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ARTICLE INFO ABSTRACT

Keywords: Land management for conservation alters the abiotic and biotic components that underly belowground
Land management ecosystem health and function. We know that prescribed burning and grazing influence soil characteristics,
Microbe nutrients, and biota individually, but rarely have these management effects been explored holistically, affecting
Enzyme . . . . . . .

SEM an interacting belowground system. Since most belowground functions (e.g., nutrient cycling) arise from feed-
Fire backs among many soil factors, a better understanding of system-level responses to distinct management prac-
Grazing tices, rather than individual component responses, can help us better predict these ecosystem functions. In a late
Belowground successional tallgrass prairie ecosystem, we contrasted how prescribed fire and mowing altered nutrient cycles
System through changes to the abiotic soil environment, microbial community structure, and microbial enzyme func-

tions. Individual soil factors responded rapidly to both fire and mowing, and remained different from pre-
treatment values. However, as a system, many relationships among soil factors that were present before man-
agement and lost directly after management, returned 1 month after management. This shows the system-level
resilience to management supported by the long evolutionary history between grasslands, fire, and grazing, and
illustrates the importance of understanding management effects from a holistic perspective. Since global
disturbance regimes and anthropological influence are predicted to change in the future, understanding how
belowground components respond to change as a system can help land managers and ecologists alike conserve
endangered ecosystems.

1. Introduction whether management effects on individual soil components influence
the relationships between these components (i.e., belowground systems;

Human conservation activities (e.g., land management) alter the Heneghan et al., 2008; Eisenhauer et al., 2015; Otwell et al., 2018;

abiotic and biotic components that underly ecosystem health and
function. Despite the importance of land management to ecosystem
health, there is a dearth of knowledge on how management influences
ecosystem dynamics through belowground pathways (Heneghan et al.,
2008). This gap is concerning given that interactions between nutrients,
soil characteristics, and soil biota (e.g., bacteria and fungi) influence
entire ecosystems (Graham et al., 2016; Otwell et al., 2018). Consider-
able work has established management effects (e.g., tree harvesting,
prescribed fire, and grazing/mowing) on individual belowground com-
ponents and processes including soil characteristics (Burke et al., 1997),
microbial communities (Bardgett and van der Putten, 2014; Kivlin et al.,
2020), and nutrient cycles (Cole et al., 2021). It is less clear, however,

Crowther et al., 2019; but see Roy and Bagchi, 2022). The system in-
teractions give rise to belowground functions, like nutrient cycling and
plant-microbe interactions, which underly the health and stability of
ecosystems. In light of increasing anthropological effects on ecosystems
(Liu and Wimberly, 2016; Balch et al., 2017; Riggio et al., 2020), it is
important that we understand system-level responses to disturbance in
order to preserve ecosystem health.

Approximately 40% of Earth’s terrestrial ecosystems are maintained
by frequent (often human managed) disturbances like fire and grazing
(Archibald et al., 2018). Human-managed disturbances can maintain
ecosystem productivity (Walker, 1999), prevent wildfires (Roos et al.,
2020), and preserve biodiversity (Whelan, 1995), including through
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their effects on belowground components such as soil microbes, nutri-
ents (e.g., N and P; Raison, 1979; Butler et al., 2018; Yuan et al., 2019;
He et al., 2020), and soil characteristics (e.g., C, pH, and moisture;
Certini, 2005; McSherry and Ritchie, 2013; Alcaniz et al., 2018). For
example, the long evolutionary history of grazing and fire in grassland
ecosystems shows a tight relationship between modern management
and soil components (Ford, 2009). This relationship makes these eco-
systems ideal for studying land management effects on soil systems and
ecosystem health. Both land managers and ecologists are particularly
interested in soil nutrient cycling responses to recurrent disturbance
because they influence post-disturbance ecosystem dynamics like pri-
mary production and recovery time. Disturbance type and intensity
modify soil nutrient cycles (Raison, 1979; Butler et al., 2018), both
directly through alterations to nutrient pools and fluxes, and indirectly
through changes to microbial communities and soil properties that drive
nutrient cycles (Rumpel et al., 2015). For example, fire drives flushes (or
volatilization at higher severities) of nutrients through the combustion
of plant matter, while grazing intensity can determine plant allocation of
carbon and nitrogen into or away from rhizosphere microbes. Under-
standing the relative strength of these pathways on nutrient cycling and
how management alters these paths is an important first step in under-
standing disturbance effects on ecosystem health through belowground
processes.

Soil nutrient cycles are complex systems formed from interactions
between edaphic properties, soil biota, and biotic functions like extra-
cellular enzyme production. Each is known to independently respond to
fire and grazing (or mowing) (Johnson and Curtis, 2001; Certini, 2005;
Knelman et al., 2017; Butler et al., 2018; Chuan et al., 2020; He et al.,
2020), and through these effects, management practices are thought to
shape the soil environment. Despite knowing that these systems depend
on one another, we do not know whether management alters the un-
derlying relationships among these properties. For example, soil fungi
produce extracellular enzymes that breakdown recalcitrant forms of
carbon, nitrogen, and phosphorous (Dick, 1994; Alkorta et al., 2003;
Valaskova et al., 2007; Eichlerova et al., 2015). Enzyme production,
however, is sensitive to both soil properties (e.g., pH, C, and moisture;
Snajdr et al., 2008; Moorhead et al., 2013) and fungal community
composition (Eichlerova et al., 2015; Masinova et al., 2018). These
communities, in turn, are shaped by disturbance itself and the changes
to the soil environmental, and these effects may be particularly strong
for taxa that tightly track the soil environment through roles as mutu-
alists (Johnson et al., 2015) and decomposers (Manzoni et al., 2010;
Semenova-Nelsen et al., 2019; Hopkins et al., 2020). Addressing man-
agement effects as a system, therefore, can give managers and ecologists
alike a clearer picture of management consequences and system shifts
that may change the trajectory of ecosystem recovery. Finally, distur-
bance effects vary with time (Chen et al., 2003; Farrell et al., 2011;
Burns et al., 2013; Hopkins et al., 2021) and depth (Bolton et al., 1993;
De Barros et al., 2020; Upton et al., 2020), so system-level assessments of
nutrient cycling responses must also account for the time since distur-
bance and location in the soil profile. Only by understanding the dy-
namic responses of this linked system can we accurately quantify
ecosystem health and predict ecosystem resilience to future changes in
disturbance regimes.

