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ARTICLE INFO ABSTRACT

Handling Editor: Diego Abalos Nearly 50 y ago, Walker and Syers hypothesized that sources of most terrestrial nutrients shift in dominance from

mineral- to organic matter-derived over millennia as soils weather. We investigated how overlaying this soil

Keywords: development framework with vegetation dynamics that can feed back to soil development on relatively short
Root growth timescales offers insight into ecosystem functioning. To test the hypothesis that forest nutrient economies
EIZOZE?::;IZHH mediate the nutritional importance of organic matter as mineral weathering proceeds, we paired litterfall decay
Angthropocene experiments with soil mineralogical data from diverse forests across the Critical Zone (CZ) Observatory Network,
Weathering USA. Our findings suggest that dominant sources of tree P may shift from organic matter-bound stocks to

minerals as roots expand during the transition from mid to late stages of forest growth and encounter deeper soils
that have experienced a lesser degree of weathering. Thus, plants may develop nutritional strategies that do not
necessarily rely most heavily on the dominant P form present in an ecosystem, typically driven by stage of soil
development, but rather on root proliferation over time, which governs the ability of plants to mine soil volumes
at a diversity of depths. Ecosystem P nutrition therefore depends strongly on the interaction between dominant P
form and root system growth, particularly as it reflects past land use for both plants and soils. We use these
findings to produce a novel framework of vegetative nutrient economics that highlights how root system growth
and land use change can influence nutrient transformations and bioavailability, and soil development, across
Earth’s critical zones.

Nutrient availability

1. Introduction

The hypothesis that soil nutrient forms transition from mineral to
organic as soil development proceeds was introduced in Geoderma
nearly 50 years ago with Walker and Syers’ (1976) seminal work.
Walker and Syers’ hypothesis refers specifically to nutrient trans-
formations that occur over the millennial timescales of soil develop-
ment, defined as alterations in mineralogy and soil textural and
hydrological properties that typically accompany pedogenesis (Vitousek
and Farrington, 1997; Chorover et al., 2007; Buol et al., 2011). Nutrients
indeed vary in form and abundance in different environments (Porder

and Ramachandran, 2012), necessitating plant adaptations to a wide
range of nutritional conditions (Reich and Oleksyn, 2004; Ordonez et al.,
2009). However, despite extensive research on plants and soils (Bor-
mann and Likens, 1967; Attiwill and Adams, 1993; Vitousek et al., 1997;
Lambers et al., 2008), we still lack clarity about the mechanisms by
which plants obtain sufficient nutrition in diverse environmental con-
ditions, and under what circumstances their nutrient sources change
during ecosystem development. In the Anthropocene, understanding
ecosystems’ nutritional mechanisms becomes yet more elusive due to
often-masked land use histories and patterns of perturbation that alter
both soil nutrient stocks and the composition, developmental stage, and
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root system structure of the plants that access them. Consequently,
Walker and Syers’ hypothesis is still debated and tested across envi-
ronments (Crews et al., 1995; Richter et al., 2006; Selmants et al., 2010;
Lang et al., 2017). Improved understanding of these nutrient cycling
phenomena will produce more accurate projections of nutrient
bioavailability, ecosystem productivity and vegetation contributions to
global change. In spite of the importance of these goals, characterizing
soil nutrient dynamics and associated vegetation response has remained
a challenge in part due to the difficulties of working across contrasting
timescales of soil development and vegetation growth.

While many soils have been developing over thousands to millions of
years, forest vegetation grows over decadal- and century-scale time-
frames. This growth results in generally increasing root exploration of
soil over time, regardless of soil developmental stage. Herein, we define
the duration of ‘root system development’ as the time over which root
systems (i.e., roots and their mycorrhizal symbionts) proliferate, a pro-
cess that typically enables trees to explore increasingly large volumes of
soil over time (Doussan et al., 2003; Yan et al., 2006; Wang et al., 2009;
Brearley, 2011; Billings et al., 2018). Root development continues until
a major disturbance induces tree mortality and re-sets the ecosystem
(Odum, 1969; Horn, 1974). The time over which a soil experiences
exploration by root systems of the same dominant species can exceed the
age of any individual tree if the vegetation can regenerate itself (e.g.,
late successional stage oak-hickory forests of Eastern North America)
and if the time between stand-replacing disturbances is longer than the
lifespan of individual trees. In such instances, in spite of isolated tree
deaths and canopy gaps permitting sufficient light to support young
seedlings (Binkley et al., 2002; Binkley, 2004), the soil will experience
continued root exploration by the same dominant tree species until a
major disturbance resets the system to an early successional stage.
Though tree species vary with forest succession (Connell et al., 1977;
Chapin et al., 1994), likely inducing changes in root architectures, we
consider time since large-scale perturbation to be a key driver of root
system development and thus of the volume of soil roots can access
(Billings, 1936; Zangaro et al., 2008; Knops and Bradley, 2009; Devine
et al., 2011; Yuan and Chen, 2012; Sun et al., 2015). Because root sys-
tems represent the primary mechanism by which trees interact with the
developing soil system (Burghelea et al., 2015; Pierret et al., 2016;
Billings et al., 2018; Dontsova et al., 2020), concurrently embracing the
diversity of timescales over which vegetation and soil profiles interact —
decadal, century, and millennial - is critical for understanding how
vegetation obtains nutrients, and the ensuing influence of those pro-
cesses on soil development.

Soil nutrient stocks and their bioavailability vary over these diverse
timescales in ways that have been studied independently but have not
often been merged into a single paradigm. Most nutrients ultimately are
sourced from minerals in rocks, which are renewed on long timescales
via orogenic uplift (Carey et al., 2005; Vitousek et al., 2010) and
released through the process of rock and mineral weathering (Drever,
1994; Vitousek et al., 1997, Berner and Berner, 2003; Richter and
Markewitz, 2000; Burghelea et al., 2015; Dontsova et al., 2020). These
processes are typically measured over millennial time scales (Drever,
1994; Brantley, 2008; Ferrier et al., 2010). When taken up by plants,
those nutrients are incorporated into biomass in aboveground and root
tissues, and subsequently into soil organic matter, comprising a nutrient
source that is relatively abundant in more surficial soil horizons
(Marschner and Rengel, 2007; Gill and Finzi, 2016). These resources
cycle on annual to decadal time scales (Pedersen and Bille-Hansen,
1999; Kavvadias et al., 2001). Walker and Syers’ (1976) model of soil
development implies that the nutritional relevance of these organic-
matter-bound stocks must increase as soils develop over geologic time-
scales, because weathering processes tend to decrease the abundance of
mineral-bound P over millennia (Walker and Syers, 1976). However,
this model does not explicitly explore how time-varying nutrient stocks
may be exploited by root systems at various stages of development.

