate.

RESULTS AND DISCUSSION

Scoring efficacy by computational methods

Motor activity was transformed into a sequence of motion events

with our computational tool DIME. Average processing time

including transformation and scoring was 18 min (1.80 GHz

processor) per 2.5 h long video (640×360 pixels) in contrast to

1 h for visual inspection of the same 30 subjects. As processing time

increases with increasing pixel resolution, video frame

manipulation takes up most of the computing resources. Greater

throughput can be achieved by increasing the number of subjects per

video and increased processing power. The computational methods

individual median and optimal threshold provided a score for every

individual; however, for lower thermal limits, change point scores

were removed from the downstream analysis as most were not

meaningful.

Variance introduced by methodology

Variation due to methodology was only observed in upper thermal

limits. CTmax presented the greatest differences between automated

and visual scoring methods (Fig. 1A). Both the individual median

and optimal threshold methods resulted in statistically significant

deviations from visual estimations (−0.39 and −0.56°C,

respectively, both P<0.001), whilst the magnitude of the

difference with the change point method was more pronounced

(−1.39°C, P<0.001). Methodological differences were also present

in HKDT assays (Fig. 1C). Estimates obtained using the change

point and individual median methods differed from visual

observations on average by −17.3 min (P<0.001) and −6.48 min

(P=0.03), respectively, while optimal threshold estimates were not

significantly different (−4.88 min, P=0.14). In general, estimates

from the change point method were smaller than those using the

individual median and optimal threshold methods, suggesting that

this approach may be scoring a different component of the

biological response to thermal stress.

In contrast, no statistical variance was introduced by methodology

in lower thermal limits. In the case of CTmin, the average differences

of individual median and optimal threshold against visual estimates

were 0.26°C (P=0.34) and −0.11°C (P=0.83). In a similar way,

CCRT estimates between computational and visual estimates were

−0.97 min (P=0.64) and −2.2 min (P=0.1), respectively. The

similarity in variances between methods could be a result of the

reduced amount of motion events, but the relative lack of movement

may also introduce variation when automatically scoring some

individuals (see sources of disagreement below).

Recapitulation of thermal acclimation effects

In dynamic assays, computational scoring methodologies

consistently recapitulated the differences in thermal tolerance due

to acclimation (Table 1). In contrast, in static assays, there was some

variation in statistical groupings between scoring methodologies. In

visual estimates of HKDT, flies acclimated at 25°C were statistically

different from those acclimated at 30°C, while flies acclimated at

18°C were not different from either group (ANOVA, Tukey,

α=0.05). For automated scoring, statistical grouping was slightly

different, as the 18 and 25°C acclimation groups were

indistinguishable and both were different from the 30°C acclimation

group. The reduced s.e.m. in automatic scores suggests that these

methodologies had increased power to identify treatment effects by

providing reduced measurement error, supporting the notion that

interobserver bias could be a source of reduced statistical power in

HKDT (Castaneda et al., 2012). In the case of CCRT, treatment

grouping from the visual estimates was recapitulated by individual

median scoring, but not by optimal threshold scoring. In this case, the

optimal threshold method was not able to separate treatments from

each other, despite having lower s.e.m. than individual median

estimates. However, on the whole, our observations were consistent

with previous observations that automatic scores recapitulate treatment

effects (Laursen et al., 2021; MacLean et al., 2022), confirming that

automated scores can provide meaningful thermal limit estimates.

Concordance between automated and visual estimates

To evaluate the reliability of automated scoring, we used the CCC, a

measure of agreement. The decomposition of CCC into Cb and ρ

provides specific information on accuracy with the bias correction

factor (Cb) and precision with the product-moment correlation (ρ)

(Table S1). The agreement of automatic scoring methodologies was

higher in static than in dynamic methods, with individual median

providing an overall accuracy above 91% but variable precision

(range 66–91%), and optimal threshold presenting a similar pattern

(>79% Cb, 50–92% ρ). Scores from the change point method

presented the lowest CCC values, confirming our suspicion that this

scoring method could be measuring a different component of thermal

performance, albeit with high correlation (ρ) for HKDT. Our CCC

values for automated versus visual estimates were comparable to or

even higher than previously reported for HKDT (Castaneda et al.,

2012) but slightly lower than those obtained by our interobserver

CCC estimates (Table S1). In general, the capacity of individual

Table 1. Effect of temperature on thermal tolerance estimates of CTmax,
CTmin, HKDT and CCRT calculated with change point, individual
median, optimal threshold and visual methods

Method

Acclimation temperature

18°C 25°C 30°C

CTmax (°C)

