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A B S T R A C T

Connected and automated vehicles (CAVs) and infrastructure-to-vehicle (I2V) communication
have great potential to improve traffic safety and mobility at intersection and road segment
levels. However, since transportation is an interconnected network, local transportation state
change could lead to broader impacts by rerouting. In this study, we focus on investigating the
impacts of en-route locational information updates on the system-level safety and mobility con-
sidering adaptive routing of CAVs. We propose a novel two-stage stochastic traffic equilibrium
model to characterize the equilibrium traffic patterns considering adaptive routing behavior
when en-route traffic information is provided. The proposed methodology is tested using the
Orlando transportation network with real traffic and accident data. Different I2V information
sharing strategies are analyzed to better understand the impacts of information sharing locations
of I2V on transportation network safety and mobility, through which we generate insights on
the optimal design of traffic information sharing systems.

1. Introduction

The market penetration of levels 3 and up connected and automated vehicles (CAVs) is projected to reach approximately 8
million by 2025 (ABI, 2018). Although fully automated vehicles may still take years to develop, the improvements in vehicle
connectivity, onboard computation, and data sensing in low-level CAVs have great potential to transform transportation systems
leveraging increasing availability of information (Elliott et al., 2019).

One of the key information sources for CAVs is infrastructure-to-vehicle (I2V) technology, which collects and processes sensor- or
vehicle-generated data and wirelessly shares information with vehicles nearby (Böhm and Frötscher, 2009). With advanced onboard
communication and computational capability, CAVs are able to receive and process a large amount of data promptly and suggest
optimal travel decisions (e.g., speed control and/or travel paths) based on both the prior knowledge of the transportation system
states and real-time information updates received en-route (Malikopoulos et al., 2021). Different information sharing strategies,
such as when, where, and what to share with which groups of vehicles in what transportation network conditions will significantly
influence the decision making of individual vehicles, which collectively determine the network performance (Unnikrishnan and
Waller, 2009; Boyles and Waller, 2011; Lindsey et al., 2014; Acemoglu et al., 2018; Liu and Liu, 2018; Liu and Yang, 2021).

< Correspondence to: 4353 Scorpius Street, Orlando, FL 32816-0120, United States of America.
E-mail address: guo@ucf.edu (Z. Guo).

https://doi.org/10.1016/j.trc.2023.104075
Received 20 March 2022; Received in revised form 31 December 2022; Accepted 17 February 2023

https://www.elsevier.com/locate/trc
http://www.elsevier.com/locate/trc
mailto:guo@ucf.edu
https://doi.org/10.1016/j.trc.2023.104075
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2023.104075&domain=pdf
https://doi.org/10.1016/j.trc.2023.104075


Transportation Research Part C 149 (2023) 104075

2

F. Afifah et al.

Existing studies have demonstrated the safety and mobility benefits of CAVs at local levels,1 such as technology, node, and link
levels (e.g., Yue et al., 2018; Rahman et al., 2019; Fagnant and Kockelman, 2015; Zhao et al., 2021; Papadoulis et al., 2018; Ma
et al., 2021). However, focusing on local-level impacts may cause biases since a transportation system is an interconnected network.
Local node or link transportation state changes, such as the occurrence of weather events, road construction, traffic management
activities, traffic accidents, etc, will not only impact the link performance functions and crash risk for the impacted links but also
have broader impacts on other links due to vehicles rerouting and traffic redistribution. For instance, if congestion happens on
one link, sharing information on this event leads vehicles to use other alternative paths, thus contributing to congestion on those
alternative paths at a broader scale. Research addressing the safety and mobility implications of CAVs considering an interconnected
transportation network is still limited, which hampers the thorough analysis of CAVs’ impacts on transportation systems.

The main motivation for studying system-level safety and mobility impacts of en-route information sharing is to avoid myopic
decision making in information system design that seeks to improve only isolated components of the transportation system and
ignore the network effects. As we will demonstrate in this study, more information may not always improve the system’s safety
and mobility. An analytical modeling framework characterizing the equilibrium traffic patterns considering en-route information
updates and traffic rerouting is necessary to quantify the system-level safety and mobility impacts. Note that this fundamental
motivation is consistent with classic transportation paradoxes, such as Barass’s paradox (Rapoport et al., 2009) and Knight–Pigou–
Downs paradox (Dechenaux et al., 2014; Morgan et al., 2009), in which improvements in local transportation infrastructure may
lead to deterioration in system performance.

In this paper, we aim to investigate the impacts of locational en-route information updates on transportation system safety
and mobility considering CAVs’ adaptive routing. Note that we do not require autonomous driving features. Instead, we leverage
advanced vehicle information sensing and computational technologies that can assist vehicles to make routing decisions, which can
be executed by either human-driven vehicles or automated vehicles. While various types of information can be shared, this study
focuses on sharing mobility information on specific transportation links with CAVs when they pass by I2V devices. Both the prior
knowledge and real-time information on the transportation states will be considered by CAVs to determine the optimal individual
(re)routing decisions, which collectively determine the network traffic equilibrium patterns. The contributions of this study are
two-fold.

(1) We propose a novel and computationally tractable transportation network model to describe the traffic equilibrium patterns
considering the adaptive routing of CAVs with en-route information updates.

(2) We evaluate the impacts of information sharing locations on transportation safety and mobility at a network level with
real-world traffic data considering adaptive routing of CAVs.

The rest of the paper is structured as follows. We review the literature about the safety and mobility implications of CAVs and
adaptive decision making with information sharing in Section 2. In Section 3, we present the methodology used for this study,
which includes traffic network modeling with information updates and data-driven econometric models for safety quantification.
Section 4 presents result analyses using the Orlando network. We conclude the study and discuss possible future extensions and
policy implications in Section 5.

2. Literature review

I2V and CAV technologies provide tremendous opportunities to improve traffic safety and mobility through information sharing
on real-time transportation states. In this section, we review relevant literature on the following two aspects: (1) safety and mobility
implications of CAVs; and (2) traffic network modeling with the adaptive decision making of CAVs with information updates.

2.1. Safety and mobility implications of CAVs

Extensive studies have been conducted to demonstrate the effectiveness of safety and mobility improvements leveraging
different levels of CAVs. Majority of these existing studies are limited to local safety and mobility improvements, such as
motorway (Papadoulis et al., 2019), freeway (Zheng et al., 2019; Xie et al., 2017; Amini et al., 2021; Zhao et al., 2021), and
signalized/unsignalized intersection (Morando et al., 2018; Fyfe and Sayed, 2017; Rahman et al., 2019; Du et al., 2018; Lee and Park,
2012; Ma et al., 2021; Wang et al., 2019). For example, Papadoulis et al. (2019) developed a CAV control algorithm and simulated it
in VISSIM for motorway segment safety evaluation. Zheng et al. (2019) demonstrated freeway safety and mobility improvement by
proposing a cooperative lane-changing strategy with exclusive lanes for CAVs. Du et al. (2018) demonstrated mobility improvement
at an unsignalized intersection while proposing a hierarchical coordination strategy for CAVs to traverse through multiple signal-
free intersections. Recently, based on V2X communication, Ma et al. (2021) proposed a cooperative adaptive cruise control for
CAVs to improve throughput at signalized intersections. However, all the aforementioned studies focus on the safety or mobility
implication of CAVs at a local level (i.e., intersections and road segments), without considering the potential network effects of traffic

1 Local-level (i.e., link/node-level) safety and mobility refers to the crash risk and congestion on neighboring road segments or intersections only, while
system-level safety and mobility considers the interconnection of the transportation network and refers to the measures for the whole transportation network
by aggregating the local-level safety and mobility for each link/node. In this paper, we use link performance functions and link crash risk functions in different
scenarios to represent local transportation mobility and safety.
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rerouting. Research on the implication of safety and mobility with CAVs at a network level is still limited. Hasibur Rahman and
Abdel-Aty (2021) are among the first to investigate the safety and mobility impact of CAVs at a network level with both V2V and I2V
technologies to communicate with surrounding vehicles and traffic signals. However, this study relies on microscopic simulation,
which may not be easily generalized.

