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Abstract
Implementing sustainable agricultural land management practices such as no-till (NT) and diversified crops are important 
for maintaining soil health properties. This study focuses on the soil health of three long-term (44 years) tillage systems, NT, 
reduced tillage (RT), and conventional tillage (CT), in monoculture winter wheat–fallow (W-F) (Triticum aestivum L.) and 
wheat–soybean (W-S) (Glycine max (L.) Merrill) rotation. Soil organic carbon (C) was higher in NT than CT in the surface 
0–5 cm, but not different in the 5–15 cm, demonstrating SOC stratification on the soil profile. The soil water content was 
higher in NT followed by RT and CT in the top 0–5 cm. We found an association between increased carbon, aggregation, 
and AMF biomass. Greater soil aggregation, carbon and AMF were observed in NT at 0–5 cm soil depth. The W-S cropping 
system had greater soil microbial community composition based on fungi biomass, AMF and fungal to bacteria ratio from 
phospholipid fatty acid analysis (PLFA). Large macroaggregates were positively correlated with total C and N, microbial 
biomass, Gram + , and AMF. Soil water content was positively correlated with macroaggregates, total C and N, and AC. 
No-till increased soil carbon content even after 44 years of cultivation. By implementing conservation tillage systems and 
diversified crop rotation, soil quality can be improved through greater soil organic C, water content, greater soil structure, 
and higher AMF biomass than CT practice in the Central Great Plains.

Keywords  Soil health · Crop diversification · PLFA · Tillage · Monoculture

Introduction

Soil health is defined as the ability of a specific soil to func-
tion in a natural or controlled ecosystem to nourish plants 
and animal production, preserve water and air quality, and 

maintain human well-being (Bünemann et al. 2018; Kar-
len et al. 1997). The future of food production, carbon (C) 
sequestration, and resistance to extreme weather patterns 
partially depend on the health of soils, which are affected 
by agricultural cultivation in soil. Soil health, crop manage-
ment, selection, and rotation are critical to climate-resilient 
agricultural production (Sarto et al. 2020a; Tubiello et al. 
2002). The goal of research in agricultural soil practices 
is to identify areas of C preservation or the prevention of 
accelerated organic C oxidation while sustaining soil health 
and crop yields (Sarto et al. 2020b; Loveland and Webb 
2003). Soil health of the US central Great Plains are espe-
cially critical as these soils are vulnerable with wind and 
water erosion and soil moisture retention is critical to sustain 
crop productivity (Rice et al. 2022).

Land management practices, such as tillage, fertilizer, 
crop rotation, integrated systems (Sarto et al. 2020a), and 
herbicides affect the soil quality, specifically structure, 
moisture, nutrients, and biota (Paul 2014). There are vari-
ous advantages and disadvantages with no-till (NT), reduced 
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tillage (RT), and conventional tillage (CT). Generally, NT 
practices are widely performed to maintain soil moisture, 
control erosion, sequester organic C, and preserve soil fertil-
ity (Pires et al. 2020; Izumi et al. 2004; Baker et al. 2007). 
Crop residue under NT conditions decomposes slower due 
to the thermostability of organic compounds, less microbial 
accessibility, and less favorable temperature and moisture 
conditions (Cooper et al. 2021; Franzluebbers et al. 1995; 
Loveland and Webb 2003). Crop rotation can also, poten-
tially increase P and K contents in the topsoil layer (Basse-
gio et al. 2015; Sarto et al. 2021). Reducing soil disturbance 
through RT reduces the negative impact on soil quality 
(Reicosky 2003). Intensive crop cultivation is also known 
to unsettle soil aggregates, reduce water infiltration, increase 
wind and water erosion, and reduce soil organic matter (Rice 
et al. 2022; Sarto et al. 2020c; Pires et al. 2020; Beare et al. 
1997; Roger-Estrade et al. 2010).

Biologically, soil organic carbon is the source of carbon 
and energy for most soil microorganisms and fauna. Soil 
organic carbon accumulation is the net effect of increasing 
C inputs and decreasing C losses in agricultural soils (Rice 
et al 2022). Increased soil organic carbon enhances the bio-
mass and diversity of the soil biota (Sarto et al. 2020a, b, 
c; Rice et al. 2022). Increasing crop frequency and species 
diversity in agricultural systems promote nutrient cycling, 
microbial biomass and activity, aggregate stability, and soil 
protection. Crop diversification may increase the soil micro-
bial community composition (Pires et al. 2020).

The cropping system and tillage practices implemented 
have been studied to explore the change in soil water con-
tent, soil pH, plant-available nutrient, water-stable aggre-
gates, total C and nitrogen (N), and soil microbial commu-
nity composition as indicators of soil health. The objectives 
of this study were to: (i) evaluate differences in soil pH, 
aggregate size distribution, extractable soil nutrients, and 
phospholipid fatty acid (PLFA); and (ii) distinguish different 
soil properties under different tillage management systems 
for long-term (44 years) continuous wheat–fallow (W-F) and 
wheat–soybean (W-S) rotations in the Central Great Plains 
of the U.S. This study has three main points, the first is the 
long-term tillage and crop rotation interactions as an asset 
for soil quality assessment, the second is the PLFA analysis 
for microbial community composition, and the third is the 
evidence of carbon retention in the 0–5 cm surface with time 
for no-till in the Central Great Plains.