Our research explores how prescribed fire and mowing impact the
edaphic properties, soil fungal communities, and microbial functions of
an intact, late successional tallgrass prairie ecosystem. Prescribed fire
and grazing (or mowing) are commonly used in prairie systems to pre-
vent woody colonization and conversion to forests. In this system, we
assessed soil characteristics, soil fungal communities, and hydrolytic
enzyme activity prior to and over time following either burning or
mowing. We hypothesized that fungal community composition would be
influenced by soil characteristics, soil depth, and sampling time, and
that hydrolytic enzyme activity would be associated with fungal com-
munity composition. We further hypothesized that belowground sys-
tems would respond management treatments differently due to

Pedobiologia - Journal of Soil Ecology 96 (2023) 150859

differences between fire and mowing effects on soil properties. We
predicted that 1) both management activities would impact soil prop-
erties and fungal communities directly (Fig. 1 paths a-b), 2) soil prop-
erties would also structure fungal communities (Fig. 1 path c), 3)
changes to soil enzymes would largely occur through changes to fungal
communities and substrate availability (Fig. 1 paths d-e), and finally, 4)
at each time point the relationships among these pathways would
change depending on disturbance type and with depth. Our data show
that soil properties, fungal community composition, and function (i.e.,
hydrolytic enzyme activity) all rapidly respond to management and ef-
fects grow stronger over time, but interactions among these variables
that shift with management display significant resiliency after only one
month.

2. Methods (1929 words)
2.1. Site description

We conducted our study at (38° 10’ N; —95° 16’ W; Fig. A.1) the
Anderson County Prairie Preserve (Anderson County, Kansas), a nearly
1,500-acre prairie preserve with active fire, grazing, and mowing
management. The Nature Conservancy-owned site represents the largest
intact, remnant Kansas prairie east of the Flint Hills. Our experiment
occurred in tract 13, a remnant tallgrass prairie, that has been histori-
cally managed with annual to biennial low-intensity, prescribed fire in
the Spring or Fall, as well as haying during non-fire years since at least
the mid-1990 s. Surface soils at this site are part of the Clareson-Rock
outcrop complex (USDA NRCS, 2022). The site is characterized by
diverse graminoid and forb vegetation, dominated by Andropogon ger-
ardii (grass), Baptisia australis (forb), Tradescantia occidentalis (forb), and
Schizachyrium scoparium (grass) (Kansas Biological Survey, 2010).
Average annual temperatures for the site range from 7 °C to 19 °C.
Average annual precipitation is 970.3 mm, with the majority occurring
between April and September.

2.2. Plot set-up

Experimental plots (5 m?) were established prior to management
treatments in October 2019. We created two columns of seven plots each
(14 total) oriented north to south, with a 10 m fire break established
between the columns. Plot corners were marked with 1 m tall PVC poles
and, within each column plots were separated by 20 m buffer zones. This
setup allowed for 7 pairs of plots (Fig. A.1). The latitude, longitude, and
elevation of each plot was marked with GPS to later account for spatial
effects.

2.3. Management treatments

To establish mowed and burned management treatments, the west-
ern column of plots was mowed using a ZTrak™ mower on October 8th,
2019. To mimic the effects of grazing, mowed plant litter was removed
from each plot with a leaf blower. The prescribed fire took place on
October 9th, 2019. Just prior to ignition, winds out the southeast were
estimated at 10mph, the air temperature was 20 °C, and humidity was
49%. At 11 am, a backing fire was ignited with a drip torch along the
northern edge of the plot, and then flanking and head fires were ignited.
Only the eastern column of plots was burned during the prescribed fire.
During the fire, average flame heights were 0.25-0.5 m, with some flare
ups to 1 m. The fire line moved quickly, and the plots were completely
burned by 12:30 pm. The fire left a heavily blackened surface ash layer
with sporadic white-grey ash spots. Fuel consumption was approxi-
mately 60% based on visual assessment.

2.4. Soil sampling

Soil samples were collected two weeks prior to mowing and fire
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Fig. 1. : Hypothesized pathways for land
Fungal management effects on soil fungal community
. structure and function. We hypothesized that
Commu.n‘lty land management would impact soil properties
> Composmon N~ (Fig. 1 path a) and fungal community compo-
a d sition (Fig. 1 path b) directly, and that changes
| T ™ to edaphic factors would also structure soil
Land Enzyme fungal communities (Fig. 1 path c). We also
Cc . hypothesized that changes to fungal community
Management | Production composition (Fig. 1 path d) and edaphic factors
\b 7 (Fig. 1 path e) would drive changes to soil
~a L e enzyme profiles. Finally, we also expected that
Ed aphi c management effects on bélongound system‘s
would vary across sampling times and soil
Factors depths.

management, as well as 2 weeks and 1-month post-management. A
2.5 cm diameter soil hammer was used containing acrylic sample
retention sleeves. At each sampling time, two soil cores were collected
from the center of each plot, and the retention sleeves were deposited
into sterile bags, and kept on ice until processing at the University of
Kansas within six hours of sampling. To avoid inter-sample contami-
nation, the soil hammer was sterilized using soap and water between
plots. Upon return to the lab, each soil sample was divided into two
sections, 0-5 cm and 5-10 cm. For each plot, samples for each depth
were combined and homogenized, then subsamples were taken for
downstream DNA and hydrolytic enzyme assays. This produced a total
of 84 soil samples (2 management treatments, 3 time periods, 2 soil
depths, 7 replicate plots; n = 84). Subsamples for DNA and enzyme
analyses were stored at — 80 °C, and the remaining soil, to be used for
nutrient and edaphic analyses were stored at 4 °C for less than 2 weeks.