2.2. Adaptive decision making with information updates

Studies have investigated the transportation system dynamics in the framework of simulation-based Dynamic Traffic Assignment
(DTA) (Mahmassani, 2001; Gao and Chabini, 2006; Lin et al., 2008; Sundaram et al., 2011; Antoniou et al., 2011; Gao and Huang,
2012; Gao, 2012; Ma et al., 2016; Hasibur Rahman and Abdel-Aty, 2021). Some studies have explicitly considered the impacts of real-
time information updates using iterative approaches to account for drivers’ experience and learning processes, which may not lead to
convergence. For example, Gao (2012) proposed a fixed-point formulation for the user equilibrium with real-time information, which
was solved by a heuristic method of successive averages. Based on the space–time network, Ma et al. (2016) proposed an agent-based
optimization modeling framework to determine information provision, which can be solved by integrating Lagrangian relaxation-
based heuristics and a mesoscopic DTA simulator. Although simulation-based DTA approaches can characterize system dynamics in
detail, it may be challenging to calibrate the simulation parameters for a large network. In addition, rigorous mathematical properties
(e.g., existence, uniqueness, and convergence) and structural analyses of system interaction may be challenging to achieve (Rambha
et al., 2018).

To mitigate the drawbacks of simulation-based DTA approaches, another stream of literature adapts the classic traffic equilibrium
notions (e.g., Wardrop user equilibrium Wardrop, 1952; Beckmann et al., 1955, stochastic user equilibrium (SUE) Daganzo and
Sheffi, 1977, and DTA Friesz and Han, 2019) to capture the impacts of information updates. For example, Acemoglu et al. (2018)
generalized classic Wardrop user equilibrium and proposed an information-constrained Wardrop equilibrium model to study the
impact of information on traffic congestion. Studies also investigated the route choice behavior and traffic equilibrium patterns
in the context of variable message signs (VMSs) (Li et al., 2016; Ban et al., 2009; Lam and Chan, 1996) and advanced travelers
information system (ATIS) (Levinson, 2003; Yang, 1998; Yang et al., 1993; Hall, 1996; Henn and Ottomanelli, 2006) using network
modeling approaches. For instance, Li et al. (2016) proposed a stochastic network equilibrium model to determine the optimal
location of VMS to share travel time information. Yang (1998) proposed a mixed equilibrium assignment model, where informed
drivers and uninformed drivers choose routes in user-optimal and stochastic-equilibrium manners, respectively. However, these
studies do not consider the adaptive routing of vehicles.

Du et al. (2014, 2015) proposed equilibrium routing decision (ERD), an extension of SUE at an individual level and in a shorter
time frame. However, ERD treats decision making at each time step as independent of each other and does not consider the network
impacts of rerouting. Unnikrishnan and Waller (2009), Boyles and Waller (2010, 2011), and Rambha et al. (2018) studied user
equilibrium with recourse (UER) in an uncertain transportation network where travelers adjust their travel routes depending on en-
route information updates. Calderone and Sastry (2017) leveraged the potential function to represent the Markov decision process
routing games in the context of ride-sourcing services, where drivers consider the routing over an entire time horizon with real-time
information updates. Most of the above-mentioned research on adaptive decision making depicts information implicitly in routing
policies, which is challenging for further information systems design and analyses. In addition, the number of routing policies
grows exponentially with both uncertain scenarios and paths, which brings significant challenges for real-world applications. To
mitigate these issues, we propose a novel and scalable equilibrium-based network model based on the concept of non-anticipativity
in stochastic programming (e.g., Rockafellar and Wets (1976)) to characterize the equilibrium traffic patterns considering adaptive
decision making with information updates.

3. Methodology

The proposed research aims to investigate the safety and mobility implications of CAVs and I2V technologies considering
en-route information updates and rerouting. We denote the locations where information is provided to travelers passing by as
information nodes. Travelers can update their routing decisions based on the information they have received. Note that en-route
rerouting decision does not necessarily imply a dynamic traffic state. En-route rerouting decisions could also be because a (static)
transportation state is not known to travelers until they pass by information nodes. In this paper, we focus on static traffic patterns.

3.1. Network modeling

We use network modeling techniques to capture the interdependence between traffic flow at different links and formulate the
adaptive decision making of CAVs when they pass by the I2V infrastructure and receive information updates. Depending on the
locations of I2V infrastructure and the travel paths of CAVs, different CAVs may receive different information. Similar to the classic
traffic assignment (Wardrop, 1952), the link travel time and the route choices of all CAVs are coupled. To describe the traffic flow
pattern given information updates, we propose a novel computationally tractable static-equilibrium-based formulation of traffic
assignment with adaptive routing decision making. In this subsection, we will start with a brief summary of the classic Beckmann’s
user equilibrium (UE) models (Beckmann et al., 1955). Then, we discuss how to generalize the classic user equilibrium models to
reflect adaptive decision making with information updates.
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3.1.1. Beckmann’s models for UE
We denote a transportation network as a directed graph G = (N ,A), where N is the node set (indexed by n) and A is the set

of links (indexed by a). Furthermore, we define the OD set C Å R ù S (indexed by rs), where R,S ” N are sets of origin and
destination nodes. The route (path) set for connecting an OD pair rs (À C) is denoted as Prs. By Wardrop first principle (Wardrop,
1952), ≈p À Prs with positive path flow (i.e., xp > 0),

cp(x) = min
qÀPrs

cq(x) (1)

where x is the path flow vector and cp(x) =
≥

aÀp tava, where cp(�) and ta(�) is the path and link travel costs functions, respectively.
Based on the definition of Wardrop user equilibrium, Beckmann et al. (1955) proposed an equivalent convex mathematical

formalization as (2) to facilitate the calculation of link traffic flow v for large-scale transportation networks. Wardrop UE models
have been widely used to characterize vehicle traffic in different contexts, such as charging infrastructure planning (Guo et al.,
2016), EV power grid services (Baghali et al., 2022), and spatial pricing of ride-sourcing (Afifah and Guo, 2022).

minimize
v

…
aÀA 

va

0
ta(z) dz (2a)

subject to v À Xv, (2b)

where Xv is the projection into the arc flows space of feasible flow set X =: {(v,x)}.
However, the definition of Wardrop equilibrium and the corresponding formulation and properties are limited to the deterministic

case. Stochastic user equilibrium, pioneered by Daganzo and Sheffi (1977), was proposed to model one-stage routing decision making
considering perceived uncertainties of travel time. Travelers navigate through the network based on their perceived travel time and
there are no en-route information updates. Therefore, the routing decision making of travelers is made at the beginning of the trip,
i.e., single-stage decision making. However, in our proposed model, travelers know the probability distribution of travel times a
priori and could receive information updates on the actual realization if they pass information nodes.