Materials and methods

Site description

The field experiment was conducted at Ashland Bottoms, 
Kansas (Riley County: 39°07′ N. 96°36′ W), located 

approximately 14.5 km south of Manhattan, Kansas (Doyle 
et al. 2004). The agriculture site started in 1974 and was 
previously a flood plain of the Kansas River, now made up of 
20% clay, 71% silt, and 9% sand in the 0–5 cm depth (McVay 
et al. 2006). The soil type of the field is characterized as 
a Muir silt loam (fine-silty, mixed, mesic Cumulic Haplus-
tolls). The site received 746 mm of precipitation in 2017 and 
820 mm of precipitation in 2018 with an average of about 
870 mm per year since the start of the experiment. Before 
the initiation of the study, the Ashland Bottoms comprised 
of continuous moldboard plow or CT wheat production for 
60 years (Doyle et al. 2004). Selected soil chemical and 
physical characteristics were determined (0–5 and 5–15 cm) 
44 years after the beginning of the experiment (Table 1).

Experimental design and treatments

The treatments consisted of three tillage (NT, RT, and CT) 
methods and two cropping systems (winter Wheat–Fallow, 
W-F and Wheat–Soybean, W-S) from 1975 to 2018. Three 
tillage treatments with four replications were applied to the 
cropping systems in a split-plot randomized block design 
with study plots of 6.1× 18.3 m (Doyle et al. 2004). Disk or 
chisel operations were avoided in no-till plots before plant-
ing the crops and after harvesting. The crops were planted 
directly into the plant residues, and fertilizer was broadcast 
before planting without soil integration. The field annually 
received 100 kg N ha−1 and 10 kg P ha−1. Herbicide was 
used for weed control when needed. The CT plots were 
similar to local tillage practices. Soybean plots were disked 
(15 cm) and chiseled (25 cm) once a year after harvesting in 
the summer and left unplanted until the spring. Wheat was 
planted in October by drilling and harvested in the sum-
mer. A disk or rotary tiller (5–10 cm) incorporated broadcast 
fertilizer, followed by planting. A combination of mechani-
cal and chemical herbicides were used for weed control but 
varied by weed emergence. Reduced tillage plots were not 
tilled in the fall after harvesting but tilled before planting, 
similar to CT plots using a disk-field cultivator. Herbicide 

Table 1   Soil properties measured in 2018 after long-term (44 years) 
tillage and crop rotation

Soil properties 0–5 cm 5–15 cm

pH 5.2 5.0
P Mehlich−3 150 98
Ca2+ (mg kg−1) 3016 2085
Mg2+ (mg kg−1) 217 245
K+ (mg kg−1) 461 312
Sand (%) 9 10
Silt (%) 71 70
Clay (%) 20 20
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was broadcasted onto the soil surface and not incorporated 
with tillage.

Soil sampling

Composite soil core samples (300–600  g) were taken 
with an inside diameter of 18 mm after plant harvesting 
on August 30, 2018, from all tillage systems and crop rota-
tions divided into depth increments of 0–5 and 5–15 cm 
for phospholipid fatty acid analysis. Phospholipid fatty 
acid soil samples were placed in polyethylene Ziplock® 
Brand Freezer Bags (S. C. Johnson & Son Inc., Racine, 
WI) and kept in a cooler with ice for approximately 2 h 
before being stored in a laboratory freezer held at − 4 °C 
until analysis. Intact soil samples for gravimetric soil water 
content, soil pH, soil extractable cations, and water-stable 
aggregate analysis were taken from 0–5 to 5–15 cm soil 
horizons with a spade and stored in at room temperature 
as described by Mikha and Rice (2004). Phospholipid fatty 
acid soil samples were taken with multiple core samples 
to get a representative homogeneous mixture for biologi-
cal analysis.

Gravimetric soil water content

Moist samples from the field were passed through a 4 mm 
sieve to remove large roots, rocks, and organic matter. 
The water content of the soil samples was determined by 
weighing and oven drying 10 g of the sieved soil at 105 °C 
for at least 48 h until constant weight. After 48 h of drying, 
the weight of the oven-dry soil was used with the weight of 
the tin and moist soil. The gravimetric soil water content 
percent was determined for each soil using the equation:

Soil pH, nutrients, and bulk density

The soil samples from each depth and treatment were 
homogenized, air dried, roots removed, passed through 
2 mm sieves, and then sent to the Kansas State University 
Soil Testing Laboratory for soil pH and chemical analy-
sis on plant-available micro- and macro-nutrients in soils. 
The Mehlich-3 extractable phosphorus was determined 
by using Lachat Quickchem 8000 to perform colorimetric 
assays as described by Frank et al. (1998). The cations, 
specifically calcium, potassium, and magnesium, were 
analyzed by an inductively coupled plasma (ICP) spec-
trometer after being extracted with ammonium acetate 

% Soil water =
Moist Soil Sample (g)− Oven Dry Soil (g)

Oven Dry Soil (g)
x100

(1  M, pH 7.0) and low-sodium filter paper (Warncke 
and Brown 1998). Bulk density was determined using a 
stainless-steel core (50 mm internal diameter and 50 mm 
length) that was introduced into the soil at 0–5 and 
5–15 cm depths, removed, and oven-dried (105 °C, 48 h) 
(Sarto et al. 2020a).

