Trees (2023) 37:1249-1265
https://doi.org/10.1007/500468-023-02423-3

ORIGINAL ARTICLE q

Check for
updates

Soil moisture and vapor pressure deficit controls of longleaf pine
physiology: results from a throughfall reduction study

Caren C. Mendonca'® - Lisa J. Samuelson' - Tom A. Stokes'? - Michael R. Ramirez' - Carlos Gonzalez-Benecke? -
Michael J. Aspinwall'*

Received: 2 March 2023 / Accepted: 26 May 2023 / Published online: 9 June 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Key message Longleaf pine demonstrated general resistance to reduced soil moisture and increased VPD, but results
highlight the soil and atmospheric conditions that could trigger declines in longleaf pine function and productivity.
Abstract Low soil moisture and high atmospheric vapor pressure deficit (VPD) independently limit tree function and forest
productivity. However, questions remain about how large, established trees respond to dry soil and high VPD over longer
time periods. We carried out a 3-year throughfall reduction experiment in a young (12—14-year-old) longleaf pine planta-
tion in west Georgia (USA). We hypothesized that throughfall reduction would reduce soil moisture, leaf-scale stomatal
conductance (g,), and net photosynthesis (P,,), but increase intrinsic water-use efficiency (iWUE). We also hypothesized
that throughfall reduction would reduce canopy conductance (G,) at a reference VPD of 1 kPa and G, sensitivity to VPD. In
addition, we used G, data collected across both treatments to identify breakpoints in the relative control of soil moisture and
VPD on G,. Throughfall reduction decreased soil moisture and caused small reductions in g, (-21%) and P, (- 13%), but
no change in iWUE. As expected, reduced throughfall decreased G, and G, sensitivity to VPD by 20 and 8%, respectively.
Despite this, throughfall reduction had very little effect on tree growth or forest productivity. Importantly, G, sensitivity to
VPD was similar at intermediate soil moisture, but highest and lowest at soil moistures above field capacity and below the
permanent wilting point, respectively. Consequently, we could identify thresholds in the relative control of soil moisture
and VPD over G,. These results demonstrate the general resistance of longleaf pine plantations to reduced soil moisture and
increased VPD but highlight the soil and atmospheric conditions that could trigger declines in longleaf pine function and
productivity.
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Introduction

Worldwide, water availability strongly influences tree growth
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pressure deficit (VPD); Rowland et al. 2015, Ficklin and
Novick 2017; Asbjornsen et al. 2021). Assessing this knowl-
edge gap could provide further information on the diversity
of tree and forest responses to dry conditions and potential
interactive effects with prevailing atmospheric conditions.

Tree species exhibit a spectrum of water-use strategies
and drought tolerance (or resistance) (Klein 2014). Species
that are more anisohydric tolerate drought by maintaining
stable rates of stomatal conductance (g,) and transpiration
(E) at low xylem water potentials (V). This strategy allows
for continued C fixation (photosynthesis) at the risk of cavi-
tation (McDowell et al. 2008; Roman et al. 2015; Hoch-
berg et al. 2017; Blackman et al. 2019). Species that are
more isohydric show the opposite response to reduced soil
moisture—decreased g, and lower E and net photosynthesis
(P,e), yet greater homeostasis of leaf water potential and
lower risk of cavitation (Hubbard et al. 2001; Vilagrosa et al.
2003; Choat et al. 2008, 2018; Creek et al. 2020). Although
the iso/anisohydry concept may be overly simplistic, it pro-
vides a general framework for predicting species stomatal
regulation, C fixation, and water use in the field under drying
conditions.

Stomatal regulation of leaf ¥ also influences canopy-level
conductance (G,); a key regulator of ecosystem-scale E and
important input parameter in models that predict H,O fluxes
over large spatial scales (Siqueira et al. 2006; Novick et al.
2009). Stomatal conductance usually declines with reduced
soil moisture at a threshold that depends on species and soil
texture (Allen et al. 2010, Mitchell et al. 2016; Starr et al.
2016; Choat et al. 2018; Novick et al. 2009, 2016). Canopy
G, is also sensitive to atmospheric demand for H,O, quanti-
fied as atmospheric VPD (saturated vapor pressure minus
actual atmospheric vapor pressure); G, generally declines
non-linearly as VPD increases (Oren et al 1999; Novick et al.
2016). The rate at which G, declines per unit increase in
VPD is a measure of stomatal sensitivity to VPD. In this
way, G, shows dual sensitivity to both soil moisture and
VPD. However, determining how soil moisture and VPD
independently control G, is challenging since low soil mois-
ture and high VPD conditions often co-occur. Moreover,
for many species and forest types, the degree to which soil
moisture influences G, sensitivity to VPD is unclear. There
is some evidence that VPD, rather than soil moisture, is the
dominant limitation of G, in mesic ecosystems, and stoma-
tal sensitivity to VPD (and G, at reference VPD =1 kPa)
declines more steeply with decreasing soil moisture at drier
sites than wetter sites (Novick et al. 2016). Throughfall
reduction experiments in arid climates have also demon-
strated that G, sensitivity to VPD declines steeply as drought
conditions intensify (Grossiord et al. 2017). Nonetheless, the
dominant limitation of G, (soil moisture versus VPD), and
potential soil moisture thresholds for changes in G, sensi-
tivity to VPD could differ strongly among forest types and
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species with different water-use strategies. New studies that
manipulate water availability in the field could provide new
information about the independent influence of soil moisture
and VPD on G, and thresholds conditions where G, shifts
from VPD dominated to soil moisture dominated.