3.1.2. Adaptive traffic assignment models
To distinguish from the classic (one-stage) stochastic user equilibrium notion (Daganzo and Sheffi, 1977), we denote our traffic

equilibrium as stochastic user equilibrium with recourse (SUER) in this study, as formally defined in Definition 1. We assume that
drivers are rational and risk-neutral, and have a common prior belief about the link travel time. The prior belief is measured by
the probability distribution of system uncertain parameters ⇠, which can be estimated from historical traffic data. Note that the
probability distribution of parameters ⇠ is exogenously given while the equilibrium travel time endogenously determined by all the
travelers’ routing decisions. I2V devices will provide information updates on ⇠ when CAVs pass through I2V nodes, denoted as NI .
We further assume that information nodes will provide true and consistent information on system uncertain parameters ⇠, so that
for the first time a driver passing through node n À NI , he/she will receive a specific realization of ⇠, which will be taken into
account for their future routing decisions. This setting indicates that there are at most two possible stages in which a traveler could
be in, namely before and after receiving information. In the first stage (i.e., before they receive information updates), travelers
make routing decisions based on the expectation of the path travel time given prior knowledge of the probability distributions of
link performance functions. In the second stage (i.e., after they receive information updates), travelers adjust their routes based on
the new information. Travelers will receive information when they pass an information node and we do not assume travelers need
to receive all information at the same time. Note that our traffic equilibrium aligns with the user equilibrium with recourse (UER)
notion originally proposed in Unnikrishnan and Waller (2009). However, instead of using a policy-based modeling approach, we
adopt a completely different modeling strategy inspired by two-stage stochastic programming with recourse. We note that since the
proposed modeling framework is based on two-stage stochastic programming concepts, the proposed modeling strategies can be
naturally extended to a multi-stage SUER case, where information nodes reveal partial information about the systems. To keep the
focus clear, we left the treatment of multi-stage SUER for the future.

Definition 1 (Two-Stage SUER). In two-stage SUER, the following two conditions hold for each origin and destination:
• before receiving information, the expected travel times/costs on all paths used from the origin to the destination in the first stage are
equal, and less than those which would be experienced by a single vehicle on average on any unused path;

• after receiving information, the travel times/costs on all paths used from the (first) information node to the destination in the second
stage are equal, and less than those which would be experienced by a single vehicle on any unused path.

Notice that the drivers may adjust their travel routes after receiving information updates. Therefore, ‘‘paths selected in the first
stage’’ should bundle all the possible paths that a driver can still choose after they receive information. More formally, we define
the ‘‘bundled paths’’ as hyperpath, as shown in Definition 2.

Definition 2 (Hyperpath). A hyperpath, denoted as Prs
k , is the kth set of paths that connect the same OD pair rs and share the same

sequence of links from origin r to the first information node i (i = s if there are no information nodes on a path).
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Inspired by the mathematical formulation of Wardrop equilibrium proposed by Beckmann et al. (1955), we construct a convex
optimization problem, whose optimal solutions are consistent with our definition of two-stage SUER. The convex optimization model
that can generate the equilibrium outcome according to Definition 1 is presented in model (3).

min
xp(⇠)g0, ≈p,⇠ E⇠

…
aÀA 

va(⇠)

0
ta(u, ⇠)du (3a)

s.t. va(⇠) =
…

rsÀRS

…
pÀPrs

�apxp(⇠), ≈a À A, ⇠ À ⌅ (3b)

(�rs(⇠))
…
pÀPrs

xp(⇠) = qrs, ≈rs À RS, ⇠ À ⌅ (3c)

(�rsa,k(⇠))
…
pÀPrs

k

�+apxp(⇠) = xrsa,k, ≈rs À RS, a À A, ⇠ À ⌅ (3d)

where:

va : traffic flow on link a;
ta(�, �) : travel time function of link a;
qrs : travel demand from r to s (model input);
xrsp (⇠) : traffic flow on path p that connects r, s at scenario ⇠;

xrsa,k : traffic flow on link a from r to s belong to kth hyperpath that have not received information on ⇠;

�ap : link-path incidence scaler, which equals to 1 if link a belongs to path p, and 0 otherwise;

�+ap : link-path incidence scaler, which equals to 1 if link a belongs to path p and has not passed through any node n À NI , and 0
otherwise;

Prs
k : The path set for those paths share the same sequence of links before they receive uncertainties information, with k denote the

kth set for rs;
�,� : dual variables of corresponding constraints.

The basic idea of the model (3) is that we first relax path flow xp and links flow va to be scenario dependent, and then we
enforce non-anticipitivity constraint (3d) to guarantee that the paths flow is measurable according to the uncertainty set, i.e. the
flow on the path segments before receiving information (i.e., �+ap = 1) should not be measurable by ⇠. In other words, the traffic
flow before receiving information should be the same regardless of the scenario realization. Note that all scenarios are coupled in
constraint (3d) and we cannot solve the traffic flow for each scenario separately. Constraint (3b) aggregates the path flow to each
link for each scenario ⇠; constraint (3c) restricts the summation of path flow connecting each OD pair should equal to OD demand.
The objective function (3a) is constructed in this way so that the optimal solutions of the optimization problem (3) satisfies the two
conditions of two-stage SUER, as stated in Definition 1. This result is stated more formally in Theorem 1.

Theorem 1 (Two-Stage SUER). The traffic flow pattern is following two-stage SUER principles (i.e., Definition 1) if and only if it is the
optimal solution to the optimization problem (3).

Proof. See Appendix. ∏

The proposed formulation is intuitive in the sense that the final formulation, i.e., model (3), closely relates to the classic UE
formulation. However, the rigorous proof of the equivalence between the solutions of the proposed model (3) and the traffic patterns
following the definition of two-stage SUER (i.e., Definition 1) is non-trivial and novel. As far as the authors are aware, no other work
has utilized a stochastic programming concept to model a UER problem, which could lead to significant computational advantages
since the proposed models belong to multi-stage stochastic programming problems, for which a large body of literature has been
dedicated to developing efficient computational algorithms.

In addition, we note that there are two other well-known modeling frameworks, DTA and Markovian traffic equilibrium (MTE),
that could be relevant for the studied problem, but are not adopted in this study. The reasons are explained as follows.

On the one hand, we adopt static-equilibrium-based models instead of DTA for three main reasons. First, we focus on the
stochastic nature of the transportation system instead of its dynamic nature. In our setting, we assume link performance functions are
uncertain, whose realizations can only be known when travelers pass by certain information nodes. In other words, the realizations
of link performance functions are static (do not depend on time), although the link performance functions themselves are uncertain
(unknown before reaching information nodes). Second, while DTA could be used to model en-route rerouting with uncertainties, it is
computationally costly, while our proposed method is a convex optimization, as shown in Section 3.1.2. Third, static approaches have
been demonstrated to be effective to represent the adaptive routing decision of travelers in transportation networks (Unnikrishnan
and Waller, 2009).

On the other hand, although the fundamental concept of MTE appears relevant, the current mathematical framework of MTE
(e.g., Baillon and Cominetti (2008)) may not be suitable for studying the proposed problem. This is because the MTE formulation
focuses on the variation of travelers’ perception of link travel time (Baillon and Cominetti, 2008). In other words, the stochasticity in
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Fig. 1. Four-node network with stochastic link cost.