Water‑stable aggregates

The fresh soil samples were separated along natural breaks, 
air-dried for 24 h, and pre-sieved with a 4 mm diameter sieve 
to remove large stones and organic matter for aggregate anal-
ysis. Fifty grams of soil was weighed and placed in a Yoder 
wet-sieving apparatus modified for recovery of all particle 
fractions as described by Mikha and Rice (2004). Each 
soil sample was separated into four aggregate size classes 
(4000–2000 µm, 250–2000 µm, 53–250 µm, and 20–53 µm 
diameter). The air-dried soil was placed on the top sieve of 
the 2000 µm, above the 250–2000 µm, and 1 L of distilled 
water was added to submerge the soil in water for 10 min 
before the 10 min wet-sieving action. The oscillation time 
at 10 min, stroke length at 4 cm, and frequency 30 cycles 
min−1 were held steady. After the soil was wet-sieved, the 
oscillation container was poured into the finer sieves of 53 
and 20 µm diameter. Floating organic matter was removed 
in the 2000 µm fraction sieve. The individual particle frac-
tions were dried out at 55 °C for over 24 h until the water 
completely evaporated out. Each dried fraction was then 
weighted to determine the percent aggregated aggregate size 
fraction within the soil. Aggregates from each tillage treat-
ment were fractionated into macroaggregate (4000–2000 and 
250–2000 µm) and microaggregate (53–250 and 20–53 μm) 
size classes.

Total carbon and nitrogen

To determine SOC and TN, four soil cores per plot were 
taken at depths of 0–5 and 5–15 cm to account for within-
plot variability in October 2018. Air-dried soil samples with 
roots removed were ground into a fine powder with a mortar 
and pestle. Plant material was removed during the process. 
The powder was sieved through a 53 µm diameter mesh 
sieve and analyzed by dry combustion using a C/N Elemen-
tal Analyzer gas chromatograph with a thermal conductiv-
ity detector (Flash EA 1112 Series Thermo Finnigan Italia 
S.p.A., MI, Italy) (Mikha and Rice 2004; Rice et al. 2021). 
Stocks of SOC were calculated using measured bulk density, 
SOC, depth of the soil layer and compared in equivalent 
soil masses following the method described by Wendt and 
Hauser (2013). We analyzed SOC from the beginning of the 
experiment in 1974, 2002, and 2018.
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Phospholipid fatty acid analysis

The total lipids were extracted from 5 g of soil using a 
modification of the Bligh and Dyer (1959) extraction 
(White and Rice 2009). Soil cores were divided into 0–5 
and 5–15 cm depths and combined by depth to make a 
composite sample per plot. Samples were frozen, lyophi-
lized, and ground with a mortar and pestle. Soils were 
incubated in 2 methanol:1 chloroform:0.8 phosphate 
buffer to extract the phospholipid fatty acids (PLFA) from 
the neutral and glycol lipid fatty acid. Using silicic acid 
chromatography, phospholipid fatty acids were separated 
from the total lipid extract. The fatty acids were cleaved 
from the glycerol backbone, and the harvested fatty acids 
were methylated to form fatty acid methyl esters (FAME). 
The FAMEs were analyzed using a Thermo Scientific 
Trace GC-ISQ mass spectrometer (Thermo Fisher Sci-
entific, Waltham, Massachusetts, USA) equipped with 
a DB5-MS column (30 m × 250 μm i.d. × 0.25 μm film 
thickness; Agilent Technologies, Santa Clara, California, 
USA). FAME peaks were identified by comparison with 
the bacterial acid methyl esters mix (BAMEs; Matreya 
LLC, USA). Tentative assignments of FAME peaks that 
were not present in the BAMEs mix were made by mass 
spectral interpretation. Peak concentration was quantified 
using the internal standard methyl nonadecanoate (19:0). 
Fatty acids were grouped into gram-positive bacteria 
(i15:0, a15:0, i16:0, i17:0, and a17:0), Gram-negative 
bacteria (2-OH 10:0, 2-OH 12:0, 3-OH 12:0, 2-OH 14:0, 
3-OH 14:0, 16:1ω7c, cy17:0, cy19:0), actinomycetes (10-
Me 16:0 and 10-Me 18:0), Arbuscular mycorrhizal fungi 
(AMF) (16:1ω5), and fungi (18:2ω6,9c). The fungal to 
bacterial (F:B) ratio is determined by dividing the sum of 
AMF and saprophytic fungi PLFA by the sum of actino-
mycetes, gram-positive, and gram-negative bacteria PLFA. 
Total PLFA biomass is the sum of the microbial groups 
and common fatty acids measured (11:0, 12:0, 13:0, 14:0, 
15:0, 16:0, 17:0, 18:0, and 20:0) (Pires et al. 2020; Sarto 
et al. 2020b,c). The fungal to bacterial (F:B) ratio is deter-
mined by dividing the sum of AMF and saprophytic fungi 
PLFA by the sum of actinomycetes, gram-positive, and 
gram-negative bacteria PLFA.

Statistical analysis

The experimental design was completely randomized with 
four replications and analyzed as a 3 × 2 factorial. The 
effects were three tillage practices and two cropping sys-
tems. The effects from tillage intensity and cropping sys-
tems were analyzed using analysis of variance (ANOVA). 
If significant differences were observed, individual com-
parisons were made using Tukey test (p < 0.05), with the 

statistical software Sisvar 5.6 (Ferreira 2010). Spearman 
correlation matrix with significance was calculated to 
determine the correlation for all possible variables.

Results

Soil water content, soil pH, bulk density, 
and nutrients

In the topsoil (0–5 cm), NT had significantly (p < 0.05) 
higher soil water content (24.2%) than RT and CT, while 
CT was not significantly different from RT (Table 2). In 
5–15 cm soil depth, NT had significantly greater soil water 
content (22.7%) than RT, but CT was not statistically dif-
ferent from NT and RT. Monoculture wheat (W-F) had sig-
nificantly greater percent soil water than the wheat–soybean 
(W-S) rotation in the 0–5 cm soil depth (Table 2). There was 
no difference in soil water between the cropping systems at 
5–15 cm.