The southeastern United States (U.S.) produces more
wood annually than any other region in the U.S. or country
in the world (Wear and Greis 2013). Average air tempera-
tures in the region are expected to increase, coupled with
increased VPD, greater evapotranspiration, and more intense
and widely spaced precipitation events (IPCC 2013; Melillo
et al. 2014; Samuelson et al. 2019). Longleaf pine (Pinus
palustris Mill.) is considered one of the most drought-resist-
ant southern pines. Despite a broad geographic distribution,
the species often occurs on drier sites, including xeric sand
hills and montane upland sites where water is limited, and
related pine species (e.g., Pinus taeda L.) are less common
or less productive. Longleaf pine has also demonstrated
considerable resistance to drought through physiological
and structural modifications that help reduce water use or
demand (Gonzalez-Benecke et al. 2010; Starr et al. 2016;
Samuelson et al. 2019). As a result, restoration of longleaf
pine forests, or converting stands of less drought-resistant
species to longleaf pine, is seen as one mechanism for adapt-
ing southern forests to drier, hotter conditions. Even so, new
experimental studies, especially those conducted over longer
time periods in the field, are needed to improve our basic
understanding of longleaf responses to drought and VPD.

We carried out a 3-year (2017-2019) throughfall reduc-
tion experiment in a young longleaf plantation in west Geor-
gia (USA) to determine the impacts of reduced water avail-
ability on longleaf pine leaf and canopy physiology, as well
as canopy-scale G, sensitivity to VPD. This study builds
upon the study by Samuelson et al. (2019), who examined
the impacts of throughfall reduction on stand-level water
use and growth in longleaf pine at the same site. This study,
however, is more focused on detailing leaf-scale physiol-
ogy and whole-tree scale responses to both soil moisture
and VPD. We do report updated data for some of the same
variables (water potential, sap flux, stand growth) presented
in Samuelson et al. (2019), but these data are mainly pre-
sented to place the leaf-scale physiology and whole-tree
VPD response data within the context of tree water relations
and forest productivity. Each year, we repeatedly measured
(approximately every 3—4 weeks) predawn and midday leaf
water potential (Wpp, and Wyp, respectively) and midday leaf
gas exchange in ambient throughfall and reduced (-40%)
throughfall plots for three years (2017-2019). We also
assessed potential changes in foliar nitrogen (N) and foliar
13C isotopic composition [8'°C] (time-integrated measure
of intrinsic water-use efficiency) with throughfall reduc-
tion. We used sap-flux measurements to estimate canopy
conductance (G,) and whole-tree hydraulic conductance
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(K). We hypothesized that longleaf pine would employ a
conservative (more isohydric) strategy and would reduce
g, with reduced throughfall to help maintain relatively con-
stant W,;,. We expected that P, ., would also decrease with
reduced throughfall, but less so than g, such that intrinsic
water-use efficiency (iWUE, measured both instantaneously
and isotopically) would increase under reduced throughfall.
We also hypothesized that throughfall reduction would
reduce G, K, and G, sensitivity to VPD. Using G, data col-
lected across both treatments, we determined soil moisture
conditions (quantiles for volumetric water content) where G,
sensitivity to VPD differed. We expected that G, sensitiv-
ity to VPD would be high and relatively similar at high to
intermediate soil moisture and would decline only at very
low soil moisture.

Materials and methods
Study site and experimental design

The study was established in an 11-year-old longleaf pine
plantation in the Chattahoochee Fall Line Wildlife Manage-
ment Area in Marion County, GA (32.5528° N, -84.776°
W; site elevation of 210 m) in May 2016 (Samuelson et al.
2019). Trees were planted in early 2005 at an approximate
spacing of 2.6 mx 2.6 m (density ~ 1479 trees ha™!). Soils
at the site are in the Lakeland Series (2-5% slopes), which
are Thermic, coated Typic Quartzipsamments, consisting of
very deep, permeable, excessively drained sands. Thirty-year
mean (1981-2010) annual precipitation for Americus, GA
(approximately 60 km from site) is 1245 mm, mean annual
minimum and maximum air temperatures are 11.0 °C and
24.6 °C, and mean annual temperature at the site is 17.8 °C
(https://www.ncdc.noaa.gov/cdo-web/datatools/normals,
accessed February 2021).

The study utilized a randomized complete block design
with three blocks (replicates), each containing two plots
that were randomly assigned to one of the two throughfall
treatments: ambient throughfall (TR;) or an approximate
40% reduction of throughfall (TR,,). Each treatment plot
was 21 mx31 m (0.07 ha) in dimension with a central
11 mx21 m (0.02 ha) measurement plot. The size of the
treatment plot was determined by excavating and measuring
one root from three trees adjacent to the project site. Roots
were found to extend an average of 4.5 m from the base of
the tree. By extending the treatment 5 m in all directions
around the measurement plot, trees in the measurement plot
would not receive water from outside of the treatment. Plots
within each block were surrounded by two rows of buffer
trees. Block selection was based on pre-treatment estimates
of stand basal area, which did not differ between paired
TR, and TR, plots (within each block) prior to treatment

initiation. Pre-treatment means (= standard error) for basal
area, density, DBH, and height were 18.2 +0.8 m? ha™!,
1029 + 33 trees ha™', 14.7+0.3 cm, and 9.5+0.1 m,
respectively.

The 40% throughfall reduction was determined based on
the 100-year mean annual precipitation for the area. The
approximate 60% residual throughfall represented the 1%
percentile of annual precipitation (i.e., 1- in 100 drought
year) for Americus, Georgia (802 mm). To limit throughfall
by approximately 40%, and thereby reduce soil moisture,
sixteen 0.52-m throughfall exclusion troughs, constructed
out of 12 mil polyethylene sheeting (Polyscrim 12, Ameri-
cover Inc., Escondido, CA), were installed between rows in
each TR, plot. Troughs were allocated in pairs and sepa-
rated by a 50-cm gap (total of 8 pairs per plot). Troughs
were an average height of 1.3 m and were supported by
pressure-treated lumber and steel studded t-posts. A total of
16 troughs were installed per plot and covered 40% of the
ground area in each plot. Throughfall was intercepted by the
troughs and carried at least 20 m from the edge of the plots
by large, corrugated pipe.