MTE refers to the stochasticity in travelers’ perception of the link travel time, rather than to the stochasticity of the link performance
function itself. This is an important distinction because following the MTE setting, one can adopt discrete choice models to model
the traffic distribution at any given node. However, in the case when the link performance function is uncertain, travelers make
decisions considering expected travel time based on prior knowledge and information updates on the probability distributions and
the discrete choice model is not applicable.

In this paper, we consider information provided to all travelers passing by information nodes. But we note that the proposed
model (3) can be extended to consider OD-dependent information sharing. First, when information is only shared with travelers
departing from or arriving at certain nodes, those nodes can be treated information nodes and all we need to do is to update
information node set NI accordingly. Second, when en-route information is not provided to all travelers passing by the information
nodes but only to a subset of travelers belonging to certain origins and/or destinations, we need to specify the non-anticipativity
constraint (3d) to reflect that travelers from each OD can receive different information. The key parameter needed to be specified
here is �+ap, which indicates whether travelers choosing path p have received information or not when they arrive at link a. For an
OD pair rs that information is not shared with, �+ap = 0 for all a À A, p À Prs.

3.1.3. Illustrative example for two-stage SUER
To illustrate two-stage SUER, we use a simple four-node network, as shown in Fig. 1.
In Fig. 1, there are 3 units of travel demand from node 1 to node 3. The link cost, as a function of link flow f , is shown on

each link. The travel cost of link 2-4, denoted as a random variable ⇠, is uncertain, which could be influenced by random events,
such as traffic accident/incidents, weather, tolls, recommended speed, etc. We assume ⇠ has two realizations, 5 and -5,2 with equal
probability in this toy example. Node 2 is the only information node that reveals the realization on ⇠ to the drivers passing by node
2. From node 1 to node 3, there are three paths: p1 = {1, 2, 3}, p2 = {1, 2, 4, 3}, p3 = {1, 4, 3}. There are two possible hyperpaths in
the first stage: Prs

1 = {p1, p2} and Prs
2 = {p3}. In the first stage, drivers will decide whether to take link 1-2 or 1-4, considering the

historic probability distribution of ⇠. If drivers choose link 1-2 in the first stage, they will have an option later to decide whether to
go on route 2-4-3 or route 2-3 based on the new information received at node 2; while drivers who choose link 1-4 will not receive
information updates during their travel and will follow path 1-4-3.

The optimal solutions of model (3) are shown in Table 1. We can see that the traffic flow on the hyperpaths Prs
1 and Prs

2 are
independent of scenario parameter ⇠. This is because of non-anticipitivity constraints so that drivers are not able to make scenario-
dependent routing decisions before vehicles receive information. But after vehicles receive information updates, the traffic will
redistribute between different paths in each hyperpath depending on scenario ⇠. For example, we can see that all traffic (7/3 units)
in hyperpath Prs

1 select path p1 in scenario ⇠1 and they select path p2 in scenario ⇠2. From the (expected) costs, as presented in
Table 1, we can verify that: (1) Hyperpath Prs

1 = {p1, p2} and Prs
2 = {p3} have the same expected cost3; and (2) p1 has lower

second-stage travel cost than p2 when ⇠ = 5 so that p1 is selected while p2 is unused in the second stage for this scenario. Opposite
observations hold when ⇠ = *5. Therefore, the solutions of model (3) indeed satisfy Definition 1.

The traffic patterns reported in Table 1 are dramatically different from the classic user equilibrium solutions with expected link
costs on link 2* 4, where xp1 = xp3 = 1.5, and xp2 = 0. The interpretation for this difference is that because I2V is available at node
2, CAVs expect to receive information updates if they travel through {p1, p2} in the first stage. Therefore, more CAVs are attracted
to choose {p1, p2} compared to {p3} in a two-stage SUER in contrast to the user equilibrium solutions under Wardrop first principal.

We also note that equilibrium traffic patterns may also be sensitive to where information is shared. For example, if information
on ⇠ is shared at node 1, all drivers will have perfect information about link cost of 2 * 4 at the beginning of the trips. Therefore,
the traffic equilibrium solutions are scenario dependent with xp1 = xp3 = 1.5, xp2 = 0 at scenario ⇠1 and xp1 = xp3 = 0, xp2 = 3 at
scenario ⇠2.

To demonstrate the traffic patterns will be indeed stabilized given that travelers will update their prior knowledge on the
probability distribution of link performance functions and receive en-route information updates, we have simulated the travelers’ en-
route rerouting behaviors in response to uncertainties and information updates using the same example shown in Fig. 1. We consider

2 We select 5 and *5 to simplify the verification of solutions without losing generality. Negative travel costs are possible given the possibility that drivers
may have incentives (e.g., scenery) to use certain routes.

3 Note that although the expectation of travel costs of both P rs
1 and P rs

2 are the same, P rs
1 has higher variance of travel costs compared to P rs

2 . Therefore, for
those travelers value reliability of travel costs, more traffic will be shifted from P rs

1 to P rs
2 . This is beyond the scope of this research and will be left for future

investigation.
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Table 1
Equilibrium solutions with risk-neutral adaptive behaviors.
Path Flow Travel costs

⇠1 ⇠2 ⇠1 ⇠2 Exp. Var.

p1 7/3 0 14/3 – 2.5 9.4p2 0 7/3 – 1/3
p3 2/3 2/3 4/3 11/3 2.5 2.7

Fig. 2. Convergence of traffic patterns and expected travel time.

two cases. The first case (denoted as the global information case) assumes that travelers will learn the probability distributions
for all links regardless of whether they travel on the links or not. This case is plausible considering travelers can get access to
the realization of link performance through news or social media afterward. In the second case (denoted as the local information
case), we assume that travelers will only learn the probability distributions on the links they travel on. In the simulation, travelers
will update their knowledge of probability distributions and select the routes to minimize the expected travel time based on their
up-to-date information set. Figs. 2(a) and 2(b) demonstrate that the expected travel costs of both hyperpaths will converge to an
equilibrium travel costs identical to our model solution in Table 1 for both cases. Similarly, the traffic patterns converge to those
in Table 1, as shown in Figs. 2(c) and 2(d).

3.2. Parametric estimation

Network modeling and system safety assessment require link-level information (i.e., traffic link performance function and link
crash risk). In this subsection, we will discuss how to estimate the key parameters using measurable data.

3.2.1. Link performance function
Researchers have used different link performance functions in the past (Branston, 1976). By far, the Bureau of Public Roads (BPR)

function is one of the most widely adopted functions because of its simplicity and convenience to represent congestion behavior
and free-flow travel time. We adopt the BPR function in this paper. The BPR functions are expressed as Eq. (4).

t = t0[1 + ↵(v
c
)� ] (4)
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where t0, ↵, �, and c are parameters that define the shape of the BPR function and needed to be estimated for different types of
roadways. The travel time will increase with the ratio of the flow v and the capacity c to represent congestion effects.