2.5. Soil analysis

Soil nutrient and edaphic analyses were completed at the Kansas
State University Soil Testing Lab. Soil phosphorus was quantified using
the Mehlich-3 method (Mehlich, 1984) on a Lachat Quickchem 8000
(Lachat Instruments, Loveland, USA). Total soil carbon and nitrogen
were measured on a LECO TruSpec CN Carbon/Nitrogen combustion
analyzer (LECO Corporation, St. Joseph, USA). Carbon-to-nitrogen ratio
was then calculated by dividing total carbon by total nitrogen. Available
ammonium (NH4 +) and nitrate (NO3-) were extracted using 2 M KCl
on 2 g of soil, and then a cadmium reduction for nitrate and colorimetric
procedures, followed by analysis for ion quantification (Brown, 1998).

Soil pH was measured using a pH probe in a 1:1 soil:DI water solu-
tion. For each sample, the average pH was determined by taking the
mean of three separate measurements. To measure Gravimetric water
content (GWC), an approximately 5 g subsample of soil was weighed
(“wet weight™), dried at 100 °C for at least three days, and re-weighed.
GWC was calculated as the mass lost as a proportion of the wet weight.
Following GWC quantification, soil organic carbon content (OrgC) was
determined by placing the original 5 g soil subsamples in a muffle
furnace at 550 °C for 1 h. OrgC was calculated as the mass lost as a
proportion of the dry, pre-furnace weight.

2.6. Engzyme assays

Soil subsamples for enzyme analysis were thawed and enzyme ac-
tivities quantified with fluorometric assays described in (German et al.,
2012; Stone et al., 2012). Enzyme activities for p-1,4-glucosidase
(BGase), B-1,4-N-acetylglucosaminidase (NAGase), and Acid Phospha-
tase (APase) were measured using 4-methylumbelliferyl beta-D-gluco-
pyranoside, 4-methylumbelliferyl N-acetyl-beta-D-glucosaminide, and
4-methylumbelliferyl phosphate substrates respectively. All substrates

were used to create 400 uM solutions using DI water. 50 mM sodium
acetate solution (pH 6.5) and 10 uM 4-methylumbelliferone solution
(MUB) were used for buffer and standards respectively. Approximately
1 g of wet soil from each soil sample was mixed with 125 ml of sodium
acetate buffer using an emulsion blender for 30 s to create a soil slurry.
Then, the buffer, MUB, substrate, and soil slurry solutions were added to
96 well microplates (1 plate per sample). This plate set-up (Fig. A.2)
allowed for soil, sterile, and substrate controls, 3 enzyme assays with 12
analytical replicates, as well as quench corrections for each enzyme
assayed. Plates were then covered with aluminum foil and incubated at
25 °C for no more than 18 h. Following incubation, fluorescence was
measured with a microplate reader using an excitation wavelength of
360 nm and an emission wavelength of 460 nm to calculate nmol ac-
tivity h-1 g soil-1. All enzyme activities were corrected for soil moisture
content (GWC above).

2.7. DNA extraction and PCR

DNA was extracted from 0.25 g of the DNA soil subsample using
Machery-Nagel NucleoSpin® Soil kits (Machery-Nagel, Diiren, Ger-
many) following the manufacturer’s protocol. A single step PCR was
then used to amplify the ITS2 rDNA region with the fITS7 (forward;
Thrmark et al., 2012) and ITS4 (reverse; White et al., 1990) universal
fungal primer pair. For the PCR reactions, solutions of 0.8 uL of DNA,
8 uL of 5x Q5® buffer (New England Biosystems, Ipswich, Massachu-
setts), 0.8 uL of ANTPS (10 mM), 2 pL of each primer (10 mM), 0.4 pL of
Q5® High-Fidelity DNA polymerase (New England Biosystems), 8 uL of
enhancer (New England Biosystems), and 17.8 uL of ddH20 were used
for each reaction (40 pL total). The PCR set-up followed Semenova-
Nelsen et al., 2019, with an initial denaturation step at 98 °C for 30 s,
followed by 25 cycles of 98 °C for 10 s, 57 °C for 30 s, and 72 °C for 30 s,
and a final extension step at 72 °C for 2 min, then held at 4 °C. Products
for all PCRs were checked on agarose gels to ensure amplification and
cleaned using Agencourt AMPure XP magnetic beads (Beckman Coulter,
Indianapolis, Indiana).

2.8. Library preparation and sequencing

Mlumina MiSeq Nextera protocol was used to sequence fungal com-
munity samples. First, a second PCR reaction was used to ligate unique,
12 bp sequence barcodes (Nextera indices, Illumina, San Diego, Cali-
fornia) to each individual sample. The second PCR parameters were
similar to the first, however, 5 L of the primary PCR amplicon was used
instead of 8 pL of the original DNA template, and the number of PCR
cycles was reduced to 8. Barcoded amplicons were purified using
Agencourt beads (see above), and DNA concentrations were checked
using a Qubit 2.0 (LifeTechnologies, Carlsbad, California). Samples were
then pooled in equimolar concentrations into a single library and
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sequenced using an Illumina MiSeq (Illumina, San Diego, California)
with 300 bp paired-end reads and V3 chemistry at the Kansas State In-
tegrated Genomics Center. Sequence data is deposited in the GenBank
Sequence Read Archive (SRA) PRINA906953.

2.9. Bioinformatics

Raw sequencing data were analyzed using Qiime2 version 2019.10
following methods outline in Bolyen et al. (2019). Quality and barcode
filtering resulted in approximately 4.5 M reads for the 84 samples.
Unique barcodes were trimmed from paired reads using cutadapt
(Martin, 2011), then combined using the dada2 tool (Callahan et al.,
2016). The UNITE fungal ITS reference database v8 “dynamic” (Abar-
enkov et al., 2010, accessed Feb. 2019) was used to train a Naive Bayes
classifier, which defined amplicon sequence variants (ASVs) and
assigned them probable taxonomic identities. ASVs with less than five
reads were removed to reduce sequencing artefacts. Normalization
procedures are detailed below. Bioinformatics scripts are included in the
appendix.

