
1

Vehicle-to-Grid Fleet Service Provision
considering Nonlinear Battery Behaviors

Joshua Jaworski, Ningkun Zheng, Graduate Student Member, IEEE, Matthias Preindl, Senior Member, IEEE,
Bolun Xu, Member, IEEE

Abstract—The surging adoption of electric vehicles (EV) calls

for accurate and efficient approaches to coordinate with the

power grid operation. By being responsive to distribution grid

limits and time-varying electricity prices, EV charging stations

can minimize their charging costs while aiding grid operation

simultaneously. In this study, we investigate the economic benefit

of vehicle-to-grid (V2G) using real-time price data from New

York State and a real-world charging network dataset. Our

V2G approach incorporates nonlinear battery models and price

uncertainty to provide a realistic estimation of cost savings from

different V2G options. The proposed control method is compu-

tationally tractable when scaling up to real-world applications.

We show that our proposed algorithm leads to an average of

21% charging cost savings compared to uncontrolled charging

when considering unidirectional charging, and bi-directional V2G

enables additional 17% cost savings compared to unidirectional

smart charging. Our result also shows the importance of using

more accurate nonlinear battery models in V2G controllers and

evaluating the cost of price uncertainties over V2G.

Index Terms—Energy storage, stochastic optimal control, elec-

tric vehicle charging, vehicle-to-grid.

I. INTRODUCTION

The International Energy Agency’s (IEA) roadmap to
achieve net zero greenhouse gas (GHG) emissions by 2050
emphasizes the need to increase the share of renewable energy
in the power and transportation sector [1], [2]. However,
increasing intermittent renewable generation and electric ve-
hicles (EV) charging demand will significantly stress future
power grids [3]. Smart charging, which integrates grid data
such as distribution grid constraints and time-varying electric-
ity prices, can facilitate unidirectional (V1G) or bidirectional
(V2G) power transfer management between the grid and EV
charging stations (EVCS) [4]. Smart charging has emerged
as a key strategy to accelerate transportation electrification
to support an increasingly renewable-powered grid operation,
minimizing EV owners’ charging cost, and leading new busi-
ness models and job opportunities [3], [5]–[7].

As the cost of V2G-compatible chargers continues to de-
cline [8], software development becomes pivotal to efficiently
aggregate EVs and coordinate V2G responses while meeting
the designated charging targets. While plenty of works have
conducted techno-economic analyses (TEA) of V2G [9]–[12],
few have considered complicating factors that practical V2G
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implementations must address. We group these factors into
three categories. The first is battery model nonlinearities, in
which the battery voltage, current, efficiency, and degradation
depend on the state of charge (SoC). Controlling EV batteries
accurately according to their nonlinear characteristics is crucial
to strike a balance between ensuring battery security and
economic benefits [13]. The second is grid uncertainty, in the
distribution grid load and electricity prices are time-varying
and uncertain [7]. Uncertainties are often neglected in TEA
primarily due to computation difficulties, but practical V2G
implementations must consider uncertainties in price-response
applications. The last is computational scalability, the V2G
management software must manage tens to hundreds of EVs
without consuming monstrous computing power.

Detailed nonlinear models have been explored for individual
storage devices to improve model and control accuracy [13]–
[18]. However, introducing nonlinearity EVCS may signifi-
cantly increase the computation cost to simultaneously manage
large amounts of EVs. While the aggregate benefit of V2G is
pivotal for future grids, economic saving for individual EVs is
not significant to justify investment in specialized computing
hardware. This paper presents a computation-efficient V2G
management framework and a realistic case study integrating
the aforementioned complicating factors in practical V2G
implementations. Our contributions include:

• We propose a computation-efficient and scalable V2G
management controller which optimizes V2G charging
using accurate nonlinear battery models under stochas-
tic electricity prices. Combining a stochastic dynamic
programming algorithm with a least-laxity first (LLF)
scheduling algorithm [19], our proposed V2G framework
minimizes charging costs for EVCS to meet charging
targets and distribution grid limits.

• Using real-world electricity price and EV charging behav-
ior data, our paper provides a first-of-its-kind case study
to demonstrate cost savings an EVCS can realistically
achieve in various V2G settings.

• Our case study compares uncontrolled charging, V1G,
and V2G with and without nonlinear storage models and
price uncertainties. The results quantify the impact of
various charging and model options and guide EVCS
planning and technology developments.

The remainder of this paper is organized as follows. Section II
presents the literature review. Section III describes the system
model and formulates the EV charging cost minimization
problem. Section IV presents the solution algorithm to the
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formulated charging problem. Section V includes simulation
results and discussion. Section VI concludes the paper.

II. LITERATURE REVIEW

Coordinating EVCS with time-varying electricity prices,
such as the real-time price (RTP) is becoming the main
business model for V2G as the transportation electrification
process deepens. Price response allows EVs to reduce their
charging cost and simultaneously alleviate the stress of charg-
ing to the grid. While plenty of previous work explored
EVCS’s provision of power system ancillary services and dis-
tribution grid control services [20]–[23], the capacity of these
services remains small and are being saturated by stationary
grid-scale energy storage [24]. Therefore, the paper focuses
on coordinating EVCSs with wholesale electricity markets, to
minimize EV charging costs subject to RTP.