In a stochastic environment, parameters t0, ↵, c, and � in link performance function (4) could be random variables. In this paper,
we assume that with an increasing amount of traffic data, parameters in link performance functions can be categorized as probability
distributions. The uncertainties could be due to recurring events that will affect the link travel time, such as weather events,
construction/maintenance activities, traffic accidents, etc. Travelers will learn the probability distribution of link performance
functions through day-to-day learning. While the link performance functions are uncertain, the realization of uncertainties in a
given scenario does not change during the study period, thus warranting the stability of the traffic. The link performance function
at a specific scenario ⇠ À ⌅ can be expressed in Eq. (5).

t⇠ = t0,⇠ [1 + ↵⇠ (
v⇠
c⇠

)�⇠ ] (5)

where ⇠ = {t0,⇠ , ↵⇠ , c⇠ , �⇠} are random parameters. At the beginning of the trips, drivers have a prior belief about the probability
distribution of the random parameters, which could be updated along the CAVs’ travel paths if I2V information sharing is available.
Note that, without loss of generality, the information that CAVs receive from I2V infrastructure can be an updated probability
distribution of these random parameters instead of a specific realization.

Link travel time t will depend on the uncertain scenario ⇠ in addition to link flow v. To estimate the uncertain parameters for a
specific scenario, one can use non-linear least squares regression. The input data for the regression model is (t, v), which could be
simulated in a microsimulation platform when they are not able to be directly measured from real-world traffic sensors.

3.2.2. Collision risk function
Collision risks can be defined in multiple ways. When crash data is available, collision risk can be measured as the probability

of collision happening under specific traffic conditions. In this section, we will present the methodology to calculate collision risk.
The calculated collision risk will be further used to estimate the relationship between collision risk and link traffic flow.

When real-world collision data is available, we encode the collision risk using a binary variable Y , with 1 indicating collision
happens and 0 indicating no collision. Since Y is a binary variable, we propose a discrete choice-based crash risk model to
formulate the probability of a collision p. The discrete choice-based crash risk model is also adopted by Shi and Abdel-Aty (2015)
and Hasibur Rahman and Abdel-Aty (2021).

The target variable is a binary indicator Y indicating whether collision happens or not with probability p. In other words, Y is
a Bernoulli trial and can be expressed as a probability distribution (6).

Y Ì Bernoulli(p) (6)

Discrete choice model is able to estimate the probability p, indicating that with a probability of p collision may happen (i.e., Y = 1)
and with a probability of 1 * p otherwise. The formulation of the logit model is shown in Eq. (7) for any given link.

logit (p) = log
0

p
1 * p

1
= �0 +X�1 (7)

where:

p : the likelihood of collision happens

�0 : the constant

X : the explanatory variables, such as traffic flow q

�1 : the coefficients of the explanatory variables

While explanatory variables X can include different variables, in this study, we focus on traffic flow q and treat other factors
as exogenous variables, whose impacts will be included in link-specific constant coefficient �0. Therefore, the collision risk for each
link is shown in Eq. (8).

CRLink = p = e�0+�1v

1 + e�0+�1v
(8)

Remark 1. Since traffic flow is one of the most important factors influencing traffic safety (Abdel-Aty and Radwan, 2000), we
characterize the collision risk of a link (Eq. (8)) as a function of the traffic flow of that link. However, we note that our proposed
model can be extended to incorporate the potential correlation of link safety risk functions among neighboring links for different
scenarios. For example, in a given scenario ⇠, Eq. (8) can be updated as CRLink,⇠ = p = e�0,⇠+�1,⇠ q

1+e�0,⇠+�1,⇠ q
. This can offer the flexibility

to model the link collision risk considering the effect of neighbor links because the parameters for neighbor links can be specified
for each scenario to consider their correlation. Since the focus of this paper is to propose a new network model to study the traffic
equilibrium with en-route information updates, we will leave the estimation and implementation of the neighboring effects for the
future.
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Remark 2. Scenario probability and crash risk are interdependent. But there are three main reasons that we did not consider the
endogeneity of scenario probability in this modeling framework. First, the scenario we consider is not solely based on whether
accidents occurred or not. The link performance functions in each scenario are determined by multiple factors, including weather
events, traffic management, and/or accidents. The probability distribution of the link performance function is learned from the
travel experience of travelers. Therefore, the probability of collision does not equal the probability of a certain scenario. Since
accidents are only part of the factors that define the scenarios, in this manuscript, we treat the scenario probability as exogenous.
Second, accidents are rare events and the probability of accidents is usually low and difficult to measure directly using a probability
distribution function. In such cases, only focusing on accidents to represent each scenario may not be practical in a real-world
setting. Third, if scenario only represents accidents and we can measure accident probability, we can use iterative approaches to
find the fixed point of the following function x = f (x), where x is the probability vector of scenarios (i.e., pr(⇠)) and f (�) is the
mapping from pr(⇠) to crash risk, which combines model (3) and Eq. (8). However, we note that the convergence of such an iterative
approach may not be guaranteed for high-dimensional scenarios.

3.3. Network safety analyses

In order to conduct an analysis on the impact of information sharing locations on network safety, we need to mathematically
formulate different information sharing strategies and embed them in the two-stage SUER model (3), and quantify the network
safety metrics. This subsection focuses on these two aspects.

3.3.1. Representation of information sharing locations
Denote the set of I2V information sharing locations as I œ N . When CAVs passed by these locations, CAVs will receive

information updates for their future routing decision making.
Denote information node indicator variable yn,≈n À N . yn = 1 if I2V infrastructure is placed at node n; and yn = 0 otherwise.

Denote a path that consists of K links, as p = {a1, a2,… , aK}. �+ap in Model (3) can be calculated using Eq. (9).

�+ap =
«

nÀNap

(1 * yn) (9)

where Nap is the node set on path p before reaching to link a.
Using Fig. 1 as an example, if I2V infrastructure is placed at node 2,

yn =
<
1, if n = 2
0, otherwise. (10)

For path p2 = {1, 2, 4, 3} and link a = {(4, 3)}, we have Nap = {1, 2, 4}. Therefore, �+ap =
±

nÀNap
(1 * yn) = 0. In other words, CAVs

traveling on path p2 have received the information before they travel on link {(4, 3)}.

3.3.2. Network safety assessment
Given crash risk CR at link level as a function of link traffic flow q (i.e., Eq. (8)), we can derive the collision risk (CR) for the

network as the total risk experienced by all the vehicles in the network. In a stochastic environment, the parameters �0_�1 in Eq. (8)
for any link a will be random variables. We denoted the collision risk for link a at scenario ⇠ as CRLinka,⇠ . Collision risk for the network
at a specific scenario ⇠ À ⌅ can be expressed in Eq. (11).

CRNetwork⇠ =
…
aÀA

CRLinka,⇠ va,⇠ ≈ ⇠ À ⌅ (11)

where va,⇠ is the link flow at link a in scenario ⇠.
In this study, the network safety indicator is measured as the expected network safety risks. We seek to evaluate the impacts of

providing information at different locations on the expected network safety risks, CRNetwork, which can be calculated in Eq. (12).