Environmental data

A weather station was installed approximately 0.55 km from
the site in a 0.65 ha clearing to measure wind-speed, rain-
fall, air temperature, and relative humidity (6152 Vantage
Pro 2 Wireless Weather Station, Davis Instruments, Ver-
non Hills, Illinois). Relative humidity and air temperature
used for VPD determination were measured by three sensors
(HOBO U23 Pro v2 Temperature/Relative Humidity Logger,
Onset Computer Corporation, Bourne, Massachusetts) under
the canopy at approximately 2 m height at three locations
between adjacent plots.

Soil moisture

Volumetric soil moisture (8, cm® water cm™ soil) was
recorded every minute at 5 cm, 15 cm, 50 cm, and 100 cm
depths in all plots (05, 8,5, 85y, 8,9, respectively) and the
average recorded every 30 min with 10-cm length soil mois-
ture sensors (10HS Large Soil Moisture Sensors, Decagon
Devices, Meter Group Inc., Pullman, WA, USA). A soil spe-
cific calibration was calculated following Starr and Paltine-
anu (2002). Soil moisture sensors were linked to data loggers
(HOBO Micro Station Data Logger, Onset Computer Corp,
Bourne, MA, USA). Four sensors were located in the center
of each treatment plot and the middle of a row, spaced 60 cm
apart. Soil moisture sensors were located under troughs in
the throughfall reduction plots. Consequently, the soil mois-
ture sensors in the TR, plots measured the driest soil mois-
ture levels in those plots (under troughs) and did not ade-
quately represent the soil moisture variation between areas
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under and in between troughs. To better represent the mean
volumetric water content in the TR plots, soil moisture
was estimated as the sum of soil moisture under the trough
weighted by 40% (relative to plot area covered by troughs)
and soil moisture in the companion ambient plot weighted
by 60% (representing the soil moisture in the uncovered plot
area). Note that we assumed that the soil moisture measured
in each companion ambient plot represented soil moisture in
the uncovered area in the drought plot (i.e., TR,,) within the
same block. Volumetric water content at permanent wilting
point (PWP) and field capacity (FCP) of the soil at the site
were determined using data from in situ calibrated soil mois-
ture sensors and soil retention curves (METER Group Inc.,
Pullman, WA, USA). For soils at our site, PWP is estimated
to occur around 0=0.032 cm?® cm™3, while FCP is estimated
to occur around 0=0.074 cm?® cm™3. After three years, we
examined the overall distribution of 6 at 15 cm depth. Fol-
lowing Novick et al. (2016), we grouped soil moisture data
into six quantiles: 0-15% (0-0.032 cm® cm™3), 15-30%
(0.032-0.043 cm® cm™), 30 — 50% (0.043-0.052 cm® cm ™),
50-70% (0.052-0.061 cm® cm™), 70-90% (0.061-0.074
cm?® cm™?), 90-100% (0.740-1.10 cm® cm ™). We used these
quantiles to determine where canopy stomatal conductance
(G,) transitions from being VPD dominated to soil moisture
dominated (details on G, data collection below).

Leaf physiology

Leaf gas exchange was measured to determine the effects
of throughfall reduction on leaf physiology. Measurements
were made between 1000 and 1400 h on sunny days and
conducted approximately every 3—4 weeks in 2017, 2018,
and 2019. Leaf gas exchange was measured using a port-
able photosynthesis system fitted with a 2 X 3 cm cuvette and
a red/blue LED light source (LICOR 6400XT, Licor Inc.,
Lincoln, NE, USA). Measured variables included net pho-
tosynthesis (P, pmol m~ s™1), stomatal conductance (g,
mmol m~2 s7!), and intrinsic water-use efficiency (iWUE,
pmol mol~1), calculated as the ratio of P, to g,. One scaf-
folding unit (6 m tall) was installed in each plot to facilitate
access to the upper canopy of at least three measurement
trees per plot. For each tree and on each measurement date,
two fascicles (3 needles per fascicle) from two branches
were sampled. The order in which blocks and plots within
blocks were sampled was randomized across and within
measurement dates. Foliage samples were chosen at random
from the upper third of the canopy of each tree, ensuring
that foliage was fully exposed to sunlight and from the most
recent fully developed flush. Light intensity within the leaf
chamber was maintained at 1800 pmol m~2 s~! photosyn-
thetic photon flux density (PPFD). The flow rate was held
constant at 500 pmol s~!, and chamber reference [CO,] was
set at 410 pmol mol~!. Water vapor inside the leaf chamber
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was not scrubbed so that RH inside the cuvette approxi-
mated ambient conditions. Temperature was not controlled
and was allowed to fluctuate with ambient conditions. Gas-
exchange measurements were made on detached needles.
Previous studies with detached pine needles (Aspinwall et al.
2011; Akalusi et al. 2021) and preliminary tests carried out
on trees in our study indicated that leaf gas exchange was
not sensitive to detachment if measurements were conducted
within 15 min. Leaf gas-exchange data were recorded once
rates reached steady state, which generally occurred within
5 min of sealing the needles in the cuvette. Total needle
area (all-sided needle area) within the cuvette was calculated
from measurement of fascicle diameter and needle length,
following Samuelson et al. (2012). After measurements,
sampled leaves were dried at 70 °C for 48 h and leaf dry
mass per unit area (LMA, g m~2) was calculated as the ratio
of leaf dry mass to all-sided leaf area.

Leaf water potential

Predawn and midday measurements of ¥ (Wpp and ¥yp,
respectively) were made on the same trees as leaf gas-
exchange measurements, every 3—4 weeks (measured on
same dates as leaf gas exchange), using a pressure chamber
(1505D Pressure Chamber Instrument, PMS Instruments,
Albany, WA, USA). ¥pp, samples were collected before sun-
rise when daily xylem water potential is highest (assumed to
be near equilibrium with soil water potential) due to mini-
mal nocturnal transpiration. ¥y, samples were collected
between 1100 to 1300 h. Scaffolding was used to collect
five fascicles of recently mature, upper canopy foliage for
Yy and Wy measurements. Upon collection, samples were
placed in sealed plastic bags and stored in a cooler before
measuring. Importantly, Samuelson et al., (2019) reported
average Wpp and Wy, values for the same trees in both treat-
ments for 2017 and 2018. We use the same ¥pp, and Wy
data from Samuelson et al. (2019), and Wpp, and ¥y, values
from an additional year (2019), for calculating whole-tree
hydraulic conductance (see below).