A. Nonlinearity in EV Charging
Lab experiments and real-world data suggest that Li-ion

battery power ratings and efficiency strongly depend on SoC,
especially in nickel-cobalt-based batteries, which are the most
common choice for EVs [25]–[27]. In EV smart charging or
V2G applications, which aim to provide high charging power
with low-cost power conversion hardware, battery power rating
and efficiency are sensitive to the SoC, and the charge or
discharge power must be carefully controlled to ensure battery
thermal security and reduce degradation rates [28]. A common
protocol for EV charging management is the CC–CV (constant
current–constant voltage) method [29]–[31], that the battery
charges with constant current until reaching a high SoC
level and then gradually reduces the current to maintain a
constant charging voltage to prevent over-voltage damages.
Modeling battery characteristics such as CC–CV protocols in
V2G management is critical to maximize cost savings and
ensure battery security, but it requires representing battery
power and efficiencies as functions of SoC instead of using
constant values, which introduces significant computational
complexities [13]–[16], [32].

Some EVCS smart charging algorithms partially accounted
for nonlinear charging/discharging characteristics [11], [12],
[33], [34], but few were able to model all nonlinear factors
in a computation efficient approach. Starting from an EVCS
profit maximization problem formulated as mixed-integer lin-
ear programming (MILP), Mouli et al. [11] accounts for SoC-
dependent power ratings in which the maximum power drops
linearly after 80% SoC. Ebrahimi et al. [12] models battery
degradation as dependent on both SoC and depth of discharge,
and Schwenk et al. [33] incorporated both nonlinear efficiency
and nonlinear degradation terms. Lee et al. [34] implemented
an adaptive scheduling algorithm that formulates custom ob-
jectives and constraints as a convex program and computes
an optimal charging schedule in real-time while considering
feeder limits and battery tail capacity reclamation at high
SoCs with a data-driven approach. However, the reviewed
control solutions do not model all power ratings, efficiencies,
and cycling penalties/degradation as nonlinear nor do they
provide a method to incorporate different behavior curves. This

TABLE I
CONSIDERATION OF PRICE UNCERTAINTY AND BATTERY PARAMETERS

NONLINEAR BEHAVIOR IN SMART CHARGING CONTROL FORMULATIONS

Price
Uncertainty

Nonlinear
Power
Rating

Nonlinear
Efficiency

Nonlinear
Cycling Penalty /
Degradation Cost

[9], [10], [39] 7 7 7 7
[11], [34] 7 3 7 7
[12] 7 7 7 3
[33] 7 7 3 3
[40]–[42] 3 7 7 7
Proposed 3 3 3 3

property will be pivotal for the adaptability of EVCS control
algorithms to fast-charging applications and manufacturer-
customized EV battery management systems (BMS). Nu-
merous prior studies have leveraged the adaptive dynamic
programming (ADP) methodology, including approaches like
policy iteration [35], value iteration [36], and Q-learning [37],
to tackle the nonlinear behavior intrinsic to battery systems.
Despite its ability to mitigate the curse of dimensionality
associated with dynamic programming, these techniques still
exhibit limitations. Specifically, as the count of state vari-
ables and uncertainties surges, the approximation error also
escalates, thereby adversely impacting the quality of the de-
rived policy. Drawing inspiration from previous research, we
propose a value-function-based V2G management controller.
This controller is not only computationally efficient but also
harnesses analytical stochastic dynamic programming [38] to
accommodate the nonlinearity of factors such as power rating,
efficiency, and cycling penalty.

B. Price Uncertainty in EV Charging

Besides nonlinearity in battery models, price uncertainty is
another complicating factor that may impact the EVCS cost
estimations but was rarely studied in V2G due to computation
difficulties. Most literature on smart charging assumes perfect
price forecasts or predetermined ToU tariffs [9]–[12], [33],
[34], [39]. With increasing EV capacity, future V2G projects
will likely involve arbitraging highly volatile and uncertain
real-time electricity prices, requiring consideration of price
uncertainties by EVCS. Frendo et al. and Ahmad et al. [40],
[41] use day-ahead prices to forecast the next day’s LMPs, in-
corporating EVCS controller using MILP formulation. Zhang
et al. [42] develop the charging control deep deterministic pol-
icy gradient, which models EV charging as a Markov decision
process (MDP) and optimizes user satisfaction and charging
costs with the output of a long short-term memory (LSTM)
network that approximates sequential energy price dynamics.
Results from this research demonstrated the significance of
modeling price uncertainties, but the computing approach is
not scalable to address nonlinear storage models. Inspired by
previous works, we incorporate price uncertainty based on
real-world electricity price data while ensuring computational
tractability with nonlinear battery characteristic.

As summarized in Table I, the reviewed literature proposes
EVCS algorithms that partially account for nonlinear EV
battery behavior and price uncertainty. We close this research
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gap by developing a real-time EVCS V2G control algorithm
based on analytical nonlinear stochastic dynamic programming
(SDP) and a least-laxity first (LLF) scheduling approach that
adds nonlinear EV battery behavior and price uncertainty to
the EVCS control formulation while minimizing operating
costs and complying with EV charging and battery dynamics
such as CC-CV charging profiles, facility power limits, and
users’ charging targets. While our proposed method accounts
for system non-linearity and uncertainty, we demonstrate that it
is scalable and computationally tractable in practical scenarios.