CRNetwork = E⇠{CRNetwork⇠ } (12)

4. Numerical results

We tested our proposed methodologies on the Orlando transportation network, as shown in Fig. 3, which serves the traffic
between three major attractions in Orlando metropolitan area, which are Orlando International Airport (Node 17), Universal Studio
(Node 11), and Disney World (Node 3). The network covers an area of 78.87 mile2. This network has a total of 27 two-way
links, which comprise both freeways and multi-lane highways. The archived traffic data, collected by the Regional Integrated
Transportation Information System (RITIS) from February 1st, 2020 to April 30th, 2020, contains speed, traffic volume, and traffic
occupancy. The crash records during the studied time period were collected from Florida Highway Safety and Motor Vehicles. Based
on these raw data, we are able to estimate the link flow, link travel time, and link crash risks at each hour, which will be used to
estimate the link performance functions and link crash risk functions, as discussed in Section 3.2. In this section, we demonstrate the
impacts of different information sharing strategies on network traffic distribution, mobility, and safety. For the base case, incident
links include 14-17, 17-14, 3-5, and 5-3, which are four links with relatively higher collision risks. Each incident link could be in two
scenarios: normal scenario and incident scenario. We differentiate the incident scenario from normal scenario by reducing the incident



Transportation Research Part C 149 (2023) 104075

10

F. Afifah et al.

Fig. 3. Study area in Orlando.

links’ capacity by 50% in Eq. (5). The capacity reduction could be due to incidents such as traffic accidents, weather events, and
road condition deterioration. We consider information sharing at node 10 (a central node in the network) as the base case if not
further specified.

In the remainder of this section, we first analyze the network mobility and safety for the base case; then we conduct sensitivity
analyses on key parameter settings (including information sharing locations, incident severity, and OD demand).

4.1. Base case results

Both traffic congestion level and network collision risk could be different under different information sharing strategies due to
rerouting. Travelers’ routing decisions can be changed as en-route information is received. To demonstrate this, we show the traffic
flow changes for O-D from node 17 (Orlando Airport) to node 3 (Disney World) in Fig. 4, which depicts the change in link traffic
between normal scenario and incident scenario based on the information they receive at node 10. When travelers receive information
at node 10 indicating that no incident happens in link 5-3 (i.e., normal scenario), more traffic will use the path 10-5-3. In contrast,
when they receive information at node 10 indicating incident happens (i,e, incident scenario), travelers originally take the path 10-5-3
in normal scenario will re-route to path 10-6-4-3. The traffic on all the other links does not change because they either do not receive
information updates along their routes or do not have better routing options despite knowing the incident occurred.

To quantify the impacts of information sharing on network mobility, we measure congestion using the ‘‘v/C’’ ratio (i.e., link
flow/link capacity) of a link. Fig. 5 shows the relative difference in traffic congestion levels between two cases: (1) information is
shared at node 10 and (2) no information is shared. Fig. 5(a) shows that in the normal scenario, when information is shared, links
10-5-3 significantly increase the congestion levels, while links 10-6-4-3 reduce the congestion levels, compared with the case when
information is not shared. Opposite observation holds for the incident scenario. The reason is that for traffic going from node 10 to
node 3, their routing will depend on the information they received about the state of link 5-3. On the other hand, for the links before
information is received, congestion levels slightly increase in links 17-14-10 while slightly decrease in links 17-18-15-9-6 regardless
of the actual realization on the incident links. This is because when node 10 is an information node, more traffic will prefer to pass
by node 10 from node 17 so that they can receive information updates to inform their future rerouting decisions. From Fig. 5, we
also observe that information sharing at node 10 mainly affects the traffic routing to node 3. The reason why information sharing
does not affect the routing of travelers with destination to other nodes is that those travelers may not have better routing options
to avoid incident links despite knowing incidents occurred (e.g., travelers to node 17 prefers link 14-17 regardless of incidents) or
they simply do not utilize incident links regardless of which scenario the system is in (e.g., travelers to node 11).

Traffic rerouting caused by information sharing may further lead to changes in link collision risk over the network. Fig. 6
illustrates the relative difference of collision risk in each link between two cases: (1) information is shared at node 10 and (2) no
information is shared. Fig. 6(a) shows that in the normal scenario, link 10-5 has higher collision risk, while links 10-6-4-3 have lower
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Fig. 4. Link flow changes between normal scenario and incident scenario for the base case.

Fig. 5. Relative difference of congestion level between information sharing and no information sharing.

collision risk when information is shared compared with when no information is shared. Opposite results for these links are observed
in Fig. 6(b) for the incident scenario. The increase/decrease of collision risk in these links is consistent with the increase/decrease
of congestion levels as shown in Fig. 5(b). However, we note that a lower congestion level does not always imply a lower collision
risk. For example, link 15-9 has a lower congestion level when information is shared in both the normal and incident scenarios, but
this link has a slightly higher collision risk in both scenarios. These results indicate the value of using a network perspective to
model traffic redistribution and to gain a better understanding of the impact of information sharing on network traffic safety.

4.2. Sensitivity analyses

4.2.1. Sensitivity of information sharing strategies
First, we investigate the network effects of information sharing at different individual nodes on network safety and mobility,

as shown in Fig. 7. In Fig. 7(a), we can see that information sharing at nodes 10 or 14 provides the most network benefits in
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Fig. 6. Comparison of collision risk at each link between information sharing vs. no information sharing.

Fig. 7. Effect of information sharing at individual nodes separately.

terms of reducing network collision risk. The reason could be that nodes 10 and 14 are two central nodes in the network and
information sharing at these two locations allow traffic passing by (traffic volume 11,240 veh/h and 13,549 veh/h at node 10 and
14, respectively) to update their routing decisions, which are beneficial to the whole system. However, one should not conclude
that sharing information at nodes with high traffic volume is always better. For example, information sharing at node 4 and node
6, which also have high traffic volume at around 11,255 veh/h, leads to the highest network collision risks. This again indicates
the necessity of using a network modeling strategy to capture the complex interaction among the system.

In Fig. 7(b), we see that information sharing at node 17 leads to the least total travel time in the network. Notice that information
sharing at nodes 10 or 14 also benefits travelers in terms of network mobility. This is because incidents may happen at the links
3-5/5-3 and 14-17/17-14, which are on the shortest path of OD demand 3-17 and 17-3. Information sharing at nodes 10 and 14
allows a large amount of traffic from node 3 (47% of the total incoming traffic at nodes 10/14) and node 17 (50% of the total
incoming traffic at nodes 10/14) to choose alternative paths depending on if an incident happens or not. In contrast, information
sharing at node 5 is not a good option because, on one hand, traffic from node 3 will be encouraged to utilize link 3-5 to access
information, which may experience a delay if an incident happens on that link. On the other hand, traffic from link 10-5 and link
11-5, which is 52% of the total incoming traffic at node 5, do not benefit from receiving information due to a lack of alternative
travel routes.

Second, we compare between four information sharing strategies, including (1) best single node: information sharing at the best
single node (i.e., nodes 10 or 14 for safety and node 17 for mobility), (2) worst single node: information sharing at the worst single
node (i.e., nodes 4 or 6 for safety and nodes 1, 2, 5, 7, 8, 9, 11, 12, 13, 15, 16, or 18 for mobility), (3) perfect information sharing :
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Fig. 8. Impact of perfect and no information sharing.

information sharing at all the nodes, and (4) no information sharing : no information sharing in any nodes, with network safety
and mobility results shown in Figs. 8(a) and 8(b), respectively. We can see that perfect information sharing is the best strategy for
both network safety and mobility. However, we note that no information sharing is not always the worst strategy. For example, in
Fig. 8(a), sharing information at node 4 or 6 is the worse strategy compared with no information sharing in terms of network safety.
In Fig. 8(b), no information sharing and information sharing at the worst single nodes will lead to the similar total travel time in
the network. The reason for this is that information sharing allows for additional travelers rerouting but travelers make rerouting
decisions to optimize their own utilities without considering the potential negative externalities for other travelers.