Sap flux and whole-tree hydraulic conductance

A sap flow system with 30 mm thermal dissipation probes
(TDP-30, Dynamax, Inc., Houston, Texas) was used to
determine tree sap flow in 4-5 trees per plot (30 trees total).
Trees were selected to represent the basal area distribution in
each measurement plot (Cermék et al. 2004), and were also
the same trees used for leaf gas exchange and water poten-
tial measurements. At the start of the study, DBH of the
measurement trees ranged from 14.0 to 19.3 cm. Thermal
dissipation probes were used to monitor temperature differ-
ences between a heated probe and a reference probe (FLGS-
TDP Sap Velocity System Model XM 1000, Dynamax, Inc.,
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Houston, Texas). Probes were installed on selected trees at
DBH (approximately 1.37 m). The outer bark was removed
to install the probes, which were placed in two small holes
spaced 9 cm apart vertically in each tree. Reflective insula-
tion was wrapped around the probes and the stem around
the probes to minimize temperature gradients. Measure-
ments were taken every minute and 30- minute averages
were recorded. To correct instances where the difference in
maximum temperature was not attained at night, Baseliner
(an open-source software for processing sap flow data) was
used as described in Oishi et al. (2016). Sap flux density (J,,
mol m~2 s7!) was calculated according to Granier (1987).
For each tree, J, was divided by the difference between the
two water potential measures (Wpp and Wy here denoted
as AW) to calculate whole-tree hydraulic conductance, K
(mol m~2s~! MPa™').

Canopy conductance

Calculations of G, (mmol m~2 s7!) followed Bartkowiak
et al. (2015) — inverting the Penman—Monteith equation and
assuming sap flow as transpiration. Values of G, were cal-
culated when VPD >0.75 kPa to reduce possible effects of
instrument error (Ewers and Oren 2000). Because VPD was
below 0.75 kPa on many days during the winter months,
G, was not calculated between November and February.
Importantly, Samuelson et al. (2019) assessed the impacts
of throughfall reduction on mean monthly midday G, in the
same trees at the same site between 2016 and 2018. In this
study, we focused on: (1) assessing the impacts of through-
fall reduction on mean monthly G,, and (2) the impacts of
throughfall reduction on mean daytime G, sensitivity to
VPD. We also determined how soil moisture (regardless
of throughfall treatment) influenced the sensitivity of mean
daytime G, to VPD. This allows us to determine soil mois-
ture conditions where G transitions from being VPD domi-
nated to soil moisture dominated.

Foliar 6'3C, and carbon and nitrogen content

Foliar 8'3C (%o), as well as carbon concentration (%C) and
nitrogen concentration (%N), were measured on needles col-
lected in Autumn (October/November) of 2017, 2018, and
2019. Values of 8'C provide a time-integrated measure of
intrinsic water-use efficiency; higher (less negative) 5'*C
values indicate higher intrinsic water-use efficiency. Trees
sampled were the same as those used for leaf gas exchange
and leaf water potential measurements. Five needles from
two terminal shoots (one primary and one secondary) of two
branches were collected from three different trees in each
treatment plot. Oven-dried samples were finely ground and
homogenized with a ball mill grinder (Spex 8000, SPEX
SamplePrep LCC, Metuchme, NJ, USA). 8'3C, and %C and

%N were determined using a continuous flow mass spec-
trometer (Thermo Finnigan Plus XL, Thermo Fisher Scien-
tific, Waltham, MA, USA). Leaf N per unit area (N,.,. g N
m~2) was also calculated as the product of %N content and
LMA (LMA measured on the same trees and on the same
date as %N). 8'3C, %C, %N, and N, data were pooled and
averaged by plot.

Growth

Biometric data (basal area, height, DBH, stem volume) and
aboveground biomass production (ANPP) data collected
between 2016 and 2018 were previously presented in Samu-
elson et al. (2019). Using the same methods, we collected an
additional year (2019) of biometric and aboveground pro-
ductivity data. Shoot phenology and leaf area index (LAI)
data were also collected between 2017 and 2019 and are
reported in Mendonca et al. (2022).

Data analysis

All statistical analyses were performed in SAS v9.3 (SAS
Institute Inc. 2010, Cary, NC USA). Because ‘plot’ is the
experimental unit, in most cases, we averaged data col-
lected across measurement trees in each plot. A linear mixed
model (PROC MIXED) was used to test the fixed effects of
measurement date (i.e., time), treatment (TR, versus TR,,),
and date X treatment interactions on the leaf- and canopy-
scale physiological variables (e.g., P, K, mean monthly
G,). Block was considered a random effect. A linear mixed
model was also used to test for year and treatment effects on
813C, %C, and %N. In both models, block was considered a
random effect. When appropriate, data were log-transformed
to fulfill assumptions of normality.

We examined G sensitivity to VPD and the influence
of soil moisture in two ways. First, we determined whether
the overall relationship between mean daytime G, and VPD
differed between throughfall reduction treatments. Second,
we determined whether the overall relationship between
mean daytime G, and VPD differed between soil moisture
quantiles ranging from above FCP to below the permanent
PWP. In this case, data in the lowest soil moisture quantile
frequently occurred in the throughfall reduction treatment,
but this was not always the case, especially during periods
when rainfall was high, and temperatures were low. Follow-
ing Oren et al. (1999) the response of daytime G, to VPD
was fit using the linear function: G,=bref+ -m-In(VPD),
where m quantifies the sensitivity of G, to increasing VPD
(mmol m~2 s! In(kPa)™"), and bref is the reference G, at
VPD =1 kPa. Analysis of covariance (ANCOVA) was used
to test whether m or bref differed between throughfall treat-
ments. In this analysis, VPD was a covariate and ‘treat-
ment’ (TR, TR,,) was a factor. If treatment influenced the
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relationship between G, and VPD, a significant interaction
between treatment and VPD was observed, and different m
estimates were fit for each treatment. If treatment and VPD
were both significant, but the interaction between treatment
and VPD were not, equations with different bref estimates
for each treatment, but a common m estimate, were fit to
the data. If only the covariate was significant, one equation
with a common bref and m estimate was fit to data from both
treatments. The same approach (ANCOVA) was used to test
whether m and bref differed among soil moisture quantiles.