III. SYSTEM MODEL AND FORMULATION

We aim to minimize the charging cost for a public EVCS
under either V1G (unidirectional) or V2G (bidirectional)
modes, where the electricity costs are settled in time-varying
RTP. We assume the EVCS has a sufficient number of identical
chargers and there is no rejection of services. In this paper,
variables are denoted using lowercase letters, while parame-
ters are denoted using uppercase and Greek letters.

A. EV Charging Sessions
We consider  number of EVs accessing the EVCS during

the simulation period, with K = {1, .., } as the EV set. Each
EV arrives / departs at time step �:/⇡: . In this paper, we use
the subscript : 2 K to denote the EV index and the subscript
C 2 T: = {�: , . . . ,⇡:} to denote the time step index of
charging session for : . We constraint charging sessions by:

4�: ,: = (: , 4⇡: ,: � �: , 8: 2 K (1)

where 4C ,: is the SoC of EV : at time step C, and 4�: ,:/4⇡: ,:

is the SoC upon arrival / departure. (1) defines EV : arrives
with a starting SoC (: , and departs with a charging target �: .
At each EV arrival, the controller updates the tuple (�: , ⇡: ,
(: , �:), which is used as input for the proposed algorithm.
We assume the EVCS has no prior knowledge or prediction
capability of EV arrivals �: , but each EV will inform the
EVCS its starting SoC (: , departure time ⇡: , and charging
target �: upon arrival. Additionally, the controller has access
to the current SoC levels from all EVs.

B. Battery Nonlinear Behavior
We consider a generic nonlinear battery model with effi-

ciency and cycling penalty as quadratic functions of SoC [25],
and power rating curves resemble a Tesla Model S fast
charging curve with custom-defined CC-CV behavior [43].
Fig. 1 depicts the assumed parameter curves. Note that the
assumed curves were presented as an example. The algorithm
utilized in this research can accommodate any other types
of nonlinear curves estimated by the individual EV’s battery
management system. We model the battery nonlinear behavior
of each EV as constraints (8C 2 T:):

0  1C ,:  ⌫: (4C�1,:) (2)

0  ?C ,:  %: (4C�1,:) (3)

4C ,: � 4C�1,: = �?C ,:/[: (4C�1,:) + 1C ,: · [: (4C�1,:) (4)

Fig. 1. Assumed EV battery SoC-dependent parameter curves for all EVs

in which 1C ,:/?C ,: is the charge / discharge power, ⌫:/%: is
the upper bound of the charge / discharge power, and [: is the
efficiency. In order to capture the SoC dependent nonlinear
behavior of ⌫: , %: , and [: , we model all of them as functions
of 4C�1,: . This implies that the power rating and efficiency in
time step C depend on the SoC in the previous time step C � 1.
(2) and (3) model the upper and lower bound of EV power
rating. The SoC evolution is represented in (4) by utilizing
a piece-wise linear approximation of the battery’s nonlinear
parameters, which takes into consideration the interval price
changes in the electricity market. The controller employs a
low-resolution version of the battery’s nonlinear parameter
curves for use in control policy computations, resulting in the
discretized form of (4). This assumption is made to simulate
the challenge of approximating the behavior of EV batteries
during online smart charging control. We will discuss the
nonlinear characteristic of degradation in Section III-C.

C. Full Formulation
We formulate the EVCS fleet management problem as:

min
1C ,: ,?C ,:

’
:2K

’
C2T:

_C (1C ,: � ?C ,:) + ⇠: (4C�1,:)?C ,: (5a)

s.t. (1), (2), (3), (4) (5b)

⇢ :  4C ,:  ⇢ : (5c)’
:2K

?C ,:  !,
’
:2K

1C ,:  ! (5d)

{1C ,: , ?C ,: |: 2 K, C 2 T:} 2 Causal Control Policies (5e)

The objective (5a) of the EVCS is to minimize the total
charging cost of all EVs: the first term is the electricity
cost, with _C denoting the RTP of electricity, and the second
term prevents excessive degradation. Please be aware that
simultaneous charging and discharging events for the same
vehicle do not occur, as they necessitate significant negative
electricity prices, typically in the range of negative hundreds
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of dollars, given current battery efficiencies. ⇠: is modeled
as a differentiable function of the SoC 4C�1,: for each EV :
according to the nonlinear battery model. Note that while the
EVCS operator does not assume EV battery degradation cost,
it considers an EV battery discharge penalty to avoid excessive
cycling. (5c) uses ⇢ :/⇢ : to model EV minimum / maximum
SoC limit. In (5d), the total charging and discharge power from
all EVs is subjected to the station power limit !. (5e) defines
the control policy must be causal (non-anticipatory) and only
depend on past and current information [44].

Remark 1: Generalization to different charging sce-

narios. (5) provides a generalized formulation in different
charging scenarios. In V2G, both ⌫: and %: are non-zero,
while in V1G smart charging, the EV will not inject power
into the grid and thus %: is set to zero. In cases when assuming
a linear battery model, %: , ⌫: , 2: and [: are constants, while
in nonlinear battery models, these parameters are functions
depend on the SoC.

IV. SOLUTION METHOD

We take a two-step approach to solving the EVCS con-
trol problem (5). First, we use a computation efficient SDP
method [38] to solve each EV’s charging program subjecting
to price uncertainties, individual battery models, and charging
targets. This step satisfies all constraints in (5) except the
EVCS power limit constraints (5d). Then, we adopt an LLF
approach [19] to aggregate the controls from all EVs in
compliance with the EVCS power limit.