Recent work highlighting interactions between soil and root system
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development (Lambers et al., 2008; Hobbie, 2015) underscores a need
for a more detailed assessment of pathways of soil nutrient development.
Vegetation is hardly a prisoner of its environment: instead, vegetation
develops different nutrient acquisition strategies over time as a conse-
quence of both changing nutrient demands and shifting abilities to tap
into different resources, processes that feedback into soil development
and subsequent nutrient stocks on comparatively short timescales
(Lambers et al., 2008; Bardgett et al., 2014; Hauser et al., 2020). Plants
allocate different amounts of fixed C to roots and mycorrhizae at
different depths to cope with temporally shifting nutrient forms
(Lambers et al., 2008; Hauser et al., 2020; Peixoto et al., 2020), and
plant uptake of nutrients can redistribute nutrient forms across the root
zone, resulting in deep, mineral-bound nutrients being transferred to
surface horizons in organic-matter-bound forms on decadal timeframes
(Jobbagy and Jackson, 2001; Austin et al., 2018; Austin et al., 2020,
Wang et al., 2022). All of these processes influence metrics of soil
development such as mineralogy, soil structure and porosity (Jobbagy
and Jackson, 2001; Rasse et al., 2005; Pierret et al., 2016; Austin et al.,
2018; Cui et al., 2019; Koop et al., 2020).

Combined, these processes suggest that concepts of nutrient trans-
formations in soil over time require better integration with models of
root and vegetation dynamics because plant processes, not just
weathering-related soil development processes, influence the relative
distribution of nutrient stocks. Such efforts would necessarily
acknowledge that, as forest succession proceeds through time (Connell
et al,, 1977; Chapin et al., 1994), the influence of vegetation on
belowground processes likely changes as well. Further, it would offer a
novel framework describing the contribution of tree nutritional strate-
gies to critical zone (CZ) development (i.e., development of whole
ecosystems, including vegetation and regolith in tandem with each
other; Jordan et al., 2001; Richter and Billings, 2015). This effort seems
especially apropos in the Anthropocene, when both root depth distri-
butions and soil nutrient distributions are undergoing rapid change due
to land cover changes (Richter and Markewitz, 2001; Richter et al.,
2006; Haff, 2010; Yoo et al., 2015; Brecheisen et al., 2019; Hauser et al.,
2020; Hauser et al., 2022), with implications for weathering in diverse
systems (Wen et al., 2020).

Here, we begin to characterize feedbacks between tree nutrition and
soil development to better understand how whole, forested CZ nutrient
economies develop across diverse timescales. To do this, we estimate the
potential dependence of vegetation on organic matter-bound nutrients
relative to mineral-bound nutrients as these nutrient sources vary in
dominance across forested CZs spanning continua of soil and root system
development. We focus our analyses on P because of its essential nature
for vegetative growth (Penuelas et al., 2013, Jonard et al., 2015, Hou
et al., 2020) and its presence in both rock minerals and organic matter
(Walker and Syers, 1976, Vitousek et al., 1997). We discern the potential
nutritional relevance of organic matter as mineral P stocks vary and
discern the role of expanding root systems in soil developmental pro-
cesses. We use these data to develop a novel conceptual model
describing the development of CZ nutrient partitioning across timescales
relevant to contemporary forest root expansion and soil development.

We hypothesize that any increase in the importance of organic
matter-derived nutrients for forest nutrition across soil developmental
stages is mediated by trees, and specifically that the duration of root
proliferation — the stage of root system development — will govern the
degree to which trees can access relatively less weathered, mineral-
bound nutrient stores deep in soil profiles. Over the timescales rele-
vant to long-term soil development, we would expect that organic
matter-bound nutrients have the potential to provide a greater portion of
forest nutrition, in agreement with Walker and Syers’ (1976) hypothesis
(Fig. 1a). However, on the decadal timescales of vegetation growth, we
hypothesize that root-mediated access to deep, mineral-bound nutrients
generates a relative decline in potential nutrient provisioning from
organic matter as aging forests become increasingly able to tap into
deep, mineral-bound nutrient stocks via larger rooted volumes (Billings,
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Time since last stand
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Fig. 1. Predicted relationship between the potential provision of nutrients from organic matter and time as pedogenesis proceeds, as a consequence of Walker and
Syers’ proposed model (1976; a). In contrast, we offer (b), a hypothesized relationship between provision of nutrients from organic matter and time (on shorter
timescales than in (a)) as vegetation root systems develop in the time since the last stand replacing disturbance. Panel b reflects how root system interactions with soil
development may lead to increasing provision of nutrients from minerals and reduced potential forest P provision from organic matter as trees age.

1936; Zangaro et al., 2008; Knops and Bradley, 2009; Devine et al., Walker and Syers’ (1976) original hypothesis must be considered in the
2011; Yuan and Chen, 2012; Sun et al., 2015; Billings et al., 2018) context of root system development. We explore these concepts and
(Fig. 1b). If true, this finding would suggest that mineral-bound P deep examine how different nutrient reservoirs play distinct roles in forest
in the subsurface is relevant to forest nutrition even where weathering- productivity as root systems grow during forest succession, as well as the
induced P losses over time have been substantial, and would suggest that influence those processes can have on soil development as both forest
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vegetation and soils change over diverse timescales.
2. Materials and methods

2.1. Study sites

We examined P cycling phenomena in seven forests (Fig. 2a)
comprising both Critical Zone Observatory (CZO) and CZ Exploration
Network (CZEN) sites (Table 1). These sites represent varied degrees of
soil development, indicated by both chemical index of alteration (CIA)
— ametric of weathering based on the relative prevalence of mineral Al,
Na, Ca, and K calculated as oxides (Price and Vebel, 2003) — and soil
taxonomic classification (Fig. 2b). These forests also represent differ-
ences in degrees of rooting system development, as defined above
(Fig. 2b; see below). Although plant species and thus root architecture
(Freschet et al., 2017) and foliar and litterfall nutrient concentrations
(Hobbie et al., 2006; Hobbie, 2015) differ across these sites, our focus is
on root proliferation over time in diverse forests (i.e., time since stand-
replacing disturbance). We recognize that site differences such as
bedrock, climate, and plant species present challenges to testing Walker
and Syers’ (1976) hypothesized relationship; well-controlled, natural
ecosystems suitable for testing these ideas are difficult to identify.
However, these differences allow us to explore possible, naturally-
relevant reasons for deviations from Walker and Syers’ (1976) hypoth-
esis as soils develop across diverse ecosystems. Indeed, Walker and Syers
(1976) highlight the need for testing their hypothesis broadly—across
parent materials, vegetation types, and precipitation regimes. Exam-
ining sites with diverse features (Table 1) thus can expand the concepts
they began to develop.