Results
Environmental conditions

Annual precipitation at the site was 1234 mm in 2017,
1451 mm in 2018, and 1232 mm in 2019 (Fig. 1A). Annual
precipitation in 2017 and 2019 was slightly lower than the
long-term (30-year) mean annual precipitation for the loca-
tion (1245 mm). Total precipitation in 2018 was approxi-
mately 17% higher than the long-term mean for the loca-
tion. Under 40% throughfall reduction, total precipitation

was estimated to be 740 mm in 2017, 871 mm in 2018, and
739 mm in 2019.

Mean daily average, maximum, and minimum tem-
peratures were similar among years and averaged 18.3 °C,
24.9 °C, and 12.8 °C, respectively (Fig. 1B). However, daily
maximum temperatures in 2017 and 2019 were sometimes
above the average daily maximum temperature for the study
area. Daily maximum vapor pressure deficit (VPD,,,,) was
similar among years and ranged from 0.03 to 4.65 kPa
(Fig. 1A).

Soil moisture

In both treatments, 0 was frequently lower at deeper posi-
tions within the soil profile (Fig. 2A-D). Daily mean 0 in
the throughfall reduction treatment was often lower than in
the ambient treatment (Fig. 2A-D). As soil depth increased,
the difference in 0 between TR, and TR, treatments gener-
ally decreased (Fig. 2A-D). Over time, 0 at 5, 15, 50, and
100 cm depths were on average 47, 41, 32, and 34% lower,
respectively, in the TR, plots compared with the TR, plots
(Fig. 2A-D). Among years, monthly mean 0 at 5 cm depth
varied between 0.073 and 0.088 cm® cm™ in the TR, treat-
ment and between 0.041 and 0.046 cm® cm™ in the TR,
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dotted line), and B daily maximum, mean, and minimum temperature

respectively) in a longleaf pine plantation in Marion County, Georgia, USA
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Fig.2 Mean daily soil volumetric water content at 5 cm (05) [A], reduction treatment (TR,,) and ambient throughfall treatment (TR,).
15 cm (8;5) [B], 50 cm (B5,) [C], and 100 cm (8,y,) [D] depth in a Soil volumetric water content in the TR,, was measured under
longleaf pine plantation under an experimental 40% throughfall throughfall exclusion trays
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treatment. At 50 cm depth monthly mean 0 varied between
0.043 and 0.065 cm® cm™ in the TR, treatment and between
0.038 and 0.045 cm® cm™ in the TR, treatment.

Leaf-level gas-exchange responses

Averaged over time, throughfall reduction reduced g, by
21%, from 49.8 to 39.5 mmol m~2 s~ (p=0.047; Table 1;
Fig. 3B). Throughfall reduction caused a small reduction
in P, (—13%); this effect was somewhat weak (p=0.063,
Table 1; Fig. 3a). In general, both treatments showed reduced
g, and P, during drier periods (Fig. 3a-b). For instance,
during a 20-day period between May and June of 2019 0
was as low as 4%, and values of g, and P, were much lower
compared to wet periods (Fig. 3a-b).

In general, iWUE increased during dry periods when
g, was low and decreased during wet periods when g, was
high. However, averaged over time, iWUE was similar
between treatments (p =0.223; Table 1; Fig. 3c). Foliar 3¢
(time-integrated estimate of water-use efficiency) differed
among years (Table 1) and was —30.9+0.3, -29.3+0.3,
and —27.9+0.3 %o in 2017, 2018, and 2019, respectively.
8'3C did not differ between treatments (p=0.291; Table 1).

Foliar %C was similar across years but %N and N,

area
varied among measurement years (Table 1). %N averaged

1.3+0.04, 1.1+ 0.04, and 0.9+0.04% in 2017, 2018, and
2019, respectively. N, averaged 1.07 +0.05, 0.87 +0.05,
and 0.84 +0.05 g N m~2in 2017, 2018, and 2019, respec-
tively. Although LMA varied among measurement dates
(Table 1, Fig. 3d), and %C, %N, and N,,., varied among
years, all four traits and were similar between treatments
(p>0.436; Table 1). No date X treatments interactions were

detected for any trait (p >0.473; Table 1).
Leaf water potential

Predawn leaf water potential (Wpp) showed a weak interac-
tion between date X treatment (p =0.095; Table 1, Fig. 4).
Post hoc analysis indicated that throughfall reduction
decreased Wpp, at only three dates during the study period:
June of 2017 (p =0.029), February of 2018 (p =0.024),
and September of 2018 (p <0.001) (Fig. 4). W)p varied
across sampling dates but did not differ between treat-
ments (p=0.174; Table 1, Fig. 4). Over time and across
treatments, average Wpp and ¥y,p was -0.87 +0.02 MPa
and —1.71 +£0.03 MPa, respectively (Table 1, Fig. 4). In
both treatments, Wpp, and ¥y, were lower during periods
of low soil moisture. The difference between Wpp, and Wy
measurements (Wpp—¥yp_here referred as AY) was also
analyzed. Overall, throughfall reduction had no effect on