A. Decomposition to Arbitrage Problems
The core of the proposed control method is a single energy

storage price arbitrage problem formulated as an SDP [38].
Remark 2: V2G decomposition. Because we do not assume

the EV charging actions would impact market clearing prices,
we can decompose (5) into parallel arbitrage problems by
relaxing the charging station power limit constraint (5d), which
are the only coupling factors among all EVs. Each resulting
sub-problem becomes an arbitrage problem that maximizes
the arbitrage profit (or, equivalently, minimizes the charging
session electricity cost) while meeting the final SoC target. We
will discuss in later sections how we aggregate results from
all EVs to incorporate the EVCS power limits.

To solve the arbitrage sub-problem under the causality pol-
icy constraint, we adopt an SDP approach with the following
formulation (for simplicity, we omit the EV index : in the
following formulation, but the following formulation is for a
single EV):

&C�1 (4C�1 | _C ) = max
1C ,?C

_C (?C � 1C ) � ⇠: (4C�1)?C ++C (4C | _C )
(6a)

+C (4C | _C ) = E_C+1

h
&C (4C | _C+1)

���_C i (6b)

subject to (5b) and (5c). The function &C�1 (4C�1 | _C ) repre-
sents the maximized expected profit at time period C based on
the initial SoC 4C�1 and the RTP signal _C . On the other hand,
+C (4C | _C ) denotes the value-to-go function that reflects the
opportunity value of the battery’s SoC 4C at the end of the time

period C. In the context of an EV charging session, +C (4C | _C )
represents the minimum expected cost of the remainder of the
session based on the new SoC 4C , current RTP signal _C , and
next RTP signal _C+1.

Remark 3: Price Uncertainty The uncertainty in the prob-
lem (6) originates from the next RTP signal _C+1 in value
function +C (4C | _C ). We can utilize various methods for price
or value function prediction to address this issue. In this paper,
we implement a simple RTP prediction tool based on day-
ahead price (DAP) that utilizes historical RTP-DAP bias price
data to train a 1st-order Markov process with 12 bias nodes
per time step, as in setting DB-Dep in [38]. The next RTP
prediction can be obtained by adding the DAP with the RTP-
DAP bias. DAP is publicly available before the operating
day for most electricity markets. Using this prediction, the
EVCS operator can anticipate future price uncertainty and
make informed control decisions.

B. Solution Method with Nonlinearity

To analytically solve the SDP problem (6), we extend
the solution approach from [38] by incorporating the SoC-
dependency of battery behavior parameters into the first-order
optimality condition expression as

@C�1,8 (4C�1 | _C ) =

_C ,8
⇣ m?C
m4C�1

� m1C
m4C�1

⌘
� ⇠: (4C�1)

m?C
m4C�1

� m⇠: (4C�1)
m4C�1

?C

+ EC , 9 (4C )
m4C
m4C�1

= 0 (7)

where @C�1,8 (4C�1 | _C ) is the derivative of &C�1 (4C�1 | _C ), or
the storage device’s marginal opportunity value. We introduce
index 8, 9 to represent 12 nodes in Markov process at C and
C+1. According to the Karush-Kuhn-Tucker (KKT) conditions
and dual decomposition of (4), we obtain the following:

m?C/m4C�1 = (8a)(
[ + (?C/[)·(m[/m4) if (3) not binding
m%/m4 if (3) binding

m1C/m4C�1 = (8b)(
�1/[ � (1C/[)·(m[/m4) if (2) not binding
m⌫/m4 if (2) binding

m4C/m4C�1 = (8c)
8>>><
>>>:

0 if (2) or (3) not binding
1 � (1/[)·(m%/m4) + (1/[)2·(m[/m4)%
+[·(m⌫/m4) + ⌫·m[/m4 if (2) and (3) binding

By replacing the partial derivative expressions given by (8)
in (7) for full power rating (binding) and partial (non-binding)
charging or discharging cases, we obtain an analytical marginal
opportunity value function update expression. Note that the
expressions in (8) involve the optimization variables ?C and 1C .
The expressions are solved by approximating ?C and 1C by the
power ratings ⌫ and % corresponding to the current SoC. The
full formulation of this equation is deferred to Appendix B.
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C. Arbitrage Policy
We use the developed analytical SDP algorithm to calculate

a marginal opportunity value function for each charging ses-
sion for each EV. At each time step, the control decision ?C
and 1C for each connected EV can be determined by comparing
the corresponding marginal opportunity value function and the
observed realized RTP _C . The value difference between the
EV battery’s marginal value and the RTP signal will trigger
a charging, discharging, or idling control signal. The full
marginal value function and control policy calculation methods
are deferred to Appendix C and Appendix B.

Remark 4: Lagrangian relaxation of the final SoC con-

straint. We apply a Lagrangian relaxation to incorporate the
final SoC charging target constraint into the SDP by assuming
an arbitrarily large penalty ($1000/MWh) for not achieving
the charging target. This enables the marginal value function
corresponding to the EV departing time step to act as an
inverse activation function, with a linear penalty cost to the
battery SoC until reaching the specified charging target. This
enforces the battery to charge regardless of the price when
approaching the end of the charging session in V1G and V2G
cases to meet the charging target.

When applying this control policy with a nonlinear system
assumption is that the storage device parameters ⌫, %, [, and
⇠ used in the elaboration of the control decision are approx-
imations of the real storage device behavior parameters. The
control decision will be calculated using a trained model from
historical price data and executed in the testing environment.
The testing environment will limit the control inputs to a range
within the true storage behavior constraints.