2.2. Duration of root system development

We estimated the number of years that each soil has been rooted as
one possible factor explaining the relative importance of different
nutrient forms to forest nutrition. Many features of roots change over a
tree’s lifespan. However, we focus on duration of root system develop-
ment. This metric represents the time that roots in each ecosystem have
been growing (i.e., without stand-replacing disturbances) and therefore

Table 1
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serves as a first-order estimate of the duration of root expansion and thus
of root influence in the soil’s development, given that roots proliferate
over a greater volume with time (Billings, 1936; Zangaro et al., 2008;
Knops and Bradley, 2009; Devine et al., 2011; Yuan and Chen, 2012; Sun
et al., 2015; Billings et al., 2018). We leveraged tree surveys and well-
characterized disturbance histories at each site to approximate the
time period during which roots of species similar to those found today
have explored their soil profiles.

At the Calhoun pine forests, KUFS forests, and the Shale Hills and
Garner Run forests, known histories of recent land use and tree rees-
tablishment after stand-replacing disturbances determined the amount
of time roots of the contemporary vegetation have explored soils at these
locations. Both Calhoun pine and KUFS forests are reestablishing after
agricultural use ~ 70 and ~ 80 y ago respectively (Richter and Mar-
kewitz, 2001; Fitch et al., 2001). Shale Hills and Garner Run sites were
subject to widespread logging at the beginning of the 20th century, such
that roots in these forests have had ~ 110 and ~ 90 y to develop,
respectively (Li et al., 2018). The Catalina and Calhoun hardwood for-
ests represent later successional stages, comprised of self-replacing tree
species (Whittaker, 1953), suggesting that these forest soils have been
explored by root systems similar to contemporary roots for longer than
the age of contemporary trees might suggest. We employ ages of the
oldest sampled trees at these sites as a conservative estimate of the
amount of time these soils have been explored continually by roots
similar to those that exist today, given the self-replacing nature of these
mature forests. At Catalina, this is ~ 150 y and at Calhoun, ~200 y
(Richter and Markewitz, 2001; Iniguez et al., 2016). These estimates
permit a cross-site comparison using a consistently calculated metric
derived from the best historical data available from each site. We
consider this metric to be particularly conservative at Calhoun because it
is likely that these late-successional hardwood forests have maintained
themselves for multiple tree generations.

2.3. Data collection
2.3.1. Characterizing forest P nutrition status

We approximated annual vegetation P uptake at each site by esti-
mating net primary productivity (NPP) and converting those values to P

Study sites used for the analysis and site characteristics including net primary productivity (NPP), mean annual temperature (MAT), mean annual precipitation (MAP),

site elevation (m), dominant vegetation, soil orders, and bedrock types.

Site NPP MAT MAP Elevation Dominant tree species Soil Order Bedrock type
(gem 2yr Y Q) (mm (m)
yrh)
Calhoun Pine* 530 16 1250 134-190 Pinus taeda and P. echinata Ultisols: Typic Kanhapludults, Typic Granite
Hapludults
KU Field 370 13 940 335 Quercus spp., Carya spp. Juniperus Mollisols: Typic Eutrudepts, Lithic and Glacial Till
Station**** virginiana Typic Hapludolls, and Aquic and Typic and Loess
Argiudolls
Garner Run** 440 9.5 1050 256-310 Quercus spp., Carya spp. and Pinus spp  Ultisols/Inceptisols: Typic and Aquic Sandstone
Fragiudults, Typic and Lithic Dystrudepts,
and Typic Fragiaquults
Shale Hills** 440 9.5 1050 256-310 Quercus spp., Carya spp. and Pinus spp ~ Ultisols/Inceptisols: Typic and Aquic Rose Hill Shale
Fragiudults, Typic and Lithic Dystrudepts,
and Typic Fragiaquults
Marshall 640 10.4 940 2284-2634 Pinus ponderosa, Abies concolor Mollisols/Inceptisols: Typic Haplustollsand ~ Granite,
Gulch*** Typic Humustepts Schist,
Quartzite
Oracle 300 11.9 840 2064 to Pinus and Juniperus spp. Mollisols/Inceptisols: Typic Haplustollsand  Granite,
Ridge*** 2388 Typic Humustepts Quartz diorite
Calhoun 950 16 1250 134-190 Quercus alba, Liquidambar styraciflua, Ultisols: Typic Kanhapludults, Typic Granite
Hardwood* Liriodendron tulipifera, Q. rubra, and Hapludults

multiple Carya spp

*Calhoun CZO data for MAT, MAP, and elevation from Critical Zone Observatories, 2020a. Calhoun bedrock characterization from Bacon et al., 2012.

**Garner Run and Shale Hills data from Critical Zone Observatories, 2020b.

*** Marshall Gulch and Oracle Ridge data from Critical Zone Observatories, 2020c.
KU Field Station bedrock characterization from Klopfenstein et al., 2015 and Hirmas and Mandel, 2017. Climate and elevation data from Kansas Biological Survey,

2020.
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demand (NPP,) via estimates of vegetation stoichiometry. We used
annual litterfall biomass (g m™ y™1) to estimate NPP (g Cm~2y™1) given
its direct linkage to yearly ecosystem NPP (Matthews, 1997). To do this,
we converted leaf mass to leaf C approximating leaves to be 48% C
(Bowden et al., 1992). We converted these litterfall-based NPP estimates
to NPP}, using C:P values specific to the leaves collected from each site,
producing values of potential P uptake that reflect the varied P demands
of our study sites. Senesced leaf P concentrations were assessed using the
methods detailed below. Our approach relies on the assumption that the
linkage between litterfall rates and NPP is robust across all forests
(Matthews, 1997). While these estimates do not include P in other plant
tissues, such as seeds and fruits, these other tissues comprise a relatively
small proportion of litterfall (Kaspari et al., 2008) and contribute
minimally to P cycling compared to leaves and fine twigs.