Table 1 Analysis of variance

> Variable Date Treatment Date X Treat- TR, TR

results for the effects of ment

measurement date, throughfall

treatment, and their interaction df P>F df P>F df P>F

on leaf- and canopy-scale

physiological traits in longleaf P (umol m™> S_l) 26,103 <0.001 1,4 0.063 26,103 0.677 3.97 (+0.1) 3.45(x0.1)

pine trees growing in a g, (mmol m™2s71) 26,103  <0.001 1,4 0.047 26,103 0.373 49.9 (+2.6) 39.5 (+2.6)

gltz?ézﬁ"" in Georgia, United iWUE (umol mol™') 26,103 <0.001 1,4 0.223 26,103 0486 92.0(x4.1)  100.4 (+4.1)
Yo, (MPa) 26,103 <0.001 1,4 0.157 26,103 0.095 -0.84 (+0.02) -0.89 (+0.02)
Yo (MPa) 26,103 <0.001 1,4 0.174 26,103 0.983 -1.67 (+0.03) -1.74 (+0.03)
AY (MPa) 26,103 <0.001 1.4 0.600 26,103 0.741 0.82 (+0.28) 0.85 (+0.28)
K (molm™2s~!MPa™!) 23,90 <0.001 1.4 0.235 23,90 0.076 2.18 (x0.15) 1.88 (+0.15)
G, (mmol m~2s71) 24,93 <0.001 1.4 0.021 24,93 0.031 69.9 (+3.0) 56.3 (+3.0)
LMA (g m™2) 26,103 <0.001 1.4 0433 26,103 0.156 87.3(x1.9) 85.0 (=1.9)
813C (%o) 2,8 <0.001 1.4 0291 2,8  0.521 -29.57(x0.23) -29.19 (+0.23)
%C (%) 2,8 0454 1,4 0.749 2,8 0473 539 (x1.0) 54.4 (+1.0)
N,.. (gNm™) 2,8 0.002 1,4 0.962 2,8 0491 0.93 (+0.05) 0.92 (+0.05)
%N (%) 2,8 <0.001 1.4 0436 2,8 0.869 1.10(x0.05) 1.17 (+0.05)

Numerator and denominator degrees of freedom (df) and probability values (p-values) are provided for
each factor. Mean and standard error (in parenthesis) values for leaf gas exchange, leaf water potential,
whole-tree water flux traits, and leaf composition traits are shown for the ambient throughfall (TR,) and
reduced throughfall (TR ) treatments

Parameter descriptions: P,

net photosynthesis; g, leaf-level stomatal conductance; iWUE, intrinsic

water-use efficiency; Wpp, predawn leaf water potential; Wy, midday leaf water potentials; AY¥ the dif-
ference between predawn and midday leaf water potentials; K, whole-tree hydraulic conductance; Gg,,y
maximum canopy-level stomatal conductance; LMA, leaf specific mass per unit area; 8'C, foliar '3C iso-
topic composition; %C, leaf carbon content; N,
tent. Average Wpp, and Wy, used in this analysis were partially (2017-2018) provided by Samuelson et al.,

(2019)
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leaf nitrogen per unit area; and %N leaf nitrogen con-
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Fig.3 Mean (+standard error) values of net photosynthesis (P,) throughfall (TR;) and 40% throughfall reduction (TR,) treatments in
[A], stomatal conductance (g,) [B], intrinsic water-use efficiency a longleaf pine plantation
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Fig.4 Mean (+standard error) values for predawn leaf water poten-
tial (Wpp) and midday leaf water potential (W) in ambient through-
fall (TR,) and 40% throughfall reduction (TR,) treatments in a lon-

AY (AY across treatments was 0.84 +0.28MPa; p =0.600;
Table 1). No date X treatments interactions were detected for
Yyp and AY (p>0.741; Table 1).

Whole-tree hydraulic conductance and canopy
conductance

Whole-tree hydraulic conductance (K) showed a weak
date X treatment interaction (p =0.076, Table 1, Fig. 5A).
Throughfall reduction decreased K at only two time points
during the study period: June of 2018 (p=0.003) and Sep-
tember of 2018 (p =0.002) (Fig. 5A). Across both treat-
ments, K decreases as 0 decreases (Supplementary Material,
Figure S1).

We observed a significant date X treatment interactions
on for monthly G, (Table 1; Fig. 5B). The TR, treatment
decreased mean monthly G, in twelve months between 2017
and 2019: July (p=0.002), August (p =0.003), and Septem-
ber (»p=0.013) in 2017; March (p=0.032), April (p <0.001),
May (p =0.002), August (p <0.001), and September
(p=0.014) in 2018; and April (p =0.022), May (p =0.035),
June (»p=0.039), and October (p =0.014) in 2019. Decreases
in mean monthly G in response to the TR, treatment ranged
from —15 to —45%; larger reductions in mean monthly day-
time G, generally occurred after warm days with recent low
levels of precipitation.

In both treatments, daytime G, declined as VPD
increased. Although daytime G, declined with increasing
VPD in both treatments, reduced water availability caused by

@ Springer

gleaf pine plantation. *Data from 2017 and 2018 were previously
reported in Samuelson et al. (2019)

throughfall reduction reduced daytime G, at VPD =1 (bref)
(p<0.001; Fig. 6) and stomatal sensitivity (m) to increasing
VPD (p=0.029; Fig. 6) throughout the study period.

The relationship between daytime G, and VPD varied
among soil moisture category (regardless of treatment).
Across all categories, bref and m were highest in the high-
est soil moisture category (90-100% percentile of soil mois-
ture) indicating that G, was highest and strongly influenced
by VPD when soil moisture was at or above field capacity
(Table 2; Fig. 7). Parameters bref and m were similar among
the four intermediate soil moisture categories (15-30%,
30-50%, 50-70%, 70-90% percentiles of soil moisture),
indicating that G, was high and very sensitive to VPD when
soil moisture was within the range of plant available water,
although less so than when soil moisture was at or above
field capacity (Table 2; Fig. 7). Importantly, bref and m were
lowest in the lowest soil moisture category (0-15% percen-
tile), indicating that G, was very low and largely insensitive
to VPD when soil moisture was near or below the permanent
wilting point (Table 2; Fig. 7).