There was no significant difference in soil pH from tillage 
practices in both soil depths after 44 years of cultivation. 
However, monoculture wheat (W-F) had significantly lower 
soil pH in both 0–5 cm (pH = 5.0) and 5–15 cm (pH = 5.3) 
compared to W-S crop rotation (Table 2). Soil bulk density 
was different between tillage treatments, but similar between 
rotations (Table 2). No-till had higher bulk density than RT 

Table 2   Effect of tillage and cropping system on soil water content, 
soil pH and bulk density

Different letters in the same column indicate significant differences 
(Tukey’s test, p < 0.05)
CT conventional tillage, RT reduced tillage, NT no-till, W-S wheat–
soybean, W-F wheat–wheat.

Soil Water (%) Soil pH Bulk 
density (g 
cm−3)

Tillage 0–5 cm
CT 19.9 b 5.6 a 1.36 b
RT 17.3 b 5.6 a 1.36 b
NT 24.2 a 5.3 a 1.4 a
Rotation
W-S 18.0 b 6.0 a 1.38 a
W-F 22.9 a 5.0 b 1.37 a
Tillage 5–15 cm
CT 21.6 ab 5.6 a 1.37 b
RT 20.5 b 5.6 a 1.38 b
NT 22.7 a 5.5 a 1.42 a
Rotation
W-S 21.4 a 5.9 a 1.38 a
W-F 21.9 a 5.3 b 1.40 a
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and CT at 0–5 and 5–15 cm. The bulk density was not sig-
nificantly different by the cropping system.

There was significantly greater phosphorus content in the 
0–5 cm NT compared to both RT and CT. As soil depth 
increased from 0–5 to 5–15 cm, the phosphorus content in 
soils decreased as expected. Soil phosphorus content was 
higher in the monoculture W-F than the W-S rotation of both 
0–5 cm (189 mg kg−1) and 5–15 cm (125 mg kg−1) depths 
(Table 3). There was no significant difference in the soil 
cations (Ca, K, Mg, Na) among the tillage types in both soil 
depths. The calcium content was significantly higher in W-S 
rotation in both 0–5 cm (2370 mg kg−1 of soil) and 5–15 cm 
(2538 mg kg−1 of soil) compared to the W–F monocul-
ture. The magnesium content was also significantly greater 
in W-S rotation in both 0–5 cm (272 mg kg−1 of soil) and 
5–15 cm (278 mg kg−1 of soil). While the potassium content 
was significantly greater in monoculture W–F in both 0–5 
(508 mg kg−1 of soil) and 5–15 cm (361 mg kg−1 of soil).

Aggregate‑size distribution

No-till had significantly greater soil macroaggregates 
(53.4%) followed by RT (44.2%) and CT (31.1%) at the soil 
surface (0–5 cm) (Table 4 and Fig. 1). Cropping systems had 
no significant effect on macroaggregate in the 0–5 cm soil 
depth. The CT at 0–5 cm had the greatest microaggregates 
(59.2%), followed by RT (45.7%) and CT (35.7%). The W-S 

crop rotation also had a significantly greater microaggregate 
(53.3%) than W–F monoculture (40.4%) in the 0–5 cm soil 
depth. There was no significant difference in macro- and 
microaggregate size distribution in both crop rotations and 
tillage types for soil depth 5–15 cm. 

Total carbon and nitrogen

Total C content was significantly higher in the NT 
(18.9 g  kg−1 soil) at 0–5 cm topsoil compared with CT 
(12.5 g kg−1 soil) (Table 5). In NT, total C and N stratifica-
tion was indicated by a decline from 18.9 g C kg−1 soil and 
1.96 mg N kg−1 soil in the 0–5 cm depth to 16.5 g C kg−1 
soil and 1.88 mg N kg−1 soil in the 5–15 cm depth.

Soil C stocks were significantly affected by tillage prac-
tices over time at 0–5 cm depth, but not at 5–15 cm (Fig. 2). 
Initially, C stocks were not different with tillage. However, 
in 2002, C stock was significantly higher in NT and RT com-
pared to CT (Doyle et al. 2004). In 2018, C stock had further 
increased under NT resulting it being significantly higher 
than CT and RT in the topsoil layer (0–5 cm). Carbon stock 
was not different between tillage practices in the 5–15 cm 
soil layer during the assessment period (44 years). During 
the 44 years, carbon sequestration into the soils from NT 
increases by 49%

Table 3   Effect of tillage and cropping systems on soil chemical prop-
erties

Different letters in the same column indicate significant differences 
(Tukey’s test, p < 0.05)
CT conventional tillage, RT reduced tillage, NT no-till, W-S wheat–
soybean, W-F wheat–wheat, Mehlich-3 P extractable soil phosphorus, 
Ca extractable soil calcium, K extractable soil potassium, Mg extract-
able soil magnesium.

P Mehlich-3 Ca K Mg

mg kg−1 soil
Tillage 0–5 cm
 CT 138 b 1838 a 460 a 230 a
 RT 156 b 1813 a 471 a 220 a
 NT 195 a 1842 a 454 a 205 a

Rotation
 W-S 137 b 2370 a 415 b 272 a
 W-F 189 a 1292 b 508 a 164 b

Tillage 5–15 cm
 CT 101 a 2153 a 306 a 229 a
 RT 118 a 2083 a 301 a 245 a
 NT 101 a 2020 a 330 a 260 a

Rotation
 W-S 88.6 b 2538 a 263 b 278 a
 W-F 125 a 1632 b 361 a 212 b

Table 4   Soil aggregate size distribution for macroaggregates 
(> 250  µm) and microaggregates (20–250  µm) effect by tillage sys-
tems and cropping systems

Different letters indicate significant differences (Tukey’s test, 
p < 0.05)
CT conventional tillage, RT reduced tillage, NT no-till, W-S wheat–
soybean, W-F wheat–wheat, > 250 µm percent of aggregates less than 
4000  µm and larger than > 250  µm diameter, 20–250  µm percent of 
aggregates less than 250 µm and larger than 20 µm.