D. EV Fleet Control Simulation
The full simulation algorithm is illustrated in Fig. 2 and is

described as follows:
1) Initialization. Start from the first time period and the

first EV.
2) Value function calculation. Go through each plugged-in

EV, and calculate their SoC opportunity value function
based on the price distribution indexed from the current
time period C, the remaining charging time and the SoC
charging target.

3) LLF aggregation. Compute the ratio of time elapsed in
the current session to the total session duration for each
connected EV. Based on the calculated ratios, sort the
EVs in descending order.

4) Execute arbitrage policy. Following the LLF ranking
order, execute the control policy for each EV as de-
scribed in IV-C. If the facility power limit is reached,
set the remaining EVs’ power control signals to zero
and go to step 1).

5) Next time step. Go to step 1) until reaching the target
simulation time.

Note that the control signals in Step 4) will be truncated
by the testing environment if they are outside the range of the
actual battery behavior model. The LLF sorting step provides a
lightweight solution to aggregate the individual value function
results and comply with the facility’s power limit. This enables

LLF aggregation

Value function
calculation

EV user and
price inputs

Start (t=0)

EV plugged in?

t = t+1
evID = 1

Calculate
opportunity value V

Yes

Construct LLF vector
according the remaining
charging time of each EV

next evID

EVCS power
limit reached?

evID = total
number of EVs?

Yes

No

No

Execute arbitrage
policy

End

t = t_end?

Yes

No

Yes

No

End of LLF vector?

evID = next
EV from the
LLF vector

Yes

No

RTP distribution

RTP observed

EV SoC
measurement

EV charging
target

EV battery
parameters

Fig. 2. Flowchart for the EV Fleet control simulation

the modular nature of the algorithm components and prevents
exponential computation time growth as the number of EVs
in the EVCS increases. The full algorithm is graphically
represented by the flowchart shown in Fig. 2.

V. CASE STUDY

A. Data and Experiment Design

We test the proposed control algorithm using the 2019
New York Independent System Operator (NYISO) price data.
Price uncertainty is modeled using a 1st-order Markov pro-
cess trained with 2016-2018 NYISO price data. We include
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prices from four zones to demonstrate performance results in
different price patterns: NYC, LONGIL, NORTH, and WEST.

We model all EVs with identical SoC-dependent parameter
curves and three capacity categories (60kWh, 80 kWh and 100
kWh). Although the proposed method can handle different
parameter curves and a wider range of EV capacities, we
made these assumption in our case study for simplicity. A
101-sample resolution version of the SoC-dependent battery
parameter curves shown in Figure 1 is considered as the
ground truth and used as the testing environment. We assume
that the controller has access to a 10-sample resolution version
of the same battery nonlinear parameter curves. With this
resolution gap between the environment and the valuation
process, we demonstrate the effectiveness of the proposed
algorithm in providing efficient control with a limited amount
of data to approximate the battery model.

We consider six scenarios to test the proposed algorithm
and establish benchmarks for comparison. The PF (perfect
forecast) benchmark represents the lowest possible EVCS
operating cost obtained by performing a deterministic op-
timization using real-time prices in Julia with Gurobi. The
UC (uncontrolled charging) benchmark represents an EVCS
without a control policy or V2G capability where EVs start
charging as soon as they arrive at the EVCS and charge
with the maximum allowable power rating at all times until
reaching their charging target. Facility power limits are fairly
distributed among actively charging EVs. The considered
scenarios characteristics are summarized in Table. II.

TABLE II
CASE STUDY SIMULATION SCENARIOS

Scenario
Solution
Method

Uncertain
Price

Controller
Assumes
Nonlinear

Battery V2G
PF MILP 7 3 3
UC N/A 7 7 7
NL-V2G Proposed 3 3 3
NL-V1G Proposed 3 3 7
L-V2G Proposed 3 7 3
L-V1G Proposed 3 7 7

The EVCS consists of 21 bi-directional (unless otherwise
noted by the scenario being tested) 17.2 kW level-2 chargers
and has a 150 kW power limit, leading to an over-subscription
ratio of 2.4. We assume 75 users have access to the EVCS. EV
battery capacities are assigned uniformly at random and kept
constant for all scenarios. The randomized capacity assignment
results in twenty-three 60kWh EVs, twenty-seven 80 kWh EVs
and twenty-five 100 kWh EVs. Users’ energy requested, and
arrival and departure times are obtained from the Caltech ACN
dataset [45], specifically using the 2019 JPL data with energy
requests greater than 5 kWh. Figure 3 shows the distribution
of arrival and departure times of the dataset that will be used
for the simulation. A starting SoC of 10% is assumed for all
arrivals. SDP control is performed in all scenarios using the
described 1st-order Markov process price prediction.

Remark 5: Charging target compliance. For a charging
session to be successful in any of the scenarios, the control
algorithm must achieve a final SoC within 5% of the user’s

Fig. 3. Histogram of EVCS users’ arrival and departure times from the ACN
(JPL 2019) Dataset.

SoC charging target. We define the charging target compliance
performance metric as the ratio between successful and total
charging sessions. Note that the user may input a target that is
infeasible due to a short session duration. The charging target
compliance metric will exclude these infeasible cases.