Tree growth and forest productivity

Samuelson et al. (2019) reported growth and productiv-
ity data collected between 2016 and 2018. We updated the
analysis with an additional year of data (2019). Averaged
over time, stand volume was 21% lower under throughfall
reduction than ambient throughfall (p =0.035; Supplemen-
tary Material, Table S1). We also found a weak interaction
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Table 2 Probability values

lues) f . Soil moisture 0-15 15-30 30-50 50-70 70-90 90-100
(p-values) for comparisons category (%)
of canopy conductance (G,)
Sensi.[iVity to vapor pressure 0-15 <0.001 <0.001 <0.001 <0.001 <0.001
deficit (VPD) actoss different 15-30 <0.001 0.591 0.845 0.664 0.011
soil moisture categories
30-50 <0.001 0.591 0.522 0.406 0.019
50-70 <0.001 0.845 0.522 0.818 0.011
70-90 <0.001 0.664 0.406 0.818 0.009
90-100 <0.001 0.011 0.019 0.011 0.009
Fig.7 The responses of mean 140
day dayhght canopy—level ] ® 0-15% —— Fitted curve 0-15%
stomatal conductance (Gy) to O 1530% —— Fitted curve 15-30%
vapor pressure deficit (VPD) 120 A 3050% —— Fitted curve 30-50%
. . . A 50-70% Fitted curve 50-70%
in longleaf pine trees at dif- Ra W 7090% Fitted curve 70-90%
ferent levels of soil moisture A" 0O 90-100% = Fitted curve 90-100%
categories 100 3
) G, 5% = 19.81-12.95 In(VPD) R*=0.18
A G, (15.20% = 66.94 - 47.78 In(VPD) R?=0.45
< e G, @050 = 79.73 - 50.74 In(VPD) R®=0.51
o 807 ’ G, so.70%) = 83.44 - 46.56 In(VPD) R?=0.48
; G, (0.c0%) = 82.89 - 44.78 In(VPD) R*=0.30
| = 2 _
E G, (901005 = 92.45 - 88.51 In(VPD) R*=0.49
= 60
o

40

20 H

05 1.0

between date X treatment for DBH (p =0.066; Supplemen-
tary Material, Table S1). However, post-hoc analysis indi-
cated no differences in DBH between treatments in any
individual year throughout the experiment. No other treat-
ment effects or year X treatment effects were observed for
tree height, basal area, mortality, aboveground primary pro-
duction, or peak LAI (p> 0.107; Supplementary Material,
Table S1).

Discussion

We determined the impacts of reduced water availabil-
ity on longleaf pine leaf and canopy physiology, as well
as canopy-scale G, sensitivity to VPD. Over the study
period, 40% throughfall reduction decreased soil mois-
ture and caused small reductions in g, and P, but did not

change instantaneous or isotopically determined leaf-scale
water-use efficiency. Throughfall reduction also caused

@ Springer
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VPD (kPa)

small reductions in K, mean monthly G,, mean daytime
G, at reference VPD =1 kPa (bref), and G, sensitivity to
VPD (m). Across treatments, bref and m showed sepa-
ration among soil moisture categories; both parameters
where highest under the highest soil moisture conditions,
intermediate under soil moisture conditions representing
the range of plant available water, and lowest when soil
moisture was near or below the permanent wilting point.
These results provide general support for our hypotheses
about longleaf pine responses to throughfall reduction and
soil moisture and VPD controls of G,. Importantly, small
effects of throughfall reduction on leaf and canopy-scale
physiology were apparently not strong enough to signifi-
cantly alter tree growth or forest productivity. We con-
clude that, even on sandy, well-drained sites, established
longleaf pine trees may be relatively resistant to reduced
rainfall, although G, and its sensitivity to VPD declines as
soil moisture declines.
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Leaf-scale responses to throughfall reduction

Throughfall reduction resulted in lower soil moisture and
a small decrease in g,. Reduced g, was expected and is a
typical response to soil water deficit, particularly in tree
species that are generally considered to be more isohydric
(Fuchs and Livingston 1996; Hubbard et al. 2001; Domec
et al. 2009; Clark et al. 2012). Reductions in g, were coupled
with small reductions in P,... We hypothesize that stoma-
tal rather than biochemical limitations were responsible for
the small reductions in P, under throughfall reduction. We
found that leaf N, on both a percent (mass) and leaf area
basis, was not affected by throughfall reduction. Foliar N
serves as a measure of the total enzyme (photosynthetic,
respiratory) content of the foliage and often scales positively
with the maximum capacity for Rubisco carboxylation (i.e.,
Vemax> Atkin et al. 2015, Diaz-Espejo et al. 2007, Medlyn
et al. 2002). If throughfall reduction did alter photosyn-
thetic biochemistry, we might expect differences in leaf N
between treatments (Lal et al. 1996; Pelloux et al. 2001;
Parry et al. 2002). Droughts that are modest or short in dura-
tion typically have little effect on mesophyll conductance
or photosynthetic biochemistry (Flexas and Medrano 2002;
Flexas et al. 2004; Diaz-Espejo et al. 2007; Drake et al.
2016), and reduced g, is considered the primary limitation
to net CO, uptake and plant production. Taken together, it
is likely that stomatal limitation was the primary limitation
of P, under 40% throughfall reduction, although photosyn-
thetic CO,-response measurements would help determine
whether photosynthetic capacity was affected.iWUE was not
increased under the throughfall reduction treatment as we
expected. Likewise, the 40% throughfall reduction and sub-
sequent reductions in g, and P, were not strong enough to
change foliar 8!°C, suggesting no increase in time-integrated
foliar iWUE. Under marked reductions in g, increased foliar
8'3C is usually expected for trees under water stress, indi-
cating higher iWUE (Helle and Schleser 2004; Shestakova
et al. 2017; Castillo et al. 2018). These results reinforce our
conclusion that throughfall reduction had relatively small
effects on longleaf pine leaf physiology.