Aggregate size distribution (%)

 > 250 µm 20–250 µm

Tillage 0–5 cm
 CT 31.1 b 59.2 a
 RT 44.2 ab 45.7 ab
 NT 53.4 a 35.7 b

Rotation
 W-S 38.5 a 53.3 a
 W-F 47.4 a 40.4 b

Tillage 5–15 cm
 CT 33.6 a 58.3 a
 RT 39.9 a 50.1 a
 NT 39.5 a 45.4 a

Rotation
 W-S 34.3 a 52.7 a
 W-F 41.0 a 49.8 a
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Soil microbial community composition

As soil depth increased from 0–5 to 5–15 cm, soil micro-
bial biomass of the soil microbial communities decreased. 
No significant difference was observed in total microbial 
biomass, gram + , and gram- bacteria due to tillage and 
cropping system in both soil depths (Table  6). How-
ever, there was a significantly greater actinomycetes in 
W–F monoculture (2.33 nmol g−1 soil) compared to W-S 
crop rotation (1.42 nmol  g−1 soil) in the 0–5 cm soil. 
Arbuscular mycorrhizal fungi (AMF) were higher in NT 
(2.12 nmol g−1 soil) compared to CT (1.41 nmol g−1 soil) 
in 0–5 cm soil depth, while RT (1.72 nmol g−1 soil) was not 
significant different among tillage treatments. Arbuscular 
mycorrhizal fungi were significantly greater in monocul-
ture W–F (0.89 nmol g−1 soil) compared to W-S rotations 
(0.63 nmol g−1 soil) in the 5–15 cm depth (Fig. 3). Fungi 
were significantly greater in W-S rotation (0.66 nmol g−1 
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Fig. 1   Soil macroaggregate (> 250 µm diameter) and microaggregate 
(< 250 µm diameter) in 0–5 cm soil depth on different tillage systems 
(p < 0.05). Different letters indicate significant differences (Tukey’s 
test, p < 0.05)

Table 5   Changes in soil total carbon and total N by tillage and crop-
ping system

Different letters in the same column indicate significant differences 
(Tukey’s test, p < 0.05)
CT conventional tillage, RT reduced tillage, NT no-till, W-S wheat–
soybean, W-F wheat–wheat, Total Carbon total combustible organic 
carbon, Total Nitrogen organic nitrogen.

Tillage & Cropping 
system

Total carbon Total nitrogen

g kg−1 soil g kg−1 soil
0–5 cm
 CT 12.5 b 1.46 b
 RT 14.9 ab 1.59 b
 NT 18.9 a 1.96 a
 W-S 15.2 a 1.56 a
 W-F 15.7 a 1.78 a

5–15 cm
 CT 13.3 a 1.62 a
 RT 14.1 a 1.64 a
 NT 16.5 a 1.88 a
 W-S 15.4 a 1.68 a
 W-F 13.9 a 1.75 a

Fig. 2   Effects of tillage practices (conventional [CT], reduced [RT], 
and no-tillage [NT]) on soil C stock over 44 years in the central Great 
Plains, USA
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soil) compared to monoculture W–F (0.40 nmol g−1 soil) 
in the 5–15 cm depth (Fig. 3). No fungal biomass differ-
ences were observed for tillage type for both soil depths 
and 0–5 cropping system. Fungi to bacteria ratios in 

the 5–15 cm soil depth were significantly greater in CT 
(0.10 nmol g−1 soil) compared to NT (0.7 nmol g−1 soil) 
but not for RT (0.09 nmol g−1 soil). In comparison, W-S 
rotation (0.10 nmol g−1 soil) had a greater F:B ratio than 
the W–F monoculture (0.07 nmol g−1 soil) in the 5–15 cm 
soil depth (Fig. 4).

Spearman correlations

Measurements with very high positive Spearman corre-
lations coefficients (r) and significant p-values (α = 0.05) 
included Mg and Ca (0.93), pH and Ca (0.9), pH and Mg 
(0.82), total carbon and total nitrogen (0.92), microbial 
biomass and gram + (0.92), microbial biomass and AMF 

Table 6   Changes in soil microbial community by different tillage and cropping systems

Different letters in the same column indicate significant differences (Tukey’s test, p < 0.05)
CT conventional tillage, RT reduced tillage, NT no-till; W-S wheat–soybean, W-F wheat–wheat, Gram +  gram-positive bacteria, Gram – gram-
negative bacteria, AMF arbuscular mycorrhizal fungi, Fungi Saprophytic fungi; Fungal/bacteria [(Gram +) + (Gram–) + (Actinomycetes)]/
(AMF + Fungi);, ns not statistically significant.