All computations were performed on a personal laptop
with an Intel Core i9-10885H 2.5GHz CPU and 32 GB
memory. The benchmark (PF) was implemented using mixed
integer linear programming (MILP), along with the proposed
algorithms and the EVCS simulation, in Julia programming
language with the optimization solver Gurobi [46].

B. Cost Savings and Charging Target Compliance
Figure 4 shows a sample charging session using both NL-

V2G and NL-V1G scenarios. V2G achieves cost reduction by
charging during low price periods and capturing additional
revenue through energy arbitrage, and V1G reduces EVCS
operating costs only through its smart charging capability.
Note that embedding the final SoC requirement in the value-to-
go function calculation results in successful charging sessions
for all the shown cases while minimizing total cost and EV
battery cycling during the session.

Figure 5 shows the EVCS operating cost savings achieved
by the proposed algorithm and the PF scenario as a percentage
of the UC (uncontrolled charging) scenarios as well as the
charging compliance results across the four considered NYISO
zones. NL-V2G results in an average operating cost savings of
38% over UC, with savings reaching up to 56% in the WEST
zone while maintaining average charging compliance of 97%.
The cost savings average drops to 21% across zones if NL-
V1G is used. This demonstrates the impact of bi-directional
charging capability on EVCS operating costs. Both L-V2G
and L-V1G result in increased average cost savings (49% and
27% respectively) compared to NL-V2G and NL-V1G, but at
the expense of charging compliance (68% for L-V2G and 61%
for L-V1G). L-V2G and L-V1G increased cost savings come
from estimating the nonlinear power ratings as constant, which
causes mismatches between the control signal and the actual
power rating capability at a given time step. This mismatch
leads to EVs not achieving their session charging target, which
results in lower power purchased from the grid and reduced
charging target compliance. Additionally, Figure 6 shows the
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(a) V2G

(b) V1G

Fig. 4. Performance of the proposed control policy in a 9-hour charging
session in both (a) NL-V2G and (b) NL-V1G scenarios.

cumulative costs of the V2G/V1G PF, NL-V2G, NL-V1G, and
UC cases for the simulated year.

C. V2G Energy Equivalent Mileage
Most EVs have a battery warranty based on the production

time and the drive mileage. To this end, V2G puts on additional
discharges to the battery and may accelerate the expiration of
the manufacturer warranty. In this section, we study how much
additional energy is discharged in V2G and the equivalent
mileage consumption to understand how much stress V2G
would put on battery warranties.

Table III compares the total EVCS energy input (charged)
and output (discharged) in NL-V2G and NL-V1G scenarios
across all NYISO zones. On average, 6.2% of the total energy
charged in the NL-V2G scenario is used for discharging to
arbitrage electricity prices. From these results, an equivalent
mileage value for an EV participating in a V2G EVCS can be
estimated by translating the energy output from the station
to mileage through an EPA EV range estimate [47]. This
value becomes relevant when calculating the impact of V2G
on EV warranty, which is regulated to be the first of 8
years or 100,000 mi (15 years or 150,000 mi proposed in
California) [48]. As a case study, we use the Tesla Model
X EPA estimated range of 348 mi for a full charge (100
kWh) [49]. Subsequently, a fraction of yearly energy output
from the NYC EVCS (9.6 MWh), proportional to the number
of charging sessions corresponding to a particular EV (139
sessions out of a total of 2967), is equivalent to a mileage
value of 1565 mi. This corresponds to a 12% increase in
the average mileage driven per year (USDOT average is

TABLE III
ENERGY BALANCES (IN MWH) FOR A 1-YEAR EVCS SIMULATION

Zone NYC NORTH WEST LONGIL
NL-V1G Charged 145.76 146.28 146.57 145.90
NL-V2G Charged 154.61 152.26 165.80 158.51
NL-V2G Discharged 7.64 4.68 16.45 11.05

TABLE IV
COMPUTATION TIMES (IN SECONDS) FOR A 1-YEAR V2G SIMULATION

Zone NYC NORTH WEST LONGIL
PF-MILP 5567 6123 6117 6214
PF-DP 97 93 90 97
NL-V2G 830 825 829 814

13500 mi [50]), which would lead to passing 100,000 mi
approximately nine months earlier than the baseline average
mileage. Additionally, using the EVCS total energy output, an
EPA estimated range of 348 mi and the cost savings achieved
by V2G result in an incremental EVCS operating cost savings
benefit of $0.125/kWh and $0.036/mi. Using our proposed
method to estimate V2G equivalent mileage under different
control policies would increase accuracy when performing
long-term EVCS TEA studies.

D. Computation Times
Table IV shows computation times for 1-year simulations

of three cases all using nonlinear battery models: 1) PF-
MILP: nonlinear V2G optimization with perfect price forecast
formulated using MILP and solved using Gurobi; 2) PF-DP:
nonlinear V2G optimization with perfect price forecast solved
with the proposed algorithm, note that in this case there is no
uncertainty, so the proposed algorithm is essentially dynamic
programming; 3) NL-V2G: nonlinear V2G optimization solved
using the proposed stochastic dynamic programming algo-
rithm. Hence, PF-MILP and PF-DP are deterministic, while
SDP is stochastic.