Pine species in the southern U.S. differ in their response
to soil drying. In loblolly pine, Domec et al. (2009) showed
that Wpp declines steadily in loblolly pine when relative
extractable water (REW) drops below 40-50%. In longleaf
pine, Samuelson et al. (2019) found that Wp, declines at a
lower REW (~20%), indicating greater drought tolerance.
During our study, there were many instances when REW
dropped below 20% (volumetric water content < ~0.04
cm’ cm'3), but these declines were likely too brief to cause
severe reductions in Wp and leaf physiology. Samuelson
etal. (2019) also found that ¥y at stomatal closure (‘¥ )
and the turgor loss point (¥y,), both indicators of drought
resistance (Bartlett et al. 2012; Martin-StPaul et al. 2017),

were as low as —2.9 and —3.0 MPa, respectively, in longleaf
pine. These threshold ¥y, values were never surpassed
in our study, which probably explains the small effect of
throughfall reduction on g. Similar to previous studies, sub-
stantial variation in K was observed over time in both treat-
ments in response to changes in soil moisture (Oren et al.
2001; Addington et al. 2004). Yet, overall, throughfall reduc-
tion had little effect on K, suggesting that the 40% through-
fall reduction treatment was not strong enough to severely
impact tree hydraulic integrity during the study period.

We found that 40% throughfall reduction reduced stand
volume (averaged over time), but otherwise had little effect
on individual tree diameter, height, forest productivity, or
tree mortality. This result is similar to that of Samuelson
et al. (2019). In a previous study, we also found no effect
of throughfall reduction on needle or shoot growth pat-
terns or leaf area index (Mendonca et al. 2022). During our
study, precipitation was similar among years and relatively
frequent within years. The maximum period observed with
no rain was 20 days, and the average interval between rain
events was five days. Samuelson et al. (2019) found excep-
tionally low Wpp, and Wy, values in the same longleaf pine
trees (average lows of —2.9 and —3.6 MPa for Wpp, and Wyp,
respectively) during an extreme natural drought event in late
summer to early autumn 2016 which lasted 77 days with
very little to no rain. During this natural drought, trees in
both treatments were equally stressed and ceased transpi-
ration at the canopy-scale. We conclude that reductions in
total annual precipitation are unlikely to have strong negative
impacts on established longleaf pine forests, even on xeric
sites, unless reductions in average rainfall coincide with long
dry spells (Phillips et al. 2016; Engelbrecht et al. 2017).
Established longleaf pine may be resistant to dry surface
soils, in part due to deep rooting. Using methods developed
by Samuelson et al. (2016), we estimate that tap root depth
was 3.0-3.2 m. Access to deeper soil moisture may have
reduced throughfall reduction effects on tree function.

Canopy-scale responses to soil moisture and VPD

Our canopy-scale responses to soil moisture and VPD gen-
erally supported our hypotheses. Throughfall reduction had
small (but significant) effects on mean monthly G, and day-
time G, at VPD =1 kPa (bref), although mean monthly G,
responded inconsistently to throughfall reduction over time.
The reduction in bref coincided with reduced daytime G,
sensitivity to VPD (m), which aligns with theory and previ-
ous observations in other species, including longleaf pine
(Oren et al. 1999; Gonzalez-Benecke et al. 2011; Bartkowiak
et al. 2015; Addington et al. 2006, 2004; Samuelson et al.
2019; Samuelson and Whitaker 2012). Our results indi-
cated that trees growing under throughfall reduction were
less sensitive to increasing VPD than trees growing under
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ambient, higher rainfall conditions. Throughfall reduction
experiments with drought-resistant species growing in arid
climates have also shown reduced G, and sensitivity to VPD
(Grossiord et al. 2017). These results highlight the potential
importance of site conditions and drought severity when
considering tree responses to increasing VPD.

It is well known that soil moisture and VPD both influ-
ence G,, but the independent influence of each factor has
been difficult to assess. To address this, Novick et al. (2016)
examined G, responses to VPD at different sites and differ-
ent soil moisture percentiles within sites. They found that
VPD dominates G, in mesic ecosystems, and G, shows larger
reductions in sensitivity to VPD with declining soil moisture
at dry sites than wet sites. We used the same approach with
longleaf pine growing on a xeric site in a mesic region. We
found that G, was highest and very sensitive to VPD when
soil water was not limiting (i.e., when 6 was at or above field
capacity). Compared to very wet conditions, G, sensitivity to
VPD dropped by 50% and was uniform at soil moisture lev-
els within the range of plant available water. Therefore, G,
was still strongly influenced by VPD, but soil moisture likely
exerted some control over G,. Interestingly, under very dry
conditions when soil moisture was at or near the permanent
wilting point, G, sensitivity to VPD declined by 73% rela-
tive to conditions when soil moisture was within the range
of plant available water. This result indicates that soil mois-
ture conditions near the permanent wilting point represent
a major breakpoint in relative control of soil moisture and
VPD on G.. If soil moisture at the permanent wilting point
is a good general predictor of G, transitioning from VPD
dominated to soil moisture dominated, it could simplify our
understanding and predictions of G, responses to VPD and
soil moisture.

Conclusion

Here, we studied how three years of reduced rainfall
(throughfall reduction) impacted leaf- and canopy-scale
physiology of established longleaf pine trees. We found that
a 40% reduction in rainfall resulted in small reductions in
leaf- and canopy-scale function, and these changes did not
significantly impact growth. Previous findings from the same
experiment showed that stress conditions only occur dur-
ing prolonged dry spells with little or no rainfall. Therefore,
changes in rainfall frequency or dry spell duration, espe-
cially during warmer seasons, could potentially have larger
impacts on tree function than changes in total annual rainfall.
Importantly, we identified soil moisture conditions associ-
ated with changes in G, responses to VPD. At soil moistures
within and above the range for plant available water, G, is
dominated by VPD. When soil moisture approaches to per-
manent wilting point, VPD no longer exerts a strong control
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over G,, suggesting that this soil moisture is a breakpoint
in the relative control of VPD and soil moisture over G,.
These results provide new information about the response
of established longleaf pine trees to reduced soil moisture
and general controls of G, which could inform both forest
management under climate change and modeling of canopy
water fluxes under hotter, drier conditions.
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