Tillage & 
Rotation

Microbial biomass Gram +  Gram – Actinomycetes AMF Fungi Fungal/
bacteria

nmol PLFA g−1 soil

0–5 cm
 CT 42.9 ns 13.1 ns 4.3 ns 1.8 ns 1.4 b 1.7 ns 0.17 ns
 RT 46.8 ns 13.7 ns 6.0 ns 1.8 ns 1.7 ab 1.8 ns 0.17 ns
 NT 47.2 ns 14.6 ns 6.1 ns 2.0 ns 2.1 a 1.4 ns 0.16 ns
 W-S 42.9 ns 13.1 ns 5.0 ns 1.4 b 1.6 ns 1.6 ns 0.17 ns
 W-F 48.4 ns 14.6 ns 5.8 ns 2.3 a 1.8 ns 1.7 ns 0.16 ns

5–15 cm
 CT 29.2 ns 10.3 ns 3.8 ns 1.5 ns 0.8 ns 0.7 ns 0.10 a
 RT 30.2 ns 10.4 ns 4.4 ns 1.8 ns 0.9 ns 0.6 ns 0.09 ab
 NT 25.6 ns 9.1 ns 4.8 ns 1.7 ns 0.6 ns 0.3 ns 0.07 b
 W-S 29.8 ns 10.3 ns 3.6 ns 1.8 ns 0.9 a 0.7 a 0.10 a
 W-F 26.9 ns 9.6 ns 5.1 ns 1.5 ns 0.6 b 0.4 b 0.07 b
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AMF (nmol PLFA g-1 soil)
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b

a
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W-S
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(B)
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Fig. 3   Arbuscular mycorrhizal fungi A and fungi B (n = 12) affected 
by cropping system in 5–15  cm soil depth. W-S: wheat–soybean; 
W-F: wheat–wheat; AMF: arbuscular mycorrhizal fungi. Different 
letters indicate significant differences (Tukey’s test, p < 0.05)
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a

Fig. 4   Fungi:bacteria affected by cropping system at 5–15  cm. 
W-S: wheat–soybean; W–F: wheat–wheat; Fungi:bacteria: 
[(Gram +) + (Gram–) + (Actinomycetes)]/(AMF + Fungi). Different 
letters indicate significant differences (Tukey’s test, p < 0.05)
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(0.87), gram + bacteria and AMF (0.92), microbial bio-
mass and fungi (0.86), AMF and fungi (0.84), gram + and 
fungi (0.83), and fungi and F:B ratio (0.83) (Fig. 5). Meas-
urement with very high negative correlation coefficients 
and significant p-values included macroaggregates and 
microaggregates (− 0.83).

Large macroaggregates were positively correlated with 
total C and N, microbial biomass, Gram + , and AMF. Soil 
water content was positively correlated with macroaggre-
gates, total C and N, and AC. Microaggregates were nega-
tively correlated with total C and N, Microbial biomass, 
Gram + , Gram –, AC, and AMF.

Discussion

Soil water content, macroaggregates, and total 
carbon and nitrogen affected by tillage and crop 
rotation

In our study, NT had higher soil water content at the 0–5 cm 
depth compared to RT and CT. Sauer et al. (1996) stated 
that the presence of residue reduced evaporation as much 
as 34 to 50%. No-till had significantly greater soil water in 
the 5–15 cm layer followed by CT and RT. Greater cover-
age plant residue of the NT soil surface and greater soil C 
provides an effective barrier to reduce evaporation than bare 
soil (Van Donk et al. 2010; Klocke et al. 2009). Pikul and 
Aase (1995) found infiltration rates were greater under NT 
because of the soil surface protection. The impact of rainfall 
on a bare soil surface can result in a substantial decrease in 

Fig. 5   Spearman correlation of soil chemical, physical and microbial community composition
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infiltration over very short periods of time, as illustrated 
by Ben-Hur et al. (1998). The end result on lands with any 
slope is runoff and less water stored in the soil profile for 
later use by a crop (McVay et al. 2006). The results of this 
study support this idea since NT had greater amounts of soil 
water followed by RT and then CT. The NT system was able 
to retain the soil water because of superior soil structure and 
infiltration from greater soil macroaggregates and, greater 
soil residue on the soil surface (Alvarez and Steinbach 2009; 
Klocke et al. 2009). Positive correlation of soil water con-
tent, macroaggregates, and total C and N were found in this 
study (Fig. 5) similar to other studies with long-term tillage 
and cropping systems that suggest greater organic matter 
storage and water retention in systems with higher macroag-
gregates formation (Al-Kaisi et al. 2014; Sekaran et al. 2021; 
Datta et al. 2022).

Soil pH, nutrients and bulk density affected 
by tillage and crop rotation

Soil pH was lower in W-F in both soil depths partially attrib-
uted to the N fertilization (100 kg N ha−1). The decomposi-
tion of organic matter can contribute to a decrease in soil 
pH (Jat et al. 2018; Hong et al. 2019). The pH in topsoil, 
generally richer in organic matter, produces greater solu-
ble organic acids from decomposition that lowers soil 
pH (Jat et al. 2018; Hong et al. 2019). Hydrogen ions are 
produced from the fertilizer oxidation of NH4

+ to NO3
−, 

which increases soil acidity after long-term use (Bouman 
et al. 1995; Schroder et al. 2011). The soybean crop did not 
have N fertilizer applied, so hydrogen ions were produced 
by the ammonia-based fertilizer on wheat crops from the 
earlier cycles of wheat production. Thus, the W-F rotation 
had twice the amount of N applied to the field than the W-S. 
Although not statistically significant, the NT treatment had 
the greatest soil acidity in the 0–5 cm horizon (pH = 5.3) 
because the N fertilizer was surface applied and not incor-
porated into the soil to allow for buffering of soil pH. The 
soil pH of CT (5.6) and RT (5.6) was slightly higher. Similar 
corn and wheat studies by Blevins et al. (1978) showed the 
application of N fertilizers on NT systems acidified the top-
soil in a short amount of time. Increased soil acidification 
from N fertilizer produces protons displacing exchangeable 
bases, specifically Ca and Mg, and lowers effective cation 
exchange capacity (CEC) (Bouman et al. 1995). However, 
the neutralization of the acidic soil condition is easier to 
manage with lime additives directly applied to the surface 
soil (Blevins et al. 1978).