2.10. Statistical analysis

All analyses were completed in R v. 4.0.2 (R Core Team, 2022). To
prepare the fungal community ASV table for compositional data anal-
ysis, zeroes were replaced using the cmultRepl function with the
Bayesian Laplace method in the zCompositions package (Palar-
ea-Albaladejo and Martin-Fernandez, 2015). Then the fungal commu-
nity data was transformed using a centered log-ratio transformation via
the clr function in the compositions package (van den Boogaart and
Tolosana-Delgado, 2008). Following transformation, a dissimilarity
matrix was created using the Aitchison’s distance with the Vegan
package’s dist function (Oksanen et al., 2013). Note that Aitchison’s
distance is defined as the Euclidean distance following a centered
log-ratio transformation (Calle, 2019). Since use of Aitchison’s distance
allows for compositional data to be analyzed with linear methods, a
principal components analysis (PCA) was used to create an ordination
for the fungal community data.

To test for differences in fungal community structure between
management treatments (burned and mowed), sampling times (pre, 2
weeks post, and 1 month post), and sample depths (0-5cm and
5-10 cm), PERMANOVAs that accounted for locational effects were
applied using the adonis function. The location term was included first
in the PERMANOVA model since the adonis function uses sequential
sums of squares. When a PERMANOVA denoted significant main effects,
the pairwise.perm.manova function from the RVAideMemoire package
(Hervé, 2021) was used to explore intra-treatment differences. Addi-
tionally, diversity metrics (inverse Simpson and Shannon’s diversity
metrics) for the fungal community data were calculated using the di-
versity function. To identify indicator taxa for burned and mowed
treatments, the ALDEx2 package (Fernandes et al., 2013) was used to
detect differential ASV expression between post-treatment burned and
mowed groups. For ALDEx2 analyses, p-values were adjusted using the
Benjamini-Hochberg or “fdr” method.

Multivariate analyses of variance (MANOVA) with marginal sums of
squares were used to test for differences in fungal diversity metrics, soil
characteristics, and enzyme activity between management treatments,
soil layers, and sampling times using the manova and joint_tests function
(emmeans package; Lenth, 2018). When MANOVAs denoted significant
treatment effects, pairwise contrasts were applied using the contrast
function.

Following tests for the individual components, we then explored
mechanisms underlying management driven shifts to microbial roles in
ecosystems using structural equation modeling (SEM) with the piece-
wiseSEM package (Lefcheck, 2016). Based on existing literature, we
hypothesized a meta-model with pathways linking management treat-
ments to microbial enzyme production that included pathways through

Pedobiologia - Journal of Soil Ecology 96 (2023) 150859

fungal community structure and changes to soil properties (Fig. 1;
Table A.1). Specifically, we hypothesized that management treatment
(burned vs. mowed) would alter fungal community structure due to
direct effects of management (Fig. 1 — path a), management driven
changes to soil characteristics (Fig. 1 — path b). Note that burned plots
were coded as a 1 and mowed as a 0, meaning that a positive correlation
between management and other variables means that the positive
interaction was higher in burned relative to mowed plots. We further
hypothesized that management driven changes to fungal communities
(Fig. 1 — path d), soil characteristics (Fig. 1 — path e), as well as direct
management effects would alter hydrolytic enzyme production. For a
description of model variables and initial model set-up see Table 1 and
A.1. After developing initial hypotheses for model structure, a goodness
of fit guided approach (AIC, BIC, and Fisher’s C statistics) was used to
determine model modifications.

3. Results (1617 words)
3.1. Fungal community data

A total of 5031 ASVs were identified, with 90% representing 9 fungal
phyla (including 4 basal lineages and 1 subphylum), 37 classes, 87 or-
ders, 193 families, and 395 genera. Only one ASV was not classified as a
fungus, and was removed from downstream analyses, all other ASVs
were retained. 498 ASVs were only identified to the kingdom level
(Fungi). Fungal communities were dominated by four classes: the
Ascomycota classes Sordariomycetes (32%), Dothideomycetes (18%),
and Eurotiomycetes (8%), as well as the Basidiomycota class Agar-
icomycetes (17%). The five most abundant ASVs were an unidentified
taxon in the genus Staphylotrichum, an unidentified taxon in the genus
Periconia, Hygrocybe acutoconica, an unidentified taxon in the family
Nectriaceae, and Fusarium redolens.

3.2. Treatment effects on fungal communities

Fungal community composition varied between sampling times, land
management treatments, and soil depths (Fig. 2a-b). Fungal commu-
nities exhibited compositional turnover between successive sampling

Table 1
Variable descriptions for structural equation models. Cont. = continuous, Categ.
= categorical, Perc. = percent.

Variable Type Coding Transformation =~ Mean s.d.
PCA1 Cont. na Aitchison na na
PCA 2 Cont. na Aitchison na na
Management Categ. 0 = mowed, none mowed is na
treatment 1 = burned reference
Soil depth Categ. 0=0-5cm, none 0-5 cm is na
1=5-10cm reference
Total nitrogen Perc. na none 0.34 0.03
Inorganic Cont. na none 1.37 1.5
phosphorus
NHy Cont. na none 3.7 1.2
NO3 Cont. na none 0.4 0.24
Gravimetric Perc. na none 0.31 0.07
water
content
(GWC)
Soil pH Cont. na none 6.9 0.18
Organic Perc. na none 0.12 0.02
carbon
C:N ratio Cont. na none 0.12 1
Inverse Cont. na natural log 4.05 0.77
Simpson
metric
Bgase Cont. na natural log 5.1 0.55
NAGase Cont. na natural log 5.6 0.47
APase Cont. na natural log 6.9 0.37

categorical, Perc. = percent.
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Fig. 2. Principal components analysis ordinations for fungal community structure responses to experimental treatments. Ellipses represent one standard deviation
from the centroid of each a) treatment group and b) sampling time. Fungal community structure varied between a) soil depths and b) between management

treatments across sampling times.