The computation time result shows the computation
tractability of the proposed algorithm in both deterministic
and stochastic optimization. The comparison between PF-
MILP and PF-DP is an apple-to-apple comparison as both
algorithms solve a deterministic EVCS problem. PF-DP, the
deterministic version of our proposed algorithm yields an
average result within 1.5% of the solution times provided by
the MILP formulation, while the computation time is around
60x faster. Our proposed SDP-based algorithm achieves a
computation time 7.5x faster than the MILP. Note that SDP
is solving multi-stage stochastic optimization while the MILP
is solving deterministic optimization, while both use nonlinear
battery models. Therefore, our proposed algorithm can also be
considered a faster, more efficient, and open-source alternative
for solving deterministic smart charging control case studies.

VI. CONCLUSION

We proposed and tested an EVCS controller based on a
nonlinear analytical stochastic dynamic programming algo-
rithm and least-laxity first scheduling. Using historical prices
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Fig. 5. EVCS operating cost savings of all scenarios simulated with the proposed method for the uncontrolled case. Perfect Forecast represents the highest
possible EVCS operating cost savings under the considered simulation conditions.

Fig. 6. EVCS cumulative operating costs during 2019 for all simulated NYISO zones. Perfect-forecast V2G/V1G, stochastic V2G/V1G and uncontrolled
charging scenarios are shown.

from New York State, our proposed V2G algorithm achieved
27% to 56% of EVCS operating cost savings compared to
uncontrolled charging while maintaining a 97% charging target
compliance and accounting for EV battery nonlinear behavior
and price uncertainty in real-time. Our study covers smart
charging in which EVs are not discharged to the grid. Still, our
approach provides on average 21% cost savings by responding
to grid price variations compared to uncontrolled charging.
We also show the importance of considering nonlinear battery
models in V2G optimization, in which the battery power rating
and efficiencies are dependent on the SoC, which is critical to
ensure the EV meets its charging target while responding to
time-varying prices. Finally, the proposed algorithm is open-
source and not requiring any thrid party solvers, while the
computation time surpasses commercial solvers. Hence, our
approach is suitable for real-world implementations and scale-

up for large-scale EV fleet management.
In the future, we plan to improve the proposed approach in

several directions. The first is to integrate the solution method
with data-driven probability price prediction methods. The
current solution to the V2G problem using stochastic dynamic
programming still requires a Markov process to be trained
using historical price data. However, designing the Markov
process can be complicated and limited by the quantity of
historical price data. Second, our result still shows that V2G is
more likely to miss charging targets due to the feeder capacity
constraints, we will investigate approaches to manage the
charging constraint better and improve charging compliance.
Finally, we will test our proposed algorithm using more
sophisticated charging scenarios such as using heterogeneous
EV fleets and considering local renewable generation and
study the connection between driving patterns and zone prices
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with the control policy performance.
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APPENDIX

A. Stochastic Price Arbitrage using Markov Process
We discretize the stochastic real-time price as a first-order

Markov Process with N nodes per time step ({cC ,8 | C 2 T , 8 2
#}), and a stage transition probability d8, 9 ,C indicating the
probability of transitioning from price node 8 at time period C
to price node 9 at time period C + 1. Thus, we reformulate the
stochastic arbitrage problem in (6) using discretized Markov
price processes as

&C�1,8 (4C�1) = max
1C ,?C

cC ,8 · (?C � 1C ) � 2?C ++C ,8 (4C ) (9a)

+C ,8 (4C ) =
’
92N

d8, 9 ,C · &C , 9 (4C ) (9b)

subject to the EV constraints (5b) and (5c).

B. Value Function Computation
Our proposed algorithm is based on the following result

that updates @C�1,8 from EC ,8 , where @C�1,8 is the derivative of
&C�1,8 and EC ,8 is the derivative of +C ,8 [51]

@C�1,8 (4) = (10)

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

[1 + [·m⌫/m4 + ⌫·m[/m4]·EC ,8 (4 + ⌫[) � c·m⌫/m4
if cC ,8  EC ,8 (4 + ⌫[)·[

cC ,8 ·[1/[ + (⌫/[)·(m[/m4)]
if EC ,8 (4 + ⌫[)·[ < cC ,8  EC ,8 (4)·[

EC ,8 (4)
if EC ,8 (4)·[ < cC ,8  [EC ,8 (4)/[ + 2]+

(cC ,8 � 2)·[[ + (%/[)·(m[/m4)] � %·m2/m4
if [EC ,8 (4)/[ + 2]+ < cC ,8 [EC ,8 (4 � %/[)/[ + 2]+

[1 � (1/[)·(m%/m4) + %·(1/[)2·(m[/m4)]·EC ,8 (4 � %/[)
+(cC ,8 � 2)·m%/m4 � %m2/m4

if cC ,8 > [EC ,8 (4 � %/[)/[ + 2]+

Note that [, B, P and c depend on the starting SoC e
as formulated in (6). The function form of these nonlinear
parameters in (10) is omitted to simplify the mathematical
representation.

We restate the solution algorithm to compute the value
function from [38] which enforces a final SoC value higher
than a given threshold 4 5 . In this algorithm implementation
we discretize EC ,8 into a set of M segments with value and
SoC pairs

ÊC ,8 = {aC ,8,< |< 2 M} (11)

associated with equally spaced SoC segments 4C ,<. In our
implementation, we discretized the SoC into 1000 segments.
The valuation algorithm is listed as following

1) Set ) ! C to start from the last time period; initialize
the final value-to-go function segments a) ,< to zeros
for 4) ,< > 4 5 and to a very high value (we use
$1000/MWh) for 4) ,<  4 5 . Note that the final value
function does not depends on price nodes.