Change point 38.6±0.37a 38.7±0.37a 39.4±0.371b

Individual median 39.4±0.27a 39.6±0.27a 40.4±0.27b

Optimal threshold 39.4±0.15a 39.5±0.15a 40.4±0.15b

Visual 39.9±0.274a 40.2±0.274a 40.8±0.274b

CTmin (°C)

Individual median 4.1±0.39a 5.9±0.377b 7.25±0.39c

Optimal threshold 3.23±0.398a 5.81±0.391b 7.01±0.398c

Visual 3.19±0.316a 5.91±0.307b 7.33±0.316c

HKDT (min)

Change point 61.5±6.97a 60.4±6.97a 71.9±6.99b

Individual median 71.9±7.2a 70.1±7.2a 84.4±7.24b

Optimal threshold 73.6±6.72a 71.5±6.72a 85.7±6.77b

Visual 81.4±9.04a,b 74.4±9.04a 88.2±9.09b

CCRT (min)

Individual median 21±1.78a 22.5±1.82a 27.3±1.78b

Optimal threshold 20.7±1.64a 21.7±1.67a 24.8±1.64a

Visual 21.6±1.53a 23.5±1.58a 28.7±1.53b

CTmax, critical thermal maximum; CTmin, critical thermal minimum; HKDT, heat

knockdown time; CCRT, chill coma recovery time. Data are means±s.e.m.

Means not sharing any letter are significantly different (Tukey’s HSD test at the

5% level of significance).
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Fig. 2. Source of discrepancies between pairs of measurements. Agreement tests (left) for individual median and threshold optimization against visual

scores, and two individual examples of each assay (right) for (A–C) CTmax (n=90), (D–F) CTmin (n=78), (G–I) HKDT (n=87) and (J–L) CCRT (n=88). In the

agreement tests, short-dashed lines indicate the limits of agreement based on individual median–visual differences, and long-dashed lines are for optimal

threshold–visual differences. Orange squares indicate differences for scores estimated with the individual median method; blue circles indicate differences for

those estimated with the optimal threshold method. In the activity plots on the right (showing relative pixel intensity change, rPIC), the time where the gray

shading ends indicates the visual estimate, and the red vertical dashed line indicates the estimate obtained with the change point method.
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median and optimal threshold methods to accurately capture the

thermal limits is supported by the reduced bias (high Cb), but the

variable ρ suggests that discrepancies exist between individual pairs

of measurements.

Source of disagreement between pairs of measurements

To identify the source of the disagreement between individual

scorings, we evaluated individual median and optimal threshold

datasets against visual estimates using a graphical technique

(Fig. 2). In many cases, the scores from visual, individual median

and optimal threshold methods overlapped (e.g. Fig. 2E,H,K),

particularly in CTmin and CCRT datasets. As expected from the

CCC, greater individual variation between visual and automated

individual scoring was present in CTmax and HKDT. The majority

of the discrepancies were underestimations of the endpoint time

by the automated method, originating from an interaction

between the decreasing activity levels in the last movements of

the individual and the threshold differences between scoring

methods (e.g. Fig. 2B,C).

Biological variation in the motor response also introduced

technical error. For example, individuals with slowmovements were

not detected accurately by the motion detection software, as in the

case of well 8 in block 1 of CTmin (Fig. 2F). In other cases when the

scoring threshold was low, automated CCRT estimates were scored

on small appendage motion events instead of righting position

because of its high sensitivity (e.g. optimal threshold estimate in

Fig. 2L). These discrepancies can be readily identified with visual

inspection (e.g. Fig. 2I), and reliable estimates can be achieved with

a combination of automatic scoring (individual median or optimal

threshold) followed by human supervision. However, given the

frequency of discrepancies in the automatic scoring of CCRT,

additional time investment may be required when analyzing

large datasets, and this method may be less suitable for

unsupervised analyses. A thorough evaluation of sensitivity is

beyond the scope of the current article, but our analysis tool can be

tuned to capture, or exclude, subtle movements when necessary by

calibrating the detection sensitivity with the video transformation

parameters.