times (F1g2 = 2.43, p < 0.001, R? = 5%; Table 2 & A2) and distinct
variation between management treatments (F g2 = 2.01, p < 0.001, R?
= 2%). Further, the fungal communities in burned and mowed com-
munities remained compositionally distinct following management ac-
tivity (Fo,g0 = 1.16, p = 0.01, R? 3%). Some of this variation in
community composition between management treatments may be due
to locational differences, as fungal communities in burned and mowed
plots differed prior to fire and mowing treatments. Fungal community
composition also differed between soil depths (F; g2 = 2.64, p < 0.001,
R? = 3%), however this influence was independent of management
(F1,82 = 0.96, p=0.68) and sampling time effects (Fig2 = 0.89,
p = 0.99).

Fungal diversity varied between soil depths, but not land manage-
ment treatments or sampling times (Fyes5 16.91, p =0.0001;
Table A.3). Fungal community diversity was higher in the 0-5 cm layer
versus the 5-10 cm layer.

Indicator species for land management treatments reflected man-
agement driven differences that favored fungi able to survive in post-
burn/mowed environments (Table 3). In mowed plots, an unidentified
taxa in the family Didymosphaeriaceae, Penidiella aggregata, and Peri-
conia homothallica were more abundant relative to burned plots. Mem-
bers of Didymosphaeriaceae are generally saprophytic, with some being
mycoparasites. P. aggregata is a member of the Teratosphaeriaceae
family, which contains several plant pathogens and genera known to

Table 2
PERMANOVA model table for treatment effects of soil fungal community
composition.

Effect d. ss Mean F- R? p-value
f. Squares Statistic
plot 6 39,772 6628.70 1.95 0.13 < 0.001 ***
management 1 6829 6828.70 2.01 0.02 < 0.001 ***
treatment
sampling time 2 16,489 8244.70 2.43 0.05 < 0.001 ***
soil layer 1 8962 8961.70 2.64 0.03 < 0.001 **=
treatment x 2 7916 3957.90 1.16 0.03 0.010 **
time
treatment x 1 3248 3248.30 0.96 0.01 0.68
layer
layer x time 2 6050 3025.20 0.89 0.02 0.99
treatment x 2 5552 2775.90 0.82 0.02 1
time x layer
residuals 65 220,930 3398.90 0.70
total 82 315,749 1

*p < 0.1, **p < 0.05, ***p < 0.001

survive in harsh environments. P. homothallica comes from a genus that
are functionally diverse, but often found as soil saprotrophs or plant
pathogens. The Periconia genus includes indicators of other non-burned
and mowed tallgrass prairies (Hopkins et al, 2021) as well as
fire-adapted taxa in other systems (Semenova-Nelsen et al., 2019; Fox
et al., 2022). In the burned plots, the only indicator species was an
unidentified member of Ascomycota. In summary, fungal community
composition differed due to land management, sampling time, and soil
depth, however, these changes were primarily compositional in nature
rather than diversity related.

3.3. Treatment effects on soil characteristics

Overall soil nutrient and edaphic profiles varied between land
management treatments (Figs =3.73, p = 0.0579; Fig. 3; Table 4),
sampling times (Foes =26.25, p < 0.0001), and soil depths (Fiee
=65.39, p < 0.0001). Specifically, the overall post-management soil
environment differed from pre-management conditions, in addition to
further differences between burned and mowed treatments and soil
depths. Individual soil characteristics varied between management
treatments (F7 g =4.46, p = 0.0004), however, these differences were
modified by sampling time (Fi466 =83.7, p < 0.0001) and soil depth
(F7,66 =50.55, p < 0.0001), as well as a 3-way interaction between these
variables (F1466 =3.18, p < 0.0001). Gravimetric water content (GWC;
Fo66 =8.42, p < 0.0001; Table A.4), total nitrogen (Fye6 =11.059,
p < 0.0001; Table A.5), ammonium (Fpes =4.272, p = 0.0426;
Table A.6), nitrate (marginal effect; F3 66 =2.39, p = 0.099; Table A.7),
and inorganic phosphorous (F2 66 =16.27, p < 0.0001; Table A.8) varied
between management treatments, however, this effect was often
dependent on sampling time and soil depth. From pre to post treatment,
both management treatments drove increases in GWC and ammonium
levels, but this increase was greater in mowed relative to burned plots
across both soil layers. Total nitrogen and inorganic phosphorous also
varied between management treatments, with mowed plot nitrogen
levels increasing at 2 weeks-post relative to pre-management levels, and
burned plot nitrogen levels increasing 1 month-post relative to pre-
management levels. Total phosphorous however only increased in the
upper layers of burned plots and did not change in mowed plots
following land management. Nitrate levels also increased in mowed
plots relative to pre-management conditions, but only in the upper soil
layer 2 weeks following mowing.

Soil pH (F2,66 =3.82, p = 0.0269; Table A.9), C:N ratios (F3 66 =52.1,
p < 0.0001; Table A.10), and organic carbon (marginal effect; Fo g6
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Table 3
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Indicator species output for post-management burned and mowed soil fungal communities. Diff.btw is the median difference between groups on a log base 2 scale. Diff.
win is the largest median variation within group. Effect is the effect size of diff.btw/diff.win and describes whether inter- vs. intra-group variance is larger. Overlap
describes confusion in assigning an observation to either group. Wi.ep is the expected value of the Wilcoxon test p-value. Wi.eBH is the expected value of the Benjamini-

Hochberg corrected p-value.