We estimated total soil P using bulk elemental data (Jin et al., 2010;
Holleran, 2013; Austin and Schroeder, 2019; Brantley, 2019; National
Ecological Observatory Network, 2020a). We transformed %P estimates
into P contents of each sampled horizon using bulk density distributions
(Richter et al., 1994; Herndon, 2012; Holleran, 2013; Bacon, 2014;
Brantley, 2019; National Ecological Observatory, 2020a), including O
horizons where present. O horizons contain very little mineral-bound P,
and therefore represent a large amount of organic material at the soil
surface. We summed P contents across horizons to the depth approxi-
mating 95% of root biomass to estimate the absolute P content of a
square meter soil column in the zone of this majority of roots. We esti-
mated the depth at which 95% of the root biomass is attained (D95)
using root distributions from soil profiles sampled at each site (Holleran,
2013; Li et al., 2018; Eissenstat, 2019; Billings et al., 2020; National
Ecological Observatory Network, 2020b). Though roots growing below
D95 can penetrate into saprolite or bedrock (Hasenmueller et al., 2017)
and deep roots can be relatively active in nutrient uptake (Da Silva et al.,
2011), our use of D95 captures the majority of roots and the bulk of their
absolute activity, while permitting comparison of an analogous metric
across sites. Though clay-rich horizons are well-represented at some of
these sites, to our knowledge there are no impediments to proliferation
of roots as severe as hardpans at any forest studied. We anticipate that
the D95 soil depth captures most of the absolute soil volume over which
roots may interact with soil P distributions. Our soil P calculations thus
estimate the total P present in the rooted zone of each forest. While it is
not a measure of different P fractions, it represents the maximum po-
tential P resource with which most tree roots can interact.

2.3.2. P in leaf biomass

We analyzed the P concentration of senesced leaves from each site to
generate NPPp estimates described in the previous section, and to assess
leaf P release rates from litter in the incubations described below. Leaves
were dried at 60 °C for at least 3 days and ground using a mortar and
pestle to pass through a 2 mm mesh sieve before shipment to the Kansas
State Soil Testing Lab. There, leaves were further processed using
salicylic-sulfuric acid digestion before analysis for bulk elemental con-
centration using inductively coupled plasma — optical emission spec-
troscopy (ICP-OES, Varian 720-ES, Palo Alto, USA).

2.3.3. Maximum potential organic P recycling

We developed a metric of the maximum potential rate at which
organically-derived P could be provided in each forest by quantifying
the release rate of organic P (P,) from each forest’s litterfall and scaling
those rates to an annual basis. This approach assumes that P release
during litterfall decay represents the fastest rate at which P released
from any decaying organic matter, including soil organic matter, could
be provided in a bioavailable form. This assumption is likely valid given
the generally slower rates of organic matter decay within soil profiles
relative to litterfall (Schlesinger and Bernhardt, 2013). We used these
annual, litterfall-derived P release rates in conjunction with each forest’s
NPP estimates to generate an estimate of the fraction of NPP that could
potentially be supported by organically-derived P (OMp:NPPp). We
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emphasize that this metric represents the maximum estimate of
organically-derived P, and that much of the rooted soil volume at all
sites, and indeed in most forests, is dominated by mineral-bound P
(Richter et al., 2006, Lang 2017).

To generate our metric, we conducted decomposition experiments
using senesced leaves collected from each study site. Conducting these
decomposition experiments in the lab instead of the field permitted us to
specifically examine annual P release potential without influence from P
remaining in soil organic matter, whether particulate or mineral asso-
ciated, from previous seasons. Additionally, the lab-oriented design
made for greater ease of cross-site work, given that sites were widely
dispersed geographically. Though our design did not allow litter expo-
sure to soil macrofauna, which can influence soil P distributions (Cha-
puis-Lardy et al., 2011), we included microbes native to each site (see
below) to aid decomposition.

We collected leaf litter at each site with which to conduct the lit-
terfall incubations. At the KUFS and Catalina sites, we deployed 10 to 12
litter baskets in fall 2016 and spring 2017, respectively, for leaf litter
collection over the course of the following growing season. At KUFS,
litter collection for NPP estimation has continued for 3 additional sea-
sons, but only leaves from 2016 were used for incubations. Previously
collected, senesced leaves were available from the prior 2015 and 2016
growing seasons at the Calhoun and Shale Hills CZOs. Upon collection,
leaves were dried at 60 °C until a constant weight before grinding with a
Wiley mill. We used dried leaves instead of fresh for multiple reasons.
First, numerous sites had previously collected leaves and dried them for
storage purposes. To make use of readily available samples, we opted to
use these leaves to reduce travel and sampling demands at our widely
dispersed sites. Additionally, we wanted to be able to control the
moisture level of each incubation and needed to start with consistently
dried leaves across litter baskets both within and between sites to
maintain a consistent starting point for all leaves.

To inoculate these oven-dried, senesced leaves with microbes able to
induce decay, we added a small amount of freshly collected, senesced
leaves from each site to their respective dried counterpart. During the
spring of 2017, we collected a small sample of freshly fallen leaves from
each site, which we froze upon return to University of Kansas. We
thawed these samples, roughly chopped them with a knife and mixed a
small amount with the dried litter. We distributed ~ 0.7 dry g of the
mixed litter into six small permeable bags per litter collection trap and
placed the bags into a glass jar filled partially with marbles to keep the
bags well drained. This resulted in at least six jars per site containing six
bags each. We then incubated leaves aerobically in site-relevant condi-
tions (Table 3). We periodically watered the bags in quantities and
frequencies mimicking site-specific growing season rainfall (Tables 1
and 3). To mimic the bimodal precipitation regime at the Catalina CZO,
we performed two shorter incubations to approximate the amount of
decomposition possible over a full year’s time course at this site. We
periodically subsampled the litter bags and collected the water that had
leached through them during rain-mimicking events. These subsamples
allowed us to examine P released during organic matter decay and not
immobilized in microbial biomass over a time course representative of
each site’s growing season. We emphasize that the application of tem-
perature and moisture conditions relevant for each forest produce
litterfall-derived P release estimates relevant to each site, relative to the
others.

At the beginning and end of the incubation, we removed one of the
subsample bags and analyzed litterfall P concentration (described
above). Using litterfall mass in combination with P concentration, we
calculated P content of each leaf subsample. Differences between initial
and final P contents in decaying leaves per unit time provide estimates of
potential annual P, release (the numerator in OMp:NPPp). We assume
that the potential P release from organic matter already present in the
upper soil profile is lower than the rates achieved with our combination
of fresh and dried litter, so we use these estimates to represent a
maximum potential P release from annual organic matter additions. Our



E. Hauser et al.

incubation approach does not permit knowledge of absolute P release
from organic matter decay throughout these soil profiles. However, it
provides comparable information about the new P from organic matter
that is potentially made plant available at each location on an annual
basis.