Third, we investigate the Pareto optimal information sharing locations for both network safety and mobility. We assume nodes
3, 6, 10, 11, and 17 are candidate information sharing nodes. Figs. 9(a) and 9(b) show the impacts of information sharing for all
the subsets of the candidate information sharing nodes for network safety and mobility, respectively. From Fig. 9(a), it can be seen
that the network collision risk is the lowest when information is shared at nodes 3 and 10.4 Notice that this is even better than the
perfect information sharing strategy as shown in Fig. 8(a). This observation indicates that more information is not necessarily better
for the whole system, which is consistent with observations in existing studies on ‘‘information paradox’’ (Unnikrishnan and Waller,
2009; Lindsey et al., 2014; Acemoglu et al., 2018; Liu and Liu, 2018). In terms of mobility, Fig. 8(b) shows that if the information
is shared at nodes 3 and 17, it provides the best system mobility outcome. To determine the Pareto optimal information sharing
strategies, Fig. 9(c) shows the Pareto frontier when both safety and mobility are considered. Information sharing at nodes {3,17}
and nodes {3,10} are two Pareto optimal information sharing strategies with the least amount of information sharing nodes.

4.2.2. Sensitivity of O-D demand
In this section, we investigate the sensitivity of different levels of O-D demand on the average collision risk and the average

travel time5 of the network for both information shared and no information shared cases. We consider a range of O-D demand from
40% decrease to 40% increase from the base case O-D demand, with the results shown in Fig. 10. From Fig. 10(b), we can see that
a higher level of O-D demand results in a monotone increase in the system average travel time because of the non-linear congestion
effects. The average travel time in the network is slightly higher when information is not shared than when information is shared
for all O-D demand levels (Fig. 10(b)). However, from the perspective of network safety, we observed a more complex pattern. As
shown in Fig. 10(a), the average collision risk in the network decreases slightly when O-D demand increases from 60% to 80% and
increases significantly from 80% to 120% when information is shared. The increase rate slows down when OD-demand increases
from 120% to 140%. When information is not shared, the average collision risk is much higher than when information is shared,
except when O-D demand is at 60% of the base case value. This is because information sharing affects system collision risk in two
major ways. On one hand, the travelers receive information can make route adjustments to avoid experiencing high collision risks
on the incident links. On the other hand, information sharing may encourage travelers to travel to the information nodes, which may
have negative impacts on system collision risk. When the transportation network is not congested, collision risks may not be high on
the incident links. But when information is shared at a node, travelers may still try to select the routes to access information updates
and reroute afterward to maximize their own expected utility, which creates more negative externalities to the system compared
with the no-information-sharing case.

4 When different combinations have the same impacts on the system, we prefer the combination with the least information sharing nodes to save installation
costs.

5 The reason we measure mobility and safety using average risk/time instead of total risk/time is to normalize the impacts by O-D demand level.
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Fig. 9. Impact of at information sharing at selected nodes.

4.2.3. Sensitivity analysis on incident severity

Fig. 11 depicts the impact of various incident severity levels on the safety and mobility of the network for both information
shared and no information shared cases. Low severity (20% capacity reduction) and high severity (80% capacity reduction) levels
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Fig. 10. Effect of change in O-D demand.

Fig. 11. Effect of incident severity on network mobility and safety.

have been used and compared with the base case (50% capacity reduction). Fig. 11 shows that both the network collision risks and
the total travel time are slightly higher when no information is shared compared with when information is shared, which means
information sharing is beneficial regardless of different incident severity levels. Fig. 11(b) shows that the total travel time of the
network increases as the incident severity level increases, which is intuitive since the overall network capacity decreases with a
higher level of incident severity. This observation is consistent regardless of whether the information is shared or not. However, for
network safety, the relationship between the network collision risk and the severity of the incident may not be monotone especially
when information is shared. For example, a more severe incident from the ‘‘Low’’ case to the ‘‘Base’’ case leads to a much lower
level of network collision risks. This is because different levels of incident severity will increase the travel time differently on those
impacted links, which leads to different rerouting strategies of individual travelers when information is shared, resulting in different
safety externalities on the system.

5. Discussion

In this study, we investigate the impact of information sharing locations on transportation network safety and mobility. We
propose a transportation network modeling framework to model the adaptive routing behavior of CAVs given information updates
at different information sharing locations. We estimate the traffic mobility parameters using traffic data for the Orlando network
and the crash risk of each link from real crash data. The proposed methodology allows us to identify the Pareto optimal locations to
share information with CAVs that helps to promote the safety and mobility of the whole network. Through numerical experiments,
we found that: (1) the optimal information sharing strategies depend on specific network configurations and more/less information
is not always better/worse for the network mobility and safety; (2) locational information sharing will encourage the traffic to
travel through information nodes so that they can make informed rerouting decision; (3) while mobility is monotone decreasing
with the levels of OD demand and incident severity, network collision risks may have a more complex relationship, which can only
be quantified with a network modeling perspective and real historical crash data.

This research can be extended in several directions. First, we assume there is only one universal piece of information in the
network. How to extend the proposed methodology to consider heterogeneous information sharing remains to be solved. But
extending the proposed SUER from two-stage to multi-stage will not change the overall modeling strategies. Second, in addition
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to information sharing locations, other aspects of information sharing strategies can be investigated, such as what information to
share, to which group of CAVs to share information. Third, the study can be extended for mixed traffic that forms of CAVs and
regular vehicles. Fourth, given increasing concerns of cybersecurity, investigating how transportation network safety and mobility
will be influenced by erroneous information is also a valuable next step.
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Appendix. Proof of Theorem 1

Firstly, the objective function (3a) is convex because ta is monotone increasing with respected to traffic flow. In addition, the
constraints for problem (3) are all linear. Therefore, the optimization problem (3) is convex. The Lagrangian function of problem
(3) is as follows:

L(xrsa,k, xp(⇠), �rsa,k(⇠), �rs(⇠)) = E⇠
…
aÀA 

va(⇠)

0
ta(u, ⇠)du

*
…

rsÀRS

…
⇠À⌅

�rs(⇠)[
…
pÀPrs

xp(⇠) * qrs]

*
…

rsÀRS

…
aÀA

…
⇠À⌅

�rsa,k(⇠)[
…
pÀPrs

k

�+apxp(⇠) * xrsa,k]

The first-order derivatives of L with respect to xrsa,k and xp(⇠) are as follows:

)L
)xrsa,k

=
…
⇠À⌅

�rsa,k(⇠), ≈a, k, rs

)L
)xp(⇠)

= Pr⇠
…
aÀA

�apta(va(⇠), ⇠) *
…
aÀA

�+ap�
rs
a,k(⇠) * �rs(⇠), ≈p, ⇠

where Pr⇠ is the probability measurement of scenario ⇠.
Based on the Karush–Kuhn–Tucker (KKT) theorem, the optimality conditions of problem (3) is equivalent to the following

complementarity conditions in additions to constraints ((3b) Ì (3c)):

0 f xrsa,k ⌅
…
⇠À⌅

�rsa,k(⇠) g 0, ≈a, k, rs (A.1a)

0 f xp(⇠) ⌅ Pr⇠
…
aÀA

�apta(va(⇠), ⇠) *
…
aÀA

�+ap�
rs
a,k(⇠) * �rs(⇠) g 0, ≈p, ⇠ (A.1b)

A.1. Sufficient condition of Theorem 1

We first prove the sufficient condition by showing that every optimal solution of optimization problem (3) is a Stochastic User
Equilibrium through the following two steps.