Group Taxon Diff.btw Diff.win Effect Overlap Wi.ep Wi.eBH
mowed Didymosphaeriaceae sp. 3.9 5.3 0.7 0.19 < 0.001 0.04 **
Penidiella aggregata 4.2 4.9 0.77 0.19 < 0.001 0.04 **
Periconia homothallica 4.7 5.6 0.78 0.22 < 0.001 *** 0.05 **
burned Ascomycota sp. -3.94 5.5 -0.6 0.22 0.001 *** 0.11
*p <0.1, **: p <0.05, ***: p < 0.001
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Fig. 3. Soil characteristic responses to experimental treatments. Bars denote the estimated marginal mean and error bars represent the mean plus or minus one
standard error. White bars represent burned plots and grey bars represent mowed plots. Lower case letters denote statistically significant differences between
treatments at the land management*sampling time*soil depth level. A) soil moisture, b) total nitrogen, ¢) ammonium, d) nitrate, and e) inorganic phosphorous
responses to land management varied between burned and mowed plots. Soil characteristics also varied across sampling times, with f) pH and g) C:N ratios increasing
post-management and h) organic carbon decreasing post-management at deeper soil depths.

=2.62, p = 0.08; Table A.11) primarily across sampling times, and these
effects were modified by management treatment and soil layer. Soil pH
increased following mowing; however, this was limited to the upper soil
layer. C:N ratios also increased following burning and mowing, but this
effect was similar across soil layers and management treatments.
Organic carbon decreased slightly following management activity, but
this decrease was primarily limited to the lower soil layer of burned
plots. In summary, soil characteristics varied across sampling times, and
the direction of these changes were determined by management

treatment and soil depth.

3.4. Treatment effects on engyme activity

Hydrolytic enzyme profiles primarily varied between sampling times
(Fo,70 =84.5, p < 0.0001; Fig. 4; Table 5). Following both fire and
mowing, enzyme activities increased at 2 weeks and 1-month post-
management. Individual enzyme activities also varied across soil
layers (Fo70 =44.7, p < 0.0001; Table A.12-14). Specifically, BGase
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Table 4

MANOVA model table for treatment effects on soil characteristics.
Model term d.f.1 d.f.2 F-ratio p-value
Management treatment 1 66 3.73 0.0579 *
Soil layer 1 66 65.39 < 0.0001 *
Sampling time 2 66 26.25 < 0.0001 *
Plot 6 66 3.35 0.0061 **
Repeated measure 7 66 36,195.53 < 0.0001 ***
Treatment x layer 1 66 0.76 0.39
Treatment x time 2 66 1.61 0.21
Treatment X rep. meas. 7 66 4.46 0.0004 ***
Layer x time 2 66 0.50 0.61
Layer x rep. meas. 7 66 50.55 < 0.0001 *
Time X rep. meas. 14 66 83.7 < 0.0001 *
Plot x rep. meas. 42 66 4.42 < 0.0001 ***
Treatment x layer x time 2 66 0.22 0.8069
Treatment x layer x rep. meas. 7 66 3.12 0.0066 ***
Treatment X time x rep. meas. 14 66 5.19 < 0.0001 ***
Layer x time x. rep. meas. 14 66 5.63 < 0.0001 ***
Treat. x layer x time x rep. meas. 14 66 3.18 0.0008 *

*:p <0.1, **: p < 0.05, ***: p < 0.001.

activity was higher in the 0-5 cm layer, NAGase activity was higher in
the 5-10 cm layer, and APase activity did not vary between soil layers.
In summary, hydrolytic enzyme activity increased following manage-
ment and varied between soil layers.
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3.5. SEM model fitting

We began with highly saturated SEMs for each sampling time (pre, 2
weeks post, and 1 month post management) that were based on our
hypothesized pathways. Through several iterations for each SEM, poorly
supported paths in the model were pruned using increasingly stringent
p-value thresholds (e.g., p > 0.7, 0.5), and Shipley’s tests for indepen-
dence were used to assess the inclusion of unconsidered model paths (if
they were also supported in the literature). Overall model fit statistics
were consulted after each step (Table A.15) using AIC and BIC values.
The final models were well supported (Pre-management: Fishers’s C =
113.261, p = 0.297; 2 weeks post: Fisher’s C = 115.935, p = 0.769; 1
month post: Fisher’'s C = 120.716, p = 0.978), and did not require
further adjustment. Final SEM coefficients for model paths are presented
in appendix Table A.16-18. See appendix for a detailed description of
model fitting procedures.

3.6. SEM - pre-management model

Prior to land management, soil depth and soil characteristics were
linked to fungal community composition which in turn predicted hy-
drolytic enzyme activity (Figs. 5-7, A.3; Table A.16). Total nitrogen
content (—0.934), soil depth (—1.37), and GWC (0.583) were the pri-
mary predictors of fungal community PCA axis 1 (R2 here), while PCA
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Fig. 4. Hydrolytic enzyme responses to experimental treatments. Bars denote the estimated marginal mean and error bars represent the mean plus or minus one
standard error. Lower case letters denote statistically significant differences between treatments at the land management*sampling time*soil depth level. White bars
represent burned plots and grey bars represent mowed plots. Activity of a) BGase, b) APase, and c) NAGase increased following land management. Changes in BGase
and NAGase activities differed between land management treatments early after management however, BGase only increasing 2 weeks post-management in mowed

plots, and NAGase increasingly only in burned plots 2 weeks post-management.
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Table 5
MANOVA model table for treatment effects on hydrolytic enzyme activity.