2.3.4. Metrics of soil development and soil mineral P status

Using previously collected soil mineralogical data (Jin et al., 2010;
Holleran, 2013; Austin and Schroeder, 2019; Brantley, 2019; National
Ecological Observatory Network, 2020a), we calculated soil weathering
indices to numerically characterize the mineral nutrient status of each
site, as well as biotic contributions to mineral distributions. We focused
on tau, (tp)—a well-established metric of soil development that de-
scribes the depletion of P in the soil profile relative to the soil parent
material (Ruxton et al., 1968, Price and Vebel, 2003, Oh et al., 2007).
This metric offers a means of comparing some features of disparate soil
profiles’ development relative to others, in spite of different parent
materials with contrasting P content. A more negative value of t in-
dicates that the soil depth examined has been depleted in the element of
interest relative to a parent material reference, while a positive value
indicates elemental enrichment (Brimhall, 1987).

Calculating t relies on measurements of a relatively immobile
element as a reference to which the more mobile element of interest can
be compared. Here, we used Zr as the immobile element. Values of T vary
depending on the soil horizon of interest and the selection of reference
parent material. For soils based on alluvium and glacial till, uncertainty
about what constitutes the parent material(s) is especially great. How-
ever, we calculated tp of the root zone given our interest in vegetation
influences on soil development metrics, using the ratio of P remaining in
the soil surface horizon sampled at each site relative to P at the soil
depth where roots have reached ~ 95% biomass (calculation described
above). Thus, tp as we present it represents relative changes in P across
the rooted profile. By replacing parent rock P in the traditional calcu-
lations of t with P of soil where roots are rare, we achieve a metric of
Pdepletion across the depth of soil inhabited by the largest proportion of
plant roots. (We also report t values calculated using parent material in
Table 2 as tp, bedrock). We thus calculate tp as follows:

W o= A )
PRF¥Z;S

where P} is total P (mg kg™ 1) in the uppermost sampled soil horizon,
Zr™ is the total Zr (mg kg™?) at the approximated rooting front where
roots reach ~ 95% root biomass, Zr® is the Zr (mg kg™!) in the upper-
most soil horizon, and P is total P (mg kg™ *) at the rooting front.

Our use of this metric offers a means of exploring the time-
integrated, ecosystem dynamics of P; and P, separately. We first
focused our analysis on inorganic P (tp;) by subtracting estimates of P,
from total soil P values before implementing equation 1. The tp; metric
thus reflects changes over depth, specific to mineral-bound P. 7tp;,

Table 2
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therefore, allows us to estimate the changes to inorganic, mineral-bound
P across the depth of the root zone. This produces the following
equation:
S % F
Tpi = % (2)
PRF3Z)S

where P§ is inorganic P in surface soils estimated by subtracting
organic P estimates from total P estimates, and PEF is inorganic P at the
rooting front estimated by the same method. We generated estimates of
soil P, for this calculation from soil organic C depth distributions
available for each site (Rasmussen et al., 2008; Andrews et al., 2011;
Holleran, 2013; Hasenmueller et al., 2017; Brantley, 2019; Billings et al.,
2020; National Ecological Observatory, 2020c), and organic matter C:P
ratios estimated from sites’ litter data, the most site relevant C:P ratio we
have available for initial inputs of organic matter to soil. There is some
evidence that the C:P in roots, a primary soil C source, is comparable to
leaf litter C:P, lending greater confidence to use of litter C:P ratios
(Zechmeister-Boltenstern et al., 2015). However, this method may un-
derestimate P, given recent demonstrations that organic matter in
mineral soil conserves P, more effectively than organic C (Spohn, 2020).
The difference between tp and tp; provides us with an estimate of Tp,:

Tp -Tpi = Tpo 3

The tp, metric helps us understand the role of P, in the P status of
root zone soils.

2.4. Statistical analyses

We first characterized P demand and P availability across forest sites
to better understand the outcomes of our hypothesized relationships. To
do this, we regressed NPPp and site leaf P concentrations on our esti-
mates of root zone P content. These relationships act as an indicator of
relative P limitation across the forests examined in our study and
characterize forest productivity across a variety of soil conditions.
Regression analyses allow us to examine emergent trends across our sites
and discuss their possible implications, as well as data limitations.

To test whether our estimates of potential annual organic matter
provision of P could meet a greater proportion of forests’ NPPp demands
where soils are more depleted in mineral-bound P, we performed
regression analyses between the OMp:NPPp ratio and tp; and tp, met-
rics. We log transformed the OMp:NPPp ratio and tp; to meet the
assumption of normally distributed residuals. Other metrics did not
require transformation to meet assumptions. We also tested for outliers
using Cook’s Distance and calculated the regression both with and
without outlier points. These comparisons discern the maximum ca-
pacity for organic matter recycling to sustain forest P uptake in soils of
different weathering statuses and, in the case of tp,, the ways in which
soil and stand development display feedbacks as a result of root systems
driving P, distributions.

Data used for calculations of potential P provision and 7p ratios. These include release rate of P from organic matter (OMp) as determined by litter incubations, es-
timates of P uptake to meet the demands of NPP at each site (NPP), and the depth to 95% root biomass used to determine the soil sample depths for calculating tp. We
also include an estimate of depth to bedrock at each site for comparison of potential soil volume accessible to roots at each location, as well as tp calculated using
estimated bedrock P as the parent material. For the KU Field Station, tp bedrock is calculated using the deepest sampled soil horizon as the parent material, which
approximates the chemistry of glacial loess that underlies the region. The derivation of table values, as well as tp values and an explanation of error estimates are
outlined in the main text (Methods section) and in captions for figures associated with each dataset. Sites are ordered from shortest to longest duration of root

development time.

Site oM, (gpm’zyr’l) NPP, (gpm’zyr’l) Depth to 95% Root Biomass (m) Depth to Bedrock (m) Tp, bedrock
Calhoun Pine 0.20 0.20 2.9 5-40 —0.49
KU Field Station 0.24 0.65 2.0 0.5-2 —0.03
Garner Run 0.31 0.37 1.2 0.7 (ridgetop) to 1.7 (valley floor) —0.53
Shale Hills 0.16 0.26 0.5 <0.25 (ridgetop) to > 2 (valley floor) 0.01
Marshall Gulch 0.14 0.26 0.6 0.7-1.8 1.38
Oracle Ridge 0.09 0.16 0.6 0.7-1.8 2.09
Calhoun Hardwood 0.19 0.42 3.2 5-40 —0.28
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Summary of incubation characteristics for each study site. Range of water applied indicates the minimum and maximum amount of water added to incubation jars per
forest floor area represented by litterfall in jars. The amount of water applied at each time point was based on the average monthly precipitation for each site cor-
responding to the month of the incubation. See text for details.