Soil phosphorus content was greatest in monoculture 
(W-F) NT at 0–5 cm, most likely due to surface buildup 
of phosphorus fertilizer. Soils that have undergone tillage 
and mixing allowed for the incorporation of phosphorus 
that leads to uptake through plant growth. Water contributes 

to the eluviation or the transport of soluble inorganic and 
organic colloidal particles into lower depths (Paul 2014). 
The Ca and Mg content was significantly lower in the W-F 
compared to the W-S for both sampling depths, which could 
be due to lower CEC from greater soil acidification in W-F 
plots. Increasing soil acidification (pH 6.5–3.8) leads to 
higher amounts of extractable cation dissolving and leaching 
out from exchange sites (Haynes and Swift 1986). Leaching 
of exchangeable Ca and Mg is evident by the prominent 
decrease in Ca and Mg for W-F compared to W-S, while all 
tillage treatments had similar Ca and Mg content. Soil pH 
below 5.5 has been reported to greatly increase cation leach-
ing (Haynes and Swift 1986). Even though NT had a lower 
pH of 5.3 at 0–5 cm than both tilled treatments (pH 5.6), NT 
had higher organic matter content that contributed towards 
a cation exchange source for accumulating a larger capac-
ity in adsorbing cations (Jiang et al. 2018). The K content 
was significantly higher in W-S rotation compared to W-F 
in both sampling depths. Cropping sequences with soybean 
have a greater positive effect on soil potassium accumulation 
than grain-based cropping sequences (Singh and Shivaku-
mar 2010).

Aggregate‑size distribution affected by tillage 
and crop rotation

No-tillage had significantly greater quantity of macroag-
gregates than CT because there was less soil disturbance, 
and greater soil organic carbon at 0–5 cm. Greater soil 
organic matter, evident by the greater total carbon in NT 
0–5 cm depth, promotes macroaggregate formation. Macro-
aggregates are resistant to slaking, resilient to compaction, 
increases water storage, and reduce bulk density (Oldfield 
et al. 2018; Blanco-Canqui et al. 2009; Nielsen et al. 2005). 
In this study, large macroaggregates were positively cor-
related with total C and N, microbial biomass, Gram + , and 
AMF (Fig. 5). The RT also allowed for greater macroag-
gregates formation and stabilization in the soil. Mikha et al. 
(2013) reported that CT managed soils had proportionally 
more microaggregates and prevented macroaggregate forma-
tion from tillage in the top 0–20 cm soil depth. Our study 
found negative correlation between microaggregates and 
total C and N (Fig. 8). As a result of long-term tillage, soils 
are more susceptible to wind and water erosion, greater soil 
organic carbon decomposition, loss of soil nutrients, and 
reduced soil structure (Blanco-Canqui et al. 2009; Six et al. 
2000; Mikha and Rice 2004). Soil macroaggregate stability 
(> 250 μm) is highly influenced by soil management prac-
tices (Sarto et al. 2020a; Mikha et al. 2013). Mechanical 
tillage disrupts these large aggregates and releases confined 
organic substrates for nutrient availability (Maron et al. 
2018).
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Total carbon and nitrogen affected by tillage 
and crop rotation

The long-term tillage of crop residues into the lower 15 cm 
contributed to a more uniform distribution of C and N. 
Long-term no-till promoted greater C and N stratification 
from gradual residue additions to the surface profile (Her-
nanz et al. 2002; Franzluebbers 2002). The RT treatments 
also contributed to greater crop residue in the surface lead-
ing to C stratification, but not to a higher degree as NT 
soils. In contrast, the tillage effect and subsurface residue 
incorporation in the CT may have increased soil organic 
C and N within the 5–15 cm compared to the 0–5 cm soil 
depth. Based on total C, greater soil C accrual in NT fol-
lowed by RT and then CT treatments may be due to tillage 
intensities increasing affecting residue incorporation in the 
top 0–15 cm soil depth. Tillage disturbs the soil, causes 
reduced macroaggregates, promotes microbial decomposi-
tion of soil organic C and N, generates subsurface com-
paction, and increases the number of pores but decreases 
connectivity along pores (Lipiec and Hatano 2003; Galdos 
et al. 2019; Lienhard et al. 2013; Mikha and Rice 2004). 
Another factor influencing high total C in NT is soil water 
content or water-filled pore space (Galdos et al. 2019; 
Linn and Doran 1984). Soil water content affects the aera-
tion and diffusion of oxygen in the soil pore networks. In 
turn, water and oxygen levels impact nitrification, deni-
trification, and microbial respiration in the soil (Linn and 
Doran 1984). Long-term NT improves physical proper-
ties of soil structure thru greater soil pore connectivity, 
decreases pore tortuosity, and increases macroporosity, 
which all aid in soil nutrient cycling, water dynamics, gas 
diffusion, and root growth (Galdos et al. 2019; Pires et al. 
2017; Alhameid et al. 2017). Greater soil structure in NT, 
in turn, increases OM accrual from crop growth and OM 
protection in aggregates (Alhameid et al. 2017; McCarthy 
et al. 2008). No-till crops with surface residue contribute 
to the development of fields with higher water infiltration/
drainage and retention (Abid and Lal 2009) and greater 
undisturbed root development and stabilization (Lynch 
and Wojciechowski 2015). This influences higher nutri-
ent retention and OM in soil aggregates (Gupta and Ger-
mida 2015; McCarthy et al. 2008) since rates of microbial 
mineralization of crop residue in soil can supply greater 
plant nutrition during critical plant growth stages (Grzyb 
et al. 2020).