Model term d.f1 d.f.2 F-ratio p-value
Management treatment 1 70 0.258 0.6129

Soil layer 1 70 1.027 0.3143
Sampling time 2 70 84.494 < 0.0001 **
Plot 1 70 0.006 0.9402
Organic carbon 1 70 2.917 0.0921.
Repeated measure 2 70 1999.951 < 0.0001 **
Treatment x layer 1 70 0.02 0.8883
Treatment x time 2 70 0.213 0.8088
Treatment X rep. meas. 2 70 0.787 0.4593
Layer x time 2 70 0.674 0.5127
Layer x rep. meas. 2 70 44.687 < 0.0001 **
Time X rep. meas. 4 70 7.73 < 0.0001 **
Plot x rep. meas. 2 70 1.822 0.1693
Organic carbon x rep. meas. 2 70 1.077 0.3462
Treatment x layer x time 2 70 0.563 0.572
Treatment x layer x rep. meas. 2 70 1.128 0.3294
Treatment x time X rep. meas. 4 70 1.955 0.1109
Layer x time X. rep. meas. 4 70 1.061 0.3822
Treat. x layer x time x rep. meas. 4 70 1.325 0.2693

p <0.1, *: p <0.05, **: p < 0.001.

axis 2 was primarily associated with GWC (—0.876), soil depth (0.258),
and C:N ratios (0.229). Fungal community diversity increased with GWC
(0.776) and decreased with soil depth (—0.791). Fungal community
composition (PCA axis 2) in turn predicted BGase (—0.611) and APase
(—0.516) activities. Soil characteristics were also directly associated
with soil enzyme activity, with higher C:N ratios (BGase: 0.261, APase:
0.274), organic carbon levels (APase: 0.363), and GWC (NAGase: 0.687)
increasing enzyme activity, and higher inorganic phosphorous levels
decreasing enzyme activity (NAGase: —0.49). In summary, soil fungal
community composition varied due to soil depth and characteristics,
and was associated with carbon and phosphorous acquiring enzyme
activity.

3.7. SEM - 2 weeks post-management model

Soon after land management, soil characteristics and fungal com-
munity composition differed between burned and mowed sites, and
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these changes were correlated with altered enzyme activity (Figs. 5-7,
A.4; Table A.17). Relative to mowed plots, fire reduced GWC (—0.513),
nitrate (—0.302), ammonium (—0.337), and total nitrogen levels
(—0.491). Management treatments (burn vs. mow) also directly drove
shifts in fungal community composition (—0.513), but also influenced
fungal community composition indirectly through changes to soil
characteristics. Specifically, relative to mowed plots, reduced GWC
(0.391), and total nitrogen (—0.233) altered fungal community
composition, while lower ammonium in burned plots reduced fungal
diversity (—0.167). Management effects on fungal community compo-
sition also influenced enzyme activity, with shifts in community
composition (0.473) and decreased diversity (—0.08) leading to lower
APase activity in burned plots. Additionally, fungal community
composition was not correlated with BGase activity, but it was associ-
ated with NAGase activity (PCA 1: —0.52). Enzyme activity was also
higher in mowed plots (BGase: —0.159, APase: —0.153), and negatively
associated with fire driven reductions in nitrate (BGase: —0.159, APase:
—0.153), GWC (BGase: —0.272, APase: —0.435), and ammonium
(NAGase: —0.189). To summarize, land management treatments pro-
duced distinct fungal community compositions both directly and
through changes to soil characteristics, and these changes altered fungal
enzyme activity.

3.8. SEM - 1-month post-management model

Management driven differences in fungal community composition
persisted 1 month after management and were associated with altered
enzyme activity (Fig. 7a-c, A.5; Table A.18). Direct, management driven
differences in fungal community composition (burn vs. mow) reflected
larger differences than at 2 weeks (—0.971). Management indirectly
altered fungal community composition due to reduced GWC (PCA 1:
—0.157, PCA 2: 0.209) and ammonium (PCA 2: 0.222) in burned relative
to mowed plots. Further, management associated changes in GWC, and
fungal community composition reduced BGase activity in burned rela-
tive to mowed plots (—0.072). Management also influenced enzyme
activity through non-fungal pathways. In burned plots, direct, unmea-
sured effects of fire were correlated with increased APase activity
(0.261), while in mowed plots, a reduction in nitrate availability was
associated with higher NAGase activity (—0.152). In summary, while
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management effects on soil characteristics and fungal community
composition persisted 1-month post-management, fungi were again
associated with carbon acquiring enzyme production as in the pre-
management model.

4. Discussion
Land management altered nutrient cycles through cascading effects

on soil characteristics and fungal communities. This confirms our hy-
potheses that management activity would directly influence soil

characteristics and fungal communities, and that management
treatment-based differences in soil characteristics would contribute to
differences in fungal community composition. Further, we confirm that
downstream effects of land management on nutrient cycle associated
functions (i.e., hydrolytic enzyme activity) would respond to changes in
soil characteristics and biota. These findings support other studies that
have tested management effects on individual soil properties(Knelman
et al., 2017; Alcaniz et al., 2018; Chuan et al., 2020; He et al., 2020). By
looking at the system-level though, we were able to see the more com-
plex direct and indirect paths for these responses (Figs. 5-7, A.3-5).
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Hydrolytic enzyme profiles, for example, did not show particularly
strong associations with land management alone, but did when fungal
community composition and soil characteristics were considered. While
soil characteristics and fungal communities displayed strong responses
to land management, these changes also varied between soil depths and
with time, supporting the dynamic spatial and temporal responses to
management. Following management, the belowground components of
this tallgrass prairie ecosystem showed a rapid ability to respond to
changes in soil characteristics and nutrient availability (specifically N),
while also displaying longer term resilience (in terms of microbial
function) when the initial management driven nutrient flushes went
away. This result is supported by work in other disturbance mediated
systems (Chuan et al., 2020; Hopkins et al., 2020, 2021), and provides
mechanisms for how belowground processes respond to management
disturbance. The broad similarities in belowground responses to both
management activities in this study also contained some distinct dif-
ferences in responses to fire and mowing.