Site Incubation Length Incubation Temp Range of water applied (mL  Source of climate and precipitation data
(d) 0 em™?)

Calhoun CZO, Pine and 212 21.5 7.5-11 https://criticalzone.org/calhoun/infrastructure/field-areas-calh
Hardwood oun/

Catalina Jemez CZO Marshal  Incubation 1: 115 Incubation 1: 7 0.8 -15.7 https://criticalzone.org/catalina-jemez/infrastructure/field-area
Gulch Incubation 2: 117 Incubation 2: 7 s-catalina-jemez/

Catalina Jemez CZO Oracle Incubation 1: 115 Incubation 1: 10 0.7 -10.9 https://criticalzone.org/catalina-jemez/infrastructure/field-area
Ridge Incubation 2: 117 Incubation 2: 10 s-catalina-jemez/

University of Kansas Field 185 21.5 8.8-13.3 https://biosurvey.ku.edu/sites/kbs.drupal.ku.edu/files/docs/Cli
Station mate%20Synopsis.pdf

Shale Hills CZO 154 19.3 8.8-10.4 https://criticalzone.org/shale-hills/infrastructure/

Garner Run 154 19.3 8.8-10.4 https://www.hydroshare.org/resource/9535cbe97d5843a788

fc7648de39a6e5/

To determine whether OMp varied in nutritional relevance with
forest development, we performed a linear regression between years of
root development and the OMp:NPPp metric. It is important to note that
in these analyses, the years of root development are conservative esti-
mates; if root development has persisted for longer, significance of these
statistical tests may change. We again used Cook’s Distance and calcu-
lated the regression both with and without outlier points. In all analyses
we report statistics both with and without outlier points where they alter
significance of findings. We also performed a one-way ANOVA using
stand ages as categorical variables driving the OMp:NPPp metric to
discern whether we observed distinct groupings of forests based on their
reliance on organic matter- vs. mineral-bound P. We followed t-tests
with post hoc Tukey tests to discern which forests exhibited similar OMp:
NPPp responses, and what response patterns emerged as a function of
forest age. Data followed the assumptions of normally distributed
residuals.

To assess the degree to which vegetation age was associated with
patterns of soil P forms, we analyzed the relationship between stand age
and tp,. We fitted linear and non-linear curves to the data and selected
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the best fit via Akaike information criterion (AIC) values. In all described
analyses, we report every meaningful trend, which embraces P-values <
0.1 given the difficulties inherent in seeking appropriate ecosystem-
scale site replicates, as well as the difficulty of collecting comparable
ecological data across dispersed sites (Filion et al., 2000; Oren et al.,
2001; Bernacchi and Morgan, 2005; Amrhein et al., 2019). Analyses
were performed in RStudio v. 1.0.153 (RStudio Team, 2017).

3. Results

Vegetation P demand estimated via NPP (NPPp) was positively
correlated with total root zone P when all points were included in the
analysis (P = 0.013, = 0.7, Fig. 3a). The removal of an influential
point at KUFS altered the significance of the regression (P = 0.23, r* =
0.17, Fig. 3a). Soil depths by which roots have achieved 95% of their
biomass, which were used to approximate the depth of most of the
rooted zone and determine the rooting front (RF) terms in tp calcula-
tions, ranged from 3.2 to 0.6 m (Table 2). Leaf [P], though in part
dependent on tree species (Reich and Oleksyn, 2004), represents a

(b)

| vy=0.93x+0.07
r2=0.75
P=0.007

[P]Leaf' mg P g_l leaf
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Root zone P, kg m2

Fig. 3. Vegetation growth characteristics in relation to soil P content. Total P content of a square meter soil profile summed to the depth of ~ 95% root biomass,
termed root zone P, displayed positive relationships with both (a) P demand of net primary productivity (NPPp) estimated from annual leaf litter production (P =
0.013, r> = 0.7) and (b) leaf [P] in forest trees at each study site (P = 0.007, r? = 0.75). Error bars represent one standard error from the mean. In (a), dashed line
represents the linear relationship calculated with KUFS site included although KUFS was a significant outlier to the trend. Removal of the KUFS point resulted in non-

significant regression (P = 0.23, r*> = 0.17).
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measure of vegetation P status and was positively correlated with total P
of these rooted zones (P = 0.07, = 0.75, Fig. 3b).

P release from organic matter decay, used to calculate our metric of
organic P recycling, ranged from 0.085 to 0.31 g P m~2 y~! across sites
(Table 2). The relationship between OMp:NPPp and tp; was best repre-
sented by an exponential decay curve (AIC = 1.69), reflecting a steeply
negative slope where soils have negative tp; values. The AIC values for
other tested relationships, including a linear relationship, ranged from
1.82 to 14.43. Where sites were more depleted in inorganic P across the
root zone (i.e., low tp; values), the OMp:NPPp ratio increased, suggesting
the potential for organic matter recycling to meet a greater proportion of
annual forest P demand (P = 0.017, r% = 0.74; Fig. 4). Although the
curvilinear relationship fits the data better than a linear fit, we present
statistics from the linear relationship in addition to the curved line
(Fig. 4) because they are statistically significant and permit a broadly
applicable, standardized interpretation of the relationship between po-
tential organic P provision and mineral P depletion. Given the relatively
few forests available to contribute data, the statistical metrics offered by
the significant linear relationship and the better fit of the exponential
equation both hint at increased nutritional relevance of organic matter-
bound P where mineral P is depleted.

Forest stands that we estimate to have experienced a longer duration
of exploration by roots displayed greater estimated contributions of P, to
total soil P enrichment (i.e., higher values of tp,). Forests with
comparatively younger root systems exhibited less enrichment of soil P
by P, (Fig. 5a). However, with one exception, potential P release from
organic matter decay was relatively high for younger root systems and
comparatively low where roots had been established for a longer time
(Fig. 5b, P = 0.015, r2 = 0.76). The exception to this finding is the KUFS
forest (Cook’s Distance = 1.16), where the potential for organic matter P
to meet estimated NPPp demands is lower than the other similarly aged
root systems. Compared to the ~ 80 y old Calhoun pine forests and ~ 95
y old Garner Run forests, ~81 y old KUFS forests displayed 0.64 and
0.46 percent less P provision from organic matter as a proportion of
NPPp demands (P < 0.002), respectively. Compared to ~ 110 y old Shale
Hills forests, KUFS forest’s organic matter provision was 21% less (P =
0.08).