Application of automated scoring for thermal limits

Our results indicate that the automated methods individual median

and optimal threshold for scoring thermal limits can provide

comparable values to manual scoring of CTmax, CTmin, HDKT and

CCRT. The values obtained in this study are also consistent with

previous work on thermal limits inD. melanogaster.While previous

work indicated discrepancies in thermal limit estimates between air-

and water-cooled apparatuses (MacLean et al., 2022), CTmin and

CTmax estimates obtained here were within ∼1°C of those from a

previous study in our lab using a water-jacketed cylinder (Lecheta

et al. (2020), although different lines and rearing conditions were

used between the two studies. To further demonstrate the utility of

this method beyond Drosophila, we applied our automated scoring

of CTmax to six other insect species (Table S2). The automated

methodology scored CTmax in every case, despite differences in

body structure, size or locomotion. For cases where previous CTmax

estimates exist for the additional species, the estimate of CTmax was

in line with expected values, although methodological differences

(genetic background, rearing conditions, assay conditions, etc.)

make it challenging to directly compare our results with the

literature. The CTmax estimate for bedbugs (Cimex lectilarius) was

identical to that previously reported in DeVries et al. (2016), while

for the subterranean termite Reticulotermes flavipes, which had the

largest discrepancy, our CTmax estimate was still within 3°C of a

previous study (Sponsler and Appel, 1991). When comparing the

automated results with visual estimates, where there were

differences, the automated method often underestimated the

activity endpoint time, likely because of an inability to accurately

adjust the ‘threshold’ of biological activity for every single

individual. Thus, while automated measurements of thermal

tolerance may slightly vary from classic visual estimates, we see

an opportunity for reproducible and high throughput methodologies

such as DIME and other similar approaches (e.g. Awde et al., 2020;

Laursen et al., 2021; MacLean et al., 2022) to increase sample sizes

and standardize endpoints used for insect thermal limits.
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Bates, D., Mächler, M., Bolker, B. and Walker, S. (2015). Fitting linear mixed-

effects models Usinglme4. J. Stat. Softw. 67, 1-48. doi:10.18637/jss.v067.i01

Bradski, G. (2000). The openCV library. Dr. Dobb’s Journal: Software Tools for the

Professional Programmer 25, 120-123. https://www.drdobbs.com/open-source/

the-opencv-library/184404319;

Castaneda, L. E., Calabria, G., Betancourt, L. A., Rezende, E. L. and Santos, M.

(2012). Measurement error in heat tolerance assays. J. Therm. Biol. 37, 432-437.

doi:10.1016/j.jtherbio.2012.03.005

Dallas, H. F. and Rivers-Moore, N. A. (2012). Critical thermal maxima of aquatic

macroinvertebrates: towards identifying bioindicators of thermal alteration.

Hydrobiologia 679, 61-76. doi:10.1007/s10750-011-0856-4

David, R. J., Gibert, P., Pla, E., Petavy, G., Karan, D. and Moreteau, B. (1998).

Cold stress tolerance in Drosophila: analysis of chill coma recovery in

D. melanogaster. J. Therm. Biol. 23, 291-299. doi:10.1016/S0306-

4565(98)00020-5

Devries, Z. C., Kells, S. A. and Appel, A. G. (2016). Estimating the critical thermal

maximum (CTmax) of bed bugs, Cimex lectularius: comparing thermolimit

respirometry with traditional visual methods. Comp. Biochem. Physiol. A: Mol.

Integr. Physiol. 197, 52-57. doi:10.1016/j.cbpa.2016.03.003

7

METHODS & TECHNIQUES Journal of Experimental Biology (2023) 226, jeb246548. doi:10.1242/jeb.246548

Jo
u
rn
a
l
o
f
E
x
p
e
ri
m
e
n
ta
l
B
io
lo
g
y



Garcia-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. and Kress,

W. J. (2016). Limited tolerance by insects to high temperatures across tropical

elevational gradients and the implications of global warming for extinction. Proc.

Natl. Acad. Sci. USA 113, 680-685. doi:10.1073/pnas.1507681113

Gerken, A. R., Eller, O. C., Hahn, D. A. and Morgan, T. J. (2015). Constraints,

independence, and evolution of thermal plasticity: probing genetic architecture of

long- and short-term thermal acclimation. Proc. Natl. Acad. Sci. USA 112,

4399-4404. doi:10.1073/pnas.1503456112

Hazell, S. P. and Bale, J. S. (2011). Low temperature thresholds: are chill coma and

CTmin synonymous? J. Insect Physiol. 57, 1085-1089. doi:10.1016/j.jinsphys.

2011.04.004

Hinkley, D. V. (1970). Inference about the change-point in a sequence of random

variables. Biometrika 57, 1-17. doi:10.2307/2334932

Jørgensen, L. B., Malte, H. and Overgaard, J. (2019). How to assess Drosophila

heat tolerance: unifying static and dynamic tolerance assays to predict heat

distribution limits. Funct. Ecol. 33, 629-642. doi:10.1111/1365-2435.13279

Kellermann, V., Loeschcke, V., Hoffmann, A. A., Kristensen, T. N., Fløjgaard, C.,

David, J. R., Svenning, J. C. andOvergaard, J. (2012). Phylogenetic constraints

in key functional traits behind species’ climate niches: patterns of desiccation and

cold resistance across 95 Drosophila species. Evolution 66, 3377-3389. doi:10.