In both burned and mowed plots, management effects varied with
soil depth and developed over time to form unique belowground re-
sponses to changes in the soil environment. Relative to mowing, fire
made soils drier and drove a loss of ammonium that in addition to the
direct effects of fire, contributed to differences in fungal community
composition and reduced diversity in burned plots. In turn, these
changes were correlated with lower N (NAGase) and P (APase) acquiring
enzyme activity following fire as compared to nearby mowed plots.
Work in other fire recurrent ecosystems has found similar effects of fire
on soil characteristics and other microbial functions early after fire
(Ficken and Wright, 2017; Semenova-Nelsen et al., 2019; Hopkins et al.,
2020, 2021), where initial post-fire changes in the soil environment
drive changes in microbial functions like decomposition that gradually
fade with time. Belowground responses following mowing differed
however, in that soils in mowed plots were wetter and saw increases in
nitrate and nitrogen availability. The wetter soils and increased N
availability in turn led to the formation of fungal communities distinct
from burned plots that were ultimately associated with increased N and
P acquiring enzyme activity. This verifies work in other systems where
grazing alters nutrient stoichiometry (He et al., 2020) and enzyme ac-
tivity (Chuan et al., 2020), and provides a mechanism explaining how
grazing driven changes in nutrient availability and microbial commu-
nities mediates functional changes. By exploring management effects on
belowground processes as a system, we were able to illustrate the
complex mechanisms through which soil components respond to
changes in their environment. Far from being static however, below-
ground responses to management varied both with time and soil depth.

Land management’s effect on belowground processes displayed dy-
namic patterns across time that were modified by soil depth. Depending
on depth (0-5cm and 5-10 cm), soil characteristics and nutrient
availability responded differently to land management treatments. In
the upper soil layer, management driven changes were associated with
altered nutrient availability (N and P) and soil moisture, while changes
in the lower soil layer reflected loss of organic carbon following man-
agement disturbance potentially due to decreases in aboveground plant
biomass. These effects were not static however, as management effects
on belowground processes also varied across time. While soil charac-
teristics (Farrell et al., 2011), nutrients (Chen et al., 2003), and micro-
bial communities (Averill et al., 2019) display natural seasonal
variation, management treatments likely interacted with this variation
to produce different responses between burned and mowed treatments.
Despite different belowground responses to burning and mowing, dif-
ferences between management treatments began to decrease by one
month as N and P acquisition became less important for fungi relative to
BGase production. This illustrates the evolutionary importance of fire
and grazing in grasslands (Ford, 2009; McSherry and Ritchie, 2013;
Rumpel et al., 2015), as this belowground system was able to quickly
respond to management disturbance and then revert to pre-management
conditions (i.e., resiliency). The close relationship between disturbance
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and belowground processes in grasslands and savannas may also help
explain their persistence, as well as how positive feedbacks between
recurrent, low intensity fire and grazing promote the belowground
processes that underly grassland ecosystems (Alcaniz et al., 2018; Neary
and Leonard, 2020). The importance of time and depth here also illus-
trates the necessity of exploring spatial and temporal heterogeneity
when looking holistically at land management effects belowground.

A holistic view of land management allows not only for an improved
understanding of ecosystem responses to management, but can also aid
in predicting how changes to management regimes will affect ecosys-
tems. Since belowground ecosystem components respond as a dynamic
system rather than individual parts, management efforts going forward
should develop management goals that reflect the system, rather than
individual pieces (reviewed in Heneghan et al., 2008). Changes to
management or disturbance regimes (e.g., low fire frequency, high
severity fire, overgrazing, or removal of grazers) that have long-term
impacts on the relationships among system components likely reflect a
transition into an alternate stable state (Shlisky et al., 2007; Keeley and
Pausas, 2019; Mantero et al., 2020). For example, if prescribed fire is
used too frequently (i.e., short fire return intervals) this could reduce
nutrient availability, produce unfavorable nutrient stoichiometry for
decomposition, and ultimately change plant fuel load dynamics (Ficken
and Wright, 2017; Butler et al., 2019; Semenova-Nelsen et al., 2019;
Hopkins et al., 2020). These changes in management regimes could have
profound influences on carbon (Johnson and Curtis, 2001; Certini, 2005;
Yuan et al., 2019) and nutrient cycles (Toberman et al., 2014; Butler
etal., 2018; He et al., 2020) that scale to impact the bioregion and globe
(Archibald et al., 2018; Pausas and Bond, 2020). While this work
highlights the importance of viewing management from a holistic
perspective, further integration of unconsidered below- and above-
ground components is necessary.

Ecosystems are comprised of above- and belowground components
whose interactions drive their underlying ecological processes. In this
study we illustrated how the interplay between soil characteristics, nu-
trients, and fungi, influence nutrient cycles and microbial activity.
Future work should consider the contribution of other soil biota that
contribute to nutrient cycles and belowground processes (e.g., bacteria
and archaea) in belowground systems. This may explain some of the
direct effects of management on soil enzymes since bacteria and archaea
also contribute to nutrient cycle and other belowground processes
(Graham et al., 2016; Fierer, 2017; Otwell et al., 2018; Anthony et al.,
2020). Both groups help shape nutrient cycles and impact aboveground
components like plant communities (Mendes et al., 2013; Bauer et al.,
2015) which govern ecosystem productivity (van der Heijden et al.,
2008; Schnitzer et al., 2011). In addition to considering interactions
between above- and belowground components, future work would also
benefit from inclusion of untreated (no management) controls to assess
how natural seasonal variation influences the system of belowground
relationships. Quantifying this baseline may be particularly important as
global change alters components (i.e., climate) beyond normal limits.

In summary, we show that land management has cascading effects on
nutrient cycles that are mediated by changes to abiotic and biotic soil
components. Further, we illustrate how management technique
(burning vs. mowing) has different effects on belowground systems that
are not apparent when viewed individually. When viewed as a system,
belowground relationships respond to land management distinctly at
different time points, and their resilience is likely a product of the close
evolutionary relationship between these disturbances (and human
management) in grassland and savanna ecosystems. Given the cascading
and dynamic effects of management on belowground systems, it is
crucial that land managers and ecologists alike utilize a systems
approach to restoration and preservation of ecosystems. Since approxi-
mately 40% of Earth’s terrestrial systems rely on recurrent fire and
grazing for maintenance (McSherry and Ritchie, 2013; Archibald et al.,
2018), a better understanding of how management influences the
below- and aboveground components of ecosystems can help us respond
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to expected changes in global disturbance regimes and other anthro-
pogenic influences.
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