Geoderma 435 (2023) 116520

4. Discussion

Our findings highlight the interwoven nature of vegetation and soil
dynamics that calls for greater consideration of decadal-scale root sys-
tem development in metrics of soil development. When examined solely
in terms of mineral P status, one metric of long-term pedogenic time
(Fig. la, X-axis), our data point toward patterns generally consistent
with patterns of nutrient bioavailability we might expect under tradi-
tional models of soil development (Walker and Syers, 1976, Vitousek
et al., 1997; Izquierdo et al., 2013, Fig. 4). Specifically, we observed the
highest potential release rate of organic matter-bound P where soils
were comparatively mineral-P depauperate and the lowest potential
release rate of organic matter-bound P at sites with soils relatively rich in
mineral-bound P (Fig. 4). Within the forests studied, where P availability
is dominated by either organic matter- or mineral-bound P, vegetation
appears to have access to P from the form that is most bioavailable, a
feature that varies across geologic timescales (Walker and Syers, 1976,
Crews et al., 1995, Hauser et al., 2020). However, when we examine our
findings through the decadal-scale lens of root system development, we
observe deviations from what we might expect for the role of organic
matter- vs. mineral-bound P in forest nutrition if we only considered soil
weathering and P losses from the entire system over geologic time
(Walker and Syers, 1976).

The relevance of organic matter-derived nutrients for forest nutrition
during the course of whole CZ development is a reflection not just of soil
elemental losses, but also of the root systems that develop during de-
cades to centuries of vegetation growth. Throughout this shorter time-
frame, nutrient demands increase (Mou et al., 1993; Rode, 1993;
Vitousek et al., 2010) and root systems expand to explore increasing soil
volumes for nutrients (Billings, 1936; Zangaro et al., 2008; Knops and
Bradley, 2009; Yuan and Chen, 2012; Sun et al., 2015). We cannot know
the functionality of all deep roots (Nippert et al., 2012; Nippert and
Holdo, 2015), but as roots reach deeper into soil profiles over the life-
time of forest communities, they have the potential to increasingly ac-
cess any deep, mineral-bound nutrients that may reside there (Richter
et al., 2006; Eger et al., 2018; Hauser et al., 2020; Uhlig et al., 2020;
Wang et al., 2022). Trees appear capable of mediating a shift to rela-
tively enhanced mineral reliance through strategic allocation of C to
resource exchanges that vary over vegetation’s lifespan (Marschner and

Untransformed without KUFS

Fig. 4. Estimated proportion of each forest’s annual P

demand (g P m~2 y!) potentially provided by annual
organic matter decay (g P m~2 y~1) compared to
depletion of inorganic P (tp;) across the root zone.
Negative tp; values represent P depletion through soil
depths harboring 95% of the root biomass, while
positive values indicate P enrichment. Untransformed
data do not demonstrate a significant relationship,
but removal of an influential point at KUFS produces
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a significant linear relationship (P = 0.05, r? = 0.58).
The log-log relationship omitting KUFS resulted in
significant linear results (P = 0.017, r2 = 0.74). The
data are best represented by an exponential decay
curve, suggesting a non-linear pattern to organic
! matter nutrient provision across stages of soil devel-
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opment. The dashed curve represents the relationship
calculated with the KUFS forest site included in the
analysis. Error bars represent one standard error from
the mean, calculated from incubation and soil sam-
pling replicates. Walker and Syers (1976) posited that
mineral-bound P becomes increasingly depleted in
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soils with time; if so, greater organic matter-P provi-
sion where soil is more developed might be expected,
similar to the trend revealed here.
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Demonstrations of the role of forest nutrient economies in subsurface development. (a) Organic P enrichment (tp,) across the rooted profile vs. root

development time (y), indicating the extent to which organic matter stocks and recycling in upper soils can mask evidence of soil P; loss throughout the profile. (b)
Estimated proportion of each forest’s annual P demand (g P m~2 y~!) potentially provided by annual organic matter decay (g P m~2 y~!) vs. root development time.
Statistics in (a) are calculated both with (solid line) and without inclusion of the Calhoun hardwood forest, an influential point (Cook’s Distance = 1.85; see dis-
cussion in text for details). Statistics in (b) are calculated both before (dashed line) and after removal of the KUFS site, which is a significant outlier (Cook’s Distance
= 1.16). Error bars in both plots represent one standard error from the mean, calculated from incubation replicates (n = 6 with one exception of n = 5 and one of n

=7).

Rengel, 2007; Lambers et al., 2008; Bardgett et al., 2014; Hauser et al.,
2020). These dynamics can alter soil profiles in ways that feed back into
the distribution of mineral and organic matter-bound nutrient stocks
(Austin et al., 2018; Brantley et al., 2012), thereby contributing to
distinct soil developmental patterns on root-growth driven timeframes.

The results from the forests we examined point toward a shift in the
relative reliance on organic nutrient sources to mineral nutrient sources
as forest root systems age (Fig. 5), regardless of the degree of develop-
ment of the underlying substrate. This finding contrasts with some
contemporary conceptual models (Lambers et al., 2008), which suggest
that forests trend toward organic matter-provided supplies over time.
We observed mineral P depletion where the bulk of roots are present in
the youngest root systems (Fig. 4, sites with tp; < 0) as well as relatively
high potential P, input rates (Table 2), suggesting that aboveground
biomass has accumulated sufficiently in younger systems such as CCZO
pine forests and KUFS forests to provide a readily available organic
matter-rich nutrient pool to the upper soil horizons (Crews et al., 1995;
Balogh-Brunstad et al., 2008). However, root systems in these still
comparatively young forests likely have relatively limited proliferation
below the organic matter-rich horizons (Dupouey et al., 2002; Mobley
et al., 2013; Billings et al., 2018; Hauser et al., 2020). This prompts an
organic matter-dominated nutrient economy, apparently across a span
of soil developmental time, as evidenced by the high potential for
organic matter to provide P to vegetation in multiple forests where root
systems have been developing for ~ 80 to 110 y, even across a diversity
of soil developmental stages (Fig. 1b; Fig. 4, values below 0 on the X-
axis; Fig. 5b).

As root system development proceeds, a greater abundance of roots
extends past the organic rich horizons to the weathering front (Knops
and Bradley, 2009; Yuan and Chen, 2012; Pierret et al., 2016; Billings
et al., 2018), where they are in contact with less weathered mineral

surfaces (Brantley et al., 2012; Hasenmueller et al., 2017). In part
because mineral-bound P is less C-expensive to liberate than organic
matter-bound P (Smith, 1976; Hauser et al., 2020), it seems especially
beneficial for deep roots to mine this mineral nutrient source. This could
prompt a shift to a mineral-focused P supply at these depths, with
decreased potential P provision from organic matter in sites with the
oldest forest vegetation even where substrate development was
advanced (Fig. 2b & 5). Thus, forests with older vegetation and older
root systems appear able to develop a mineral-focused P economy even
where soils are well-developed and, presumably, primary mineral P is
depleted in the rooted zone.