2) Go to the earlier time step by setting C � 1 ! C.
3) During period C, go through each price node for 8 2

N and value function segment < 2 M. Update the
charge and discharge efficiency corresponding to the
SoC segment, compute (5) and store @C�1,8 (4); note that
here @C�1,8 (4C�1,<) is also discretized with the same
granularity as the value function.

4) Calculate the value function of the previous time step as

aC�1,8,< =
Õ
92N d8, 9 ,C@C�1, 9 (4C ,<) (12)

which is the derivative of (9b).
5) Go to step 2) until reaching the first time step.

C. Control Policy for Single Storage Device
We restate the control policy from [38]. After the value

function computation step, control can be executed by re-
sponding to realized market prices and looking for the closest
price node cC ,8 such that cC ,8  _C < cC ,8 , then the storage
control decision is updated as

?C = min{ ?̂C , 4C�1[} (13a)
1C = min{1̂C , (⇢ � 4C�1)/[} (13b)

where ?̂C and 1̂C are calculated as

{ ?̂C , 1̂C } =

https://insideevs.com/news/515641/tesla-models-plaid-charging-analysis/
https://insideevs.com/news/515641/tesla-models-plaid-charging-analysis/
https://www.gurobi.com
https://www.fueleconomy.gov/feg/evtech.shtml
https://ww2.arb.ca.gov/sites/default/files/2021-12/draft%20zero%20emission%20vehicle%20regulation%201962.4%20posted.pdf
https://ww2.arb.ca.gov/sites/default/files/2021-12/draft%20zero%20emission%20vehicle%20regulation%201962.4%20posted.pdf
https://www.tesla.com/modelx
https://www.tesla.com/modelx
https://www.fhwa.dot.gov/ohim/onh00/bar8.htm
https://www.fhwa.dot.gov/ohim/onh00/bar8.htm
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8>>>>>>>>>><
>>>>>>>>>>:

{0, ⌫} if _C  EC ,8 (4 + ⌫[)[
{0, U} if EC ,8 (4 + ⌫[)[ < _C  EC ,8 (4)[
{0, 0} if EC ,8 (4)[ < _C  [EC ,8 (4)/[ + 2]+
{V, 0} if [EC ,8 (4)/[ + 2]+ < _C

 [EC ,8 (4 � %/[)/[ + 2]+
{%, 0} if _C > [EC ,8 (4 � %/[)/[ + 2]+

(13c)

in which U and V are given as follows

U = (E�1
C ,8 (_C/[) � 4C�1)/[ (13d)

V = (4C�1 � E�1
C ,8 ((_C � 2)[))/[ (13e)

where E�1
C ,8 is the inverse function of EC ,8 .

(13a) and (13b) enforce the battery SoC constraints over the
discharge ?̂C and charge 1̂C decisions. (13c) calculates control
decisions and following the same principle as to (6) but use the
observed price _C instead of the price nodes cC ,8 . The control
policy uses the approximated values of B, P, [ and c (all 4
could be nonlinear) corresponding to the current SoC.

D. MILP Formulation
We start by showing below the multi-period arbitrage

formulation, which is equivalent to our proposed stochastic
dynamic programming formulation if assuming a deterministic
price process cC and also add a penalty function ⇠4=3 and a
weighing parameter U to represent the cost associated with
missing a final SoC target (the choice of U must achieve a
comparable charging compliance target performance as the
deterministic dynamic programming solution):

max
?C ,1C

�U⇠4=3 +
)’
C

cC ·(?C � 1C ) � 2?C s.t. (1c),(1e),(1f)

We modify this model to a MILP model for the variable
power rating, discharge penalty and efficiency benchmark
calculation with ten SoC-efficiency segment pairs as

max
?:,C ,1:,C

�U⇠4=3 +
)’
C

 ’
:

cC ·(?:,C � 1:,C ) � 2: ?:,C (15a)

s.t. 0 
 ’
:

1:,C/⌫:  1, 0 
 ’
:

?:,C/%:  1 (15b)

4:,C � 4:,C�1 = �?:,C/[: + 1:,C[: (15c)
⇢1D1,C  41,C  ⇢1 (15d)

⇢:D:,C  4:,C  ⇢:D:�1,C , 8: 2 {2, ..., � 1} (15e)
0  4 ,C  ⇢ D �1,C (15f)

⇠4=3 = (
 ’
:

4:,) � 4 5 )2 (15g)

where : is the index of the nonlinear power rating, efficiency
and cycling penalty approximation segments (10 segments in
this case). (15a) is the objective function which sums up all
segments. (15b) and (15c) are the power rating constraints
and energy storage evolution constraints implement on all seg-
ments. (15d)-(15f) model the piece-wise linear approximation
to the battery nonlinear parameter curves with binary variables
D:,C , which enforce the lower SoC segment must be full before

upper SoC segments can take on non-zero values. For this
paper’s simulations, an U value of 1000000 is used.

In the EVCS context, this optimization step fits in step
2) of the solution algorithm proposed in 4.3 (it replaces the
value function calculation step). Every time an EV arrives at
the EVCS, the MILP will provide an optimal schedule for
the EV to follow for the remainder of the session. If the
EV is deviated from the provided optimal schedule due to
a low priority assigned during the LLF scheduling step, a
new optimal schedule for the remainder of the session will
be computed.
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