1111/j.1558-5646.2012.01685.x

Killick, R. and Eckley, I. (2014). changepoint: an R package for changepoint

analysis. J. Stat. Softw. 58, 1-19. doi:10.18637/jss.v058.i03

Kingsolver, J. G. and Umbanhowar, J. (2018). The analysis and interpretation of

critical temperatures. J. Exp. Biol. 221, jeb167858. doi:10.1242/jeb.167858

Laursen, S. F., Hansen, L. S., Bahrndorff, S., Nielsen, H. M., Noer, N. K.,

Renault, D., Sahana, G., Sørensen, J. G. and Kristensen, T. N. (2021).

Contrasting manual and automated assessment of thermal stress responses and

larval body size in black soldier flies and houseflies. Insects 12, 380. doi:10.3390/

insects12050380

Lawrence, I. and Lin, K. (1989). A concordance correlation coefficient to evaluate

reproducibility. Biometrics 45, 255-268. doi:10.2307/2532051

Lecheta, M. C., Awde, D. N., O’leary, T. S., Unfried, L. N., Jacobs, N. A.,

Whitlock, M. H., Mccabe, E., Powers, B., Bora, K. and Waters, J. S. (2020).

Integrating GWAS and transcriptomics to identify the molecular underpinnings of

thermal stress responses in Drosophila melanogaster. Front. Genet. 11, 658.

doi:10.3389/fgene.2020.00658

Lutterschmidt, W. I. and Hutchison, V. H. (1997a). The critical thermal maximum:

data to support the onset of spasms as the definitive end point. Can. J. Zool. 75,

1553-1560. doi:10.1139/z97-782

Lutterschmidt, W. I. and Hutchison, V. H. (1997b). The critical thermal maximum:

history and critique. Can. J. Zool. 75, 1561-1574. doi:10.1139/z97-783

Maclean, H. J., Sørensen, J. G., Kristensen, T. N., Loeschcke, V., Beedholm, K.,

Kellermann, V. and Overgaard, J. (2019). Evolution and plasticity of thermal

performance: an analysis of variation in thermal tolerance and fitness in 22

Drosophila species. Philos. Trans. R. Soc. B 374, 20180548. doi:10.1098/rstb.

2018.0548

Maclean, H. J., Hansen, J. H. and Sørensen, J. G. (2022). Validating

the automation of different measures of high temperature tolerance of small

terrestrial insects. J. Insect Physiol. 137, 104362. doi:10.1016/j.jinsphys.2022.

104362

Martin Bland, J. and Altman, D. (1986). Statistical methods for assessing

agreement between two methods of clinical measurement. Lancet 327, 307-310.

doi:10.1016/S0140-6736(86)90837-8

Ørsted, M., Rohde, P. D., Hoffmann, A. A., Sørensen, P. and Kristensen, T. N.

(2018). Environmental variation partitioned into separate heritable components.

Evolution 72, 136-152. doi:10.1111/evo.13391

Perez, F. et al. (2023). Data from: Scoring thermal limits in small insects using open-

source, computer assisted motion detection [Dataset]. Dryad. doi:10.5061/dryad.

cfxpnvxc2

Perez-Galvez, F. R. (2023). Ecological risk assessment of transgenic conditional

lethality systems for genetic biocontrol strategies. PhD thesis, University of

Kentucky.

Rezende, E. L., Castan ̃eda, L. E. and Santos, M. (2014). Tolerance landscapes

in thermal ecology. Funct. Ecol. 28, 799-809. doi:10.1111/1365-2435.12268

Sinclair, B. J., Alvarado, L. E. C. and Ferguson, L. V. (2015). An invitation to

measure insect cold tolerance: methods, approaches, and workflow. J. Therm.

Biol. 53, 180-197. doi:10.1016/j.jtherbio.2015.11.003

Sponsler, R. and Appel, A. (1991). Temperature tolerances of the Formosan and

eastern subterranean termites (Isoptera: Rhinotermitidae). J. Therm. Biol. 16,

41-44. doi:10.1016/0306-4565(91)90050-C

Sunday, J. M., Bates, A. E. and Dulvy, N. K. (2011). Global analysis of thermal

tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823-1830. doi:10.

1098/rspb.2010.1295

8

METHODS & TECHNIQUES Journal of Experimental Biology (2023) 226, jeb246548. doi:10.1242/jeb.246548

Jo
u
rn
a
l
o
f
E
x
p
e
ri
m
e
n
ta
l
B
io
lo
g
y