Primary mineral P stocks traditionally are not strongly implicated in
the P nutrition of highly-developed CZs due to their oft-observed decline
across the soil development continuum (Walker and Syers, 1976, Fig. 6).
We thus expand Walker and Syers’ (1976) idea to incorporate root
development over time, demonstrating that even where mineral bound P
is scarce, if present, it is likely still relevant to ecosystem P nutrition
(Fig. 6, red arrow 2). Note that none of our sites are true endmembers of
Walker and Syers’ (1976) concept (i.e., Entisols or Oxisols), so there may
be an increase in the nutritional relevance of organic matter-bound P in
very developed systems that we did not observe in this study (Fig. 6, red
arrow 3). It also is important to note that our test of Walker and Syers’
(1976) concept could be improved with reduced variation in multiple
site characteristics (Table 1), such as conducting our analyses across
sites with the same parent material, climate, land use history, or plant
species. However, available sites that match in all qualities except soil
development are limited, reducing our capacity to test Walker and
Syers’ hypothesis (1976) and variations on it in the natural world. We
selected sites that at least allow us to begin probing Walker and Syers’
(1976) hypothesis by examining some features of their patterns of soil
development. Our observations across the studied forests suggest that
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Fig. 6. Conceptual diagram reframing Walker and Syers’ 1976 hypothesis.
Within a given, relatively short, time frame (e.g., within but not across regions
1, 2, and 3), as root systems develop nutrient economies will develop that are
more mineral focused (right-hand Y-axis) and less organic matter focused (red
arrows ). The sites in this study are most likely representative of region 2. Both
natural and human-induced disturbances that induce secondary succession can
reset the system in terms of P forms and root system development. When
disturbance occurs, ecosystems can be pushed to the left along the X-axis such
that the proportion of nutrients available as soil minerals and as organic matter
shifts with the degree of perturbation. The vertical lines on the X-axis represent
timepoints when stand replacing disturbance might occur throughout many
years of CZ development, re-setting the vegetation to an early successional
stage. As root systems develop after disturbance, (moving upslope on red ar-
rows), ecosystem reliance on deep, mineral sources of P increase (right Y-axis)
even as total system P declines over soil development timescales.

root system proliferation drives forest nutrient economies despite a soil’s
status within the soil development continuum (Fig. 6). These observa-
tions also remind us that, like any instance of Simpson’s paradox
(Simpson, 1951; Ellenberg, 2022), it is important to think across a
multitude of timescales to understand an ecosystem’s functioning.

Any nutritional transition of trees from organic matter to mineral
forms represents the resource tradeoff that root systems face when
confronted with different forms of the same nutrient. Perhaps as a
consequence of the relatively low C cost for acquisition of mineral-
bound nutrients (Smith, 1976; Hauser et al., 2020; Reichert et al.,
2022; Raven et al., 2018; Wang and Lambers, 2020; Lynch et al., 2005),
vegetation may preferentially utilize mineral-bound forms. The KUFS
forest, an outlier to many of the patterns detailed above (Fig. 3a, Fig. 4 &
Fig. 5b), hints at the potential for roots to economize C for P. In contrast
to other similarly-aged systems in this study, our estimates of P provision
from organic matter recycling suggest that organically-derived P does
not provide a large portion of KUFS trees’ nutrient demands (Figs. 4 &
5b). These lands have been subjected to human activity linked to altered
metrics of soil development (Amundson and Jenny, 1991; Haff, 2010;
Yoo et al., 2015) and vegetation development (Ellis et al., 2010;
Mcdowell et al., 2020), and likely exhibit modified nutrient and rooting
depth distributions compared to pre-agricultural times (Billings et al.,
2018; Hauser et al., 2020). Both KUFS soil P contents and leaf [P] values
are high (Fig. 2), suggesting a lack of P limitation (Ordonez et al., 2009;
Hou et al., 2020). The soils likely contain mineral P from past fertilizer
applications, effectively pushing the system to the left on Walker and
Syers’ (1976) X-axis (Fig. 6, black lines on X-axis), but are rich in organic
P as well due to their tallgrass prairie legacy (Balesdent et al., 1988). Our
results hint that when both nutrient forms are readily available, vege-
tation may preferentially implement a less C-intensive, mineral-based P
economy belowground (Hauser et al., 2020).

While differences among our sites in parent material, biota, and land
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use history challenge our ability to conduct a controlled test of Walker
and Syers’ (1976) venerated hypothesis, they do permit us to examine
potential variability and mechanisms that allow or prevent the hy-
pothesis from being revealed in Earth’s ecosystems. This strategy is
unique from the template of chronosequence studies and allows more
axes of variation to be explored and identified for future, more
controlled statistical tests. Here we identify one of those mechanisms —
root system development — which likely warrants further attention in
chronosequence and soil nutrient development frameworks. It is beyond
the scope of this study to fully test a hypothesis focused on land use
history, nutrient economies, and soil development. However, given
pervasive, global-scale land use changes that modify rooting depth
(Hauser et al., 2022) and fertilization of organic-rich soils that once
supported native grasslands (Brye and Pirani, 2005; Ellis et al., 2010),
shifts of ecosystems toward selective, mineral-based economies such as
that observed at the KUFS forest in our study may occur in many sys-
tems, with yet unseen soil development feedbacks.

5. Conclusion

This work illuminates how vegetation growth through time and land
use history can influence whether hypothesized patterns of dominant
nutrient sources over soil developmental timeframes (Walker and Syers,
1976) are realized in Earth’s critical zone. We suggest that a high degree
of root system development can heighten the importance of mineral-
bound nutrients for forest vegetation even where soils are highly
weathered, and thus more than might be predicted by Walker and Syers’
original hypothesis (1976). The feedbacks we observed between
geologic and biologic drivers of soil development allude to the strength
of biotic processes in geologic phenomena that can occur meters below
Earth’s surface. Further advancement of these ideas requires additional
work across a yet-greater diversity of ecosystem ages and forest suc-
cessional stages. In the Anthropocene, human alterations to both plants
and soils produce novel alterations to soil developmental patterns
through their influence on root system economies. Thus, incorporating
root system development into concepts of plant nutritional strategies
across soil developmental time will help us more accurately forecast
regolith nutrient dynamics and forest C sink strength.
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