Common N fertilizers (NH4
+, NO3

−, urea, and anhydrous 
NH3) applied to fields promote nitrification through micro-
bial oxidation to form nitrite and nitrate in the soil. Even 
though there was twice as much N fertilizer applied to the 
W-F rotation, high nitrate concentrations were not evident 
in W-F fields versus W-S fields. However, total inorganic N 
was greatest in CT, while total N was greatest in NT. Lower 

inorganic N concentrations in NT are attributed to multiple 
factors affect the N cycle; greater potential ammonia vola-
tilization, decreased N mineralization and greater denitrifi-
cation. Furthermore, total N was significantly greater in NT 
systems, which indicates organic N protection, specifically 
in macroaggregates. Significantly higher total C occurred 
in 0–5 cm of NT systems compared to CT soils. However, 
total soil C and N measurements may not completely detect 
changes in nutrient content by tillage. Measurements of bio-
logically active fractions, specifically microbial biomass C 
and N, could better evaluate nutrient dynamics (Drury et al. 
1991; Franzlubbers et al. 1995).

Soil fungal community composition affected 
by tillage and crop rotation

The soil diversity as measured by soil microbial community 
composition, changes due to different agricultural manage-
ment practices, such as tillage, fertilization, and crop rota-
tion (Sarto et al. 2020a; Maron et al. 2018). Changes in soil 
microbial community composition can predict changes in 
soil organic matter, specifically plant residue decomposi-
tion, energy flows, nutrient cycling, soil aggregation, and 
soil C sequestration, as affected by different cropping sys-
tems (Acosta-Martínez et al. 2011; Lynch and Bragg 1985). 
Greater microbial diversity is linked to increased nutrient 
availability and enhanced ecosystem stability and productiv-
ity, but functional redundancy from soil microorganisms is 
unknown (Maron et al. 2018). This study found significantly 
greater AMF composition in NT compared to CT in the 
0–5 cm depth mainly because NT had less soil disturbance, 
greater soil moisture, and higher soil organic C content. 
Other studies have exhibited mycorrhizae and filamentous 
fungi predominating in NT; whereas bacteria dominates in 
soils that are frequently disturbed with high fertilizer inputs 
and more available organic matter to decompose (Guggen-
berger et al. 1999; Frey et al. 1999). Greater bacterial com-
position was not seen in CT. However, actinomycetes had a 
significantly higher composition in 0–5 cm of the W-F rota-
tion. Most actinomycetes are strict saprophytes that recycle 
nutrients and support organic degradation (Goodfellow and 
Williams 1983). There were no other statistically significant 
results in microbial community and tillage or crop rotation 
in the 0–5 cm depth. In general, total microbial biomass 
was highest in 0–5 cm NT but not statistically significant. 
White and Rice (2009) concluded NT has the highest total 
PLFA reflecting the built-up of substrates and recalcitrant 
metabolites, which leads to C sequestration and soil aggrega-
tion (Six et al. 2006).

The soil microbial biomass (total PLFA) decreased as soil 
depth increased in all treatments, most likely in response 
to increased bulk density, reduced soil organic matter, and 
less soil water infiltration. The lack of soil disturbance in 
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NT may also have contributed to a stratified microbial com-
position due to stratified soil organic C and N sources. The 
F:B ratios were unexpectedly higher in CT soils compared 
to NT soils at 5–15 cm depth. Pires et al. 2020 highlighted 
that the residue incorporation under CT increased micro-
bial biomass, and total bacteria in deeper layers (10–30 cm), 
reinforcing that the NT management results in a strong nutri-
ent stratification. Soils with greater disturbance (CT) were 
expected to have lower fungal biomass and greater bacterial 
biomass. Overall, the fungal communities were more abun-
dant in CT compared to NT, while bacterial communities 
were dominant over fungal communities in all treatments.

The diversified cropping rotation (W-S) had significantly 
greater AMF, fungi, and F:B ratios in the 5–15 cm depth 
compared with W-F rotation. More diverse crop rotations 
contribute to higher substrate richness, specifically different 
crop residues between wheat and soybean. Lupwayi et al. 
(1999) concluded that legume-based crop rotations increased 
soil microbial biomass more than rotations without legumes. 
Long-term studies by Bardgett and McAlister (1999) found 
that crops that depend more on fertilizer amendments have 
lower fungal biomass since fungi are negatively affected by 
high mineral N. The difference in microbial biomass indi-
cates a larger proportion of fungi was active in the decompo-
sition process of diverse crop residue. Microbial communi-
ties with greater AMF promote C sequestration, protection, 
and aggregation (Six et al. 2006). Filamentous growing 
fungi create an exploratory network supporting nutrient 
redistribution, space colonization, particulate realignment, 
and soil entanglement (Ritz and Young 2004).

Conclusions

The 44-year long-term NT soil management promoted 
AMF, improved aggregation, and contributed to C and N 
sequestration. Macroaggregate, AMF biomass and total C 
and N decreased with increased tillage disturbances at the 
soil surface.

Greater AMF in NT compared to CT reflects a manage-
ment system that promotes hyphae growth, contributing to 
greater soil C and N retention and macroaggregate stability 
at 0–5 cm soil depth.

Higher AMF, saprophytic fungi, and F:B ratios in 
5–15 cm in the W-S rotation indicate greater microbial 
community biomass associated with diverse crop rotations 
versus monoculture (wheat) system.

No-till increased soil carbon content even after 44 years 
of cultivation. The results of this study imply long-term 
conservation practices in higher intense cropping system 
improve soil quality, which increase crop resiliency and 
potentially mitigate future weather volatilities.
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