Step 1: We first show that all the used subpaths in the second stage have the same cost, which is no more than the travel cost of
the unused subpaths.

For any given path p, we separate the links before and after the first information node into two groups: A+
p and A*

p . Notice
that for the paths do not pass through any information node, A*

p will be empty set and A+
p will contain all the links of path p.

Furthermore, for those paths p that share the same set of A+
p and same rs, we group them into hyperpath set P rs

k , with k denoting
the kth hyperpath set for rs.
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For a given 3-tuple (k, rs, ⇠) and ≈p À P rs
k , based on (A.1b) we have:

{Pr⇠ [
…

aÀA+
p

ta(va(⇠), ⇠) +
…
aÀA*

p

ta(va(⇠), ⇠)] *
…

aÀA+
p

�rsa,k(⇠) * �rs(⇠)}(xp(⇠) * x<p(⇠)) g 0 (A.2)

Because we consider p À P rs
k , by definition, these paths have the same A+

p . We denote Pr⇠
≥

aÀA+
p
ta(va(⇠), ⇠) *

≥
aÀA+

p
�rsa,k(⇠) Å

t+k,rs(⇠). On one hand, for any p À P rs
k that xp(⇠) > 0, (A.2) can be simplified into:

…
aÀA*

p

ta(va(⇠), ⇠) =
1

Pr⇠
(�rs(⇠) * t+k,rs(⇠)) (A.3)

where the right hand side is independent of p. On the other hand, for those p À P rs
k that xp(⇠) = 0, (A.2) can be simplified into:

…
aÀA*

p

ta(va(⇠), ⇠) g 1
Pr⇠

(�rs(⇠) * t+k,rs(⇠)) (A.4)

Combining (A.3) and (A.4), we have shown that all the used subpaths in the second stage have the same cost, which is no more
than the travel cost for the unused subpaths.

Step 2: Then we show that the expected travel cost for all the first stage used paths connecting a pair of origin r and destination
s are the same, which is no more than the travel cost for the unused paths connecting rs.

For a given 2-tuple (k, rs), if there exist a À A such that xrsa,k > 0, we have ≥
⇠À⌅ �rsa,k(⇠) = 0 based on (A.1a). Because of (3d),

for any scenario ⇠ À ⌅, there exists at least one path, denoted as p(⇠)(À P rs
k ), such that xp(⇠)(⇠) > 0. Therefore, based on (A.1b), we

have the following:

Pr⇠
…
aÀA

�ap(⇠)ta(va(⇠), ⇠) *
…
aÀA

�+ap(⇠)�
rs
a,k(⇠) * �rs(⇠) = 0 (A.5)

Take summation of (A.5) over all ⇠ À ⌅, we have:
…
⇠À⌅

[Pr⇠
…
aÀA

�ap(⇠)ta(va(⇠), ⇠) *
…
aÀA

�+ap(⇠)�
rs
a,k(⇠) * �rs(⇠)] = 0 (A.6)

Because of the following two facts:
(1)

≥
⇠À⌅ �rsa,k(⇠) = 0 if xrsa,k > 0;

(2) �+ap(⇠) is identical for all ⇠ as long as p(⇠) À P rs
k ;

we have
≥

⇠À⌅
≥

aÀA �+ap(⇠)�
rs
a,k(⇠) =

≥
aÀA �+ap(⇠)

≥
⇠À⌅ �rsa,k(⇠) = 0. Therefore, (A.6) becomes:

…
⇠À⌅

Pr⇠
…
aÀA

�ap(⇠)ta(va(⇠), ⇠) =
…
⇠À⌅

�rs(⇠) (A.7)

Notice that the left hand side of (A.7) represent the expected travel cost of first stage used path k and the right hand side of (A.7)
is independent of k, which means the expected travel cost of all the first stage used paths connecting rs are identical.

For a given 2-tuple (k, rs), if ≈a À A, xrsa,k = 0, which means kth first stage path is unused for connecting rs, we have≥
⇠À⌅ �rsa,k(⇠) g 0. Same processes as above, we will have:

…
⇠À⌅

Pr⇠
…
aÀA

�ap(⇠)ta(va(⇠), ⇠) =
…
aÀA

�+ap(⇠)
…
⇠À⌅

�rsa,k(⇠) +
…
⇠À⌅

�rs(⇠) g …
⇠À⌅

�rs(⇠) (A.8)

Till now, we have finished our proof on the sufficient condition of Theorem 1.

A.2. Necessary condition of Theorem 1

Secondly, we prove the necessary condition by showing that every Stochastic User Equilibrium is one of the optimal solutions
of optimization problem (3).

Based on Definition 1, we have the following two variational inequalities:

{
…
⇠À⌅

Pr⇠ [
…

a®ÀA+
p

ta® (v<a® (⇠), ⇠) + t*k (⇠)] * trs}(xrsa,k * xrs<a,k ) g 0, ≈a À A+
p , p À P rs

k , k À Krs, rs (A.9)

[
…
aÀA*

p

ta(v<a(⇠), ⇠) * t*k (⇠)](xp(⇠) * x<p(⇠)) g 0, ≈p À P rs
k , k À Krs, rs, ⇠ (A.10)

where t*k (⇠) is the travel cost after receiving information and trs is the expected travel cost.
From VI (A.10), we have the following:

[
…
aÀAp

ta(v<a(⇠), ⇠) *
…

aÀA+
p

ta(v<a(⇠), ⇠) * t*k (⇠)](xp(⇠) * x<p(⇠)) g 0, ≈p À P rs
k , k À Krs, rs, ⇠ (A.11)

Construct �rsa,k(⇠) and �rs(⇠) in the following way:

�rs(⇠) Å Pr⇠ trs (A.12)



Transportation Research Part C 149 (2023) 104075

18

F. Afifah et al.

�rsa,k(⇠) Å 1
A+

p 
{Pr⇠ [

…

aÀA+
p

ta(v<a(⇠), ⇠) + t*k (⇠)] * �rs(⇠)} (A.13)

so that:
…
⇠À⌅

�rs(⇠) = trs (Because
…
⇠

Pr⇠ = 1) (A.14)

…

aÀA+
p

�rsa,k(⇠) + �rs(⇠) Å Pr⇠ [
…

aÀA+
p

ta(v<a(⇠), ⇠) + t*k (⇠)] (A.15)

Plug Eq. (A.15) in VI (A.11), we will have condition (A.1b).
Plug Eq. (A.15) in VI (A.9), we will have:

{
…
⇠À⌅

[
…

a®ÀA+
p

�rsa® ,k(⇠) + �rs(⇠)] * trs}(xrsa,k * xrs<a,k ) g 0, ≈a À A+
p , p À P rs

k , k À Krs, rs (A.16)

Because of (A.14), VI (A.16) can be simplified to:

{
…
⇠À⌅

…

a®ÀA+
p

�rsa® ,k(⇠)}(x
rs
a,k * xrs<a,k ) g 0, ≈a À A+

p , p À P rs
k , k À Krs, rs (A.17)

Based on our construction (A.13), �rsa® ,k is independent of a
®. So VI (A.17) is equivalent to condition (A.1a).

Till now, we have finished our proof on the necessary condition of Theorem 1. ∏
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